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Abstract—Frequent pattern mining is an important class of
knowledge discovery problems. It aims at finding out high-
frequency items or structures (e.g., itemset, sequence) in a
database, and plays an essential role in deriving other interesting
patterns, like association rules. The traditional approach of gath-
ering data to a central server and analyze is no longer viable due
to the increasing awareness of user privacy and newly established
laws on data protection. Previous privacy-preserving frequent
pattern mining approaches only target a particular problem with
great utility loss when handling complex structures. In this paper,
we take the first initiative to propose a unified federated analytics
framework (FedFPM) for a variety of frequent pattern mining
problems, including item, itemset, and sequence mining. FedFPM
achieves high data utility and guarantees local differential privacy
without uploading raw data. Specifically, FedFPM adopts an
interactive query-response approach between clients and a server.
The server meticulously employs the Apriori property and the
Hoeffding’s inequality to generates informed queries. The clients
randomize their responses in the reduced space to realize local
differential privacy. Experiments on three different frequent
pattern mining tasks demonstrate that FedFPM achieves better
performances than the state-of-the-art specialized benchmarks,
with a much smaller computation overhead.

Index Terms—federated analytics, frequent pattern mining,
differential privacy, collaborative computing

I. INTRODUCTION

A tremendous amount of data are being generated by widely

deployed edge devices. It is estimated that there will be 27.1

billion networked devices in 2021 with 278.1 Exabytes of data

being generated every month [1]. The increasing amount of ac-

cessible data provide great opportunities for useful knowledge

derivation. Frequent pattern mining (FPM) is an important

class of knowledge discovery problems that aim at finding out

high-frequency items or structures (e.g., itemset, sequence) in

a database [2]. It also plays an essential role in many other

pattern mining tasks, such as association rules, correlations,

and classifiers. FPM has been widely studied and applied

in a wide range of real-world applications. For instance,

personalized recommendation systems rely on mining frequent

This work is supported by SJTU Explore-X grant and SJTU Global Strate-
gic Partnership Fund (2021 SJTU-HKUST). Dan Wang’s work is supported in
part by GRF 15210119, 15209220, 15200321, ITF-ITSP ITS/070/19FP, CRF
C5026-18G, C5018-20G, PolyU 1-ZVPZ, and a Huawei Collaborative Project.
Zhu Han’s work is partially supported by NSF CNS-2128368, CNS-2107216,
Toyota and Amazon. Corresponding author: Yifei Zhu

web usage data (itemsets) to characterize users [3]. Ride-

sharing service providers like Uber greatly benefit from mining

users’ trajectories (sequences of locations) [4].

Traditional FPM solutions adopt the gather-and-analyze

paradigm, where the data born in the edge is gathered by a

centralized server before being analyzed [2]. However, with

the increasing awareness of privacy preservation, laws and

regulations, such as the GDPR in European Union [5] and the

CPPA in California [6], are established worldwide to restrict

the access of raw edge data, making the previous gather-and-

analyze paradigm no longer viable.

Recognizing the importance of privacy preservation, various

privacy-preserving FPM solutions have also been proposed

in recent years. Particularly, researchers from academia and

industry develop algorithms to satisfy local differential privacy

(LDP), a de facto criteria of local privacy [7]. Google presents

RAPPOR which uses bloom filters to encode the browser

homepage choices [8]. Apple presents SFP to discover more

complex frequent sequences [9]. However, these privacy-

preserving solutions have two major drawbacks. First, their

realization of LDP is based on randomizing the raw data. The

data utility significantly deteriorates with the sophistication of

the data structures and the increasing system scales. Second,

previous solutions only handle a particular form of patterns

with limited power of generalization.

The federated paradigm emerges as a promising direction

to perform AI or data science tasks on edge devices with the

privacy preserved [10]–[13]. A federated system consists of

a centralized server and many clients (edge devices) holding

private raw data. Server and clients collaboratively work on

a data-centric computing task without sharing the raw data.

As its earliest application, federated learning (FL) focuses on

collaboratively training a neural network, in which a neural

network model is transmitted between clients and a server;

local computation calculates gradient descent; the central

server aggregates them by averaging-like operations [10], [11].

It has been widely used to support training various types of

neural networks, including deep recurrent models for language

modelling, convolutional models for computer vision, graph

convolutional models for graph-structured data [10], [11], [14].

On the contrary, as a newly emerged sibling to FL, fed-

erated analytics (FA) tackles the data science tasks that are



not suitable for neural networks, like model evaluation [13],

out-of-dictionary words discovery [15], data heterogeneity

measurement [16]. In particular, a specific frequent item

mining problem has also been investigated. In federated out-

of-dictionary words discovery [15], a tree-based structure is

used to discover the most frequent word in users’ typing

records. However, this endeavor only addresses a particular

FPM problem, and sacrifices LDP for better data utility. A

wide variety of FPM problems in the federated settings remain

to be handled. Considering the close relationship between

these problems and more stringent requirements on both utility

and privacy protection, the focus of this paper is to have a

unified FA framework that can handle different FPM problems.

