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Abstract—The increasing awareness of privacy and the adoption of data regulations challenge the traditional trajectory publication

framework in which a trusted server has access to the raw data from mobile clients. In the new untrusted environment, the clients call

for much stronger data privacy preservation locally without sharing their raw data. Based on the emerging paradigm of federated

analytics, we propose a Federated Analytics-based Secure Trajectory PUBlication (FASTPub) mechanism to operate in such untrusted

environments. Compared with existing local differential privacy (LDP) methods, FASTPub guarantees LDP and loss-bounded

k-anonymity simultaneously with greatly improved data utility. Specifically, FASTPub works interactively between the server and clients

and iteratively builds up the trajectory without exposing raw data. Sampled clients only respond to selected trajectory fragments with

randomized answers to preserve privacy as much as possible. The server then intelligently aggregates these randomized responses

leveraging the intrinsic Apriori property and a Markov independent assumption of trajectory data to guide further iterations. Extensive

experiments on synthetic and real-world datasets on two downstream tasks demonstrate that FASTPub gains a remarkably improved

data utility compared to the existing state-of-the-art solutions.

Index Terms—federated analytics, trajectory publication, local differential privacy, k-anonymity, collaborative computing
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1 INTRODUCTION

THe advances in location-acquisition and mobile com-
puting techniques have generated massive trajectory

data, represented as sequences of chronologically ordered
geometric or virtual locations (e.g. geographical locations or
website browsing history) from moving objects. In 2020, an
estimated 8 billion mobile devices received their location
information from the Global Navigation Satellite System
(GNSS) [1]. From these trajectory data, valuable knowledge
can be derived in both the macroscopic perspective, e.g.
daily/annual human mobility trends analysis [2], and the
microscopic perspective, e.g. road routing [3]. These mined
information further powers the growth of various appli-
cations and services, like vehicular networks [4], location-
based services [5], and smart city [6].

As the cornerstone of all trajectory data mining tasks, the
trajectory data have to be gathered first and form a database,
a procedure usually called trajectory publication [7]. Tradi-
tionally, a server of a trusted third party first gathers the tra-
jectory data from mobile devices, and then releases it to the
data analysts for research purposes after enforcing certain
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privacy constraints. For example, Nokia gathers trajectory
data from 185 volunteers from Lausanne, Switzerland, and
releases the Mobile Data Challenge (MBC) dataset with k-
anonymity enforced centrally for privacy preservation [8];
Microsoft gathers the trajectory data of taxis in Beijing,
China, and releases it as an anonymous T-Drive dataset [9].
In the traditional data publication framework, the privacy
issue is only considered when the trajectory database is re-
leased to the data analyst, while the procedure of acquiring
data from the clients1 is done straightforwardly with little
consideration of local privacy [10], [11], [12], [13].

Nowadays, with the increasing awareness of privacy
preservation, laws and regulations are established to limit
the collection of clients’ data, such as the EU General Data
Protection Regulation (GDPR) [14]. The trend fundamen-
tally changes the underlying assumption in the classical
trajectory publication framework: there will be no such
admitted “trusted server” having access to raw data in the
clients. In the resulting untrusted environment, the clients
worry about the danger caused by uploading sensitive in-
formation to prevent potential privacy attacks, such as re-
identification. As a result, they strive to avoid direct trans-
mission of raw data, and request local privacy preservation.

k-anonymity and differential privacy (DP) are two de
facto industrial and academic standards in the field of pri-
vacy preservation. k-anonymity [15] enables an individual
to “hide in the crowd” of companions with similar exposed
data, while local differential privacy (LDP) [16], the local
privacy scheme of DP, regulates the uploads to reduce
individual biases via randomization. These two criteria
become equally important in the emerging untrusted data
environments. On one hand, LDP reduces the identity of

1. We use the term client to indicate the distributed trajectory data
owner in this paper.
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each client by forcing their outputs to be closed to each
other. On the other hand, k-anonymity protects the users
with “rare” data from being identified.

However, both criteria are difficult to be realized and
ineffective to be deployed in the emerging untrusted trajec-
tory scenario. For k-anonymity, it requires every uploaded
information to have at least k − 1 similar companions, and
counting the number of duplicates requires gathering raw
data from other clients. In other words, the central privacy-
oriented k-anonymity cannot be easily adjusted with only
local information. Meanwhile, since the space of trajectory
is extremely large, realizing LDP via naı̈ve perturbation
introduces significant noise on the raw trajectory data,
greatly harming the publication quality. Consequently, two
criteria all require global knowledge from other clients,
which conflicts with the requirement of data staying local
in an untrusted environment.

Since 2020, federated analytics (FA), as a sequel to the
widely studied federated learning (FL), has started to attract
both academia and industry’s attention [17], [18], [19], [20].
This new data analytics paradigm studies the scenarios
where a central server hosts a data analytics task with many
distributed clients holding private data locally. Instead of
sending the raw data directly to the server, the clients
perform a part of the data mining procedure solely with
their local data, generate indirect and insensitive insights
based on their local data, and upload these insights to the
server. After that, the server aggregates the insights in a
non-trivial way, and generates new guides for the clients to
push forward the data analytics task. In FL, the host task is
to train a neural network, so the local insight derivation is
essentially neural network training (gradient descent), and
the aggregation is gradient averaging. On the contrary, FA
focuses on data science tasks that cannot be solved by neural
networks, so it significantly differs from FL in the form of
local insights derivation and central aggregation. Therefore,
we choose FA to accomplish the non-training-based trajec-
tory publication task in an untrusted environment.

However, how to achieve trajectory publication under the
paradigm of FA so that local privacy can be preserved by both
k-anonymity and LDP has never been studied before. In this
paper, following the FA paradigm, we propose a Federated
Analytics-based Secure Trajectory PUBlication, or FAST-
Pub2, a mechanism to publish non-trivially long trajectory
fragments in untrusted environments. Essentially, FASUPub
builds a trajectory database with a predefined length by
gathering fragments (continuous subsequences) of trajec-
tory from the clients3. FASTPub is interactive and iterative,
where the clients start by publishing the shortest fragments
of trajectory with length 1. Only after the server infers out
the valid longer fragment candidates based on the aggre-
gated responses to the shorter ones, it will then query a new
group of randomly selected clients on their existence. The
publication process continues until the predefined length is
reached. Instead of directly adding noise to a long trajectory
chain, the clients only need to answer yes/no for a limited
number of candidate trajectory fragments generated by the

2. Our implementation is available in https://github.com/inslab-ji/
FASTPub.

3. The necessity of publishing trajectory fragments instead of raw
trajectories is demonstrated in Section 4.1.

TABLE 1
Comparison between data publication solutions. We analyze their

ability in trajectory publication tasks, data utility as low (+), moderate
(++), and high (+++), and privacy guarantees.

Trajectory data Utility Privacy

RAPPOR [21] X +++ Local DP
[10], [11], [22] X +++ Central DP

[12], [13] X +++ Central k-anon.
SFP [23] X + Local DP

TrieHH [19] X ++ Central DP4

FASTPub X +++ Local DP and local k-anon.

server. On the other hand, by iteratively increasing the frag-
ment length, FASTPub successfully bounds the expectation
of anonymity loss for k-anonymity, which provides valid
privacy preservation in untrusted environments. FASTPub
simultaneously satisfies the two criteria, which provides
greater privacy preservation than satisfying either of them
solely.

In summary, our contributions are:

1) We present the first work to realize secure trajectory
data publication in the untrusted environment follow-
ing the paradigm of FA.

2) We disaggregate the publication services into itera-
tively publishing trajectory fragments, and judiciously
leverage the Apriori property and Markov independent
assumption of the trajectory data to realize LDP with
greatly improved utility.

3) To further protect privacy, we extend the central k-
anonymity definition to be viable in the local privacy
scenario. The extended loss-bounded k-anonymity is
satisfied in FASTPub via the enforcement of (k, ξ)-
anonymity (satisfy k-anonymity with confidence 1− ξ)
on the candidate fragments.

