跳至内容
Selected Journal/Magazine Papers complete list in Google Scholar
- S. Xie, Y. Xue, Y. Zhu, Z. Wang, “SkyML: A MLaaS Federation Design for Multicloud-based Multimedia Analytics“, to appear in IEEE Transactions on Multimedia, 2024
- Z. Wang, Y. Zhu, D. Wang, Z. Han, “Towards Fair and Scalable Trial Assignment in Federated Bandits: A Shapley Value Approach“, to appear in IEEE Transactions on Big Data, 2024
- S. Cen, M. Zhang, Y. Zhu, J. Liu, “AdaDSR: Adaptive Configuration Optimization for Neural Enhanced Video Analytics Streaming“, to appear in IEEE Internet of Things Journal, 2023
- Y. Kang, Y. Zhu, D. Wang, Z. Han, T. Basar, “Joint Server Selection and Handover Design for Satellite-Based Federated Learning Using Mean-field Evolutionary Approach”, to appear in IEEE Transactions on Network Science and Engineering, 2023.
- Q. Pan, H. Cao, Y. Zhu, J. Liu, B. Li, “Contextual Client Selection for Efficient Federated Learning over Edge Devices“, to appear in IEEE Transactions on Mobile Computing, 2023. (CCF-A)
- S. Shi, Y. Guo, D. Wang, Y. Zhu, Z. Han, “Distributionally Robust Federated Learning for Network Traffic Classification with Noisy Labels“, to appear in IEEE Transactions on Mobile Computing, 2023. (CCF-A)
- W. Gong, L. Cao, Y. Zhu, F. Zuo, X. He, H. Zhou, “Federated Inverse Reinforcement Learning for Smart ICUs with Differential Privacy“, in IEEE Internet of Things Journal, 2023
- C. Wu, Y. Zhu, R. Zhang, Y. Chen, F. Wang, S. Cui, “FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit“, in IEEE Internet of Things Journal, 2023
- B. Zhu, S. Lin, Y. Zhu, X. Wang, “Collaborative Hyperspectral Image Processing using Satellite Edge Computing“, in IEEE Transactions on Mobile Computing, 2023. (CCF-A)
- S. Shi, C. Hu, D. Wang, Y. Zhu, Z. Han, “Federated HD Map Updating through Overlapping Coalition Formation Game“, in IEEE Transactions on Mobile Computing, 2023. (CCF-A)
- D. Chen, Y. Zhu, D. Wang, H. Wang, J. Xie, X. Zhang, Z. Han, “Love of Variety based Latency Analysis for High Definition Map Updating: Age of Information and Distributional Robust Perspectives“, in IEEE Transactions on Intelligent Vehicles, 2022
- Z. Wang, Y. Zhu, D. Wang, Z. Han, “Secure Trajectory Publication in Untrusted Environments: A Federated Analytics Approach“, in IEEE Transactions on Mobile Computing, 2022. [Code] (CCF-A)
- Z. Wang, Y. Zhu, D. Wang, Z. Han, “Federated Analytics Informed Distributed Industrial IoT Learning with Non-IID Data“, in IEEE Transactions on Network Science and Engineering, 2022. [Code]
- T. Wang, S. Chen, Y. Zhu, A. Tang, and X. Wang, “LinkSlice: Fine-grained Network Slice Enforcement Based on Deep Reinforcement Learning“, in IEEE Journal on Selected Areas in Communications, 2022. (CCF-A)
- M. Zhang, Y. Zhu, J. Liu, F. Wang, F. Wang, “CharmSeeker: Automated Pipeline Configuration for Serverless Video Processing“, in IEEE/ACM Transaction on Networking, 2022. (CCF-A)
- J. Zhang, S. Chen, X. Wang, Y. Zhu, “Dynamic Reservation of Edge Servers via Deep Reinforcement Learning for Connected Vehicles“, in IEEE Transactions on Mobile Computing, 2021. (CCF-A)
- D. Wang, S. Shi, Y. Zhu, Z. Han. “Federated Analytics: Opportunities and Challenges“, in IEEE Network, 2021.
- M. Zhang, F. Wang, Y. Zhu, J. Liu, B. Li. “Serverless Empowered Video Analytics for Ubiquitous Networked Cameras“, in IEEE Network, 2021.
- S. Shi, C. Hu, D. Wang, Y. Zhu, Z. Han, “Federated Anomaly Analytics for Local Model Poisoning Attack“, in IEEE Journal on Selected Areas in Communications, 2021. (CCF-A)
- D. Chen, D. Wang, Z. Han, Y. Zhu, “Digital Twin for Federated Analytics Using A Bayesian Approach“, in IEEE Internet of Things Journal, 2021
- F. Wang, C. Zhang, F. Wang, J. Liu, Y. Zhu, H. Pang, L. Sun, “DeepCast: Towards Personalized QoE for Edge-Assisted Crowdcast With Deep Reinforcement Learning“, in IEEE/ACM Transaction on Networking, 2020 (CCF-A)
- F. Wang, Y. Zhu, F. Wang, J. Liu, X. Ma, X. Fan. “Car4Pac: Last Mile Parcel Delivery through Intelligent Car Trip Sharing“, in IEEE Transactions on Intelligent Transportation Systems, 2019.