Designing a unified FA-based FPM framework is non-

trivial. First, the mining procedure is highly dependent on

the pattern structure. Identifying the right decomposition unit

and the central aggregation approach for a general federated

framework is difficult. Second, naı̈vely adding noises to the

raw data greatly jeopardizes the data utility, especially for

complex patterns. Therefore, the interaction between the server

and the clients should be ingeniously designed to reduce the

utility loss in the process of satisfying LDP. Third, considering

the reliability in real-world systems, the framework should

theoretically bound its mining error, even based on the noisy

responses from the sampled clients.

In this paper, we propose the first unified FA-based frame-

work for FPM problems (FedFPM). FedFPM’s modular de-

sign is capable of handling classical frequent item, itemset,

sequence mining situations. FedFPM adopts an interactive

query-response approach between the clients and the server to

accomplish the mining tasks. Unlike non-FA FPM solutions

that require clients to directly process their local data [8], [9],

FedFPM only requires sampled clients to respond to queries

on their partial dataset with simple binary answers. These

responses are aggregated further at the server side to generate

informed queries for the next round. The whole process runs

iteratively until all frequent patterns are identified. In summary,

our contributions are

• To the best of our knowledge, FedFPM is the first unified

FA framework for a variety of FPM problems, including

frequent item, itemset, and sequence mining.

• Our framework achieves high data utility, satisfies LDP,

and incurs minor communication and computation costs

for each individual client via efficient candidate genera-

tion and verification design.

• The performance of FedFPM is theoretically guaranteed.

FedFPM adopts the Hoeffding’s inequality to adaptively

thresholding each candidate with no assumptions on data

statistics. The local differential privacy and bounded

mining error are theoretically proved to ensure the privacy

and data utility of our framework.

• Extensive experiments on three large-scale datasets show

that FedFPM achieves comparative or even better perfor-

mances (97%∼411% of data utility) than the state-of-the-

art specialized benchmarks in different FPM scenarios,

with much smaller computation overhead (86%∼98%

TABLE I
COMPARISON BETWEEN THE ALGORITHMS. WE PRESENT THE OUTPUT

QUALITY OF FPM AS BAD (+), MEDIUM (++), AND GOOD (+++), AND

THEIR ABILITY IN GENERALIZATION OR PRIVACY PRESERVATION AS NO

ABILITY (BLANK), LIMITED ABILITY (△), AND FULL ABILITY (X).

Pattern type Performance

Item Itemset Sequence Utility Privacy

RAPPOR [8] X △ +++ X

SFP [9] X + X

TrieHH [15] X ++ △
FedFPM X X X +++ X

less).

The rest of the paper is organized as follows: related work

is surveyed in Section II; the common variations of FPM are

reviewed in Section III; in Section IV, we present the system

model and problem formulation of federated FPM problems;

an overview of FedFPM is presented in Section V, with its

detailed design introduced in Section VI; the evaluation part

is presented in Section VII; Section VIII concludes this paper.

II. RELATED WORK

A. Federated analytics

Compared to its FL sibling, which aims to collaboratively

train neural networks, FA has a wide spectrum of applications

in the field of data science and has been relatively unexplored.

In [13], the FA-based algorithms evaluate the FL model and

identify the songs played in surrounding smartphones. In [15],

the TrieHH algorithm finds frequently typed words in the

edge devices, which is a constrained variety of FSM, and

tradeoff privacy for data utility. In [16], data heterogeneity of

the clients is measured and quantified to perform intelligent

client selection for other federated tasks. However, existing FA

solutions are all task-specific, and are hard to be transferred to

other scenarios. In the paper, we take the initiative to design

a FA mechanism framework for a class of FPM problems.

Distributed data mining has also been extensively studied

[17]. Although general distributed data mining and FA both

aim at performing data mining tasks in a distributed way. FA

focuses more on the large-scale, heterogeneous environments,

and especially emphasizes privacy preservation without up-

loading raw data. On the contrary, in general distributed data

mining, various heterogeneity are usually mitigated after the

prepossessing operations, and the privacy is of little concern.

B. Privacy-preserving FPM

Given the importance of FPM and the increasing awareness

of privacy protection, privacy-preserving FPM has gained

traction in recent years. These works usually satisfy user level

privacy schemes, represented by LDP, to guarantee strong

privacy preservation. Various sketching methods are adopted

to encode the raw data, such as bloom filters used by RAPPOR

[8] and count-mean-sketch proposed by Apple [9]. Extra

efforts have also been made based on these works to optimize

complexity [18] and data utility [19]. However, the usage of

sketching disables the direct decoding of raw data. Therefore,



they are effective only when the possible patterns are within a

small domain. Some researchers design application-specific al-

gorithms to enable the privacy-preserving FPM for other types

of patterns, but these algorithms only work in constrained

scenarios [20]–[23]. In [9], the SFP algorithm handles the

complex sequence pattern, but the usage of two count-mean-

sketches significantly harms the data utility.