4) We theoretically prove that FASTPub enforces LDP
and loss-bounded k-anonymity, and calculate the sup-
port count threshold of candidates to satisfy (k, ξ)-
anonymity. These expressions reveal the reliability of
FASTPub in local privacy preservation.

5) Extensive experiments on real-world and synthetic
datasets show that, compared to two state-of-the-art
benchmarks, the database generated by FASTPub gains
2.5 ∼ 6.1 times higher F1 score in frequent pattern
mining task, and 85.6% ∼ 87.2% reduced relative error
in count query task.

The paper is organized as follows: the related work is
surveyed in Section 2. Preliminaries and motivation are
in Section 3. We present the system model and problem
formulation in Section 4. Section 5 includes the design de-
tails and the corresponding theoretical analysis of FASTPub.
Evaluations are illustrated in Section 6, and a conclusion is
finally drawn in Section 7.

2 RELATED WORK

2.1 Privacy-preserving Trajectory Publication

Extensive studies have been done to protect the privacy of
trajectory data. To verify the effectiveness, the proposed

4. The authors of [19] claim that TrieHH provides local privacy
preservation to some extent by limiting the raw data exposure.
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methods mainly target privacy criteria including central
differential privacy [10], [11], [22] and k-anonymity [12],
[13], which work in the trusted data environment with a
data aggregator accessing all the raw data. Consequently,
the central privacy scheme devised there cannot meet the
requirement of user-level privacy in our studied untrusted
data environment. Numerous research efforts have been
proposed in preserving local privacy. The randomized re-
sponse is adapted by various real-world deployments to
meet LDP, a typical local privacy preservation criterion
with a rigorous mathematical definition [21], [23], [24], [25].
However, they suffer from great utility loss if naı̈vely adding
significant noise to the raw data. In addition, researchers
have also tried to design local privacy schemes based on
k-anonymity [26], [27]. Unfortunately, the aforementioned
local privacy schemes are either unfeasible or ineffective
to be deployed in the trajectory scenario. Notably, as the
basis of trajectory data, the location data have been given
many solutions for privacy preservation [28], [29], [30].
However, the trajectory scenario is much more complicated
than the former due to the high dimensionality of sequential
trajectory data. In this paper, we propose FASTPub, the first
work to combine LDP and local variation of k-anonymity,
which provides thorough protection against multiple attack
strategies. It also achieves a greatly improved data utility
in the untrusted publication environments, handling the
difficult trajectory data structure. A comparison between
FASTPub and existing solutions is presented in Table 1.

2.2 Federated Analytics

Different from FL [31], where a neural network is collabo-
ratively trained, FA focuses on non-training oriented data
mining tasks. Given the wide spectrum of data mining
tasks, there is still no universal framework for FA at the
current nascent state. Several pioneering works have al-
ready focused on devising FA mechanisms to help FL or
conduct specific analytic tasks in the decentralized data
environment. In [18], the concept of FA is firstly intro-
duced, and its applications on FL model evaluation and
song recognition are presented. In [20], an FA mechanism
is proposed to measure the severity of data heterogeneity in
edge devices to help other federated optimization tasks. In
[32], an FA scheme is designed to reveal single value data
by uploading one bit from its local value. To the best of our
knowledge, there is still no FA work specifically designed
for trajectory publication scenarios. The most related work
is the federated frequent word analytic mechanism [19],
because the frequent word can be treated as a type of
sequence data. However, it settles with central DP, instead of
LDP, for utility improvement. On the contrary, our solution
successfully achieves both stricter LDP and higher data
utility simultaneously.

3 PRELIMINARIES AND MOTIVATION

In this section, we first introduce the necessity of having k-
anonymity and LDP satisfied simultaneously in the emerg-
ing untrusted environments in Section 3.1. Then, the two
criteria in our locally untrusted settings are introduced in
Sections 3.2 and 3.3, respectively. After that, we present the

motivation for FASTPub based on reviewing the limits of
existing methods in Section 3.4.

3.1 Necessity of Having Two Criteria

There exists an intensive debate on the effectiveness of LDP
and k-anonymity [22], [33], [34]. As a newly introduced
concept, DP is believed by many researchers to provide
stronger privacy preservation than k-anonymity [22], [33].
On the other hand, in [34], some scenarios where DP does
no longer work are identified. Neither of the two criteria
can thoroughly outperform the opposite since they tackle
different attack strategies. LDP assumes that a re-ID attacker
has full knowledge of the prior distribution of client data,
i.e., the attacker has a complete but anonymous collection
of client data, and it wants to match the clients with the
records. LDP protects the client data from being inferred by
the attacker with a rigorous guarantee.

However, the LDP privatized data can still be treated as
a fingerprint of the client, which may harm data privacy
[34]. As a result, the attacker can trace the client after
the publication even if the attacker does not have any
prior knowledge. The risk is comprehensively reasonable
in the trajectory publication scenario because 1) the sparse
trajectory data is naturally suitable for fingerprints, and
2) the clients in trajectory publication are usually mobile,
and tracing the clients with their fingerprints introduces
trajectory leakage. For example, when an attacker traces a
smartphone via a cellular network by seeking a particular
historical trajectory publication record, it can reconstruct the
trajectory even if the client would like to be anonymous.
k-anonymity eliminates this risk by guaranteeing that the
privatized upload is not a unique fingerprint.

In conclusion, simultaneously meeting the two criteria
provides better privacy preservation than satisfying any of
them solely. In fact, researchers in [35], [36], [37] have pro-
posed some pioneering works to blend DP and k-anonymity
in the central privacy setting with a trusted aggregator.

3.2 Local Privacy Preservation of k-anonymity

Introduced in [15], k-anonymity is an effective tool in
preventing individuals from the re-identification attack.
Consider the environment with N clients, denoted by
c1, c2, ..., cN . Each client uploads some data to a centralized
server. In k-anonymity, the uploaded data from one client
ci consists of several attributes named quasi-identifier, which
can be used by a potential adversary to identify one individ-
ual, and sensitive attributes, which people do not want others
to know about. Denote the quasi-identifier from ci as di, and
the set of di from all clients as Q. We define a support count
function S(·) for any di as follows:

S(di) =
∑

dj∈Q

I(di = dj), (1)

where I is the indicator function, returning 1 when di is the
same as dj from any other client (or itself), and 0 otherwise.

Definition 1 (k-anonymity). A data publication algorithm
satisfies k-anonymity when

S(d) ≥ k, ∀d ∈ P, (2)
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where P are all the published data of the algorithm.

k-anonymity forces any published data to have at least
k−1 companions with the same quasi-identifiers. It provides
privacy preservation following the idea of “hiding in the
crowd”. With k-anonymity, potential adversaries can no
longer match a person with a specific quasi-identifier and
infer his/her sensitive attributes, because he/she is hiding
in the crowd of k people with different sensitive attributes.

Originally, k-anonymity serves as a central privacy
scheme, which protects clients’ privacy when the server
releases the aggregated data to the public. At the moment
a datum is published by a client, neither the client nor
the server knows whether it satisfies k-anonymity, which
prevents k-anonymity from providing local privacy preser-
vation. Existing works try to gain local privacy preservation
via k-anonymity, however, they rely on secure multi-party
computation infrastructure and cannot be applied to the
trajectory data [26], [27].

In FASTPub, we investigate the characteristic of trajec-
tory data and extend the centrally defined k-anonymity
to handle local privacy scenarios, with carefully designed
anonymity loss. The anonymity loss measures the potential
privacy leakage of uploading any trajectory chain. The idea
of loss-bounded k-anonymity is simple: even if a trajectory
chain may not satisfy k-anonymity, we try to guarantee that
a long continuous subsequence of it satisfies k-anonymity,
which leads to comparatively small privacy leakage. Re-
alizing loss-bounded k-anonymity is feasible in FASTPub
thanks to its interactive scheme between server and clients,
and the detailed definitions of anonymity loss and loss-
bounded k-anonymity are present in Section 4.2.

