
IEEE/ACM TRANSACTIONS ON NETWORKING 1

CharmSeeker: Automated Pipeline Configuration
for Serverless Video Processing

Miao Zhang , Graduate Student Member, IEEE, Yifei Zhu, Jiangchuan Liu , Fellow, IEEE,

Feng Wang , Senior Member, IEEE, and Fangxin Wang , Member, IEEE

Abstract— Video processing plays an essential role in a wide
range of cloud-based applications. It typically involves multiple
pipelined stages, which well fits the latest fine-grained serverless
computing paradigm if properly configured to match the cost
and delay constraints of video. Existing configuration tools,
however, are primarily developed for traditional virtual machine
clusters with general workloads. This paper presents Charm-
Seeker, an automated configuration tuning tool for serverless
video processing pipelines. We first carefully examine the key
steps and the performance bottlenecks for video processing over
modern serverless platforms. Then, we identify the configuration
space for processing pipelines and leverage a carefully designed
Sequential Bayesian Optimization search scheme to identify
promising configurations. We further address the practical chal-
lenges toward integrating our solution into real-world systems
and develop a prototype with AWS Lambda. Evaluation results
show that CharmSeeker can find out the optimal or near-optimal
configurations that improve the relative processing time up to
408.77%. It is also more robust and scalable to various video
processing pipelines compared with state-of-the-art solutions.

Index Terms— Serverless computing, video processing, config-
uration tuning, Bayesian optimization.

I. INTRODUCTION

ASTAGGERING number of videos are captured by ubiq-
uitous cameras and consumed by numerous users and

analytical algorithms. For instance, one billion hours of video
are watched on YouTube daily [1], and video delivery on
the Internet was predicted to account for 82% of IP traf-
fic by 2022 [2]. Processing videos at scale for analysis or

Manuscript received August 19, 2020; revised June 2, 2021 and March 10,
2022; accepted May 27, 2022; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor E. Kalyvianaki. This work was supported in part by
a Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery Grant, in part by a Canada Foundation for Innovation (CFI) John
R. Evans Leaders Fund (JELF), in part by a British Columbia Knowledge
Development Fund (BCKDF), and in part by a Mathematics of Information
Technology and Complex Systems (MITACS) Accelerate Grant. The work
of Yifei Zhu was supported in part by a Shanghai Jiao Tong University
(SJTU) Explore-X Grant. The work of Fangxin Wang was supported in part
by a National Natural Science Foundation of China under Grant 62102342.
(Corresponding author: Jiangchuan Liu.)

Miao Zhang and Jiangchuan Liu are with the School of Computing Sci-
ence, Simon Fraser University, Burnaby, BC V5A 1S6, Canada (e-mail:
jcliu@cs.sfu.ca).

Yifei Zhu is with UM-SJTU Joint Institute, Shanghai Jiao Tong University,
Shanghai 200240, China.

Feng Wang is with the Department of Computer and Information Science,
The University of Mississippi, Oxford, MS 38677 USA.

Fangxin Wang is with the School of Science and Engineering (SSE) and
The Future Network of Intelligence Institute (FNii), The Chinese University
of Hong Kong, Shenzhen 518172, China.

Digital Object Identifier 10.1109/TNET.2022.3183231

delivery purposes greatly challenges today’s video process-
ing systems [3]. Shipping them over the Internet to the
resource-rich cloud for processing has become a natural way
to handle the ever-growing volume of videos and increas-
ingly resource-intensive video processing algorithms [4]–[6].
Achieving low-latency and low-cost video processing in the
cloud is the key goal pursued by all video service providers.
Yet, constrained by heavy-weight virtualization techniques and
rigid pricing schemes [7], traditional virtual machine (VM)
based cloud infrastructures can only achieve coarse-grained
(e.g., node-level) parallelism. It not only prolongs the process-
ing delay but also increases the monetary cost.

To simplify cloud programming and provide fine-grained
services, cloud providers abstract cloud resources further and
propose serverless computing. It enables developers to build
and run their applications without thinking about servers [8].
As typical implementations of serverless computing, Function-
as-a-Service (FaaS) offerings (e.g., AWS Lambda [9], Google
Cloud Functions [10], Microsoft Azure Functions [11]) pro-
vide general-purpose cloud computing infrastructures and are
popularizing the serverless paradigm [12]. In FaaS platforms,
developers only need to upload application codes as a set
of stateless functions; cloud providers are responsible for
handling the underlying resource provisioning and manage-
ment. The lightweight implementation and fine-grained pricing
schemes make serverless computing promising for low-latency
and cost-efficient video processing [13]–[15].

Video processing applications migrated to the serverless
platform are decoupled into consecutive processing modules,
forming a processing pipeline, with each module being imple-
mented as a standalone serverless function. Given a video and
a processing pipeline, users usually need to determine config-
urations for all modules in the pipeline first, i.e., determining
the resources allocated to the corresponding serverless func-
tion of each module. The recommended industrial practice,
a manually “trial and error” approach [16], actually leaves the
configuration tuning task to users.

However, the configuration tuning task is exceptionally
non-trivial. First, modules in video processing pipelines have
diverse resource demands. For instance, based on our measure-
ments, 1GB memory is sufficient for the license plate recog-
nition module in a License Plate Query (LPQ) pipeline (as
shown in Fig. 1), but it becomes the performance bottleneck
of the object detection module in the same pipeline. Addi-
tionally, the extra gain in latency reduction diminishes as the
resources allocated to the serverless functions increase [17].

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6126-6142
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0003-2559-045X

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. License plate query (LPQ) pipeline.

Simply allocating the largest resources [14] inevitably leads
to over-provisioning and is not cost-effective. Considering the
number of videos that need to be processed in real-world
applications, a small increase in the cost per unit can lead
to a significant cost problem. While there is a broad range
of existing efforts on optimizing configurations for VM clus-
ters [18]–[21], the configuration tuning for serverless video
processing pipelines remains an unexplored area.

The unique challenges of configuration tuning for serverless
video processing pipelines mainly arise from the following
aspects. First, the huge configuration space introduced by the
pipeline structure and the high parallelism of serverless com-
puting make naive methods impractical (such as grid search,
manually tuning [16]). Second, the higher abstraction level
of serverless computing hides the underlying infrastructure
information and increases the uncertainty, making previous
solutions that rely on low-level system information [19], [20]
no longer applicable. Third, evaluating a configuration along
a pipeline can be expensive. Methods that rely on a large
number of training samples to build up performance prediction
models can quickly drive up the search cost [22]. Finally, cloud
providers usually allow users to enforce a monetary budget
on recurring workloads for cost management [23]. Due to the
fine-grained pricing strategy of serverless computing, a slight
variation in the pipeline budget can significantly change the
number of feasible configurations. Moreover, the budget is
generally set for the whole pipeline, making the configuration
selections of different modules interact with each other.

To address these challenges, we design CharmSeeker,1

an automated configuration tuning tool of selecting good
configurations for serverless video processing pipelines. Our
contributions can be summarized as follows:

• By conducting a measurement study, we confirm the
benefits of pipeline configuration tuning for serverless
video processing and identify its challenges from both
system and algorithm perspectives.

• We propose CharmSeeker, which harnesses the high
parallelism of serverless computing and a carefully
designed configuration picking algorithm to minimize the
pipeline processing time within a monetary budget.

• Observing the large gap between the actual cost distri-
bution and the budget allocation space, as well as the
natural additive structure of our problem, we design a
Sequential Bayesian Optimization (SBO) solution. It can
identify good configurations for typical video processing
pipelines via two successive optimization steps.

1We name the tool CharmSeeker as this challenging task is analogous to
seeking the proper charm beads to create one’s gorgeous charm bracelet.

• We further address the practical challenges toward inte-
grating our solution into real-world systems and imple-
ment a prototype with AWS Lambda.

• We introduce a percentile pipeline budget measure for
pipeline budget settings and conduct extensive evaluation
experiments. The results show that CharmSeeker can
pick up near-optimal configurations with reduced search
costs and is robust for various budgets and pipelines.

The rest of this paper is organized as follows. We briefly
introduce serverless video processing and highlight the impor-
tance of configuration tuning through a measurement study
in §II. Then, we present the overview of CharmSeeker,
formulate the configuration tuning problem, and identify the
challenges in §III. We discuss the configuration tuning solu-
tions with BO in §IV and propose a novel SBO algorithm
in §V. We then present the evaluation results in §VI. Further
discussion is presented in §VII, and related works are reviewed
in §VIII. Finally, we conclude this paper in §IX.