Compared to the existing non-FA FPM solutions, FedFPM

has two major advantages. First, while the usages of exist-

ing applications are limited to one or several pattern types,

FedFPM supports wide variations of FPM scenarios. Second,

FedFPM is superior in utility and privacy comprehensively. It

improves the data utility with the power of the FA paradigm,

and satisfies the strong privacy guarantee of LDP. A compar-

ison between FedFPM and existing privacy-preserving FPM

algorithms is presented in Table I.

III. REVIEW OF THE FIM, FISM AND FSM

In this section, we first review the representative FPM prob-

lems: frequent item mining (FIM), frequent itemset mining

(FIsM), and frequent sequence mining (FSM).

A. Frequent item mining

Denote I = {i1, i2, · · · , in} as a set of n attributes called

items. In the FIM scenario, each client data d is a subset of

I, and each pattern p is an element of I, i.e.,

d ⊆ I and p ∈ I. (1)

We claim that p appears in d when p ∈ d. p is a frequent item

when it appears in a sufficient proportion of client data d that

exceeds a given threshold f . Given this threshold f , FIM aims

at identifying all frequent items existing in the system.

B. Frequent itemset mining

We reuse the notion of I as a set of items. In the FIsM

scenario, each client data d is a subset of I, and each pattern

p is also a subset of I, i.e.,

d ⊆ I and p ⊆ I. (2)

We claim that p appears in d when p ⊆ d. p is a frequent

itemset when it appears in a sufficient proportion of client

data d that exceeds a given threshold f . Similarly, given this

threshold f , FIsM aims at identifying all frequent subsets

existing in the system.

C. Frequent sequence mining

We reuse the notion of I as a set of items. In the FSM

scenario, each client data d is a sequence of items in I. Denote

|d| as the length of d, we can express d as

d := a<d>
1 → a<d>

2 → · · · → a<d>
|d| , (3)

where a<d>
k refers to the k-th item in sequence d, i.e.,

a<d>
k ∈ I, ∀k ∈ [1, |d|]. In this paper, we focus on contin-

uous subsequences of client data in FSM. The restriction on

continuity enables us to preserve the microscopic structure

of raw data. Here we use Sub(d, i, j) to define a continuous

subsequence of d between indexes i and j, i.e.,

Sub(d, i, j) := a<d>
i → a<d>

i+1 → · · · → a<d>
j , (4)

where 1 ≤ i ≤ j ≤ |d|. p is considered to appear in d when

p is a continuous subsequence of d, i.e., there exist any i, j
that p is equal to Sub(d, i, j). p is considered as a frequent

sequence when it appears in a sufficient proportion of client

data d that exceeds a given threshold f . Given this threshold

f , FSM aims at identifying all frequent subsequences existing

in the system.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we provide the system model and mathemat-

ically formulate the problem we solve. We consider the system

of N clients, with indexes 1, 2, ..., N . Client i holds data

di ∈ D. We aim at finding pattern p that appears frequently in

D. In different scenarios, the definitions of the pattern are

different (e.g., item, subset, subsequence). For the sake of

simplicity, we borrow the mathematical symbol to represent

the relationship that “p appears in di” as

p ⊆ di. (5)

For any pattern p, we define its support:

S(p) =
N
∑

i=1

I(p ⊆ di), (6)

where I is the indicator function, returning 1 when the

statement p ⊆ di is true, and returning 0 otherwise. We can

represent the frequency of a pattern p as

F(p) =
S(p)

N
. (7)

We say p is a frequent pattern if its frequency exceeds a

threshold f :

p is a frequent pattern ⇐⇒ F(p) ≥ f. (8)

In our federated FPM problem, no raw data is allowed to

be uploaded to the server; any uploaded information from the

client is required to satisfy a widely used local privacy crite-

rion, local differential privacy (LDP). LDP is firstly proposed

in [7]. It aims to regulate the output of each individual client

to be closed with each other, so that it cannot be identified by

the server. The formal definition of LDP is given as follows:1

Definition 1 (local differential privacy). A randomized al-

gorithm M satisfies ǫ-LDP when for any two theoretically

possible inputs di and dj ,

P(M(di) = y) ≤ eǫP(M(dj) = y), ∀y ∈ Range(M). (9)

We aim to design an upload algorithm M that performs

abstraction of the raw data to prevent uploading raw data. In

addition, LDP needs to be enforced on the abstracted uploads.

Based on M, we identify a set P that contains all frequent

1ǫ controls the strength of privacy preservation, where lower ǫ indicates
stronger privacy protection.



patterns. This federated privacy-preserving FPM problem can

then be formally formulated as follows:

max |P|, (10)

s.t. F(p) > f, ∀p ∈ P, (11)

P(M(di) = y) ≤ eǫP(M(dj) = y), ∀y ∈ Range(M). (12)

V. DESIGN OVERVIEW

In this section, we provide an overview of FedFPM as also

being demonstrated in Fig. 1. In general, the execution of

FedFPM is an iterative procedure of candidate generation and

validation. The server holds a candidate pool, which is made

up of candidates that are likely to be frequent patterns, together

with their historical response profile. In each round, the server

samples a portion of available clients as participants, queries

the participants to gain knowledge about the frequency of the

candidates, and tries to filter the pool. The procedure can be

split into five phases:

1) Candidate generation. Once the server is initialized or

any candidate is accepted, the server tries to generate new

candidates, and put them into the candidate pool with the

profile initialized to 0.

