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Abstract—The emerging federated optimization paradigm per-
forms data mining or artificial intelligence techniques locally on
the edge devices, enabling scientists and engineers to utilize the
blooming edge data with privacy protection. In such a paradigm,
since data cannot be shared or gathered, data heterogeneity
naturally emerges, which significantly degrades the performance
of federated optimization, ultimately leading to poor quality
of federated services. In this paper, we present the first work
on characterizing the data heterogeneity in the framework of
federated analytics, i.e., to collectively carry out analytics tasks
without raw data sharing, and use the information to create a
desirable data environment via intelligent client selection. Our
proposed Analytics-driven Client Selection framework, named
FedACS, tackles the data heterogeneity problem in three steps.
First, clients are in charge of generating insights about local data
without disclosure of sensitive information. Then, the server uses
these insights to infer the situation of clients’ data heterogeneity
based on the Hoeffding’s inequality. Finally, a dueling bandit
is formulated to intelligently select clients with slighter data
heterogeneity to form a desirable client pool. FedACS can be
universally applied to all kinds of federated optimization tasks,
and gains benefits including privacy protection, infrastructure
reuse, and client load reduction. To test its efficiency, we further
customize it to assist federated learning, a popular scenario of
federated optimization. According to experiment results, FedACS
reduces the accuracy degrading by up to 65.6%, and speeds up
the convergence for up to 2.4 times.

Index Terms—federated analytics, data heterogeneity, feder-
ated learning, dueling bandit

I. INTRODUCTION

As we step into the era of data explosion, an exponential
amount of data are being generated by smartphones and
IoT devices. In 2020, 5.3 billion people were networked via
cellular service, generating 1.2 trillion digital photographs
via smartphones, and 8.7 billion networked IoT devices were
deployed in the world [1], [2]. These big data play an impor-
tant role in driving the data science and artificial intelligence
algorithms from labs to real world applications. However, with
the increasing awareness of data privacy, laws and regulations,
such as EU General Data Protection Regulation (GDPR) [3],
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are established worldwide to protect raw data from being
collected into one centralized place and conducting further
intelligence extraction processes.

The increasing regulations on data privacy and the growing
computing capability at the edge side thus motivate the wide
study of federated optimization techniques, represented by
federated learning (FL), in recent years [4]. Under the orches-
tration of a centralized server, researchers train a deep learning
model (neural network) across multiple decentralized edge
devices holding local data samples. Without having access to
these raw data directly, the distilled updates, usually weight
information, are uploaded from the edge devices to the server
for an immediate aggregation process.

While FL has been proved to be effective in multiple areas,
it still focuses on the tasks and scenarios requiring complex
deep learning models, like natural language processing [5], [6]
or computer vision [7], [8] applications. Meanwhile, a wide
range of analytic applications that rely on data science meth-
ods, like heavy hitter discovery, outlier detection, histogram
construction, etc. are left without discussion. As can be seen, in
these applications, the studied questions are no longer simply
“how to collaboratively train a model to do the prediction or
classification task”, but rather “what is the most frequent word
used by users?”, “what is the underlying distribution of the
dataset?”, etc. These tasks usually do not need complicated
prediction models, rather they require data insights obtained
by analyzing the decentralized datasets, which becomes harder
due to the restrictions on accessing raw data.

In May 2020, Google presented the next evolution of fed-
erated optimizations: federated analytics (FA) [9]. In the new
FA framework, individual clients collectively carry out a non-
training analytic task, rather than training a neural network in
FL, and send derived insights, not just weight updates in FL, to
the servers. Though the newly introduced FA still follows the
federation paradigm as its predecessor, the central aggregation
part and local analytics part in FA are application-specific,
which calls for careful design to guarantee the privacy of raw
data and the accuracy of the extracted insights. For example,
in a federated frequent word analytic scenario [10], a prefix
tree is constructed as the FA model. Edge devices provide their
insights by adding a character as a leaf of the tree. The server
aggregates all trees to get an estimation of the most frequent
word used among devices.978-0-7381-3207-5/21/$31.00 ©2021 IEEE



For any federated system, because the raw data have to
be processed locally in a privacy-preserving way, diverse
situations at the client1 side (usually termed as data hetero-
geneity, device heterogeneity, etc.) greatly affect the efficiency
of the federated systems. For example, data heterogeneity
(non-IID2 datasets and imbalanced datasets) degrades FL with
longer convergence time and lower accuracy [11], [12]. Device
heterogeneity (varying availability and computation capability
of the edge devices) introduces significant uncertainty to the
system and affects the operation of the federated system [13],
[14]. Obviously, characterizing these heterogeneities with pri-
vacy preserved can help understand the underlying federated
system and improve its quality of services.

In this paper, we present the first work on characteriz-
ing the class distribution heterogeneity in federated systems
and use this insight to create a desirable data environment
via intelligent client selection. Unlike learning an unknown
probability distribution from random samples [15] as studied
in previous differential privacy field or manually selecting
features to heuristically determine a client’s data heterogeneity,
we use the term skewness3 to describe the severity of the local
class distribution of a client skew from the global, virtually
centralized, one and aim at gaining a provable estimation on
it. The derived estimations about the skewness of the clients
are further used to select a group of low skewness clients,
creating an environment closed to the ideal IID environment,
desirable by a variety of federated tasks.