- Y. Zhu, Q. He, J. Liu, B. Li, Y. Hu. “When Crowd Meets Big Video Data: Cloud-Edge Collaborative Transcoding for Personal Livecast“, in IEEE Transactions on Network Science and Engineering, 2018.
- Y. Zhu, S. Fu, J. Liu, Y. Cui. “Truthful Online Auction Towards Maximized Instance Utilization in the Cloud“, in IEEE/ACM Transaction on Networking, 2018. (CCF-A)
Selected Conference Papers
- S. Cen, Q. Pan, Y. Zhu, B. Li, “SatFlow: Scalable Network Planning for LEO Mega-Constellations“, to appear in IEEE ICNP 2024
- H. Zhao, S. Cen, Y. Zhu, “The Space above the Sky: Uniting Global-Scale Ground Station as a Service for Efficient Orbital Data Processing“, to appear in IEEE ICNP 2024
- Z. Wang, Y. Zhu, “Towards Real-Time Neural Volumetric Rendering on Mobile Devices: A Measurement Study“, to appear in ACM SIGCOMM Workshop on Emerging Multimedia Systems 2024
- Z. Li, M. Zhang, Y. Zhu, “OAVS: Efficient Online Learning of Streaming Policies for Drone-sourced Live Video Analytics“, to appear in IEEE/ACM IWQoS 2024
- Y. Liu, Z. Wang, Y. Zhu, C. Chen, “DPBalance: Efficient and Fair Privacy Budget Scheduling for Federated Learning as a Service“, in IEEE INFOCOM 2024 (CCF-A)
- Z. Wang, Y. Zhu, D. Wang, Z. Han, “Federated Analytics-Empowered Frequent Pattern Mining for Decentralized Web 3.0 Applications“, in IEEE INFOCOM 2024 (CCF-A)
- J. Huang, Y. Zhu, “SpaceMeta: Global-Scale Massive Multi-User Virtual Interaction over LEO Satellite Constellations“, in IEEE Satellite 2023
- M. Zhang, J. Li, J. Shi, Y. Zhu, L. Zhang, H. Wang, “ITSVA: Toward 6G-Enabled Vision Analytics over Integrated Terrestrial-Satellite Network“, in IEEE Satellite 2023
- D. Song, C. Zhang, Y. Zhu, J. Liu, “LiGo: A Low Cost Cross-Platform Deployment Framework Empowers Video Processing Application“, in ACM NOSSDAV 2023
- Q. Pan, Y. Zhu, L. Chu, “Lumos: Heterogeneity-aware Federated Graph Learning over Decentralized Devices“, to appear in IEEE ICDE 2023 (CCF-A)
- M. Zhang, Y. Zhu, L. Shen, F. Wang, J. Liu, “OmniSense: Towards Edge-Assisted Online Analytics for 360-Degree Videos“, to appear in IEEE INFOCOM 2023 (CCF-A)
- S. Fu, D. Reimer, S. Dong, Y. Zhu, S. Ratnasamy, “Comverse: A Federative-by-Design Platform for Community Computing“, CoRR abs/2308.15219, 2023
- C. Wu, Y. Zhu, F. Wang, “DSFL: Decentralized Satellite Federated Learning for Energy-Aware LEO Constellation Computing“, in IEEE Satellite 2022 (Best Student Paper Award)
- Y. Zhu, W. Bao, D. Wang, J. Liu. “A Stackelberg Queuing Model and Analysis for the Emerging Connection-based Pricing in IoT Markets“, in IEEE MASS, 2022
- K. Chen, Y. Zhu, Z. Han, X. Wang. “Adaptive Cross-Camera Video Analytics at the Edge“, in IEEE MASS, 2022
- K. Chen, Y. Zhu, Y. Kang, Z. Han. “Few-Shot Correlation Estimation for Cross-Camera Video Analytics: A Mean-Field Game Approach“, in IEEE PIMRC, Native-AI in wireless networks workshop, 2022
- C. Tang, K. Ouyang, Z. Wang, Y. Zhu, W. Ji, Y. Wang, W. Zhu. “Mixed-Precision Neural Network Quantization via Learned Layer-wise Importance“, in ECCV 2022
- Y. Lu, Y. Zhu, Z. Wang. “Personalized 360-Degree Video Streaming: A Meta-Learning Approach“, in ACM Multimedia, 2022 (CCF-A)
- C. Tang, H. Zhai, K. Ouyang, Z. Wang, Y. Zhu, W. Zhu. “Arbitrary Bit-width Network: A Joint Layer-Wise Quantization and Adaptive Inference Approach“, in ACM Multimedia, 2022 (CCF-A)