II. BACKGROUND AND MOTIVATION

A. Serverless Video Processing

The last decade has witnessed the commercial success of
cloud computing represented by low-level VMs [7] (e.g., Ama-
zon EC2 instances [24]). However, the operational complexity
of building and maintaining VM clusters presents high barriers
to entry for average cloud users [15]. To simplify cloud
programming and make cloud resources easier to use, cloud
providers propose serverless computing and implement this
paradigm in their FaaS offerings. As the unit of computation
in FaaS platforms, functions are code snippets typically written
with a variety of high-level programming languages, such as
Python, Node.js, and Go [12]. At deployment, developers
register functions to the FaaS platform with minimal config-
uration efforts (e.g., specify memory) and declare events to
trigger their executions. The FaaS platform is responsible for
handling every triggering request, scaling resources precisely,
and ensuring fault tolerance and service availability.

The FaaS platform handles each triggering event for a
function by a short-lived, dedicated function instance, which
executes the function code with the input message within a
specialized container or sandbox [25]–[27]. Thanks to these
lightweight virtualization technologies, function instances can
spin up or down in several milliseconds [13], providing fine-
grained, highly parallelizable computing infrastructures. Fur-
thermore, users are charged for the time their function codes
are executed in milliseconds, achieving the long-promised
“pay-as-you-go”. Benefiting from these advantages, serverless
computing has been used to address an increasing variety of
workloads [12], [27].

Low latency video processing can be achieved by leveraging
the inherently parallelizable structures in videos (e.g., frames
and groups of pictures) [3]. The fine-grained, highly paral-
lel, readily available, pay-as-you-go computing infrastructures
provided by serverless computing make it a perfect match
for building low-latency and cost-effective video process-
ing applications. Several efforts have been made to unlock
the potential of serverless computing in video processing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CharmSeeker: AUTOMATED PIPELINE CONFIGURATION FOR SERVERLESS VIDEO PROCESSING 3

For instance, Excamera [13] provides a backend for interac-
tive video processing applications by invoking serverless func-
tion instances in bulk, thousands at a time. Sprocket [14]
provides a framework to orchestrate serverless functions in
video processing pipelines with a domain-specific language
and exploits the intra-video parallelism (the group of pictures)
to achieve low latency.

In this paper, we focus on the pipeline configuration tun-
ing problem for these serverless-powered video processing
applications and take the typical LPQ pipeline shown in
Fig. 1 as a case study. This pipeline queries license plate
numbers appearing in an input video. To deploy it with FaaS
platforms, we break the monolithic code into a series of
standalone functions with each implementing a processing
module. Specifically, the input video is first decoded by the
decoding module into a set of frames before being sent to
the object detection module, which detects the existence of
cars in each frame. Frames with cars are further processed by
the following license plate recognition module, from which
the actual license plate numbers in this video are extracted.
We define the processing procedure of a module as a stage.
The serverless function corresponding to each stage can be
instantiated by multiple function instances, which we call
workers of this stage. Workers in the same stage execute the
same function code to process different parts of a video in
parallel so that the stage processing latency can be reduced.

B. Why Do We Need to Optimize Configuration?

Generally, given an input video (i.e., the total workloads
for each stage is fixed), two types of knobs can be tuned
for each worker j in stage i: the allocated resource and the
assigned workload. In AWS Lambda, memory size is the
only resource knob controlled by users. Other resources (such
as CPU power) are allocated proportionally to it. Therefore,
we only consider memory size as the resource knob in this
work. Depending on the task type of the stage, the workload
assigned to each worker can be video chunks, frames, images,
etc. For ease of exposition, we assume that concurrent workers
of the same stage i are allocated the same memory and
workload, denoting by mi and wi, respectively. This also
helps to mitigate stragglers in practice. Note that when the
total workload for stage i (denoting by W i) is determined, the
number of concurrent workers (serverless function instances)
is W i/wi. Therefore, the number of concurrent workers,
namely concurrency, and wi can be seen as the same knob.
Further, we define a configuration ci for stage i as a vector
[mi wi], and a pipeline configuration c for a k-stage pipeline
as [m1 w1 . . . mk wk].

Finding the optimal configuration is critical to achieving
low-latency and cost-effective video processing. To better
understand the benefits of applying an optimized configuration,
we take the second stage in the LPQ pipeline as a case study.
In particular, we deploy an object detection function to AWS
Lambda to detect objects included in 1950 frames derived
from the Seattle video (see §VI for details). We record the
completion time and monetary cost under different configura-
tions. The results are shown in Fig. 2. It is easy to see that

Fig. 2. Completion time of the object detection stage under different
configurations. The white bars indicate feasible configurations under the
budget of $0.151.

Fig. 3. Completion time and monetary cost of three stages in the LPQ
pipeline under various configurations. Each circle represents a subconfigura-
tion for the corresponding stage.

the completion time of the slowest configuration [1152 128]
(i.e., 1152MB and 128 frames per worker) is 127.7× longer
than that of the fastest configuration [3008 2], while the
processing cost of [3008 2] is 36.43% more expensive than
the cheapest configuration [1472 64]. Assuming a practical
budget of $0.151 is set by the user for this processing task via
the cost management API, like AWS Budgets [23], we further
identify the feasible configurations within this budget as white
bars shown in the figure. Under this budget, the worst feasible
configuration is 11.07× slower than the best feasible one.

The performance gap between good and bad configurations
can be even more drastic when it comes to the whole process-
ing pipeline. Fig. 3 shows the cost of various subconfigurations
for the LPQ pipeline to process 390 video chunks derived from
the Seattle video. With a given pipeline budget $0.384, if a
bad configuration [1280 32 1152 128 512 1024] (the uppermost
circle in each subfigure) was chosen, the processing time of
the whole pipeline can be 40.5× longer than that of a proper
configuration [2432 2 2048 4 1600 8] (located lower left in
each subfigure). Therefore, significant benefits can be obtained
by picking up a proper configuration.

III. CharmSeeker: DESIGN AND CHALLENGES

A. Design Overview

Fig. 4 demonstrates the overview of CharmSeeker.
On the cloud-side, video processing pipelines are deployed to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Overview of CharmSeeker.

the serverless computing platform, and a remote-shared stor-
age system (such as Amazon S3) is used to handle intermediate
data exchange between consecutive pipeline stages. On the
client-side, the Profiling module, the Configuration Picking
module, and the Coordinator module are in charge of picking
configurations and invoking serverless functions.

Specifically, by running our configuration tuning algorithm,
the Configuration Picking module can propose promising
configurations for the Profiling module, which can invoke
serverless profiling functions through Remote Procedure Call
(RPC). The profiling functions execute the video processing
tasks with the configuration received from the Profiling module
and report the results (processing time and monetary cost) back
to it. The results are further sent back to the Configuration
Picking module for the next configuration selection. When the
Configuration Picking module is convinced that it has found
a near-optimal configuration, it will report the configuration
to the Coordinator module, which will run regular video
processing tasks with the reported configuration.

Recently, several frameworks have been proposed to orches-
trate the execution of serverless functions in a video processing
pipeline, like mu [13] and Sprocket [14]. They focus on
the function orchestration in a pipeline but lack discussions
on how to configure memory and workloads to optimize
performance and costs. As such, they can take the Coordi-
nator role in CharmSeeker. The main responsibility of the
Profiling module is to invoke serverless functions and receive
execution results, which can be easily implemented based on
APIs provided by serverless computing platforms. As a result,
we will focus on the design of the Configuration Picking
module in the remainder of this paper.