2) Candidate distribution. The server randomly chooses a

subset of clients to be the participants of this round. For

each participant, the server sends a candidate randomly

chosen from the candidate pool.

3) Client response. After receiving the candidate, each par-

ticipant checks whether the candidate is a pattern of its

local data and derives a binary response to it. Then, the

clients perform the randomized response technique on the

response to realize LDP.

4) Candidate profile update. After receiving the noisy re-

sponse from the candidates, the server directly updates

the profile, representing the numbers of yes/no responses

it has received.

5) Candidate filtering. The server estimates each candidate

whether there is sufficient confidence to claim it is (or

it is not) a frequent pattern based on its profile. Each

candidate can be moved to the accepted pool, moved to

the rejected pool, or reserved in the candidate pool based

on the decision.

For the satisfaction of LDP, each client can only participate

in one round. The aforementioned procedure repeats until the

candidate pool is cleaned. In the end, all the frequent patterns

are outputted from the accepted pool.

The design of FedFPM has three major advantages: 1) the

design is highly modular. Users can adapt FedFPM into dif-

ferent FPM tasks by solely changing the candidate generation

scheme; 2) the design minimizes the privacy leakage. Client

sampling, queries on partial information, and the randomized

response technique all prevent the upload of raw data and

decrease the total information leakage; 3) the design is inter-

active. Instructions from the server are based on aggregations

from multiple clients, which intelligently guide knowledge

discovery. The iterative query-response approach allows the

system to achieve high data utility with minimal client usage.

Server

Clients

Candidate poolAccepted pool

(1) Candidate generation

(2) Candidate distribution

(5) Candidate filtering

(3) Client response

(4) Profile update

Rejected pool

Fig. 1. An overview of FedFPM.

VI. UNIFIED FA FRAMEWORK DESIGN FOR FPM

A. Candidate generation

The phase of candidate generation is with two variations.

The first is in initialization, where the server needs to generate

a few candidates without prior knowledge. The second is

in the later rounds, where the server needs to generate new

candidates based on currently accepted ones. The idea of

candidate generation is to exploit the underlying data structure

to make interactive query-response possible.

When the patterns are in simple structure, like FIM, since

the pattern is exactly discrete items, we can either enumerate

all possible discrete items or exploit context-based structural

relationships to generate candidates. When the patterns are in

complex structures, like FIsM and FSM, we can initialize the

candidate pool with candidates in the simplest structure, and

generate complex candidates based on the accepted simple

ones. Since the candidate generation takes place at the server

side, they can borrow the wisdom of existing candidate-

based centralized FPM algorithms. As an example, we adopt

Apriori-based algorithms to generate candidates in all pattern

scenarios. We present our adaptations of FedFPM into the

scenarios of FIM, FIsM, and FSM as follows.

Candidate generation for FIM We have two solutions to

adapt FedFPM to the simple FIM problem. First, we can just

perform initialization one time for FIM, which enumerates all

possible items in the pool. Second, we can use the context

of the items, e.g., in the location-based services, geometric

locations can be represented as items. We can then grid the

area and start generating candidates with lower granularity and

fine-tune them into higher granularity candidates based on the

results in each iteration. To guarantee generalization, we use

the first strategy in the evaluation part.

Candidate generation for FIsM The Apriori property shows

that the subpattern of any frequent pattern must be frequent. As

a result, it provides a tool to generate candidates of potential

frequent patterns: a pattern is considered as a candidate only

when all of its subpatterns have been proven to be frequent.

FIsM is exactly the first application of the Apriori property

[24]. The procedure of candidate generation is mathematically

defined as follows:

F(q) ≥ f, ∀q ⊆ p ⇐⇒ p is a candidate. (13)



In practice, for a pattern p with n items, instead of checking all

subsets of p, whose number is 2n, we only check the subsets

with n−1 items, whose number is n. It has implicitly checked

all subsets of p by recursively applying the Apriori property

to the checked subsets. In addition, in the FIsM scenario, we

take all itemsets with one item for initialization. This approach

meets the requirements of the Apriori-based algorithms and

minimizes the number of candidates in initialization.

Candidate generation for FSM The Apriori property can also

be adapted into FSM, because the subsequences of a frequent

sequential pattern must be also frequent. We abuse the notion

n to be the length of any pattern p, the procedure of candidate

generation for FSM can be defined as follows:
{

F
(

Sub(p, 1, n− 1)
)

≥ f
}

∧
{

F
(

Sub(p, 2, n)
)

≥ f
}

⇐⇒ p is a candidate. (14)

Therefore, we only check two subsequences because it has

implicitly checked all subsequences. In the initialization phase,

we place all sequences with one item into the candidate pool

which meets the requirements of the Apriori property and

minimizes the number of candidates.