However, there are several significant challenges we have
to solve in order to achieve this. Since skewness measures
the divergence of class distribution in one client from the
global class distribution, we have to rely on aggregation of
insights from multiple clients to form the skewness measure
on one specific client. Specifically, first, for the clients, the
class distribution information of each client has to be both
representative and aggregatable. Second, for the central server,
the results based on aggregating these local insights have to
describe the skewness of each client in a mathematically prov-
able and practically effective way. Third, from the federation’s
perspective, the solution should not introduce any potential
privacy leakage when deriving insights from clients. Last, the
client selection algorithm has to be capable of reliably select-
ing low skewness clients even when the skewness information
derived in previous steps is stochastic or uncertain.

To this end, following the FA framework, we present a Fed-
erated Analtyics-driven Client Selection (FedACS) framework
to help federated optimization tasks collaboratively profile the
class distribution at the client side and intelligently select
low skewness clients. The cycle of FedACS is synchronous
to the host federated task. Each cycle of FedACS includes
three parts: the insight derivation part that provides indirect
insight about local data, the skewness estimation part that

1We use client and edge device interchangeable in this paper
2IID: independent and identically distributed
3Note that skewness has a different definition in statistics. In this paper,

we follow a similar definition to describe the label distribution skew as in [4]
and [11].
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Fig. 1. Class distributions of β-Dirichlet clients with different parameters.

aggregate all insights to infer about clients’ skewness, and the
client selection part that iteratively selects clients with a low
skewness level to participate in the federated tasks. FedACS
itself is a typical instance of FA, and can be universally
applied to all kinds of federated optimization tasks. To test
its efficiency, we further use FL as the representative host
federated task and use FedACS to assist it. The skewness
estimation part is further designed to reuse the infrastructure
of FL and the FA workloads can be minimized. With the
assistance of FedACS, the degrading effects of FL caused by
the non-IID environment are heavily reduced.

In summary, our contributions are
• We present the first work on federated skewness analytic

following the framework of FA.
• Based on the Hoeffding’s inequality, our approach quan-

tifies the class distribution heterogeneity in the federated
environment in a mathematical provable way.

• We formulate the client selection problem into a novel
dueling bandit problem to cater to the unique character-
istics of the client skewness estimation and solve it using
a Thompson Sampling based approach.

• Implementations under various non-IID environments
demonstrate that, with the assistance of FA, the host
FL task can reduce ∼ 65.6% of accuracy degrading
caused by data heterogeneity and speed up the model
convergence for ∼ 2.4×.

The rest of this paper is organized as follows: Section II
introduces the system model and the problem formulation of
FedACS. Section III provides detailed information of major
components of FedACS. Section IV presents the evaluation
results. Related work is surveyed in Section V, followed by
the conclusion in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system models and formulate
the problem FedACS solves. Section II-A provides a modeling
of the non-IID environment. Section II-B presents an overview
of FedACS. Section II-C introduces its problem formulation.

A. Non-IID Environment Modelling

In this part, we model the non-IID environment with two
steps. We first model the class distribution at the client level,



and then model the heterogeneity of these distributions across
different clients at the population level.

The first step to model a non-IID distribution is to determine
the class distribution of each client. Dirichlet distribution
has been used to model non-IID environments at the client
side by various FL studies [16]–[18]. It generates a list of
random variables with an invariant sum, which can be naturally
converted to the proportion of data belonging to each class, and
is therefore an effective solution to model the client-level class
distribution. Based on this, we present the following definition
to describe the class distribution in one client:

Definition 1 (β-Dirichlet client). A β-Dirichlet client has
class distribution following the Dirichlet distribution, with
concentration parameter β.

In practice, the skewness of clients is not only different,
but also heavily diverges. For example, if an ordinary person
takes photos of everything, then pictures in his/her smartphone
will be close to the global distribution (or slightly skewed).
Meanwhile, if a photographer attends auto-shows everyday,
then his/her pictures would be heavily skewed ones.

Therefore, the next step of modeling the non-IID environ-
ment is to let the skewness levels of different clients diverge,
so that the aforementioned characteristics can be properly
modeled. We achieve this by having each client’s concentration
parameter β diverges. Since β has an uncertain but strong
influence on the skewness of clients, if the clients are assigned
with different values of β, the skewness of clients will diverge
at the population level. Based on this, we present the final
model of the non-IID environment:

Definition 2 (Dirichlet skewness environment). In a Dirichlet
skewness environment, all clients are β-Dirichlet clients. Half
of the client has β values following continuous uniform
distribution in range (0, xmed], and those of the rest clients
are uniformly distributed in range (xmed, xmax].

In the Dirichlet skewness environment, the values of β
follow a layered uniform distribution, whose median and
maximum are predefined, rather than an ordinary uniform
distribution. The reason is that the change of skewness is not
proportional to the change of β, e.g. if we change β from 0.2
to 0.1, the change of client skewness is much more violent than
when changing β from 1.0 to 0.9. By layering β, we guarantee
that client skewness is evenly distributed to different levels.