B. Configuration Tuning: Problem Formulation

For a given video v, a video processing pipeline p and
budget B, the goal of the Configuration Picking module is
to minimize the pipeline processing time T under the budget
constraint by tuning pipeline configuration knobs. The pipeline
processing time with a configuration c is defined as T (c)
and processing monetary cost is denoted as B(c). Then our
problem can be formulated as follows:

minimize
c

T (c)

subject to B(c) ≤ B (1)

The pipeline processing time is the sum of completion time
of all stages in the pipeline, i.e., T (c) =

∑
i T i(ci). Here we

ignore the scheduling and invoking overheads across different
pipeline stages because the choices of configuration do not
affect this overhead, which mainly depends on the implemen-
tations of cloud platforms. In practice, the execution duration
of workers in the same stage may not be completely identical
due to the complex execution environment and noises. The
tail latency determines the completion time of one stage, and
thus, we define T i(ci) as the execution duration of the slowest
worker in stage i, i.e., maxj T i

j (c
i), where for any worker j in

stage i, T i
j (c

i) is reported by the serverless platform and can
be easily accessed. The pipeline’s monetary cost B(c) is the
aggregated cost for all workers from all stages in the pipeline,
i.e.,

∑
i,j Bi

j(c
i). The typical serverless platform charges users

by the allocated resource (memory) and the execution duration
of function instances. According to the pricing strategy, we can
easily obtain the monetary cost Bi

j(c
i) of each worker j by

calculating:

Bi
j(c

i) = r × mi × �T i
j (c

i)� + I (2)

where r is the price for every MB-second, I is the price
for each invocation, and �T i

j (c
i)� is the execution duration

is seconds after rounding up to the nearest billing unit.

C. Configuration Tuning: Challenges

1) C1: Large Configuration Space: The memory allocated
for each serverless function can be in 1MB increments on
AWS Lambda, and this platform currently supports 1000 con-
current function instances by default, and this limit can be
increased by request [28]. This leads to a huge configura-
tion space for a processing stage, not to mention the whole
processing pipeline. For example, the number of all pipeline
configurations in configuration space for the LPQ pipeline we
evaluated in §VI is as many as 11, 289, 600. Therefore, the
search cost of a brute-force method is unacceptable.

2) C2: Complicated Processing Time Model: The execu-
tion duration of a serverless function instance is affected by
the allocated resources, the input workload, and the internal
code logic of functions. The uncertain network conditions
further introduce noises when functions communicate with
other cloud services. Capturing such complicated dependen-
cies using white-box methods from the perspective of cloud
users is impractical. This is because only minimal information
of actually allocated resources is exposed to users (e.g., mem-
ory in AWS Lambda) in serverless platforms, and there is lim-
ited access to low-level system information. Experimentally,
a measurement study on real-world serverless platforms [17]
has revealed that the relationship between the execution dura-
tion of a function instance and its memory size is non-linear.
Overprovisioning resources beyond the function’s requirement
only gains marginal improvements.

Fig. 5 shows the completion time and monetary cost dis-
tributions of all configurations for the third stage in the LPQ
pipeline. As demonstrated, the effects of the allocated memory
and the input workload on the completion time are correlated.
When the per-worker workload is small, completion time can-
not benefit from large memory sizes; in comparison, when the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CharmSeeker: AUTOMATED PIPELINE CONFIGURATION FOR SERVERLESS VIDEO PROCESSING 5

Fig. 5. Completion time and monetary cost distributions of various config-
urations. (License plate recognition stage of the LPQ pipeline; Video source:
Seattle video.)

per-worker workload becomes large, allocating more memory
can lead to considerable benefits.

3) C3: Complicated Monetary Cost Model: Compared with
the completion time, the monetary cost of a function instance
has more complex relations to the allocated memory. On one
hand, large memory may lead to a short completion time,
which helps save money. On the other hand, large memory
also means a higher price per unit time, which drives up
the monetary cost. Thus, it is hard to summarize a general
rule of how much memory will result in low monetary costs.
The situation becomes much trickier with the introduction
of the per-worker workload knob. As shown in Fig. 5, there
are multiple local minima in the configuration-money space,
which makes monetary cost optimization challenging.

4) C4: Budget-Constrained Pipeline: As shown in Fig. 3,
configurations of different stages with the same completion
time can cost differently. This indicates that different video
processing modules in a pipeline have different resource
requirements. For example, 1GB of memory is sufficient for
the license plate recognition function. However, it will be the
resource leading to performance bottlenecks for the object
detection function that runs a deep learning model. Conse-
quently, we cannot simply choose the same configuration for
all stages in a pipeline. Furthermore, the optimal configura-
tion for each stage cannot be separately found because they
are coupled to each other by the pipeline budget. Although
allocating more budget to one stage improves its performance,
it also deprives other stages of the opportunity to explore better
configurations.

IV. CONFIGURATION TUNING WITH BO

A. Why Do We Choose BO?

A straightforward way of configuration tuning is to run all
possible configurations and find out the best one. However,
the challenge C1 we identified in §III-C makes brute-force
methods (e.g., exhaustive search) not practical given the
prohibitively high search cost. Approaches that assume the
dependence between performance and configurations can be

characterized by simple analytical models are also impractical
due to the challenge C2 and C3. These challenges further
preclude methods that build complex machine learning mod-
els to predict performance under various resource configura-
tions [20], [22], since they require access to low-level system
information and many training samples to guarantee high
accuracy. Solutions that employ simple sampling strategies
along with heuristic searching algorithms [18] are not ideal
for solving the challenges of our problem as well. This is
because our performance functions are non-convex and have
multiple local extrema. Thus, heuristic searching algorithms
(such as those based on gradient-descent) can easily fall into
local extrema.

The challenges of our problem make it easier to experi-
ment with than to understand, so it is better to consider our
problem as a black box [29]. Bayesian Optimization (BO)
is a powerful black-box optimization tool [30]–[32] that can
overcome the disadvantages of aforementioned solutions, and
it has been applied to optimize VM cluster configuration in
recent years [19], [21]. By adopting BO, CharmSeeker can
benefit from the following aspects. First, BO is designed to
find the extrema of black-box functions that are expensive
to evaluate [30] and works well even in settings where the
functions are non-convex and have multiple local extrema [32].
Second, non-parametric BO does not make any assumptions
about the parameters of the black-box objective, which makes
it robust enough to deal with various video types, processing
modules, and pipeline topologies. Furthermore, BO can get
near-optimal configurations with a high probability by only
evaluating a small carefully selected subset of configurations,
leading to a low-latency and economical configuration selec-
tion. Finally, BO’s capability in integrating out noises can help
CharmSeeker work well with real-world platforms.

B. Vanilla BO: Preliminary

Formally, the goal of vanilla BO is to solve the global opti-
mization problem of finding x� = argminx∈X f(x), where f
is an expensive black-box function. Normally, we do not have
access to f(x), but only a noisy version: y = f(x) + ε with
ε ∼ N(0, σ2). Fundamentally, BO is a sequential model-based
optimization solution where promising candidates are evalu-
ated one by one [31]. A typical process of BO starts with
initializing a probabilistic surrogate model M with a small set
of samples D0. The probabilistic surrogate model represents
the prior we place on all possible objective functions in
the function space. BO assumes that the observations of the
unknown objective function are sampled from it. Then during
each iteration t, based on the surrogate model, an acquisition
function α is optimized to select the next point xt for evalua-
tion. Specifically, the acquisition function identifies promising
points based on the distributions at all not-yet-evaluated points
predicted by the surrogate model. After observing the noisy
output yt of the objective, the surrogate model is updated by
the newly generated sample (xt, yt) under the Bayes’ rule.
This process proceeds until the optimum is found.

The success of BO can be attributed to its two key ingre-
dients: the probabilistic surrogate model and the acquisition

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

function. The former maintains our belief about the objec-
tive function. It can be implemented as parametric and
non-parametric models [31]. In this paper, we choose the
non-parametric Gaussian Process (GP) [33] due to its flex-
ibility and tractability [34]. BO with the GP prior relies
on GP regression to predict the mean and variance of the
unknown function at any point in the input space. Based on the
surrogate model posterior, the acquisition function determines
which point to evaluate next. The principle is automatically
trading off between exploration and exploitation. Exploration
means selecting from where the surrogate model has high
uncertainty, and exploitation indicates sampling from locations
where the predicted value of the objective function is small.
Good implementations, such as Expected Improvement (EI)
and GP Upper Confidence Bound [30], take both exploration
and exploitation into consideration. We choose EI in this work
as it performs well without additional parameters [34].

The basic idea of EI is to pick up the point with the
max expected improvement over the current best observa-
tion. Assuming we have obtained n observation samples
D = {(xi, yi)}n

i=1 and the best observation so far is yt =
min{yi}n

i=1. The EI of x can be calculated by:

EI(x) = E(max{yt − f(x), 0} |D) (3)

With GP prior, the EI criterion has the following closed-form
expression:

EI(x) =

{
(yt − m(x))Φ(Z) + σ(x)φ(Z), if σ(x) > 0
0, if σ(x) = 0

where Z = yt−m(x)
σ(x) . m(x) and σ2(x) are the predicted mean

and variance of function f at x, respectively. Φ(·) is the stan-
dard normal Cumulative Distribution Function (CDF) and φ(·)
is the Probability Density Function (PDF). Note that compared
with the expensive objective function, the acquisition function
is much cheaper to compute and gradient-based optimization
methods are applicable to it.