B. Candidate distribution

In this phase, the server first samples M available clients,

and distributes a random candidate in the candidate pool to

each client. In practice, there may be less than M available

clients at one moment. FedFPM is robust to these cases

because it does not require the participating clients to conduct

the task synchronously. Instead, FedFPM waits until M clients

participate and their responses are received, before continuing

to the later phases. As a result, M only controls the frequency

of starting a new round and does not propose any requirement

on the number of available clients.

C. Client response

After receiving the candidate, each participant first generates

a yes/no response to whether the candidate pattern appears in

the local data. We use a bit b to encode the response, where

b = 1 for “yes” response, and b = 0 for “no” response.

Randomized response, as the necessity of the realization of

LDP, is then employed to randomize the yes/no response (i.e.,

it flips the input bit with possibility η). We formally define the

binary randomized response as follows:

Definition 2 (Binary randomized response). Given an input

bit b, and a noise factor η ∈ [0, 0.5), randomized response

outputs b′, a noisy version of b, following the below rules.

P(b′ = 0) =

{

1− η, if b = 0,

η, if b = 1.
(15)

Algorithm 1 shows how a client generates a response. After

receiving the candidate from the server, the client first verifies

whether the candidate is a pattern of its local data. Then, the

client performs a binary randomized response to realize LDP,

and uploads the noisy response to the server. In FedFPM,

the clients are only required to check whether a candidate

appears in the local data, and then randomize this single bit

information. Therefore, the computation on the client side is

significantly reduced compared to the existing methods. In

Section VII-B, we also validate the claim by recording the

client runtime of FedFPM and existing methods.

Algorithm 1 Client Response (RESPOND)

Input: Local data: d; noise factor: η; candidate: c.
Output: Response: r′

1: r ← I(c ⊆ d) ⊲ True response

2: r′ ← randomize r with (15) ⊲ Uploaded response

3: return r′

Randomized response helps the client scheme of FedFPM

to satisfy LDP, which can be proved by the following theorem.

Theorem 1. The client response scheme of FedFPM satisfies

ǫ-LDP when

η =
1

1 + eǫ
. (16)

Proof. See Appendix A.

In FedFPM, the interaction scheme is elaborately designed

so that the client response only takes one bit, much simpler

than the existing methods. As a result, FedFPM requires much

smaller noise on the response to realize the same LDP level,

which helps to gain high data utility.

D. Candidate profile update

Each candidate c in the candidate pool has a profile with

two attributes, cy and cn. cy records the times c is responded

“yes” from the clients, which means that a client reports that c
is a pattern of its local data. cn records the times c is responded

“no” from the clients, which means that a client reports that

c is not a pattern of its local data. Once a client responds on

c, the profile of c is updated by adding 1 to cy or cn.

Algorithm 2 Candidate Filtering (FILTER)

Input: Candidate: c.
Output: Operation on c.

1: if c satisfies (17) then

2: return move c to P ⊲ P is the accepted pool

3: end if

4: if c satisfies (18) then

5: return remove c from C ⊲ C is the candidate pool

6: end if

7: if cy + cn ≥ κ then

8: if c satisfies (19) then

9: return move c to P
10: else

11: return remove c from C
12: end if

13: end if

14: return reserve c in C



E. Candidate filtering

After the records of the candidates are updated, the server

filters the candidates, whose procedure is demonstrated in

Algorithm 2. Essentially, we make three decisions for each

candidate in each round: 1) whether we can claim that c is

a frequent pattern; 2) whether we can claim that c is not a

frequent pattern; 3) the status of c needs further responses to

verify. Due to the client sampling and randomized response,

we cannot make the above claims with 100% confidence.

Therefore, we introduce a parameter ξ as the allowed error rate

of our claim, which controls the minimum confidence required

to make a decision. Denote the frequency threshold of frequent

patterns as f , and the noise factor as η, borrowing the power

of the Hoeffding’s inequality, we conclude the rationale of

candidate filtering into the following theorems:

Theorem 2. The frequency of any candidate c is higher than

f with 1− ξ confidence when

cy
cy + cn

≥ f + η − 2fη +

√

− ln ξ

2(cy + cn)
. (17)

Proof. See Appendix B.

Theorem 3. The frequency of any candidate c is lower than

f with 1− ξ confidence when

cy
cy + cn

≤ f + η − 2fη −

√

− ln ξ

2(cy + cn)
. (18)

Proof. See Appendix C.

For the candidates satisfying Theorem 2, their observed

frequency is high enough for us to claim that it is a frequent

pattern with a given confidence. Therefore, they will be ac-

cepted as a frequent pattern, and vise versa for those satisfying

Theorem 3. The parameter ξ exposes a knob to control the

strictness of candidate generation, which allows users to freely

balance the trade-off between data utility and the client usage

to match different application scenarios: a higher ξ accept or

reject a candidate with lower confidence, which decrease the

data utility, but use a lower number of clients to verify each

candidate. Efficacy of ξ is validated in Section VII-B.