3.3 Local Differential Privacy

As the origin of LDP, DP is a set of criteria for preventing
individuals from being identified in a database [38]. The
earliest and most popular version of DP is central differ-
ential privacy (CDP). However, the functionality of CDP
requires a trusted aggregator having access to all raw data
[10], [11]. As a result, CDP does not work in an untrusted
environment, because there is no such aggregator trusted by
all clients, and raw data uploading is not allowed. Therefore,
we used the local version of DP, named local differential
privacy (LDP) [16], whose definition is defined as follows5.

Definition 2 (local differential privacy). A randomized algo-
rithmM satisfies ǫ-LDP when for any two possible records a and
b, and any possible output y

P(M(a) = y) ≤ eǫP(M(b) = y), ∀y ∈ Range(M). (3)

To realize LDP, adding noise (perturbation) to the out-
puts is necessary.

3.4 Failure of Classical Methods

In this part, we consider several classical methods in enforc-
ing k-anonymity or LDP, and analyze why they do not work
in the trajectory publication in untrusted environments.

5. ǫ controls the strength of privacy preservation, where lower ǫ

indicates stronger privacy preservation.

k-anonymity naturally faces some troubles when tack-
ling trajectory data. A trajectory has to have at least k − 1
companions with the same length, locations, and ordering
of locations to satisfy k-anonymity, which is rare in the
real world and thus becomes impractical to enforce in the
trajectory settings. Therefore, existing methods tackle this
problem by regulating the trajectories from different clients
to be their common subsequence [13], or merging neigh-
boring locations to a common one [12]. However, these ap-
proaches naturally require an aggregator, and only provide
central privacy preservation. For example, a popular design
of enforcing k-anonymity is to group the clients into clusters
with a size of at least k, and replace the quasi-identifiers of
each client with a common one of each cluster. It naturally
requires the clients to share the raw data to calculate the
similarity of the quasi-identifiers between clients, which is
not allowed in untrusted environments.

On the other hand, the enforcement of LDP naturally
requires adding noise (perturbation), which faces challenges
when being applied to trajectory data with high dimension-
ality and an extremely large domain. We consider a conser-
vative example that there are 100 possible locations, and the
length of trajectory is limited to 3. The possible trajectories
(outputs) are defined by the 3-length permutations (with
replacement) of the 100 locations, with a large size of 106.
Adding noise to provide each of the outputs with some
possibility will ruin the utility. Even worse, for the raw data
collected by edge devices, the possible length of trajectory
might be different and unlimited, which further increases
the possible domain to infinite.

4 SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present the system model in Sec-
tion 4.1. Then, we formally present our studied trajectory
publication problem with loss-bounded k-anonymity and
LDP satisfied in Section 4.2. After that, we discuss the local
privacy preservation ability of loss-bounded k-anonymity
in Section 4.3.

4.1 System Model

In trajectory publication applications, each client owns a
private trajectory in the form of a sequence of locations.
Coordinates with continuous values can also be adapted
into our setting by discretization with a grid. An example
of trajectory t can be expressed as:

t := a<t>
1 → a<t>

2 → · · · → a<t>
|t| , (4)

where a<t>
i indicates the i-th location of the trajectory t, and

|t| is the length (number of locations) of t.
For a trajectory t, we further define its trajectory fragments

as the continuous subsequences of the original trajectory.

Definition 3 (l-length trajectory fragment). A trajectory frag-
ment (or fragment) is a continuous subsequence of the original
trajectory or another fragment. We define t[p : q] as the fragment
of t between the p-th and the q-th locations, i.e.,

t[p : q] := a<t>
p → a<t>

p+1 → · · · → a<t>
q , (5)
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Clients

Trusted Server

Data AnalystUpload raw data to the trusted server

Add privacy schemes on the data

Utilize data with privacy preservation

(a) Traditional trajectory publication

Clients

Untrusted Server

Data Analyst

Locally privacy-preserved data

Utilize data with privacy preservation

Apply local privacy with global knowledge

Exchange global knowledge in FA framework

(b) FA assisted trajectory publication

Fig. 1. Left: traditional trajectory publication framework with a trusted aggregator; Right: FA assisted trajectory publication with local privacy
preservation and data cleaning in the untrusted environment.

where 1 ≤ p ≤ q ≤ lt. The length of a trajectory fragment can
be derived by l = p− q + 1. For simplicity, we use l-fragment to
denote a fragment with length l.

Note that we can freely treat the input t in (5) as an
original trajectory or another trajectory fragment, because a
fragment is in the same form as the original trajectory, i.e., a
trajectory fragment can have trajectory fragments of shorter
lengths.

Threat model: The untrusted environment introduces a
novel threat model of trajectory publication tasks. In tra-
ditional trajectory publication settings, as demonstrated in
Fig. 1(a), the adversary can only contact data published by
the trusted server. Therefore, clients just need to submit
the trajectory data to the trusted server with no privacy
consideration. It is the server’s responsibility to aggregate
the local data and provide central privacy schemes. In the
untrusted setting, the adversary is able to read the data
stored in the server. As a result, the previous approach will
directly expose the raw trajectory. We assume an honest but
curious adversary, which faithfully executes the trajectory
publication procedure, but tries to learn about the clients’
privacy based on the information exposed to the server. The
adversary breaches the clients’ privacy with two strategies.
First, it tries to recover the clients’ raw trajectories from their
uploads. Second, it leverages the client’s upload history as
fingerprints, and uses the uploads to break the anonymity
of clients. After that, it can trace a client from the crowd by
checking its upload history (we assume the adversary may
arbitrarily check the publication history of a client).

In this paper, we publish trajectory fragments instead of
raw trajectories. It is necessary for the feasibility of privacy
preservation, both k-anonymity and LDP. If we require k-
anonymity on published data, choosing raw trajectory for
publication often results in publishing nothing, because
there might be no k clients holding an identical trajectory
chain. In addition, satisfying LDP on the arbitrary-length
raw trajectory is, if not impossible, extremely difficult, be-
cause the output space becomes infinite. As a result, a
majority of trajectory publication solutions trim the raw
trajectory like us to satisfy centralized k-anonymity [12], [13]
or LDP [23]. The trimmed trajectory fragment data are also
helpful in many data analytics applications [10], [11].

In FASTPub, we leverage the FA paradigm to perform
knowledge exchange between server and clients with pri-
vacy preserved. As is demonstrated in Fig. 1(b), in each
round, the server provides directions based on the global
knowledge to a randomly selected subset of the clients.
The directions are helpful for the participating clients to
distill their local data. By receiving the distilled information,
the server updates the global knowledge, and starts a new
round. The local privacy is preserved because LDP is en-
forced and anonymity loss is bounded for any client upload.
In addition, we restrict each client to only participate in one
round, we decrease the information leakage for each client.

4.2 Problem Statement

As is mentioned in Section 3.2, k-anonymity cannot provide
local privacy solely. Therefore, we define anonymity loss τ(f)
as a measure of privacy leakage due to the failure of k-
anonymity on trajectory chain f .

Definition 4 (anonymity loss). Denote f as any trajectory
chain, its anonymity loss τ(f) is the difference of the lengths
between f and its longest fragments that satisfies k-anonymity
(or 0 if there is no such fragment), i.e.,

τ(f) = |f | − max
0≤p≤q≤|f |

|f [p : q]|, (6)

s.t. S(f [p : q]) ≥ k, (7)

where |f | describes the length of f .

The rationale for anonymity loss is that, if a major part
of f has satisfied k-anonymity, even if f itself fails to satisfy
it, the potential privacy leakage, which is measured by
anonymity loss, tends to be lower. By bounding anonymity
loss, the power of k-anonymity is leveraged to preserve local
privacy.

We then formulate our problem mathematically. Denote
the set of clients as N ; M is the publication mechanism in
the clients; a and b are any theoretically possible trajectory
stored in a client; Denote lmax as the target fragment length,
Xc as the set of all uploaded lmax-fragments from the client
c, and Pc as the set of those being admitted by the server. T
is the anonymity loss limit.