We visualize the Dirichlet skewness environment for a better
understanding. We choose two representative values of β, 0.1
and 2.0, and generate the class distributions of ten clients for
each value of β. The results are shown in Fig. 1, where each
row describes the class distribution in one client, and colors
in each row represent raw data from different classes. As can
be seen from the figure, the skewness of clients with β = 0.1
is much higher than those with β = 2.0.

B. System Overview

FedACS aims at profiling the class distribution heterogene-
ity in federated systems following the federated analytics
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Fig. 2. An overview of FedACS assisted FL. The insight derivation part and
the skewness estimation part are demonstrated in Section III-A together with
Section III-B. The client selection part is demonstrated in Section III-C.

framework and uses the derived insights to create a near
IID environment via intelligent client selection. FedACS can
work on its own as a stand-alone analytic system or form a
symbiosis with other federated tasks to help improve these
host tasks’ quality of service. To fully demonstrate the power
of FedACS, we choose the latter form and use FL as the host
task in this paper. The overall structure of FedACS and the
assisted FL are presented in Fig.2.

The whole system has a set of clients C represented by
index {1, 2, 3, ...N}, and executes two task cycles. In the FL
task cycle, each client is in charge of performing the local
training phase in FL. In each round, κ clients are selected by
the server to participate in FL. The focused updates are sent
to the server for model aggregation. The clients have different
intrinsic data skewness. Therefore, the benefit provided by
each client varies. To maximize the overall benefit, FedACS
introduces a new FA task cycle synchronous to the host
FL cycle. This FA cycle helps the server discover the low
skewness client and select those clients to join the FL training
process in each round. Specifically, the FA cycle consists of
three modules: insight derivation, skewness estimation, and
client selection.

In the insight derivation part, each participating client gen-
erates insight, which will be utilized by the server to infer its
skewness. The design of insight is of a high degree of freedom,
but should not expose direct information about raw data. In
this paper, the insight is in the form of the gradient to cater
to the host task. Such a design reuses the infrastructure of FL
and reserves the privacy protection level as the FL.

In the skewness estimation part, the server transforms the
insights derived by clients into estimations of client skewness.
The Hoeffding’s inequality is applied to bridge the connection
between the uploaded insights and the client skewness. For
each participating client i, a reward value Ri is simultaneously
derived as an inverse reflection of its skewness, i.e., a client
with a lower skewness obtains a higher Ri.

In the client selection part, FedACS receives the reward
information, i.e., inversed skewness estimations, from the pre-
vious part, and selects clients with low skewness to participate



in federated tasks. Since FedACS carries out an exploration-
exploitation tradeoff under the challenge of stochastic and
uncertain reward, it formulates this problem into a multi-
dueling bandit problem. FedACS also takes into account the
tradeoff between the reward maximization and the limited
sample size to guarantee the performance of its host task.

C. FedACS: A Dueling Bandit Formulation

We next formulate the federated skewness analytics problem
and client selection problem in FedACS into a dueling bandit
problem. Dueling bandit problems consider a different sce-
nario than the conventional stochastic bandit problems. Being
firstly introduced in [19], a dueling bandit selects two arms to
perform one comparison (dueling) in each round and receives
the noisy comparison result of these two arms. For each pair
of arms i and j, the probability for i to be stronger than j is
represented by,

P(i � j) = φ(i, j) +
1

2
, (1)

where φ(i, j) denotes the dueling preference between i and
j. The goal of the conventional dueling bandit is to find
the Condorcet winner, which beats all other arms with a
probability not lower than 0.5. Multi-dueling bandit [20]
extends the original dueling bandit, allowing simultaneous
dueling between multiple arms and targeting at identifying
multiple optimal arms.

Since we need to select multiple clients in each round to
help the host task and the derived skewness estimations are
uncertain over time, multi-dueling bandit naturally suits our
scenario. We let participating clients in each round “duel” with
each other using their Ri values, and update the bandit with
the dueling results. The objective eventually is to select a set
of clients that can beat others, i.e., with low skewness.

Therefore, we present the formal formulation of our problem
as follows. Recall that the set of clients is denoted as C.
For each client i ∈ C, ψi indicates the quantified intrinsic
skewness of client i. For each pair of clients i and j, if they
are both participating clients and given rewards (Ri and Rj)
in the same round, and then the quantitative comparison of Ri

and Rj has a noisy negative correlation with ψi and ψj , i.e.,

P(Ri > Rj) > 0.5 ⇐⇒ ψi < ψj . (2)

Similar to (1), we denote the stochastic preference between
client a and b as φ(a, b),

φ(i, j) = P(Ri > Rj)− 0.5. (3)

FedACS aims at

argmin
S′

{
T∑

t=1

∑
i∈S′

φ(i(∗), i)

}
, (4)

where S′ is a fix-size set of desirable clients, T is the total
number of communication rounds, and i(∗) is the client with
the lowest skewness.