The employment of the Hoeffding’s inequality is a key

design of FedFPM, which adapts the number of responses for

each candidate in a rigorous way. For a candidate with a true

frequency far from f , it only uses a small number of clients

to verify the candidate. For a candidate with true frequency

closed to f , it uses more clients to get sufficient confidence.

Such an approach makes the client usage to be “just sufficient”

by adjusting the total rounds of FedFPM. On the other hand,

methods in the literature require the users to predefine the total

client usage, which may lead to resource wastage or impetuous

decisions. The effects of adaptive client usage in practice are

further demonstrated in Section VII-B.

In addition to filtering the candidate with sufficient confi-

dence, we set a threshold κ as the maximal response each

client can receive. When the candidate receives too many

Algorithm 3 FedFPM: overall structure

Input: Data in the clients: D; set of clients: N ; number of

participating clients in each round: M .

Output: Derived frequent patterns: P
1: C ← initialize the candidate pool

2: P ← an empty set

3: η ← derive noise factor from ǫ with (16)

4: while C is not empty do

5: A← draw M clients from N
6: for i ∈ A do

7: c← draw a candidates form C
8: r′ ←RESPOND(di, η, c)
9: if r′ = 1 then

10: Add 1 to cy
11: else

12: Add 1 to cn
13: end if

14: end for

15: for c ∈ C do

16: FILTER(c)
17: end for

18: Generate new candidates C′ with updated P
19: C ← C ∪ C′

20: end while

21: return P

responses from the clients, even if it cannot leave the candidate

pool via Theorems 2 or 3, the server is forced to filter out

the candidate. The observed frequency of the candidate is

compared with the expectation of a pattern with frequency

exactly f , i.e., the candidate will be accepted if

cy
cy + cn

≥ f + η − 2fη, (19)

and rejected otherwise. This scheme aims at limiting client

usage by preventing a candidate to be in the pool for a long

time. After that, the remaining candidates are reserved in the

candidate pool to gain more responses from the clients.

Overall, we summarize the whole structure of FedFPM in

Algorithm 3. For the sake of clarity, hyperparameters including

f , ǫ, ξ, and κ are not present in the pseudocode inputs.

VII. EVALUATION

A. Experimental setup

Datasets We use three real-world datasets, Kosarak [25],

MovieLens [26], and MSNBC [27], to evaluate the per-

formance of FedFPM in the scenarios of FIM, FIsM, and

FSM, respectively. Kosarak contains 2.5×105 users’ browsing

records in the Hungarian news portal. Our goal is to identify

the frequent websites (items) in the population. MovieLens

contains 1.5 × 105 users’ preferences on movie genres. Our

goal is to identify the frequent sets of genres (frequent

itemsets). MSNBC contains the sequential browsing history

of 4.7 × 105 users in msnbc.com in categories of news.

Our goal is to identify the common browsing trajectories
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Fig. 2. Performance of FedFPM and the benchmarks under different scenarios.

(sequences). Considering the significant running time of the

specialized approaches, we only select the top 500 frequent

websites in Kosarak and the top 10 genres in MovieLens.

The performance of the benchmarks and our framework under

different candidate scales will be discussed in the details later.

Benchmarks We compare FedFPM with two benchmarks:

RAPPOR [8] and SFP [9]. RAPPOR is an industrial privacy-

preserving FIM solution. It encodes the raw data into binary in

fixed bits, and perform randomize response on the binary. We

also modify RAPPOR to handle the FIsM scenario using one-

hot encoding based on their suggestion [8]. SFP is a privacy-

preserving FSM solution. It uses two count-mean-sketches to

form a frequency oracle, which enables the decoding of the

complex pattern structure. Note that the benchmarks are both

specialized for particular forms of the pattern, while FedFPM

is a unified framework for all kinds of patterns.

Implementation We implement FedFPM, the benchmarks,

and the corresponding simulation environment on Python 3.8.

All experiments are run on a desktop equipped with Intel(R)

Core(TM) i7-10700 CPU @2.9GHz and 32GB RAM. The

client schemes of FedFPM and the benchmarks all run in

parallel with 14 worker processes, so that FedFPM and the

benchmarks are fairly allocated with computation resources.

Settings We conduct FPM tasks with target frequencies f
ranging from 0.01 to 0.10. The LDP parameter ǫ is set to

2.0, which is a moderate value (values of ǫ from the literature

range between 0.01 to 10, according to the authors of [8]).

The default allowed filtering error threshold ξ is set to 0.01,

and the maximal response for each candidate κ is set to

105. We assume there are sufficient available clients, and

each client randomly possesses one record in the dataset.

In FedFPM, the numbers of participating clients in each

round M are set to 106, 104, and 105, for the FIM, FIsM,

and FSM scenarios, respectively. Since other benchmarks are

non-interactive, we set the total participating clients of other

benchmarks to be slightly higher than FedFPM (1.7 × 107,

7 × 105, and 2.6 × 107 participating clients for FIM, FIsM

and FSM scenarios, respectively). It guarantees that FedFPM

cannot unfairly gain an advantage by having more participating

clients to improve data utility.