We aim at designing mechanisms to elicit fragments
with the targeted length as many as possible under the
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satisfaction of LDP and limitation of the expectation of
anonymity loss, namely,

max
∑

c∈N

|Pc|, (8)

s.t. P(M(a) = y) < eǫP(M(b) = y), ∀y ∈ Range(M),
(9)

E
(

∑

f∈Xc

τ(f)
)

≤ T , ∀c ∈ N , (10)

where (9) describes the satisfaction of LDP, and (10) de-
scribes the satisfaction of loss-bounded k-anonymity that
bounds the expectation of anonymity loss.

4.3 Discussion

FASTPub waives the satisfaction of vanilla k-anonymity,
i.e., the clients are not provided any guarantee that their
published data can satisfy k-anonymity with any confidence
level. However, the weaker loss-bounded k-anonymity still
preserves local privacy to some extent. We consider a client
who will publish a trajectory a → b → c → d. Loss-
bounded k-anonymity gives a guarantee to the client be-
forehand that both a → b → c and b → c → d have
satisfied k-anonymity with sufficient confidence. As a result,
the client can trust that the attacker is unlikely identified
the client by the published trajectory data. In Section 3.1,
we claim that k-anonymity can prevent the uploaded data
from being treated as fingerprints. In FASTPub, the loss-
bounded k-anonymity provides protection with the assis-
tance of LDP, because the clients upload binary responses
with randomization, which is not unique enough to be used
as fingerprints. On the contrary, LDP-only schemes like SFP
[23] require clients to upload complex data structures, which
have a high risk of fingerprint tracing.

5 FASTPUB: DESIGN AND ANALYSIS

In this part, we first give an overview of the FASTPub frame-
work in Section 5.1. The three components of FASTPub are
then demonstrated in detail in Sections 5.2, 5.3, and 5.4,
respectively. After that, we provide the theoretical analysis
for satisfying the design goals in Section 5.5.

5.1 FASTPub Overview

The main idea of FASTPub is simple: the server infers
candidates of longer fragments based on the shorter ones,
and the clients generate binary responses on those can-
didates, which decreases the noise added and preserves
more data utility when applying LDP. Specifically, FASTPub
functions iteratively, and the length of published fragments
increases by 1 in each round. Each round of FASTPub has
three phases: candidate generation, client response, and fragment
filtering. In the candidate generation phase, the server uses
the Apriori property to generate candidates based on the
results in the last previous round, or independently gen-
erate some candidates in the first round. If the length of
candidates is sufficiently long, the server then cleans the
candidates based on the Markov independent assumption.
In the client response phase, the server samples some par-
ticipating clients that have not participated before, and lets
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Fig. 2. An overview of FASTPub.

them respond about the existence of the candidates, where
LDP is enforced on the yes/no responses. In the candidate
filtering phase, the server only reserves the candidate with
sufficient support counts, so that the reserved fragments
are valid for the Apriori property in the next round, and
guarantee the loss-bounded k-anonymity of the candidates
in the next round. Fig. 2 gives an overview of FASTPub.

FASTPub is an interactive and iterative mechanism.
Its interactive design enables information flow both from
server to client and from client to server. In possible non-
interactive trajectory publication solutions, valuable infor-
mation is transmitted from client to server only. The in-
teractivity of FASTPub is realized by the query-response
scheme, which significantly reduces the utility loss under
the guidance of the server and satisfies the LDP at the
same time. In the meantime, note that such a design also
introduces extra communication in downloading, and usu-
ally introduces a heavier computation load. The iterative
FASTPub divides the whole procedure into rounds, and lets
each client participate in one of the rounds. The interactive
query-response scheme is benefited from the “iterativity”
by increasing the quality of queries based on previous
responses. However, an iterative scheme enforces stricter
requirements on the participating clients, that they should
participate in a smaller time window.

5.2 Candidate Generation and Cleaning

In the first round, the server independently generates can-
didates by enumerating all possible 1-fragments. In the later
rounds, the candidates are generated based on the shorter
admitted ones, whose procedure consists of two steps:
Apriori property-based candidate generation and Markov
independent assumption-based candidate removal.
Apriori property-based candidate generation: Firstly pro-
posed in [39], the Apriori algorithm is simple but efficient in
association rule mining. It is based on the Apriori property:
for any itemset I , a prerequisite of that I has a support
count not less than k is that all subsets of I have a support
count not less than k. Although the Apriori property mostly
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focuses on the unordered itemsets, we reveal that it can also
be adopted in the sequential trajectory data.

Theorem 1 (Apriori property of trajectory data). For any
trajectory l-fragment f where l ≥ 2, a necessary requirement of
that f has support count not less than k is that its two (l − 1)-
fragments of f have support count not less than k, i.e.,

S(f) ≥ k =⇒ S(f [1 : l − 1]) ≥ k ∧ S(f [2 : l]) ≥ k. (11)

Since a prerequisite for any fragment to satisfy k-
anonymity has been provided by the Apriori property in
Theorem 1, we can construct our secure trajectory pub-
lication algorithm via utilizing the theorem inversely, i.e.,
generate a candidate set of l-fragments based on the (l− 1)-
fragments that have satisfied k-anonymity.

Denote the set of all l-fragments as Ωl, and the set of l-
fragments satisfying k-anonymity as Pl. We can generate a
candidates set Cl+1 of (l + 1)-fragments that are possible to
satisfy k-anonymity:

Cl = {∀f ∈ Ωl | f [1 : l − 1] ∈ Pl−1 ∧ f [2 : l] ∈ Pl−1}. (12)

For example, if the two fragments a1 → a2 → a3 and a2 →
a3 → a4 are present in P3, we can then generate a candidate
4-fragment a1 → a2 → a3 → a4.

Note that we only restrict the two (l − 1)-fragments
instead of all fragments of f , because the Apriori property
can be recursively applied to the two shorter fragments, and
derive the same results for all fragments of f . Based on
the Apriori property and the (l − 1)-fragments satisfying
k-anonymity, we can generate a set of candidates of l-
fragments, which are feasible to satisfy k-anonymity.
Markov independent assumption-based candidate clean-
ing: The Apriori property discovers the possible l-fragments
based on knowledge of the shorter ones. However, it re-
serves every candidate which is theoretically possible to
satisfy k-anonymity, whose number is likely to be large. A
large number of candidates, including some with limited
likelihood to satisfy k-anonymity, do not only require more
participating clients for verification, but also increase the
potential anonymity loss. Therefore, we clean these low-
quality candidates based on the Markov independent as-
sumption. This approach is inspired by the authors of [11],
where they use it to construct a synthetic database based on
the fragments.

The Markov independent assumption assumes that the
probabilistic distribution of a stochastic process is deter-
mined by its current state. Denote f as a l-fragment with
l ≥ 3 and f [1 : l − 1] as its subfragment without the last
location. We consider a stochastic process of f [1 : l − 1]
to append its next location, where the generation of f is
equivalent to the event that the next location of f [1 : l − 1]
is a<f>

l . We apply the l − 1 order Markov independent
assumption, indicating that the possibility of the next loca-
tion is dependent on the previous l− 1 locations (denote its

possibility as P(a<f>
l |f [1 : l−1])), and estimate the support

count of f as follows.

Ŝ(f) = S(f [1 : l − 1])× P(a<f>
l |f [1 : l − 1])

≈ S(f [1 : l − 1])× P(a<f>
l |f [2 : l − 1])

≈ S(f [1 : l − 1])×
S(f [2 : l])

S(f [2 : l − 1])
. (13)

Algorithm 1 Client response

Input: Local trajectory in the client: t; noise factor: η; a list
of fragment candidates: C; number of candidates: n.

Output: Response on the candidates: R
1: function RESPOND(t, η, C, n)
2: R ← an empty list of bits with length n
3: for i← 1, ..., n do
4: b← I(C[i] is a fragment of t)
5: b′ ← randomize b with (15)
6: R[i]← b′

7: end for
8: return R
9: end function

Then, for a l-fragment candidate set C with l ≥ 3 from
the Apriori scheme, we provide an initial estimation of the
support counts. Since (13) works on the true support count,
we first derive the expectation of the true support count of
the shorter fragments by the inverse calculation of (5). Since
(13) only provides coarse-grained estimations, we remove a

candidate c only when its estimation Ŝ(c) is far lower than
k. Practically, we remove a candidate c when

Ŝ(c) < λk, (14)

where k is the parameter of (k, ξ)-anonymity and λ is a
tunable parameter.