V. CONFIGURATION TUNING IN CharmSeeker

A. BO-Based Strawman Solutions

1) Applying BO to Our Problem: For unconstrained BO
or when the constraint value can be calculated from the
objective value [21], only one surrogate model (for the objec-
tive function) is needed. Unfortunately, for our constrained
problem, we cannot calculate the pipeline monetary cost (i.e.,
the summation of all workers’ monetary costs in the pipeline)
directly from the pipeline processing time (i.e., the summation
of the slowest worker’s processing time for each stage). Thus,
we need to build independent surrogate models for the process-
ing time and monetary cost as recommended in [35]. Note that
these two performance metrics can still be observed together
when evaluating configuration c since the FaaS platform
reports the execution duration of each worker, i.e., T i

j (c
i),

from which both performance metrics can be easily calculated.
In addition, the processing time and monetary cost are both
non-negative for all configurations and not well-modeled by
a GP prior. We thus model them in the logarithmic units by

placing the GP prior to log T (c) and log B(c). Consequently,
the solution to the problem (1) can be found by solving the
following equivalent problem:

minimize
c

log T (c)

subject to log B(c) ≤ logB (4)

To encourage the acquisition function to select promising
configurations within the feasible region, we introduce the
probability of constraint satisfaction P (log B(c) ≤ logB) and
the constrained-weighted EI (CEI) [35]:

CEI(c) = P (log B(c) ≤ logB) × EI(c) (5)

The probability of constraint satisfaction for the not-yet-
evaluated configuration c can be easily calculated from the
marginal mean and variance predicted by the surrogate model
for the constraint function.

Although serverless function instances are typically imple-
mented by lightweight virtualization technology with strong
isolation [27], the shared underlying resources in the public
cloud unavoidably lead to some uncertainty. For example,
different executions of the same function may take different
times. Following best practices in the previous work [21],
we leverage the ability of BO to handle additive noises to
address the cloud uncertainty. To be specific, the cloud uncer-
tainty will be modeled as the observation noises in BO. The
evaluation results log T̃ (c) and log B̃(c) for configuration c
will be considered as the noisy observations of log T (c) and
log B(c).

2) Strawman Solutions and Their Drawbacks: Based on the
optimization framework provided by vanilla BO, if we take the
entire pipeline as a whole, model the pipeline processing time
and monetary cost as independently GPs, and adopt CEI as the
acquisition function to pick up the next pipeline configuration,
we can obtain a strawman solution to our optimization prob-
lem. We call this solution CherryPick� since it is a specialized
version of CherryPick [21] for our problem. Unfortunately,
despite its simplicity, this solution can suffer from performance
degradation as the vast pipeline configuration space (search
space) increases the difficulties in converging to the best
feasible configuration.

Exploiting the unique structure in the objective function
to accelerate the convergence of BO has proven a promis-
ing approach [36], [37]. Specifically, if the objective func-
tion has an additive structure, decomposing it into a set of
low-dimensional disjoint subproblems can bring significant
statistical and computational benefits [37]. For our pipeline
optimization problem, the objective function is naturally addi-
tive. For instance, the optimized objective of the LPQ pipeline
can be decomposed as follows:

T (c) = T 1(c1) + T 2(c2) + T 3(c3) (6)

where T i(·) has its own input parameters ci and can be opti-
mized and evaluated independently and concurrently. These
facts inspire us to borrow ideas from the divide-and-conquer
algorithm design paradigm, i.e., dividing the problem into
independent subproblems that can be solved directly and then
merging the results of subproblems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CharmSeeker: AUTOMATED PIPELINE CONFIGURATION FOR SERVERLESS VIDEO PROCESSING 7

Fig. 6. Comparison of the potential budget allocation space and the actual
monetary costs distribution for the first two stages of the LPQ pipeline with
the budget of $0.4.

Considering that the pipeline budget only affects the upper
bound of each stage’s monetary cost, we can break the pipeline
optimization problem into independent subproblems if we
know how to allocate the pipeline budget to each stage.
Assuming there are k stages in a video processing pipeline.
Another strawman solution is to randomly generate a budget
allocation vector b = [b1 b2 · · · bk] satisfying 0 < bi < B
and

∑
i bi ≤ B. With such a budget allocation vector, our

pipeline optimization problem can be addressed by solving
the following budget-constrained optimization subproblem for
stage i:

minimize
ci

log T i(ci)

subject to log Bi(ci) ≤ log bi (7)

The above subproblem for stage i can be solved directly by a
constrained BO, i.e., CherryPick�. Benefiting from the reduced
parameter dimensions (only mi and wi), it can quickly con-
verge to find the near-optimal subconfiguration that satisfies
the sub-budget constraint bi.

However, it is exceptionally challenging to allocate the
pipeline budget properly across all stages by generating the
budget allocation vector at random. Assuming our pipeline
budget is B, and the allowed budget range for each stage is
(0,B) when there is no additional information. This demands
us to pick up a budget allocation vector from (0,B)k, which is
a huge space since the budget can be any continuous numeric
numbers in this range. Thus, the strawman solution is highly
likely to find an inappropriate budget allocation vector, leading
to infeasible solutions and wasting the scarce search cost.
Here we take the first two stages of the LPQ pipeline as
an example to elaborate on this issue. Assuming that the
2-stage pipeline budget for processing the Seattle video is $0.4,
without extra information, the sub-budget allocated to each
stage can be any value in the range (0, 0.4). Despite this, the
actual monetary costs of all configurations only take up a small
part of the (0, 0.4)2 space, as shown in Fig. 6. This indicates
the high difficulties in obtaining a proper budget allocation
vector without the knowledge of the cost distribution.

B. Sequential Bayesian Optimization

Motivated by the observations, we propose an SBO solu-
tion with two successive optimization steps to overcome the
drawbacks of the strawman solutions. To break the pipeline
optimization problem into independent subproblems, SBO first
runs a cost optimization step. Specifically, it leverages the
vanilla BO to unearth the subconfiguration leading to the
minimal cost for each stage. Following the previous example
in Fig. 6, if the minimal costs we get is [b1 b2], the search space
can be significantly reduced to [b1, 0.4− b2]× [b2, 0.4− b1]
(the small rectangle shown in Fig. 6). Then, SBO employs
Latin Hypercube Sampling (LHS) [38] to sample a set of uni-
formly distributed budget allocation vectors from the reduced
search space. As such, our problem is converted to a set of
independent subproblems, and each subproblem is to optimize
the pipeline processing time under a fixed budget allocation
vector. Next, SBO enters the time optimization step. With each
sampled budget allocation vector, SBO decouples all pipeline
stages and directly applies a constrained BO to solve each
stage’s optimization subproblem (7). Finally, the solutions to
all subproblems are merged to obtain the optimal pipeline
configuration.

Algorithm 1 shows how SBO works in detail. For each stage
i, we maintain one surrogate model M i

1 for the monetary cost
function and the other M i

2 for the processing time function.
In the cost optimization step, the algorithm tries to find the cost
lower bound for each stage (lines 1-11). This is equivalent to
solve the following optimization problem for each stage i:

minimize
ci

log Bi(ci) (8)

The acquisition function αi
1 is based on the surrogate model

M i
1 to pick up the next configuration ci

� for evaluation. The
noisy observations log T̃ i(ci

�) and log B̃i(ci
�) are then added

to the known sample set for the surrogate model update.
We use EI to implement αi

1 since problem (8) is an uncon-
strained optimization. This step stops when the sum of the
second smallest monetary cost of each stage is not greater than
the pipeline budget B. This stopping condition ensures that
the next time optimization step has at least two initialization
samples. Note that this step does not guarantee to find the
lowest cost for each stage, but an approximation is sufficient.