We aim at finding the clients with the lowest skewness so
that the regret defined in the objective function in (4) can

be minimized. As can be seen in (4), our problem can be
decomposed into two sub-problems.
• We need to determine the dueling results φ(i, j) in (3)

based on skewness analytics.
• We need to select a set of clients to minimize the objective

value in (4).

III. SKEWNESS ANALYTICS AND CLIENT SELECTION

In this section, technological details about skewness analyt-
ics and client selection algorithm to solve the previous two
subproblems are present. In Section III-A, we show how the
Hoeffding’s inequality is employed in FedACS to estimate
the client skewness. In Section III-B, we conclude a practical
estimation of the client skewness, which will be used as the
reward for the bandit. In Section III-C, detailed client selection
algorithm in FedACS is demonstrated.

A. Connection between the Hoeffding’s Inequality and the
Client Skewness

In this part, we show the procedure of inferring about the
client skewness based on the Hoeffding’s inequality. We first
apply Hoeffding’s inequality to the results of gradient descent.
After that, we bridge the derived value to the client skewness
by converting it to the possibility of accepting a hypothesis,
assuming data in the client is IID.

The Hoeffding’s inequality is a statistical tool first intro-
duced in [21]. It estimates the deviation of the average of
independent random variables from its exception and provides
a probabilistic bound given the deviation of X from its
exception [22], [23]. As the cornerstone for federated skewness
analytics, we formally present this theorem as follows.

Theorem 1 (Hoeffding’s inequality). Supposed X1, ..., Xn are
independent variables, Xi ∈ [ai, bi], X is the average of Xi,
there’s

P(|X − E(X)|) ≥ ε) ≤ 2exp

(
− 2ε2n2∑n

i=1(bi − ai)2

)
. (5)

Next, we demonstrate how the Hoeffding’s inequality is
applied in skewness estimation. Since the insight we used is
in the form of a gradient (weight change) from the neural
network, we first demonstrate how the gradient is derived, and
then show how the Hoeffding’s inequality is linked to it.

In the system, there are N clients in total. Denote di,m
as the m-th datum in the i-th client. M is the number of
datum in each client. The procedure of calculating gradient
in a neural network is called backward propagation. First, the
client calculates a loss function Loss(d) for each datum d
indicating how the prediction of one datum d is closed to
the truth. Then, the client averages the loss function of all
data it owns to form a cost function Costi. Finally, the client
calculates the weight change (gradient) of the neural network.
Denote the dimension index of weight as k, the weight change
are derived by the backward propagation that

∆w
(k)
i = γ × ∂Costi

∂w(k)
, (6)



where ∆wk
i is the weight change of client i in dimension k,

and γ is a preset learning rate. In FL, client i upload ∆wi,
with K dimensions, to the server.

Above is the full procedure of generating gradients in a
neural network. Then we link the final result ∆wi to the
Hoeffding’s inequality.

Denote z(k)i,m as the k-th dimension of gradient derived from
the m-th datum in the i-th client, times the learning rate γ.

z
(k)
i,m = γ × ∂Loss(di,m)

∂w(k)
(7)

Denote z(k)i as the average of z(k)i,m, consider the calculation
of the weight change in deep learning in (6),

z
(k)
i =

1

M

M∑
m=1

γ
∂Loss(di,m)

∂w(k)

= γ
∂ 1

M

∑M
m=1 Loss(di,m)

∂w(k)

= γ
∂Costi
∂w(k)

= ∆w
(k)
i . (8)

z
(k)
i,m are derived from different independent samples, so they

are also independent random variables, while the uploaded
weight change ∆w

(k)
i is the average value of z(k)i,m. We apply

the Hoeffding’s Inequality in (5) to z
(k)
i,m, and get pki ,the

probability that k-dimension of weight change from client i
diverges from its exception for a fixed value ε. Namely,

pki = P(|∆w(k)
i − E(∆w

(k)
i )|) ≥ ε)

≤ 2exp

(
− 2ε2M2∑M

j=1(b(k) − a(k))2

)
= 2exp

(
− 2ε2M

(b(k) − a(k))2

)
. (9)

b(k) and a(k) are the upper and lower bounds of z(k)i,m. To make
our estimation comparable for different client (i) and datum
(j), we use the same bounds b(k) and a(k) instead of b(k)i,m and
a
(k)
i,m. We are safe to do this because the Hoeffding’s inequality

in (5) does not require a tight bound.
Recall that z(k)i,m are gradient derived by one datum. Al-

though the server does not have knowledge about the datum
di,m, we can estimate its skewness by the skewness of z(k)i,m,
which is a mapping of di,m. Furthermore, in FL, values of
z
(k)
i,m is also private. Therefore, FedACS use the Hoeffding’s

inequality to estimate skewness of z(k)i,m based on ∆w
(k)
i .

In order to link pki to the client skewness, we start with a
hypothesis H:

H: Data in client i is IID distributed.

We utilize H via a generalized reduction to absurdity: we
first accept H anyway, so that we can calculate pki with (9).
Since the value in (9) is a possibility bound, it represents how
rare the situation of accepting H is. A rarer situation indicates

that we are less likely to accept H in the first place, which
means that data distribution is distant from the assumption
made by H , indicating a higher skewness.