5.3 Client Response

In this part, we show how the server and clients collaborate
to satisfy LDP on the client side and to provide high-quality
responses about the local data.
Randomized response: Randomized response is a key com-
ponent in our design, which is essential for the enforcement
of LDP. Definition 5 provides randomization for binaries,
which fits the form of clients’ responses.

Definition 5. (Randomized binary response) Given an input bit
b, and noise factor η ∈ [0, 0.5), randomized response outputs b′,
a noisy version of b, following the below rules.

P(b′ = 0) =

{

1− η, if b = 0,

η, if b = 1.
(15)

Client response: FASTPub enforces LDP by involving ran-
domization of the clients’ response. In this phase, the server
first randomly selects the participating clients, and each
client receives random candidates it responds to. To protect
the clients from fingerprint tracing, a number of clients
share the same set of candidates. Then, the client checks
its local trajectory whether each candidate is present, and
generates the true binary response for each candidate. After
that, the client randomizes each of the true responses by the
randomized binary response, and uploads the noisy version
of the responses to the server. The procedure is present
in Algorithm 1. Both the client selection and candidate
selection should be random and unbiased, which is essential
for the theoretical guarantees. Each participating client is
recommended to participate in only one round of FASTPub,
so that the privacy preservation level will not degrade due
to the composition theorem of LDP.
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Original trajectory: 𝑎1 → 𝑎3 → 𝑎4 → 𝑎5 → 𝑎2 → 𝑎1 → 𝑎1 → 𝑎4 → 𝑎3
Candidate 𝑎3 → 𝑎4 → 𝑎5 𝑎1 → 𝑎2 → 𝑎3 𝑎2 → 𝑎1 → 𝑎1 𝑎2 → 𝑎1 → 𝑎5

Real response True False True False

Noisy response False False True False

Fig. 3. A client response example

An example of clients’ responding to the candidates is
given in Fig. 3. In this example, a client holds a trajectory
with length 9 and receives four 3-fragments as candidates.
It first derives the real response whether the candidate is
a fragment of its local trajectory. It then randomizes this
information to enforce LDP, and uploads the noisy response
to the server.

5.4 Fragment Filtering

After aggregating the binary responses about the candidate,
the server can only reserve a part of them with large support
counts. The filtering procedure is with two goals, first, the
remaining fragments should be capable to be the input of
the Apriori-based candidate generation in the next round;
second, the generated candidates in the next round should
satisfy the anonymity loss restriction.

A natural consideration is to enforce k-anonymity on
the uploaded responses centrally. It works in the traditional
scenarios, but fails in our case because 1) the clients might
not tell the truth, due to the randomized response, and 2)
only a sampled portion of the clients participate in each
round. In FASTPub, we require the server to filter the
candidates and reserve those that satisfy k-anonymity with
a limited error rate, or (k, ξ)-anonymity.

Definition 6 ((k, ξ)-anonymity). A data publication algorithm
satisfies k-anonymity with an error rate ξ, or (k, ξ)-anonymity
when

P(S(d) ≥ k) ≥ 1− ξ, ∀d ∈ P, (16)

where P are all the published data of the algorithm.

In the candidate filtering phase, the server only reserves
the candidates satisfying (k, ξ)-anonymity, which can be
served as inputs of Apriori-based candidate generation,
and have a theoretical bound of anonymity loss. When no
candidate is admitted by the (k, ξ)-anonymity mechanism,
it reveals that no new fragment can be published with the
privacy requirement, and the system should be terminated
without publishing any trajectory fragment.

(k, ξ)-anonymity provides a strong limit on the “preci-
sion” of candidate filtering, that every candidate accepted
by (k, ξ)-anonymity is believed to satisfy k-anonymity with
sufficient confidence. It bounds the risk of privacy leakage
and helps the satisfaction of loss-bounded k-anonymity.
However, the mechanism does not guarantee the “recall”
of candidate filtering. Even if a candidate can be published
by k-anonymity mechanism from the central perspective, it
may fail to be published by FASTPub for any probability. As
a result, FASTPub trade-offs some potential data utility for
better privacy preservation.

The whole procedure of FASTPub is demonstrated in
Algorithm 2. Note that the derivation of noise factor (ηl)
and support count threshold for (k, ξ)-anonymity (Sl) will
be provided and theoretically proven in the next part.

Algorithm 2 FASTPub: Overall structure

Input: Trajectory data in the clients: t; the set of clients: N ;
the number of clients: N ; the portion of participating
clients in each round: M ; target fragment length: lmax

Output: Published trajectory fragments
1: for l← 1, ..., lmax do
2: if l = 1 then
3: Cl ← all possible 1-fragments
4: else
5: Generate Cl based on Pl−1 with (12)
6: end if
7: if l ≥ 3 then
8: Remove c ∈ Cl when (14) holds
9: end if

10: if Cl is empty then
11: return with no result
12: end if
13: ηl ← noise factor for l-fragments
14: Sl ← support count threshold for l-fragments
15: D ← draw M ·N clients from N (not drawn before)
16: Initialize support counts for Cl
17: for d ∈ D do
18: C<d>

l ← sample candidates form Cl
19: R ←RESPOND(td, ηl, C

<d>
l , |C<d>

l |)
20: Update support counts with R
21: end for
22: Pl ← {f ∈ Cl | S(f) ≥ Sl}
23: end for
24: return Plmax

5.5 Criteria Analysis

In this part, we prove that FASTPub satisfies loss-bounded
k-anonymity and LDP. In addition, we fulfill the incomplete
parts of Algorithm 2, that the derivation of ηl and Sl.

We first verify the satisfaction of LDP. Based on Defini-
tion 2, we conclude the following theorem.

Theorem 2. (LDP) The client side scheme of FASTPub algo-

rithm meets

(

n ln
1− η

η

)

-LDP, where n indicates the number of

candidates sent to the client.

Proof. See Appendix A.

Theorem 2 enables us to determine the noise factor ηl in
each round after fixing ǫ. In particular, we notice that if the
number of candidates sent to the clients n is too large, the
noise factor will concomitantly increase, which decreases the
data utility. In practice, we can relieve the harm by setting
a limit on the number of candidates sent to each client (C):
if the number of candidates exceeds C in some iterations,
each client will only receive and respond to C candidates,
instead of all candidates.

For the satisfaction of (k, ξ)-anonymity, we need to de-
termine the threshold of support count, which will be used
to check whether a candidate can be admitted by the server
to satisfy (k, ξ)-anonymity. The Hoeffding inequality is a
powerful tool in the estimation of randomized response and
sampling [40]. Based on the Hoeffding inequality, we take
both randomized response and sampling into consideration
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and derive the support count threshold being concluded
into the following theorem.

Theorem 3. (Candidate filtering threshold) Any l-fragment f
satisfies (k, ξ)-anonymity if its support count exceeds Sl, which
is given by

Sl = M

(

k

N
(1− η) +

N − k

N
η +

√

− ln ξ

2M

)

, (17)

where N is the number of all clients, M is the number of
participating clients giving a response on f , and η is the noise
factor in the corresponding round.

Proof. See Appendix B.

Finally, we consider the satisfaction of loss-bounded k-
anonymity, which provides local privacy preservation for
clients before any uploads. Since the FASTPub is a symbiosis
with randomization, we cannot firmly bound the anonymity
loss, so we bound its expectation as the following theorem
shows.

Theorem 4. (Loss-bounded k-anonymity) For any l-fragment f
published by a client, its expectation of anonymity loss is bounded
by

E
(

τ(f)
)

≤
l
∑

x=1

ξ
x2+x−2

2 (18)

where ξ is the allowed error rate of (k, ξ)-anonymity.

Proof. See Appendix C.