Based on the lowest cost b� observed in the first step,
we define the left budget γ = B − ∑

i bi
�. Immediately, the

reduced budget search space can be denoted by:

XB = [b1
�, b1

� + γ] × · · · × [bk
� , bk

� + γ] (9)

We then use the LHS to obtain budget allocation vectors
from the reduced space XB , since this sampling method can
generate near-random samples. The number of sampled vec-
tors is determined by the allowed search cost (lines 13-14). For
each sampled budget allocation vector b = [b1 · · · bk], we set
log bi as the monetary cost upper bound for stage i and then
conduct m evaluations to solve the problem (7) (lines 15-25).
The acquisition function αi

2 implements CEI because it biases
the search towards the feasible region. Each stage optimizes its
objective function independently and concurrently. All stages
are loosely coupled to each other through the constrained

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1: Sequential Bayesian Optimization

Input: Number of iterations m; Surrogate model M i
1, M i

2;
Acquisition function αi

1, αi
2; Known sample set Di

Output: cbest

1 Initialize M i
1 with Di;

2 repeat
3 for i = 1, 2, · · · , k do
4 ci

� ← argmaxci αi
1(c

i; M i
1), and evaluate ci

�;
5 Di ← Di ∪ {(ci

�, log�T i(ci
�), log�Bi(ci

�))};
6 Update M i

1 with Di;
7 bi

� ← the smallest cost Bi from Di;
8 bi

2 ← the second smallest cost Bi from Di;
9 end

10 until
�

i bi
2 ≤ B;

11 b� ← [b1
�, · · · , bk

�];
12 Compute reduced space XB based on b�;
13 Compute the left number of evaluations n ;
14 S ← Sample (n/m) budget allocation vectors from XB;
15 Initialize M i

2 with Di ;
16 foreach budget allocation vector b ∈ S do
17 for i = 1, 2, · · · , k do
18 while Number of iterations ≤ m do
19 ci

� ← argmaxci αi
2(c

i; log bi, M i
1, M

i
2);

20 Evaluate ci
�;

21 Di ← Di ∪ {(ci
�, log�T i(ci

�), log�Bi(ci
�))};

22 Update M i
1, M i

2 with Di;
23 end
24 end
25 end
26 C ← {(c1, · · · , ck) | ci ∈ Di ∧�i Bi(ci) ≤ B)};
27 cbest ← argminc∈C T (c);

cost upper bound. Next, we construct all evaluated pipeline
configurations by computing the Cartesian Product of the
sets of evaluated configurations for each stage. The algorithm
finally outputs the feasible configuration with the minimum
pipeline processing time (lines 26-27).

VI. EVALUATION

We evaluate CharmSeeker with video processing
pipelines deployed on a leading public cloud platform AWS.
We choose AWS since AWS Lambda is a good represen-
tative of serverless computing platform [26]. At its core,
CharmSeeker is designed to be independent of serverless
computing platforms. It only needs access to platform-specific
APIs for changing function configurations, invoking func-
tions, and reading function execution logs. These are basic
APIs that serverless computing platforms expose for their
users [39], [40]. Thus, users can extend CharmSeeker to
another serverless computing platform with minimal efforts.

A. Experiment Setup

1) Video Dataset: We evaluate CharmSeeker using a
typical set of videos as shown in TABLE I, which covers
different camera types (static or moving), illuminations (day-
time or night), and resolutions (720p or 4K). Before feeding
a video to the processing pipeline, we first chop it into equal-
length (about 5 seconds) chunks as the common practice in
industry [41] and store them in Amazon S3. Specifically,
390 chunks for each video are evaluated.

TABLE I

THE VIDEO DATASET

2) Serverless Video Processing Pipeline: We implement
each module in the LPQ pipeline as an independent serverless
function with Python and deploy them to AWS Lambda.
The decoding function downloads video chunks from Amazon
S3 and decodes them using FFmpeg [45]. It then selects
5 frames from each video chunk and uploads them to S3 for
further processing. The workload in this stage refers to the
number of video chunks processed by each worker. The
following object detection function leverages a deep neural
network (DNN) model, YOLOv3 [46], to detect objects from
frames downloaded from S3, extract the images with recog-
nized cars and upload them back to S3. The number of frames
is the workload in this stage. The last license plate recognition
function automatically detects and recognizes license plates
using the OpenALPR [47] library. The number of car images
processed by each worker is the workload in this stage. From
a perspective of resource management, the LPQ pipeline is
very representative, as it includes typical methods to imple-
ment serverless video processing functions, binary executables
(FFmpeg), DNN-based algorithms (YOLOv3), and traditional
computer vision algorithms (OpenALPR).

3) Alternative Solutions: Since there are no solutions
directly solving our budget-constrained pipeline configura-
tion optimization problem, we compare our solution with
the specialized versions of state-of-the-art approaches. (1)
Randomized Grid Search (RGS): Random Search has been
proved to be more efficient than Grid Search for hyperpa-
rameter optimization when different hyperparameters show
different importances [48]. Generating a random configuration
for the whole pipeline is inefficient, as the number of possible
pipeline configurations is exponential in the number of knob
dimensions. Considering that each stage can be evaluated
independently, we propose a randomized grid search solution
to strengthen naive random search. This method randomly
samples n configurations for each stage to evaluate. The
best feasible configuration is generated from the Cartesian
Product of all the subconfigurations sampled for each stage.
(2) CherryPick� (CPS): This solution applies the constrained
BO (i.e., methods used in CherryPick [21]) to the entire
pipeline and models the objective and constraint as indepen-
dently GPs to match the requirements of our problem (recall
§V-A). (3) Exhaustive Search (ES): This solution searches all
pipeline configurations. We regard the results reported by this
solution as the ground truth.

4) Metrics: We use two performance metrics. (1) We say a
configuration is good if its performance is close to the optimal
configuration. To quantify how good a configuration reported
by a configuration tuning algorithm is, we define relative
processing time (RPT). It is the pipeline processing time of
the configuration reported by a specific search scheme (RGS,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CharmSeeker: AUTOMATED PIPELINE CONFIGURATION FOR SERVERLESS VIDEO PROCESSING 9

TABLE II

DETAILED CONFIGURATION SPACE

CPS, or CharmSeeker) normalized by the optimal pipeline
processing time reported by ES. (2) CharmSeeker is a con-
figuration tuning tool for video processing workloads running
on real-world cloud platforms. All sampled configurations are
evaluated in public cloud platforms, which leads to direct
monetary charges for users. A good search scheme should
be able to find a good configuration with as little expense as
possible. Therefore, we define the relative search cost (RSC).
It is the search expense of a specific search scheme normalized
by the expense of ES.

5) Configuration Space: Although the minimum memory
that can be configured for AWS Lambda functions is 128MB,
small memory sizes are insufficient for complicated video
processing functions. For example, the minimum memory
demand for the object detection function (LPQ pipeline) is
1152MB. The FaaS platform also has limits on the maximum
concurrency and execution duration [28], which determine
the bounds of workload assigned to each worker. To better
understand how the number of stages in a pipeline affects the
performance of different solutions, we isolate the first two
stages of the LPQ pipeline to construct a 2-stage pipeline
and synthesize a 5-stage pipeline by duplicating the last two
stages in the LPQ pipeline. TABLE II shows the detailed
configuration space. To facilitate the exhaustive search for the
5-stage pipeline, we set the step size of its memory increment
to 256MB.

B. Experiment Methodology

The execution duration of a serverless function instance is
vulnerable to a broad range of noise sources, such as under-
lying heterogeneous infrastructures and network variations.
Given a pipeline budget, we find that the optimal configu-
rations are not identical when conducting ES multiple times.
To account for the instability and report reliable experimental
results, we repeat the evaluation of one configuration 5 times
and take the averages as the evaluation results.

The pipeline budget indicates users’ trade-off between
processing latency and monetary cost. One user may be willing
to pay more for a short processing time, while another may
tolerate processing delays to save money. A good solution
should meet various budget preferences, i.e., finding a good
configuration robustly regardless of whether the budget is
tight or loose. The absolute budget of a pipeline is affected
by the pipeline topology, the processing task, the resolution
of videos, etc. As a result, we need a measure that reflects

Fig. 7. CDF of LPQ pipeline’s monetary costs under different configurations.
(Video source: Seattle video.)

the difficulty levels of finding a feasible configuration for
performance evaluation.