Following the aforementioned rationale, we first link the
possibility of accepting H to the value of pki derived by
Hoeffding’s inequality, as presented in Lemma 1.

Lemma 1. pki has a positive correlation to the likelihood of
accepting H .

Proof. See Appendix A

The likelihood of accepting H can be naturally linked to
client skewness: if we have a high confidence to claim that
client i is IID, client i will be more likely to have a low
skewness. From the insight above, we can build the connection
between client skewness and pki , that high pki indicates low
skewness of client i.

Also, when the assumption is made that data in client i is
IID, the expectation of z(k)i should be equal to the global one
z(k). Based on that, a new expression of pki is derived as a
side product from Lemma 1, i.e.,

pki = P(|∆w(k)
i − E(z(k))|) ≥ ε)

≤ 2exp

(
− 2ε2M

(b(k) − a(k))2

)
. (10)

B. Derivation of the Rewards
In this part, we transform the skewness estimation in (10)

into a more practical representation Ri, which will be used by
the bandit in the next component of FedACS. We first solve a
challenge by providing an estimation for a variable to be used,
whose exact value is impossible to obtain. Next, we combine
multiple dimensions of the gradient to a single value Ri, so
that the credibility of our estimation is increased.

According to (10), the calculation of pki requires the value
of the expectation of z(k), which is used in deriving ε. The
exact value of E(z(k)) is the average of z(k)i,m of all data in
all clients (∀i,m). However, not all clients participate in each
round. Therefore, the exact value is impossible to obtain. To
tackle this challenge, we used the average of all data in all
participating clients instead, as a reliable estimation.

The rationale of estimating E(z(k)) is concluded into the
following theorem:

Theorem 2. The expectation of z(k) can be estimated by
the average of uploaded weight changes of all participating
clients. Namely,

E(z(k)) ≈ ∆w
(k)
, (11)

where ∆w
(k)

indicates the average uploaded weight changes
of all participating clients at dimension k.

Proof. See Appendix B

As the estimation of E(z(k)) has been given, we are able
to propose a more practical estimation of client skewness.
Rewrite (10), we have,

P k
i = 2exp

(
− 2(ε(k))2M

(b(k) − a(k))2

)
(12)



where,
ε(k) = |∆w(k)

i −∆w
(k)|. (13)

Eq. (12) provides an estimation about the skewness of all
clients. However, it only utilizes one dimension of weight
changes. It will be more accurate and robust when considering
estimations for all dimensions.

Since the combination is not mathematically purposeful, we
choose to multiply Rk

i among all dimensions. The rationale
of choosing multiplication and the detailed procedure of
combining all dimensions can be found in appendix C. A final
result of combination Ri is derived:

Ri = −||∆wi −∆w||2 (14)

where ∆wi indicates the uploaded gradient from client i, and
∆w indicates the average of uploaded gradients among all par-
ticipating clients. The values of Ri have a negative correlation
to clients’ skewness, i.e., a higher Ri value indicates a lower
client skewness, which is desired by the bandit.

C. Client Selection: A Thompson Sampling Approach

In this part, the detailed algorithm of the multi-dueling
bandit is present. FedACS builds a multi-dueling bandit based
on INDSELFSPARRING, an effective multi-dueling bandit al-
gorithm [20]. It borrows the power of Thompson sampling to
handle the dueling results in the way of stochastic bandits.

Compared to the original INDSELFSPARRING algorithm,
the client selection scheme of FedACS takes an extra tradeoff
into consideration in order to guarantee its effectiveness in
assisting FL, that the balance of data number to be utilized.
If we decrease the utilized data, FedACS can select the most
perfect clients with low skewness, but the neural network will
lack raw samples for training; if the utilized data increases,
the neural network will be trained with sufficient samples, but
the overall skewness of participating client will be higher. To
tackle the challenge, we introduce a meta parameter λ, which
describes our tolerance to client skewness: a higher λ indicates
we tolerant more heavily skewed clients to participate in FL,
in order to feed the neural network with more raw samples.

With the introduction of λ, the procedure of client selection
is modified. In each round, the bandit first provides a client
pool consisting of λN desirable clients. Then, we randomly
select κ clients from the client pool as the participating clients.
Finally, duels are performed by the participating clients, and
the bandit is updated with the dueling results.

When λ takes its minimum, κ/N , it becomes a vanilla
multi-dueling bandit, which always tries to use top κ clients
with the lowest skewness. On the contrary, when λ = 1, it
falls back to randomly selecting clients (the default policy in
the existing FL protocol). By wisely selecting the parameter
λ, we can both restrict participating clients to be with low
skewness, and provide the neural network with sufficient raw
sample by extending the client pool.

The detailed algorithm for selecting clients and updating the
key parameters with rewards are presented in Algorithms 1 and
2, respectively. In Algorithm 1, the bandit requires all clients

to sample from their own beta distributions, and repeatedly
chooses clients with the highest sampling result. Compared to
the original INDSELFSPARRING, we add a new feature that
the bandit first forms a desirable client pool S′ with size λN ,
and then randomly select κ participant from S′ to form the
actual selected client set S.