Metrics To quantify the quality of the derived patterns, we

calculate precision, recall, and F1 score.2 We use F1 score

to measure data utility, where a higher F1 score indicates a

better performance. In addition, we record the total number

of participating clients, referred to as client usage, and the

average client runtime for each client. The first one measures

the system cost, the latter one measures the client overhead.

B. Results and analysis

Data utility Fig. 2 presents the F1 score and client usage of

FedFPM and other compared approaches in all subproblems3.

In the three scenarios of FIM, FIsM, and FSM, FedFPM

gets average F1 scores of 0.84, 0.89, and 0.78, respectively,

while the benchmarks get 0.57, 0.92, and 0.19. Using less

participating clients, FedFPM has relative performances of

147%, 97%, and 411% compared to the benchmarks regarding

data utility. FedFPM outperforms the specialized benchmarks

in the FIM and FSM scenarios. Although RAPPOR has a

comparable performance with FedFPM in the FIsM scenarios,

its applicability significantly degrades as the problem size

increases, which is discussed in the following runtime part.

Client runtime analysis Fig. 3 presents the average runtime

of the participating clients in FedFPM and other benchmarks.

FedFPM only takes 2%∼14% of runtime for each participating

client compared to its benchmarks, because FedFPM only

requires the clients to check about one candidate, while the

benchmarks require the clients to encode the whole raw data.

FedFPM thus gains extra advantages in real-world appli-

cations, where clients have limited computing capacity. In

addition, for each scenario, we generate two extra datasets

with different numbers of items. As is shown in Fig. 3(b),

while the runtime of FedFPM and SFP is almost independent

of the settings, the runtime of RAPPOR grows exponentially

with respect to the number of items in the FIsM scenario. The

result is consistent with the theoretical expectation, because the

computation of encoding is linear to the number of possible

patterns, and exponential to the number of items.

Efficacy of filtering error threshold As is discussed in

Section VI-E, the parameter of allowed filtering error threshold

2F1 score equals
2pr

p+r
, where p is precision and r is recall.

3SFP does not output any pattern in some cases, leading to invalid F1 score
(marked as “inv” in the figure.)
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Fig. 3. Client runtimes in three scenarios. For each scenario, we generate three datasets by modifying the number of total items.
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Fig. 5. Performance of FedFPM with different ǫ in FSM scanrio.

ξ quantifies the trade-off between data utility and client usage.

To explore its efficacy, we use different ξ values and conducts

experiments on the FSM scenario, where FedFPM gets the

worst performance and the change is the most observable.

The results are summarized in Fig. 4. When ξ gets larger, the

server will make a decision to accept/reject a candidate more

“recklessly”. It harms the data utility but decreases the client

usage, and vise versa when ξ gets smaller. By adjusting ξ,

the users can achieve a trade-off between resource usage and

quality of output depending on their own system requirements.

Performance under different privacy level ǫ controls the

level of privacy preservation, where a lower ǫ provides bet-

ter privacy preservation, but requires a higher noise on the

uploads. To investigate the functionality of FedFPM under

different practical scenarios, we record its performance in

different settings of ǫ. We choose the FSM scenario to conduct

the experiments, because it is the most complex situation

in our studied FPM problems. The results are presented in

Fig. 5. When we enforce weaker privacy preservation, the

performance of FedFPM increases significantly regarding data

utility. Especially, when ǫ is 5.0, FedFPM performs almost per-

fectly. On the other hand, FedFPM utilizes more participating

clients to validate each candidate when ǫ gets higher, which

is resulted from the nature of the Hoeffding’s inequality.
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Fig. 6. Response received by each filtered candidate of FedFPM in FIM
scanrio (κ = 10

7, ξ = 10
−5).

Details of candidate filtering FedFPM’s candidate filtering

verifies the frequency of each candidate based on their diffi-

culties, avoids wasting client resources on easy judging tasks.

To investigate whether it works as expected, we take the

FIM scenario as an example, and record each candidate with

whether it is correctly classified and the number of client

responses it receives before leaving the candidate pool. We

choose two values of f : 0.01 and 0.05, representing the case

that FedFPM performs comparatively poorly and the case

that FedFPM performs almost perfectly. As is shown in Fig.

6(a), the difficult candidates fill up the majority of mistakenly

classified patterns. Overall in Fig. 6, difficult candidates whose

true frequency are closed to f indeed tend to receive more

client response, while the candidates that are easy to validate

receive fewer responses before being filtered, which also

empirically proves the correctness of our design.