We thus introduce a percentile pipeline budget measure
based on the monetary cost distribution of all configurations
reported by ES. Fig. 7 demonstrates the CDF of the monetary
cost of all the 11, 289, 600 configurations for the LPQ pipeline.
The nth (n ∈ {0.5, 1, 10, 30, 50, 80}) percentile pipeline bud-
gets are marked in the scaled subfigure, and they indicate the
probabilities of a configuration satisfying a specific monetary
cost constraint. For instance, the point at (0.37963, 0.1) rep-
resents there are 10% pipeline configurations whose monetary
costs are not greater than $0.37963, so 0.37963 is set as the
10th percentile pipeline budget. Generally, a decreasing trend
in n indicates the increasing difficulties in finding a feasi-
ble configuration, especially when the number of evaluations
allowed is limited. To make fair comparisons, for a given
video, all search solutions (RGS, CPS, and CharmSeeker)
are evaluated with the same percentile pipeline budgets.

C. Effectiveness of CharmSeeker

In this subsection, we evaluate the effectiveness of
CharmSeeker for different pipelines and budgets. For each
video, we allow CharmSeeker to perform 20 trials, i.e.,
running 20 iterations to sample 20 different configurations for
each stage. Then, we run RGS and CPS under a similar search
cost (cloud expenditures for running samples), i.e., we use the
search cost of CharmSeeker to decide when the searching
process of baselines should be terminated.

1) Compared to the Baselines, CharmSeeker is More
Stable and Can Pick up a Better Configuration With Fewer
Search Costs: Fig. 8 shows the RPT distribution (first quar-
tile, median, third quartile) of 20 experiments under different
search schemes for the Seattle video. The results of the other
two videos are similar. We find that compared to baselines,
CharmSeeker can find a better configuration under the
same pipeline budget with fewer search costs. Specifically,
for the LPQ pipeline, CharmSeeker improves the median
RPT by 158.45% (245.47%) over RGS (CPS) under the
0.5th percentile pipeline budget. When the budget is suffi-
cient, CharmSeeker can pick up a configuration on the
median very close to the optimal one. For the 2-stage pipeline,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Comparison of RTP and RSC for different pipelines. The circles in the boxplots represent outliers.

TABLE III

PERCENTAGE OF EXPERIMENTS THAT CAN

FIND A FEASIBLE CONFIGURATION

Fig. 9. Variations of RPT with the changing number of evaluations in RGS
and CharmSeeker. The label next to each data point indicates the frequency
of finding a feasible configuration out of 20 experiments. The default value
is 100% if not marked out.

the median RPT improvements of CharmSeeker are more
apparent and can achieve up to 408.77% (under the 1st
percentile pipeline budget, over CPS). As the number of stages
increases to 5, the search space of each stage becomes smaller
(with a memory step of 256MB) while the configuration space
for the whole pipeline increases (the configuration dimension
rises). In this case, CPS maintains a significant variance on
RPT for the 0.5th percentile pipeline budget, while the vari-
ances of RGS and CharmSeeker are much smaller since
they search subconfigurations for each stage independently.

2) CharmSeeker Is More Robust Than Baselines for
Varying Pipeline Budgets and Pipeline Lengths: As a sup-
plement to Fig. 8, TABLE III summarizes the percentage

Fig. 10. Snapshots of the optimal configuration searching results after
evaluating 9, 15, 20 samples. (Colorized in red, green, yellow, respectively.)

of experiments that found feasible configurations when the
pipeline budgets were tight. For those relatively loose budgets
(not shown in the table), the percentages are 100%. As the
table shows, CharmSeeker is robust enough to handle video
processing pipelines with different numbers of stages. It can
reliably find feasible configurations even when the pipeline
budget is exceptionally tight. By comparison, with a tight
pipeline budget, the baselines often cannot find feasible con-
figurations, and the performance of CPS further suffers from
increasing stages of the pipeline.

3) As More Samples Are Evaluated, CharmSeeker
Converges to the Optimal or Near-Optimal Configuration
Faster Compared With RGS: A search scheme with good
convergence should exhibit stability in reporting the optimal
configuration as the number of configurations evaluated (or
collected samples) increases. Fig. 9 shows the convergence of
CharmSeeker and RGS under the 0.5th percentile pipeline
budget for the LPQ and 2-stage pipeline. The probability of
RGS for reporting a feasible configuration increases as the
number of evaluated configurations increases. Nevertheless,
when it is allowed to sample 70 configurations, it still has a
high chance of picking a configuration that is far from the
optimal one (1.5× the optimal processing time or higher).
By contrast, CharmSeeker guarantees to report feasible
configurations even when the number of allowed configura-
tions for evaluation is small (e.g., 10). It starts to converge
to the optimal configuration when the number of evaluated
configurations reaches about 40.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CharmSeeker: AUTOMATED PIPELINE CONFIGURATION FOR SERVERLESS VIDEO PROCESSING 11

D. How CharmSeeker Works?

The three subfigures from top to bottom in Fig. 10 illustrate
how CharmSeeker searches through the feasible configura-
tion space and finds out the optimal configuration. The allowed
evaluation number is 20. Each subfigure has 176 columns
that denote all 176 feasible configurations for the 2-stage
pipeline under the 0.5th percentile pipeline budget. These
pipeline configurations are arranged from left to right based
on their processing time, i.e., the leftmost column represents
the configuration with the shortest processing time (the opti-
mal configuration under the budget). Each column is further
divided into two rows representing the subconfigurations for
stage 1 and stage 2 in the corresponding pipeline configura-
tion. When the subconfiguration for a stage is evaluated, all
cells representing this subconfiguration in the same stage are
colorized. Note that the same subconfiguration may appear
in multiple pipeline configurations. For example, subconfig-
uration [3008 1] for stage 1 can appear both in pipeline
configuration [3008 1 2048 8] and [3008 1 3008 2]. Thus,
multiple cells in a row can be colorized simultaneously after
evaluating one subconfiguration.

The top subfigure in Fig. 10 displays the searched feasible
subconfigurations after the first cost optimization step in SBO.
This optimization step ends with 9 samples (total evaluated
subconfigurations, including feasible and infeasible) for each
stage. These searched subconfigurations construct 9 feasible
pipeline configurations (both rows in one column are colorized
as red). Since this step aims to optimize the monetary cost for
each stage regardless of its processing time, searched pipeline
configurations are not necessarily located to the left.

According to the number of remaining subconfigurations to
be evaluated (11 in this case), two budget allocation vectors
are sampled for the next budget-constrained time optimization
step. The middle and bottom subfigures in Fig. 10 show all
evaluated subconfigurations after applying the first and second
budget allocation vectors, respectively. The new subconfigu-
rations added in the optimization process of the first (second)
budget allocation vector are colorized as green (yellow). The
evaluated configurations in this step are close to the left,
indicating that the second step of SBO is indeed searching
towards the direction of the optimal feasible configuration.

E. Configuration Extrapolation

1) Performance for Recurring Workloads: CharmSeeker
relies on representative sample videos to pick up the opti-
mal configuration for recurring video processing workloads.
For example, consider a recurring job that counts cars
driving through an intersection at rush hours on weekdays.
We can choose one day’s video as a representative and run
CharmSeeker to pick up the optimal configuration. The
picked configuration is then applied to process the videos for
other days. The first issue is how to pick up a representative
sample video. Designing an automated method is challenging
since it requires deep insights into the video content and
processing algorithms. Complex models are needed to extract
video content features and build metrics to measure the simi-
larity of workloads. Although this is an interesting exploration

direction, it is beyond the scope of this work. Following pre-
vious works [21], CharmSeeker currently relies on human
intuitions to select representative videos.

With the representative sample video, we need to ver-
ify if the configuration searched on the video can maintain
its performance for similar videos. We divide each video
in TABLE I into two equal-length segments (each includes
195 chunks), marked as video#1 and video#2, respectively.
We take video#1 as the representative sample video and
video#2 as the test video. We then run CharmSeeker on
video#1 and apply the picked configuration to video#2 for
the performance test. Intuitively, the two videos generated in
this way are very similar. They have the same video specifi-
cations, such as resolution and framerate. More importantly,
they were shot continuously in a relatively small time window
(33 minutes) by the same camera. We inspected the video con-
tent and found that the video#1 roughly covers the video#2’s
scenes, illuminations, and movement conditions.

The pipeline budgets in this experiment indicate how much
users expect to spend on processing 195 video chunks. The
budget values are set with the method mentioned in §VI-B
based on the ES results on video#1. Given the pipeline bud-
get, we refer to the configuration reported on video#1 as
the configuration of interest. Ideally, the processing cost of
video#2 under the configuration of interest should be that of
video#1. However, in reality, influenced by video content, the
processing costs of the representative video and the test video
may not be exactly the same. Being aware of this, users usually
can tolerate performance variations in an acceptable range,
e.g., ±10% for the processing time and ±2% for the monetary
cost in our assumption.