- Q. Pan, Y. Zhu. “FedWalk: Communication Efficient Federated Unsupervised Node Embedding with Differential Privacy“, in ACM SIGKDD, 2022 (CCF-A)
- X. Yuan, M. Wu, Z. Wang, Y. Zhu, M. Ma, J. Guo, Z. Zhang, W. Zhu. “Understanding 5G Performance for Real-world Services: a Content Provider’s Perspective“, in ACM SIGCOMM, 2022 (CCF-A)
- S. Shi, C. Hu, D. Wang, Y. Zhu, Z Han. “Distributionally Robust Federated Learning for Differentially Private Data“, in IEEE ICDCS, 2022
- H. Cao, Q. Pan, Y. Zhu, J. Liu.”Birds of a Feather Help: Context-aware Client Selection for Federated Learning“, in International Workshop on Trustable, Verifiable and Auditable Federated Learning in Conjunction with AAAI 2022
- Z. Wang, Y. Zhu, D. Wang, Z. Han. “FedFPM: A Unified Federated Analytics Framework for Collaborative Frequent Pattern Mining“, in IEEE INFOCOM, 2022. [Code] (CCF-A)
- S. Xie, Y. Xue, Y. Zhu, Z. Wang. “Cost Effective MLaaS Federation: A Combinatorial Reinforcement Learning Approach“, in IEEE INFOCOM, 2022 (CCF-A)
- M. Zhang, F. Wang, Y. Zhu, J. Liu, Z. Wang. “Towards Cloud-Edge Collaborative Online Video Analytics with Fine-Grained Serverless Pipelines“, in ACM MMSys, 2021.
- Z. Wang, Y. Zhu, D. Wang, Z. Han. “FedACS: Federated Skewness Analytics in Heterogeneous Decentralized Data Environments“, in IEEE/ACM IWQoS, 2021
- J. Zhang, S. Chen, X. Wang, Y. Zhu. “DeepReserve: Dynamic Edge Server Reservation for Connected Vehicles with Deep Reinforcement Learning“, in IEEE INFOCOM, 2021 (CCF-A)
- M. Zhang, Y. Zhu, C. Zhang, J. Liu. “Video processing with serverless computing: a measurement study“, in ACM NOSSDAV, 2019
- F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun. “Intelligent Edge-Assisted Crowdcast with Deep Reinforcement Learning for Personalized QoE“, in IEEE INFOCOM, 2019 (CCF-A)
- Y. Huang, Y. Zhu, X. Fan, X. Ma, F. Wang, J. Liu, Z. Wang, Y. Cui. “Task Scheduling with Optimized Transmission Time in Collaborative Cloud-Edge Learning“, in IEEE ICCCN, 2018
- F. Wang, Y. Zhu, F. Wang, J. Liu. “Ridesharing as a Service: Exploring Crowdsourced Connected Vehicle Information for Intelligent Package Delivery“, in IEEE/ACM IWQoS, 2018
- Y. Zhu, J. Liu, Z. Wang, C. Zhang. “When Cloud Meets Uncertain Crowd: An Auction Approach for Crowdsourced Livecast Transcoding“, in ACM Multimedia, 2017 (CCF-A)
- S. Fu, Y. Zhu, J. Liu. “HARV: Harnessing hybrid virtualization to improve instance (re) usage in public cloud“, in IEEE/ACM IWQoS, 2017
- Y. Zhu, S. Fu, J. Liu, Y. Cui. “Truthful Online Auction for Cloud Instance Subletting“, in IEEE ICDCS, 2017
- Y. Zhu, J. Jiang, B. Li, B. Li. “Rado: A Randomized Auction Approach for Data Offloading via D2D Communication“, in IEEE MASS, 2015
- J. Jiang, Y. Zhu, B. Li, B. Li. “Rally: Device-to-device content sharing in LTE networks as a game“, IEEE MASS, 2015
Demos and Posters
- Y. Zhu, B. Zhu, C. Chen, X. Fan. “Towards Efficient Compound Large Language Model System Serving in the Wild“, in IEEE/ACM IWQoS 2024 (Best Poster Award)
- D. Song, Y. Zhu, C. Zhang, J. Liu. “Trueno: A Cross-Platform Machine Learning Model Serving Framework in Heterogeneous Edge Systems“, in IEEE INFOCOM 2022
- Y. Zhu, J. Liu. “C2: Procuring uncertain freelancers for interactive live video transcoding“, in IEEE/ACM IWQoS 2017
Book Chapter
- D. Chen, D. Wang, Y. Zhu, and Z. Han, “Digital Twin for Federated Analytics Applications,” Handbook of Digital Twins, CRC Press