Discussion Any FPM algorithm with looser privacy require-

ments and more client usages has better data utility. FedFPM

is designed to require each client to participate only once to

preserve each individual’s privacy to the best. As a result,

the efficacy of FedFPM relies on sufficient client usages, and

its advantage over benchmarks shrinks when the participating

clients are not sufficient. Two further approaches can be

applied to FedFPM under limited participating clients. First,

ξ can be increased as is shown in Fig. 4(b). Second, based

on the composition theorem of LDP, we can allow each

client to participate in multiple rounds (n), but enforce stricter

privacy levels (ǫ/n) in each round. This approach enables each

participating client to be counted for multiple client usages,

and also decreases total client usage as is shown in Fig. 5(b).

VIII. CONCLUSION

We propose FedFPM as the first unified FA framework

for FPM problems. FedFPM takes a query-response ap-



proach between clients and servers to collaboratively mine

out frequent patterns. Queries are meticulously generated at

the server side based on the aggregation of responses from

sampled clients. Responses based on partial local data are

randomized to realize data privacy. FedFPM achieves high

data utility with provable loss and guarantees local differential

privacy with minimum participating clients. Experiment results

show that FedFPM achieves superior data utility compared

to state-of-the-art specialized industrial solutions with minor

computational overheads in all three FedFPM problems. The

authors have provided public access to their code and data at

https://github.com/inslab-ji/FFPA.

APPENDIX A

PROOF OF THEOREM 1

Based on the definition of LDP in Definition 1, we have

P(M(di) = y)

P(M(dj) = y)
≤ eǫ, (20)

where di and dj are any possible input. In the design of

FedFPM, according to the randomized repsonse we used in

(15), the possibility of any output is only with two options: η
and 1− η. Therefore, we have

P(M(di) = y)

P(M(dj) = y)
≤

max{P(M(d) = y)}

min{P(M(d) = y)}
=

1− η

η
. (21)

Combining with (20), the satisfaction of LDP needs

1− η

η
≤ eǫ, (22)

which yields Theorem 1 via simple arithmetic transformation.

APPENDIX B

PROOF OF THEOREM 2

We use a binary variable x to represent the response of a

client, where x = 1 when the client responds “yes”, and x = 0
when the client responds “no”. For any candidate c, assume its

true frequency is f0, and consider the binary response scheme

we used in (15), we can derive the expectation of x as

E(x) = f0(1− η) + (1− f0)η

= f0 + η − 2ηf0. (23)

Recall that η < 0.5, E(x) is a strictly increasing function with

respect to f0. Therefore, when f0 ≥ f , the corresponding E(x)
is also larger, i.e.,

f0 ≥ f ⇐⇒ E(x) ≥ f + η − 2ηf. (24)

For simplicity, we denote the bound of E(x) in (24) as x̂:

x̂ = f + η − 2ηf. (25)

Since f0 ≥ f suffices the requirement of a frequent pattern,

this requirement is equivalent to E(x) ≥ x̂ according to

(24),(25).

On the other hand, recall that cy and cn are the numbers of

yes/no responses candidate c received. We can write the total

number of responses c received as

m = cy + cn, (26)

and the average value of x for c as

x =
cy

cy + cn
(27)

The Hoeffding’s inequality provides probabilistic bound

between average value of random variables and its expectation

[28]. By applying it on the values of x, we have

P
(

x− E(x) ≥ δ
)

≤ exp(−2δ2m). (28)

Since δ can be arbitrary value, we use

δ =

√

− ln ξ

2m
=

√

− ln ξ

2(cy + cn)
, (29)

and we can rewrite (28) as

P

(

E(x) ≤ x−

√

− ln ξ

2(cy + cn)

)

≤ ξ. (30)

We want to prove that candidate c is a frequent pattern with

confidence 1− ξ, i.e.,

P
(

E(x) ≥ x̂
)

≥ 1− ξ, (31)

or

P
(

E(x) ≤ x̂
)

≤ ξ. (32)

Consider (30) and (32). Since (30) has been proven by

the Hoeffding’s inequality, we find that (32) must be satisfied

when it provides a tighter bound than (30), i.e.,

x̂ ≤ x−

√

− ln ξ

2(cy + cn)
=⇒ P

(

E(x) ≤ x̂
)

≤ ξ, (33)

which directly yields Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

Proof of Theorem 3 is similar to that for Theorem 2 by

reversing the sign, so we reuse the definitions of x, f0, x̂,m,

and x, and some inference procedure. We starts with an

alternative expression of (24):

f0 ≤ f ⇐⇒ E(x) ≤ f + η − 2ηf, (34)

and an alternative version of the Hoeffding’s inequality:

P
(

x− E(x) ≤ δ
)

≤ exp(−2δ2m), (35)

which can be rewritten as

P

(

E(x) ≥ x+

√

− ln ξ

2(cy + cn)

)

≤ ξ. (36)

We want to prove that candidate c is not a frequent pattern

with confidence 1− ξ, i.e.,

P
(

E(x) ≥ x̂
)

≤ ξ. (37)

By considering (36) and (37), we find that (37) must be

satisfied when it provides a tighter bound than (36), i.e.,

x̂ ≥ x+

√

− ln ξ

2(cy + cn)
=⇒ P

(

E(x) ≥ x̂
)

≤ ξ, (38)

which directly yields Theorem 3.
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