To quantify the performance of the configuration of interest
on video#2, we calculate the percent deviations from video#1’s
processing time and monetary cost. Fig. 11 shows the extrap-
olation performance of the configurations of interest for all
videos in our dataset. As shown, the percent deviation of
CharmSeeker falls in ±10% for the processing time, and
±2% for the monetary cost in all cases. It indicates that the
configurations of interest can perform well on similar videos,
and CharmSeeker can pick up a good configuration for
recurring video processing workloads.

In practice, the representative video may gradually lose its
representativeness for recurring jobs over time, making the
actual performance of the configurations of interest subop-
timal. A simple mechanism to address this issue is setting
a threshold. Users can rerun SBO when the gap between
the picked configuration’s expected performance and actual
performance exceeds the threshold. The current implementa-
tion of SBO relies on random initialization to construct the
initially known sample sets. A potential improvement is to
rerun SBO from successful configurations in previous runs.
Such a “warm-start” technique has been successfully applied
in BO hyperparameter optimization [49] to reduce the number
of evaluations. Integrating this technique into CharmSeeker
is worthy of further exploration.

2) Sensitivity to Varying Input Workload Sizes: For recur-
ring video processing jobs, the size of the input workload
(e.g., the number of video chunks) fed to a pipeline at one

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Percent deviation of the configuration of interest on video#2. The
configuration of interest is the searched optimal configuration with the highest
frequency out of 20 repeat experiments on video#1 (2-stage pipeline).

Fig. 12. Percent deviation of the configurations of interest on varying input
workload sizes. (2-stage pipeline).

time is normally fixed. Nevertheless, it is interesting to analyze
CharmSeeker’s sensitivity to varying input workload sizes
as it may extend the applications of CharmSeeker. As the
absolute pipeline budget is affected by the input workload size,
we assume that their relationship is linear. For example, the
absolute pipeline budget for processing half of a video is half
of that for processing the entire video.

The experiment is conducted as follows. We first obtain
10-minute (120 video chunks), 15-minute (180 video chunks),
20-minute (240 video chunks), 25-minute (300 video chunks),
and 30-minute (360 video chunks) video clips from the Seattle
video, representing the 50%, 75%, 100%, 125% and 150%
input workload, respectively. Then, we choose the 20-minute
clip (100% workload) as the representative to pick up con-
figurations under various pipeline budgets. We refer to the
obtained configurations as configurations of interest. Next,
we scale the absolute pipeline budgets according to the input
workload sizes and employ ES to obtain the ground-truth
optimal configurations for varying input workload sizes.

We then evaluate the performance of the configurations
of interest on 50%, 75%, 125%, and 150% input workloads
and compare the results with that of the ground-truth optimal
configurations. As shown in Fig. 12, the percent deviations of
the configurations of interest fall in ±10% for the processing
time, and ±2% for the monetary cost in all cases. It indicates
that CharmSeeker is robust to varying input workload sizes.

VII. FURTHER DISCUSSIONS

The LPQ pipeline has a serial structure, which is very
common for video processing pipelines. However, parallel
structures can also be found in a pipeline. For instance,

cascading a license plate recognition module and a face recog-
nition module parallel after the object detection module to
simultaneously query people and license plates. These parallel
modules may have different resource requirements, so we
cannot consider them as a single stage. One straightforward
way to solve this issue is to treat them as different serial stages
but only count the larger one of their processing times in
the pipeline processing time. Thus, our solution can be easily
extended to support different topologies.

VIII. RELATED WORK

A. Video Processing and Analytics Systems

Recent years have witnessed the proliferation of live video
analytics systems [50], [51]. The key idea is to balance
resources and accuracy by adjusting general configuration
knobs, such as framerate, resolution, and processing models.
For example, VideoStorm [50] profiled the resource demand
and accuracy of different knob combinations for each live
video query offline. It then adjusted configuration knobs for
large-scale concurrent queries according to their quality and
lag goals online. VideoEdge [51] is a geo-distributed live
video analytics system. It tuned the general configuration
knobs and the placement knob (private clusters or public
clouds) to strike the best trade-off between resources and
accuracy. Different from these VM cluster-based video ana-
lytics systems, CharmSeeker is not specifically designed
for live or geo-distributed video analytics. It aims to opti-
mize the processing time and monetary costs for serverless
video processing applications. Users can pre-tune these general
knobs according to their resource and accuracy goals. After
the videos are streamed to the cloud, users can further utilize
CharmSeeker to tune serverless functions’ memory size and
workload. In this sense, CharmSeeker complements these
existing systems and provides them with a readily available
tool once they migrate to serverless computing platforms.

B. Applications of BO

With the minimal assumptions about the optimization prob-
lem and only a few samples required to find an appropriate
solution, BO is preferred by researchers and engineers to
solve black-box optimization problems in automatic machine
learning systems. For instance, Auto-sklearn [52] resorted
to BO to achieve the joint optimization of machine learning
algorithm selections and associated hyperparameter configura-
tion. Google Vizier [29] harnessed BO to optimize machine
learning models and other systems.

As the cloud computing represented by VMs gains popu-
larity, BO has been used to configure resources for VM-based
cloud systems [19], [21]. For example, CherryPick [21]
unearthed the potential of BO in picking up the best VM clus-
ter configuration for big data analytic workloads. Arrow [19]
leveraged low-level information to improve the performance of
the vanilla BO in configuring VM instances. Unlike existing
BO-based configuration tuning tools designed for VMs, our
work targets configuration tuning for serverless functions.
In particular, our work well complements these existing efforts

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CharmSeeker: AUTOMATED PIPELINE CONFIGURATION FOR SERVERLESS VIDEO PROCESSING 13

by providing a novel SBO to ease the configuration tuning of
serverless video processing pipelines.

IX. CONCLUSION

In this paper, we demonstrated the great potential in reduc-
ing processing time and monetary cost via efficient configu-
ration tuning and identified its practical challenges. Motivated
by the observations from our measurement study, we designed
CharmSeeker, a tool that uses a carefully designed SBO
algorithm to automatically tune configurations for serverless
video processing pipelines. A prototype with AWS Lambda is
further implemented for evaluation. Our extensive experiments
showed the effectiveness and superiority of CharmSeeker
over state-of-art solutions.

REFERENCES

[1] YouTube. Youtube for Press. Accessed: Aug. 18, 2020. [Online].
Available: https://www.youtube.com/about/press/

[2] Cisco Visual Networking Index: Forecast and Trends, 2017–2022 (White
Paper), Cisco, San Jose, CA, USA, Feb. 2019.

[3] Q. Huang et al., “SVE: Distributed video processing at Facebook scale,”
in Proc. 26th Symp. Operating Syst. Princ., Oct. 2017, pp. 87–103.

[4] AWS. Netflix on AWS. Accessed: Aug. 18, 2020. [Online]. Available:
https://aws.amazon.com/solutions/case-studies/netflix/

[5] G. Cloud. Fastly: Building a High-Quality Video Delivery Ser-
vice for Vimeo. Accessed: Aug. 18, 2020. [Online]. Available:
https://cloud.google.com/customers/vimeo/

[6] AWS. AWS Case Study: Encoding.Com. Accessed: Aug. 18,
2020. [Online]. Available: https://aws.amazon.com/solutions/case-
studies/encoding/

[7] Y. Zhu, S. D. Fu, J. Liu, and Y. Cui, “Truthful online auction toward
maximized instance utilization in the cloud,” IEEE/ACM Trans. Netw.,
vol. 26, no. 5, pp. 2132–2145, Oct. 2018.

[8] Amazon. Serverless Computing Amazon Web Services. Accessed:
Aug. 18, 2020. [Online]. Available: https://aws.amazon.com/serverless/

[9] AWS. AWS Lambda. Accessed: Aug. 18, 2020. [Online]. Available:
https://aws.amazon.com/lambda/

[10] Google. Cloud Functions. Accessed: Aug. 18, 2020. [Online]. Available:
https://cloud.google.com/functions/

[11] Microsoft. Azure Functions. Accessed: Aug. 18, 2020. [Online].
Available: https://azure.microsoft.com/en-ca/services/functions/

[12] E. Jonas et al., “Cloud programming simplified: A Berkeley view on
serverless computing,” 2019, arXiv:1902.03383.