In practice, when the value ξ is low (e.g. 0.01 in our
implementation), the increase of value in (18) becomes ne-
glectable when x > 1, which means that the expectation
of any l-fragment will be closed to 1. Consequently, for any
client publishing an l-fragment f , it has high confidence that
the publication will at most expose one sensitive location in
the fragment in the head or the tail. The overall anonymity
loss bound for a client can be derived by simply multiplying
the value in (18) and the number of the received candidate.

6 EVALUATIONS

6.1 Experiment setup

In this section, we evaluate the data utility of the trajectory
database generated by FASTPub. The data utility of a trajec-
tory database is usually evaluated based on the performance
of downstream tasks. In this paper, we choose two represen-
tative trajectory data mining tasks: frequent sequence mining
and count query [10], [11]. Frequent sequence mining finds
out trajectory sequences happen in the population with a
frequency higher than a threshold. Count query returns the
count or frequency of a given sequence.
Dataset: The experiments are performed on two datasets:
MSNBC and Oldenburg. MSNBC dataset [41] stores trajecto-
ries of user’s browsing history on msnbc.com by category,
and Oldenburg dataset is created by the Brinkhoff’s data
generator [42] and contains synthetically generated trajecto-
ries of objects traveling in the city of Oldenburg. In order
to simulate the real-world large-scale trajectory publication
scenario, we filter out the uninformative records (trajectories
with lengths smaller than 3) in MSNBC and duplicate the

TABLE 2
Summary of the datasets

MSNBC Oldenburg

Num. location 17 64
Num. trajectory 4.7× 10

7
2.0× 10

7

Avg. trajectory length 8.55 7.96

remainings 100 times. For Oldenburg, we convert locations
in trajectories into distinct locations of interest via grid
matching. Key properties of the datasets are summarized
in Table 2. Due to the space limit, the results of Oldenburg
dataset are presented in Appendix D.
Benchmark: We use two benchmarks to test the efficiency of
our mechanism: Apple’s SFP [23] and Google’s TrieHH [19].
SFP is an industrial solution of LDP available in trajectory
publication, which tackles the challenge of high dimension-
ality by building a frequency oracle to decrease the number
of possible fragments to be checked. TrieHH is designed for
discovering popular strings (heavy hitters) in edge data. It
can be adapted for trajectory data with little modification be-
cause strings have almost the same structure as trajectories.
It is another representative work under the umbrella of FA.
However, it trade-offs the local privacy with system utility,
resulting in lower privacy preservation than FASTPub in
the untrusted environment. We compare FASTPub with this
utility-driven design, and show that FASTPub can achieve
both higher utility and stricter privacy.
Parameter: The k values are set to be between 100,000
and 500,000, equivalently identifying minimum frequencies
between 0.21% and 2.5% in the whole dataset. In each round,
the portion of participating clients M is set to 0.2, so that
each client is restricted to participating only once. The de-
fault value of LDP parameter ǫ is set to 10.0, which is within
the range recommended by [21]. The threshold of candidate
cleaning λ is set to 0.8. The allowed error rate ξ is set to
0.01. The default number of candidates sent to each client
is set to C = 5. For TrieHH, in order to guarantee fairness
regarding client usage, we restrict the maximum number
of rounds to be consistent with FASTPub. The design of
TrieHH makes ǫ and the number of participants depends
on each other, so we do not require TrieHH to provide the
same privacy preservation level as other algorithms. The
other parameters of SFP and TrieHH are consistent with
their original implementations [19], [23].

6.2 Frequent sequence mining

Frequent sequence mining is a practically important data
mining task on sequential (trajectory) databases. It outputs a
list of patterns (continuous subsequence) that presents in the
population with a frequency higher than a given threshold.
The performance of frequent sequence mining is usually
measured by F1 score, which comprehensively considers the
precision and recall to find the correct frequent sequences.6

Notably, the mechanism of FASTPub naturally includes the
procedure of filtering out infrequent subsequences, indicat-
ing that every fragment published by FASTPub is believed
to have a minimum frequency decided by the k-anonymity

6. F1 score equals 2pr

p+r
, where p is precision and r is recall.
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Fig. 4. Performance of different methods in frequent sequence mining task, with different values of target sequence length and k.
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(c) 5-length query

Fig. 5. Performance of different methods in count query task, with different values of query length and k.

setting. Therefore, for the frequent sequence mining tasks,
we set the target frequency to be consistent with the k
value (target frequency f = k/N ). It reveals the maximal
capacity of FASTPub database in frequent sequence mining.
The frequent mining tasks aim at mining sequences with
non-trivial lengths 3 ∼ 5.7

The performance (F1 score) of FASTPub and the bench-
marks are shown in Fig. 4. In our settings, FASTPub not
only has better performances than SFP, but also outperforms
TrieHH, which provides weaker privacy preservation. Nu-
merically, among the 15 settings, FASTPub gains an average
precision, recall, and F1 score of 1.00, 0.59, and 0.72 respec-
tively. Compared to the two benchmarks, it gains a higher
average F1 score for 1.8 ∼ 2.4 times. The high performance
is owing to the ingenious utilization of the property of
trajectory data, which significantly reduces the utility loss
introduced by randomization. On the contrary, SFP gains a
poor data utility for two reasons. First, it forces the clients to
trim the original trajectory to a fixed-length fragment, which
leads to significant information loss for a long trajectory.
Second, it uploads large count mean sketches (1024 bits in
our setting), and requires significant noise to satisfy LDP.
TrieHH, which provides weaker privacy preservation, turns
out to be outperformed by FASTPub, because the clients can
only upload fragments starting at the first element, which
leads to information loss.

6.3 Count query

Count query task is another important trajectory data min-
ing task that aims at returning the frequency of any given
query sequence. The performance of the count query is
measured by the relative error given as follows.

error(Q(D̃)) =
|Q(D̃)−Q(D)|

Q(D)
, (19)

7. Sequences with length ≤ 2 are too trivial as mining results, and
there are too few frequent sequences as ground truth with length ≥ 6.

where Q(D̃) and Q(D) denotes the outputs from the evalu-
ated database and the original true database, respectively.

Notably, returning the query results of infrequent se-
quences naturally breaks the privacy constraint of k-
anonymity. Therefore, we denote the queries on fragments
with a true count higher than k as legal queries, and cal-
culate the median relative error of all legal queries with a
particular length as the measurement of data utility. SFP
is able to answer any query on fix-length fragments, but
FASTPub and TrieHH may mistakenly filter out the results
of some legal queries. In such cases, we use the Markov
independent assumption-based support count estimation in
(13) to derive the query response.

The performance (relative error) of FASTPub and bench-
marks are shown in Fig. 5 covering different k values and
query length between 3 ∼ 5. The maximal fragment length
lmax is set to be equal to the query length in order to
reveal the maximal potential of FASTPub. In all the settings,
FASTPub outperforms TrieHH and SFP by providing a more
precise count query with a smaller relative error. Among 15
settings, FASTPub, TrieHH, and SFP gain average relative
errors of 0.09, 0.66, 0.74, respectively. As a result, the privati-
zation of FASTPub only introduces errors of 12.8% ∼ 14.4%
compared to the benchmarks. The reasons are consistent
with those in Section 6.2. Notably, SFP performs fairly
badly in 4-length queries due to the trimming strategy of
SFP. SFP requires the client to trim the raw trajectory into
a predefined even length. odd-length queries can achieve
relatively good performance when the trimming length is
one more than the query length. On the contrary, SFP has to
set the trimming length far higher than or equal to the query
length for even-length queries, which leads to a significant
degradation caused by trimming loss and query padding.8

8. We experiment with different trimming lengths for SFP, and all re-
sults in this paper are the optimal performance among our experiments.
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Fig. 6. Performance of LDP algorithms under different ǫ.