In Algorithm 2, the parameters of each client Ai and Bi

are modified based on its dueling results, which shape its
beta distribution. If a client is more likely to defeat others in
duels, its beta distribution will be more likely to return high
sampling results. Unlike traditional dueling bandits where the
dueling results are naturally given, in FedACS, participating
clients in the same round have to generate the dueling results
beforehand, by comparing their Ri values with each other.

Algorithm 1 Process of client selection
Input: Parameters for beta distribution: A,B; Number of

clients: N , Set of all clients: C; Number of clients to be
selected in each round: κ; Skewness tolerance parameter:
λ.

Output: Set of selected clients: S.
1: S′ ← empty set . the desirable client pool
2: P ← N · λ . size of the desirable client pool
3: for t = 1, 2, ..., P do . repeat Thompson sampling
4: for i ∈ C do
5: sample θi by Beta(Ai + 1, Bi + 1)
6: end for
7: g ← argmaxiθi . a desirable client
8: append g to S′

9: remove g from C
10: end for
11: S ← randomly draw κ clients from S′

12: return S

Algorithm 2 Key parameters update
Input: Parameters for beta distribution: A,B; Set of partic-

ipating clients: S; Rewards of participating clients: R;
Learning rate: η.

Output: Updated parameters for beta distribution: A′, B′.
1: A′ ← A
2: B′ ← B
3: for i← clients in S do
4: for j ← clients in S do
5: if Ri > Rj then . dueling between participants
6: A′i ← A′i + η
7: B′j ← B′j + η
8: end if
9: end for

10: end for
11: return A′, B′
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Fig. 3. Test accuracy v.s. communication rounds on different heterogeneity
settings.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

Settings: We evaluate FedACS assisted FL on a popular
dataset, CIFAR-10 [24]. Raw data are distributed to 200 clients
with the Dirichlet skewness environment defined according to
Definition 2. In this paper, we provides two practical settings
on the Dirichlet skewness environment: low heterogeneity,
where xmed = 0.2, xmax = 3, and high heterogeneity, where
xmed = 0.1, xmax = 5, referred as low and high, respectively.
Each client holds M = 2000 samples. We use the same CNN
model as described in [25]. Local epoch and local batch size
are set to E = 5, B = 400. Learning rate and learning rate
decay per local epoch are set to γ = 0.1, γd = 0.9993. The
FL model is trained for five repeat trials, and the medians
are recorded. In Algorithm 2, the learning rate of the dueling
bandit η is set to be 1.0. The skewness tolerance parameter λ
equals 0.4 if not mentioned otherwise.

Baseline and benchmark: The baseline in our experiments
is the settings of vanilla FL, where participating clients are
randomly selected. In addition, the performance of FL in the
IID environment is measured as a reference, which represents
a theoretical upper bound of FedACS. One state-of-the-art
solution, named CMFL [26], designed for improving FL
performance under the non-IID environment is further imple-
mented as the benchmark. CMFL calculates the similarity of
clients’ gradient and global gradient based on the sign count
of all dimensions, and removes “diverging” gradients in the
model aggregation to accelerate convergence.

Metrics: We introduce two sets of metrics to evaluate the
performance of FedACS. The first set is terminal accuracy,
which is defined as the average test accuracy in the last 50
rounds, and relative improvement, which is defined as the
improvement of terminal accuracy, compared to the degrading
effect of the non-IID environment. Another set of metrics is
convergence speed, which is represented by the number of
rounds taken for each method to reach the target accuracy
65%; and speedup of methods, compared to the baseline.

B. Results and Analysis

Overall performance: To provide an overview of the
performance of FedACS and other approaches, we plot their

TABLE I
SUMMARY OF TERMINAL ACCURACY AND RELATIVE IMPROVEMENT

Environment Method Accuracy (%) Improvement (%)

Low

IID 74.0 100
baseline 69.7 0
CMFL 64.8 −112.2

FedACS 72.5 65.6

High

IID 74.0 100
baseline 68.4 0
CMFL 62.9 −96.7

FedACS 72.1 65.5

TABLE II
SUMMARY OF ROUNDS TO TARGET AND RELATIVE SPEEDUP

Environment Method Rounds to target Speedup

Low

IID 85 3.2x
baseline 270 1.0x
CMFL 620 0.4x

FedACS 130 2.1x

High

IID 85 4.3x
baseline 365 1.0x
CMFL 915 0.4x

FedACS 155 2.4x

round-accuracy curves in Fig. 3. As can be seen from the
figure, first, both non-IID environment settings degrade the
performance of FL with slower convergence and lower test
accuracy. Second, FedACS greatly reduces the degrading
effect in both settings. Last, unfortunately, the performance
of CMFL turns out to be even worse than the baseline. The
reason is that sign count, a manually selected feature, is not
an effective indicator for client skewness in our heterogeneous
data environment. It may mistakenly remove some of the
uploaded gradients and thus degrades the overall performance.

Specifically, we summarize the performances of FedACS
and other methods in Table I and II. FedACS increases the
terminal accuracy for ∼ 3.7%, compared to the baseline, and
reduces the terminal accuracy degrading of non-IID environ-
ment for ∼ 65.6%. FedACS takes much fewer rounds to
reach the target accuracy than the baseline and the benchmark,
speeding up for ∼ 2.4×.