6.4 Sensitivity analysis

Privacy preservation level: The strength of privacy preser-
vation from LDP is controlled by ǫ, where lower ǫ indi-
cates stronger privacy preservation. For LDP algorithms like
FASTPub or SFP, a lower ǫ forces the clients’ responses
to be more randomized. To investigate its effect, we run
FASTPub and SFP to publish 3-fragments with ǫ to be 5.0
or 2.0, and compare them with the default settings where
ǫ = 10.0. The results are shown in Fig. 6. First, FASTPub can
still outperform SFP in most of the cases with lower ǫ. In
addition, FASTPub has worse performance when we use a
lower ǫ, because more noise has to be added to the response
when ǫ gets lower. Especially, when ǫ = 2.0, FASTPub
performs worse than SFP in some particular settings. On
the other hand, SFP is not that sensitive for ǫ. We conclude
the reason for the insensitivity of SFP as follows: even if ǫ is
high, SFP is only able to find out several fragments, whose
frequency is much higher than k and other fragments.
Therefore, the results are hardly influenced by adding more
noise. Meanwhile, FASTPub strives to publish all fragments
satisfying the requirement, including the fragments whose
frequency is slightly higher than k, which is highly sensitive
to the amount of noise added.

Number of participants: The effectiveness of LDP algo-
rithms requires the number of participants to be large [21].
To evaluate such dependency, we run FASTPub, TrieHH,
and SFP to publish 3-fragments with the portion of partici-
pants per round M to be 0.1 and 0.05, and compare the re-
sults with the default portion, 0.2. The results in Fig. 7 show
that the performance of FASTPub is dependent on a large
number of participants. The reason is that FASTPub needs
a large number of participants to inhibit the randomness,
so that the true support count can be reliably estimated.
On the other hand, TrieHH and SFP are not sensitive to
M . The reason for the insensitivity of SFP is similar to the
above paragraph. Compared to FASTPub, whose efficiency
is suffered from both randomization and sampling, TrieHH,
which does not apply randomization, is only influenced
by sampling, whose degrading effect has been low enough
when M = 0.05.

More response or cleaner response? Parameter C controls
the number of candidates that each client should respond
to. If we require each client to respond to all of them,
according to Theorem 2, the randomization factor η will
be closed to 0.5, leading to the poor utility of response. To
tackle the problem, we set a parameter C , which controls
the maximum number of candidates should each client
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Fig. 7. Performance of three algorithms under different M .
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Fig. 8. Performance of FASTPub under different C.
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Fig. 9. Performance of FASTPub under different λ.

respond. There exists a trade-off regarding the choice of
C : setting a high C will provide each candidate with more
responses from the clients, but the quality of the responses
will be decreased due to high η. Meanwhile, setting a low
C guarantees the truthfulness of the responses, but each
candidate can only be checked by a small number of clients.

To evaluate the effect of choosing different C , we record
the results of FASTPub to publish 3-fragments under differ-
ent settings of C and the corresponding η. The results are
shown in Fig. 8. For two tasks, we can see that C = 5 has the
best performance in balancing the trade-off between quan-
tity and quality. In addition, the performance of FASTPub is
not significantly sensitive to the settings of C , since a similar
performance is obtained when C is set to 3. In particular, an
anomaly occurs in the Oldenburg dataset when C = 20.
The reason is consistent with that in Fig. 10(c), that the
number of remaining candidates becomes smaller than C ,
which decreases the noise factor η, and increases the quality
of client responses.
Candidate cleaning threshold: The candidate cleaning
threshold λ controls the strictness of Markov independent
assumption-based candidate cleaning. When a larger λ is
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TABLE 3
Summary of the communication overheads. The values represent

expected size of the transmitted data structure of each client.

Download (bit) Upload (bit)

SFP 0 4096
TrieHH 1680 64

FASTPub 400 5

applied, FASTPub removes more candidates in the cleaning
phase. It increases the risk of mistakes in removing frequent
candidates, but also increases the number of responses of
the remaining candidates. To investigate the effect of the
candidate cleaning threshold, we conduct experiments with
different λ values. The experiments are conducted on fre-
quent pattern mining task, with lmax = 4 and k = 300, 000.
We focus on three metrics. 1) cleaning ratio: the portion
of removed candidates in the candidate cleaning phase. 2)
cleaning accuracy: the portion of correctly removed can-
didates (whose ground truth frequency is smaller than k)
in the removed candidates. 3) F1 score: performance of
frequent pattern mining task.

The experiment results are shown in Fig. 9, where the
λ values are set to 0.4, 0.6, 0.8, 1.0, and 1.2. The cleaning
ratio increases progressively with respect to λ, indicating
a stricter candidate cleaning. It also increases the portion
of mistakenly cleaned candidates, although the portion is
always smaller than 5% even for λ = 0.2. Lastly, the F1
score has a slight increase when we use stricter candidate
cleaning, revealing its effectiveness in improving data util-
ity. The data utility of FASTPub is generally not sensitive
with λ, and the application of candidate cleaning does not
require fine-tuning of λ.

6.5 Communication overhead

The communication overhead is critical in evaluating trajec-
tory publication algorithms. We measure the average trans-
mitted bits of the algorithms, both downloads and uploads,
and summarize the results in Table 3.9 We only consider the
average size of data structures required for transmission by
the algorithms, and ignore the overheads introduced by the
transmission protocol. SFP, which is not interactive, does not
require any downloaded data, but requires uploading two
count mean sketches with huge sizes. TrieHH requires the
clients to download a large prefix tree, and upload an added
leaf on the tree. It results in a large download size and a
small upload size. FASTPub gains the best performance in
total communication size. It requires the clients to download
several candidate fragments, and to upload one bit response
to each candidate. Therefore, the communication overhead
of FASTPub can be further reduced by sending fewer candi-
dates to each client with a lower C .

7 CONCLUSIONS

The growing awareness of data privacy calls for min-
ing global knowledge with no transmission of raw data
from end devices. In this paper, we proposed a privacy-
preserving trajectory publication mechanism, named as

9. We encode each location data as an integer (32 bits).

FASTPub, to facilitate further data analytic tasks in
such untrusted environments. Following the emerging FA
paradigm, we transform the one-shot trajectory data col-
lection scheme into an interactive trajectory construction
scheme between the server and clients. Our mechanism en-
forces both loss-bounded k-anonymity and LDP. The utility
of our mechanism is greatly improved by introducing frag-
mentation and exploiting the Apriori property and Markov
independent assumption. Experimental results show that,
FASTPub gains better performances in two representative
downstream tasks (2.5 ∼ 6.1 times higher F1 score and
85.6% ∼ 87.2% less relative error) than an industrial LDP
method and another weak-privacy-guaranteed FA based
mechanism.
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APPENDIX A

PROOF OF THEOREM 2

For each publication, the clients generate real responses R
on candidates C, which is in the form of binary and has
length n, and generate the corresponding noisy version R′.
We consider any desired output Y , which is in the same
form as R or R′. For each bit of Y , R, and R′ (denoted the
index as i), the possibility of Y [i] = R′[i] is given by the
randomized binary response (15):

P(R′[i] = Y [i]) =

{

1− η, if Y [i] = R[i],

η, if Y [i] 6= R[i].
(20)

Since the randomization of each bit is independent, the
possibility of Y = R′ is given by

P(R′ = Y ) =
∏

i=1,..,n

P(R′[i] = Y [i]) (21)

When considering the satisfaction of LDP, we only need
the minimum and maximum of P(R′ = Y ). Obviously, it
reaches the maximum when the possibility for bits in (21) all
take their maximum, 1−η, in (20), and reaches the minimum
when all bits take their minimum η, i.e.,

max[P(R′ = Y )] =
∏

i=1,..,n

(1− η) = (1− η)n, (22)

min[P(R′ = Y )] =
∏

i=1,..,n

η = ηn. (23)

Then the satisfaction of LDP yields

eǫ ≥ max

[

P(R′
1 = Y ))

P(R′
2 = Y ))

]

=
(1− η)n

ηn
, (24)

which yields

ǫ ≥ n ln
1− η

η
. (25)

We consider the tightest satisfaction of LDP and conclude
Theorem 2.