Parameter sensitivity analysis: Skewness tolerance λ is
a critical parameter for the performance of FedACS. To
investigate its influence, we test FedACS with different values
of λ in the low heterogeneity environment. Experiment results
are concluded in Fig. 4. When λ takes its minimum, 0.05,
although the harm of skewness is minimized, the performance
of the host task turns out to be even lower than the baseline,
due to the severe lacking of raw samples. The performance
of the host task increases when λ increases from 0.05 to
0.4. Furthermore, when λ is set to 0.4, the host task has the
best performance regarding terminal accuracy and convergence
speed. The performance degrades when λ becomes 0.6. This is
because the overall skewness of participating clients increases.
Therefore, a good choice of λ should be neither too high,
which connives skewed clients, nor too low, which limits the
number of utilized samples.
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Performance of the bandit: The most direct objective of
the bandit in FedACS is to select the clients with high Ri

values (derived in (14)). To test whether the bandit takes effect,
we record the average Ri values of the selected participating
clients in each round, and compare them with the baseline. Fig.
5 shows the experiment results. Compared to the baseline, the
bandit in FedACS fulfills its job of selecting clients with higher
potential Ri, which indicates a lower level of client skewness.
In addition, both Ri values of the baseline and FedACS are not
stationary and decrease over communication rounds. It shows
the uncertainty of the derived reward, which reinforces the
necessity of our employed multi-dueling bandit formulation.

V. RELATED WORK

A. Federated Analytics

As a newly introduced concept, we acknowledge that there
are still a few works in the field of FA. Unlike traditional geo-
distributed data analytics [27], [28], FA focuses on the close
collaboration of the clients. Currently, FA can be categorized
into two types: interactive FA, where the insight derivation
procedure requires a global model, and non-interactive FA,
where clients do not need any information from the server
to perform insight derivation [29]. Interactive FA has been
applied in heavy hitter discovery [10], model evaluation [9],

and song recognition [9], while the example of non-interactive
FA can be found in privacy-preserved data uploading scenario
[30]. Our proposed FedACS has the flexibility of being either
interactive or non-interactive depending on its relationship
with the host task. In this paper, since FedACS reuses the
global model of FL to derive insight in (7), it falls into the
interactive FA. On the other hand, FedACS also enables users
to design other forms of z(k)i,m in (7) that does not rely on the
global model, where FedACS will become non-interactive.

B. Application of the Hoeffding’s inequality

The Hoeffding’s inequality has been widely applied in the
field of distributed systems [31]–[33]. In Oort, the Hoeffd-
ing’s inequality estimates the number of clients required to
test the performance of the FL model [31]. In [32], the
Hoeffding’s inequality for Markov chains is employed for
optimizing caching systems in small-cell networks. In [33], the
Hoeffding’s inequality derives a lower bound of detection rate
of the wormhole attack detection algorithm. These applications
show the distinctive advantage of the Hoeffding’s inequality
in providing theoretical bound for various stochastic events.

C. FL in non-IID environment

The non-IID environment is a major challenge for FL,
and has attracted worldwide interest from both industry and
academia. Various methods have been proposed to reduce the
negative effect of the non-IID environment in FL [11], [34]. In
[11], the server shares some reserved IID raw data to clients,
in order to reduce client skewness. In [34], reinforcement
learning helps find clients with higher potential benefit for
FL. Personalized Federated Learning, as an emerging variation
of traditional FL, breaks the limit that there can be only
one global model, and is therefore considered as an effective
solution to the non-IID environment [35], [36].

VI. CONCLUSION

Data heterogeneity is a critical challenge for federated
optimization tasks and greatly affects their quality of services.
In this paper, we follow the framework of federated analytics
to present the first work on federated skewness analytic and
client selection, referred to as FedACS. FedACS first uses
local-derived insights to infer about clients’ data heterogeneity
with privacy protected based on the Hoeffding’s inequality.
After that, it intelligently selects low skewness clients to form
an IID environment based on a Thompson sampling based
approach. Our proposed FedACS could serve as a standalone
federated analytic tool for the distribution characterization
purpose or symbiose with other host federated tasks to improve
their quality of services. Extensive experiments demonstrate
that, when assisting federated learning, FedACS reduces the
accuracy degrading by ∼ 65.6%, and accelerates the FL’ s
convergence for ∼ 2.4×.
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APPENDIX A
PROOF OF LEMMA 1

Denote the distribution of data in client i as D(di), and
the global distribution in all clients as D(d). Similarly, we
denote the distribution of z(k)i,m in each clients and the global
distribution as D(z

(k)
i ) and D(z(k)), respectively.

Suppose that we have accepted H , then the distribution of
di,m in client i is identical to the distribution of sum-up data
in all clients,

D(di) = D(d). (15)

As a mapping of di,m, distribution of z(k)i,m is also identical
to the overall distribution,

D(z
(k)
i,m) = D(z(k)). (16)

First, the exception of zki is equal to the exception of zki,m,
since the former is simply arithmetic average of M samples
of latter, i.e.,

E(∆w
(k)
i ) = E(z

(k)
i ) = E(z

(k)
i,m). (17)

Eq. (16) gives that distribution of zki,m is identical to z(k)

for all i,m, their exception is also equal:

E(z
(k)
i,m) = E(z(k)). (18)

Given these insights, we can rewrite (9) as:

pki = P(|∆w(k)
i − E(∆w

(k)
i )|) ≥ ε)

= P(|∆w(k)
i − E(z(k))|) ≥ ε)

≤ 2exp

(
− 2ε2M

(b(k) − a(k))2

)
. (19)



pki gives the probabilistic relationship between uploaded
weight change and the exception of z(k). When difference ε
is obtained, we can use pki to define how rare the situation is.
In other words, when pki is small, the case here is rare, and
we have little confidence to accept H , which is a premise at
the beginning.

Supposed the likelihood of accepting client i being IID is
low, we can then conclude that the skewness of client i is high.

APPENDIX B
PROOF OF THEOREM 2

We cannot claim that the expectation of zk is equal to
the average of all participating clients, because they are not
guaranteed to fully characterize the global data. Instead, we
bound the error between E(z(k)) and ∆w

(k)
, showing that

∆w
(k)

is practically effective as an estimation of E(z(k)).
Denote the clients participated in round t as St. Consider

(7) and (8), we have:

E(z(k)) =
1∑N

i=1M

N∑
i=1

M∑
j=1

z
(k)
i,m

≈ 1∑
i∈St

M

∑
i∈St

M∑
j=1

z
(k)
i,m

=
1∑

i∈St
M

∑
i∈St

M∆w
(k)
i

= ∆w
(k)
. (20)

From (20), we conclude that the estimation of E(z(k)) is
given by the weighted average of uploaded weight changes,
weighted by their numbers of data.

Credibility of ∆w
(k)

as an estimation of E(z(k)) can be
analyzed via the Hoeffding’s inequality. Recall (20), ∆w

(k)
is

the average of z(k)i,m in all clients in St. Eq. (5) yields,

P(|∆w(k) − E(∆w
(k)

)| ≥ ε)

= P(|∆w(k) − E(z(k))| ≥ ε)

≤ 2exp

(
− 2ε2M

(b(k) − a(k))2

)
, (21)

It may seem illogical that the estimation of E(z(k)), which
will be used to give a probabilistic bound by the Hoeffding’s
inequality in (19), is also bounded by the Hoeffding’s inequal-
ity in (21). However, it is numerically reasonable, because the
latter bound is much tighter than the former. When (19) and
(21) are given the same confidence level, the bound of ε in
the latter estimation will be κ times tighter than the former,
where κ indicates the number of participating clients in each

APPENDIX C
DERIVATION OF Ri

The combination of estimation from different dimensions is
not mathematically purposeful, but consider that the nature of

round. Therefore, in (19), the uncertainty given by estimating
E(z(k)) is comparatively negligible.
P k
i is a probability. Multiply P k

i among all dimensions seems
plausible, as it can be understood as the logical operator “and”.

As a result, a skewness estimation of client i based on all
dimensions are given by

Pi =

K∏
k=1

2exp

(
− 2(ε(k))2M

(b(k) − a(k))2

)
(22)

Recall that higher P k
i indicates lower skewness, and the

range of P k
i is [0, 1]. Therefore, a higher Pi also indicates a

lower skewness.
b(k) and a(k) are the upper and lower bounds of zki,m.

A normal method is to request the minimum and maximum
from all participating clients and to derive the tightest bound.
However, it increases the communication overhead by 2×, and
breaks the strict privacy restriction of FL. Therefore, we used a
looser bound, which is equal for all dimensions. Denote them
as bmax and amin, i.e.,

bmax = max
∀i,m,k

(
z
(k)
i,m

)
, amin = min

∀i,m,k

(
z
(k)
i,m

)
. (23)

Since (5) only requires a and b as bounds, without re-
quirement of tightness. We are able to use bmax and amin

to take place of b(k) and a(k) in all dimensions, without loss
of mathematical correctness. Rewrite (22),

Pi =

K∏
k=1

2exp

(
− 2(ε(k))2M

(bmax − amin)2

)
. (24)

Take the logarithm on both sides, and simplify the form,

(K ln 2− Pi)(bmax − amin)2

2M
=

K∑
k=1

(
(ε(k))2

)
(25)

Recall (13), we can find that the sum of (ε(k))2 among all
dimensions is the sequre of L2 norm between ∆wi and ∆w,
and derive the resulted form as Qi:

Qi =

√
(K ln 2− Pi)(bmax − amin)2

2M
= ||∆wi −∆w||2 (26)

where,

∆w =
1

N

∑
i∈St

∆wi (27)

Eq. (26) shows that Qi is an inverse transformation of Pi,
where lower Qi indicates lower skewness. However, a MAB
is pursuing arms with higher rewards, so we should assign a
higher reward to the clients with lower skewness. As a result,
we used the inverse of Qi as the reward Ri, i.e.,

Ri = −Qi = −||∆wi −∆w||2 (28)