APPENDIX B

PROOF OF THEOREM 3

We consider a client holding trajectory t responds on a
candidate fragment f . We denote y = 1 as the client respond
“yes” about f , and y = 0 otherwise. Definition 5 provides
the corresponding possibility values:

P(y = 1) =

{

1− η, if f is a fragment of t,

η, otherwise.
(26)

Remind that there are N clients at all. Considering that
there are k0 clients holding fragment f as ground truth, we
have the expectation of y can be given:

E(y) =
k0
N

(1− η) +
N − k0

N
η. (27)

The nature of k-anonymity is exactly k0 ≥ k. Since the
value in (27) increases as k0 increases, we can rewrite it
to represent the restriction on E(y) when k-anonymity is
satisfied:

k−anonymity ⇐⇒ E(y) ≥
k

N
(1− η) +

N − k

N
η. (28)

We denote the bound of E(y) given in (28) as ŷ:

ŷ =
k

N
(1− η) +

N − k

N
η. (29)

On the other hand, denote the support count of f (num-
ber of clients uploading f to the server) as S(f), and the
average value of y is given by

y =
S(f)

M
, (30)

where M is the number of clients responding on f .

The Hoeffding inequality is a powerful tool for estimat-
ing the divergence between the average of random variables
and its expectation, which can be efficiently adapted to the
estimation of y and E(y) as

P
(

y − E(y) ≥ δ
)

≤ exp(−2δ2M). (31)

Rewrite it,

P
(

E(y) ≤ y − δ
)

≤ exp(−2δ2M). (32)

For the satisfaction of (k, ξ)-anonymity, we hope the RHS of
(32) is replaced by ξ. Since δ in (32) can be arbitrary value,
we use

δ =

√

− ln ξ

2M
, (33)

so that (32) can be rewritten as

P

(

E(y) ≤ y −

√

− ln ξ

2M

)

≤ ξ. (34)

To bridge (34) with the satisfaction of (k, ξ)-anonymity, we
start with an assumption A

A : y −

√

− ln ξ

2M
≥ ŷ. (35)

Supposed that A is satisfied, we have

P
(

E(y) ≤ ŷ) ≤ P

(

E(y) ≤ y −

√

− ln ξ

2M

)

≤ ξ. (36)

Eq. (28) shows that the satisfaction of k-anonymity is equiv-
alent to E(y) ≥ ŷ, and therefore, (36) indicates the the
possibility that k-anonymity fails is smaller than ξ, which is
equivalent to (k, ξ)-anonymity. Therefore, the enforcement
of A is sufficient for the satisfaction of (k, ξ)-anonymity.

By merging (29), (30) and (35), we can form the support
count threshold for (k, ξ)-anonymity:

y ≥
k

N
(1− η) +

N − k

N
η +

√

− ln ξ

2M
, (37)

S(f) ≥M

(

k

N
(1− η) +

N − k

N
η +

√

− ln ξ

2M

)

, (38)

which yields Theorem 3.
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APPENDIX C

PROOF OF THEOREM 4

In FASTPub, all clients simply provide binary responses to
the candidate fragments. Therefore, in this part, we prove
the bound of anonymity loss for all candidate fragments. For
any candidate l-fragment f , according to the definition of
anonymity loss in (6), the maximum of τ(f) is l. To calculate
E
(

τ(f)
)

, we need to derive the possibility of τ(f) = 1, ..., l
and sum them up.

We first consider the possibility of τ(f) ≥ 1, since there
is no evidence for inferring about that, we can only derive a
trivial bound as follows.

P
(

τ(f) ≥ 1
)

≤ 1. (39)

The derivation of larger τ(f) is based on the definition
of (k, ξ)-anonymity and the Apriori property. For any tra-
jectory data uploaded by a client, since it is served as a
candidate inferred by the server, all fragments of it must
satisfy k-anonymity (with no anonymity loss) with the
possibility of 1− ξ.

Then we considers τ(f) ≥ x > 1. It implies that all
fragments with a length between l − x + 1 and l fail to
meet k-anonymity. Therefore, denote the set of fragments
of f with length between l − x + 1 and l as Fx(f), the
possibility of τ(f) >= x is equivalent to the possibility
that all fragments in Fx(f) (including f itself) fail to satisfy
k-anonymity synchronously. Since the failure of different
fragments is independent due to the procedure of FASTPub,
we can calculate the possibility of synchronous failures by
simply multiplying them, i.e.,

P
(

τ(f) ≥ x
)

=
∏

∀f ′∈Fx(f)

P(S(f ′) < k)

≤
∏

∀f ′∈Fx(f)\f

P(S(f ′) < k)

=
∏

∀f ′∈Fx(f)\f

ξ. (40)

To derive the value in (40), we need to calculate the number
of fragment in Fx(f) \ f . Obviously, for a target fragment f
with length l, the number of (l−x)-fragments (0 ≤ x ≤ l−1)
of f is equal to x+1. Therefore, the number of fragments in
Fx(f) \ f can be expressed as

|Fx(f) \ f | =
l−1
∑

i=l−x+1

l − i+ 1

=
x2 + x− 2

2
. (41)

Therefore,

P
(

τ(f) ≥ x
)

≤ ξ
x2+x−2

2 . (42)

Specially, when x > l, we have

P
(

τ(f) ≥ x
)

= 0. (43)

Obviously, we have

P
(

τ(f) = x
)

= P
(

τ(f) ≥ x
)

− P
(

τ(f) ≥ x+ 1
)

. (44)

Note that (39) is also included by (42), so (42) and (44) hold
universally for all 1 ≤ x ≤ l.

Based on the derived equations in (42),(43), and (44), we
can bound E(τ(f)) for any published l-fragment f :

E
(

τ(f)
)

=
l
∑

x=1

xP
(

τ(f) = x
)

=
l
∑

x=1

x
(

P
(

τ(f) ≥ x
)

− P
(

τ(f) ≥ x+ 1
)

)

=
l
∑

x=1

P
(

τ(f) ≥ x
)

− lP
(

τ(f) ≥ l + 1
)

≤
l
∑

x=1

ξ
x2+x−2

2 − 0

=
l
∑

x=1

ξ
x2+x−2

2 , (45)

which yields Theorem 4.

APPENDIX D

EXPERIMENTS IN OLDENBURG DATASET

Oldenburg dataset: Compared to the MSNBC dataset evalu-
ated in Section 6. The Oldenburg dataset simulates trajectory
publication tasks in large-scale settings with more possible
locations and trajectory fragments. The experiment results
of frequent sequence mining and count query tasks in the
Oldenburg dataset are presented in Figs. 10 and 11, respec-
tively.10 FASTPub also outperforms the benchmarks in both
tasks in the Oldenburg dataset, gaining higher F1 scores
and lower relative error. In addition, the algorithms tend
to perform badly when the fragment length is 5. Because
there are too few fragments satisfying k-anonymity, which
increases the difficulty of trajectory publication tasks. SFP
performs worse in 4-length queries compared to 3-length
queries in count query tasks, but not in frequent pattern
mining tasks, due to its trajectory trimming strategy.

In particular, publishing 5-fragments in the Oldenburg
dataset with k = 400, 000 and k = 500, 000 suffers a strange
performance drift. It is due to the low number of fragments
satisfying k-anonymity (1 fragment for k = 500, 000 and
3 fragments for k = 400, 000). It makes the publication
process with high uncertainty and coincidence. The perfor-
mance when k = 500, 000 gains a great improvement com-
pared to when k = 400, 000, because when k = 500, 000, the
number of candidates in the last round becomes lower than
C , which forces the noise factor η to be smaller. As a result,
the performance is improved compared to k = 400, 000.
Such a phenomenon is likely to happen for any dataset
when the number of candidate fragments is small enough
due to lacking frequent fragments, high k, or high lmax. It
can be also circumvented by decreasing C .

10. Some methods may fail to identify any fragment satisfying k-
anonymity in some cases. Since the data utility measures are not
available here, they are marked “invalid” (inv) in the figures.
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Fig. 10. Performance of frequent sequence mining task in Oldenburg dataset.
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Fig. 11. Performance of count query task in Oldenburg dataset.