[13] S. Fouladi et al., “Encoding, fast and slow: Low-latency video processing
using thousands of tiny threads,” in Proc. 14th USENIX Symp. Netw.
Syst. Design Implement. (NSDI’17), 2017, pp. 363–376.

[14] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proc. ACM Symp. Cloud
Comput., Oct. 2018, pp. 263–274.

[15] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proc. Symp. Cloud
Comput., Sep. 2017, pp. 445–451.

[16] Amazon. Best Practices for Working With AWS Lambda Functions.
Accessed: Aug. 18, 2020. [Online]. Available: https://docs.aws.amazon.
com/lambda/latest/dg/best-practices.html#functi%on-configuration

[17] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video processing with server-
less computing: A measurement study,” in Proc. 29th ACM Workshop
Netw. Operating Syst. Support Digit. Audio Video (NOSSDAV), 2019,
pp. 61–66.

[18] Y. Zhu et al., “BestConfig: Tapping the performance potential of systems
via automatic configuration tuning,” in Proc. Symp. Cloud Comput.,
Sep. 2017, pp. 338–350.

[19] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-level
augmented Bayesian optimization for finding the best cloud VM,” in
Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018,
pp. 660–670.

[20] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,” in
Proc. 13th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2016,
pp. 363–378.

[21] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proc. 14th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2017, pp. 469–482.

[22] A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta: Heterogeneous cloud
storage configuration for data analytics,” in Proc. USENIX Annu. Tech.
Conf. (ATC), 2018, pp. 759–773.

[23] AWS. AWS Budgets Amazon Web Services. Accessed: Aug. 18, 2020.
[Online]. Available: https://aws.amazon.com/aws-cost-management/aws-
budgets/

[24] Amazon. Amazon EC2 Amazon Web Services. Accessed: Aug. 18, 2020.
[Online]. Available: https://aws.amazon.com/ec2/

[25] I. E. Akkus et al., “Sand: Towards high-performance serverless
computing,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2018,
pp. 923–935.

[26] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. USENIX Annu. Tech. Conf.
(ATC), 2018, pp. 133–146.

[27] A. Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in Proc. 17th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), 2020, pp. 419–434.

[28] AWS. AWS Lambda Limits. Accessed: Aug. 18, 2020. [Online].
Available: https://docs.aws.amazon.com/lambda/latest/dg/limits.html

[29] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 1487–1495.

[30] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on
Bayesian optimization of expensive cost functions, with application to
active user modeling and hierarchical reinforcement learning,” 2010,
arXiv:1012.2599.

[31] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2015.

[32] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas,
“Bayesian optimization in high dimensions via random embeddings,” in
Proc. 23rd Int. joint Conf. Artif. Intell. (IJCAI), 2013, pp. 1778–1784.

[33] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[34] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in Proc. Adv. Neural Inf. Process.
Syst. (NeurIPS), 2012, pp. 2951–2959.

[35] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” 2014, arXiv:1403.5607.

[36] J. Gardner, C. Guo, K. Weinberger, R. Garnett, and R. Grosse, “Dis-
covering and exploiting additive structure for Bayesian optimization,” in
Proc. Artif. Intell. Statist., 2017, pp. 1311–1319.

[37] K. Kandasamy, J. Schneider, and B. Póczos, “High dimensional
Bayesian optimisation and bandits via additive models,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2015, pp. 295–304.

[38] M. Bilal and M. Canini, “Towards automatic parameter tuning of
stream processing systems,” in Proc. Symp. Cloud Comput., Sep. 2017,
pp. 189–200.

[39] AWS. Boto3 Documentation. Accessed: Aug. 18, 2020. [Online].
Available: https://boto3.amazonaws.com/v1/documentation/api/latest/
index.html

[40] G. APIs. Python Client for Cloud Functions. Accessed: Aug. 18, 2020.
[Online]. Available: https://github.com/googleapis/python-functions/
tree/master/docs

[41] A. Lottarini et al., “Vbench: Benchmarking video transcoding in the
cloud,” in Proc. 23rd Int. Conf. Architectural Support Program. Lang.
Operating Syst. (ASPLOS), 2018, pp. 797–809.

[42] YouTube. Driving Downtown Seattle 4k USA. Accessed: Aug. 18, 2020.
[Online]. Available: https://www.youtube.com/watch?v=rjVD1-1mbuE

[43] YouTube. Los Angeles 4k Night Drive. Accessed: Aug. 18, 2020.
[Online]. Available: https://www.youtube.com/watch?v=lTvYjERVAnY
&t=3961s

[44] YouTube. M6 Motorway Traffic. Accessed: Aug. 18, 2020. [Online].
Available: https://www.youtube.com/watch?v=PNCJQkvALVc&t=43s

[45] FFmpeg. A Complete, Cross-Platform Solution to Record, Convert and
Stream Audio and Video. Accessed: Aug. 18, 2020. [Online]. Available:
https://ffmpeg.org/

[46] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[47] OpenALPR. Automatic License Plate Recognition. Accessed: Aug. 18,
2020. [Online]. Available: https://www.openalpr.com/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[48] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. 2, pp. 281–305, 2012.

[49] J. Kim, S. Kim, and S. Choi, “Learning to warm-start Bayesian hyper-
parameter optimization,” 2017, arXiv:1710.06219.

[50] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation
and delay-tolerance,” in Proc. 14th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2017, pp. 377–392.

[51] C.-C. Hung et al., “VideoEdge: Processing camera streams using hier-
archical clusters,” in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Oct. 2018, pp. 115–131.

[52] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), 2015, pp. 2962–2970.

Miao Zhang (Graduate Student Member, IEEE)
received the B.Eng. degree from Sichuan University
in 2015 and the M.Eng. degree from Tsinghua Uni-
versity in 2018. She is currently pursuing the Ph.D.
degree with Simon Fraser University, Canada. Her
research areas include cloud and edge computing
and multimedia systems and applications.

Yifei Zhu received the M.Phil. degree from The
Hong Kong University of Science and Technology in
2015 and the Ph.D. degree in computer science from
Simon Fraser University, Canada, in 2020. He is
currently an Assistant Professor at Shanghai Jiao
Tong University. His research areas include edge
computing and multimedia networking.

Jiangchuan Liu (Fellow, IEEE) received the B.Eng.
degree (cum laude) in computer science from
Tsinghua University, Beijing, China, in 1999, and
the Ph.D. degree in computer science from The
Hong Kong University of Science and Technology
in 2003. He is currently a Professor with the School
of Computing Science, Simon Fraser University, BC,
Canada. He is a Distinguished Guest Professor of the
Tsinghua Shenzhen International Graduate School.
His research interests include multimedia systems
and networks, cloud and edge computing, social

networking, online gaming, and the Internet of Things/RFID/backscatter.
He is a Fellow of The Canadian Academy of Engineering and an NSERC
E. W. R. Steacie Memorial Fellow. He is a Steering Committee Member
of IEEE TRANSACTIONS ON MOBILE COMPUTING. He was a co-recipient
of the Inaugural Test of Time Paper Award of IEEE INFOCOM (2015),
the ACM SIGMM TOMCCAP Nicolas D. Georganas Best Paper Award
(2013), the ACM Multimedia Best Paper Award (2012), and the IEEE
MASS Best Paper Award (2021). He was the Steering Committee Chair of
IEEE/ACM IWQoS (2015–2017). He was the TPC Co-Chair of IEEE INFO-
COM’2021 and IEEE Satellite’2022. He has served on the editorial boards
for IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS
ON NETWORK SCIENCE AND ENGINEERING, IEEE TRANSACTIONS ON BIG

DATA, IEEE TRANSACTIONS ON MULTIMEDIA, IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, and IEEE INTERNET OF THINGS JOURNAL.

Feng Wang (Senior Member, IEEE) received the
bachelor’s and master’s degrees in computer science
and technology from Tsinghua University, Beijing,
China, in 2002 and 2005, respectively, and the Ph.D.
degree in computing science from Simon Fraser
University, Burnaby, BC, Canada, in 2012. He is cur-
rently an Associate Professor with the Department
of Computer and Information Science, The Univer-
sity of Mississippi, MS, USA. He is a Technical
Committee Member of Computer Communications
(Elsevier). He serves as a TPC Member for vari-

ous international conferences, such as IEEE INFOCOM, ICPP, IEEE/ACM
IWQoS, ACM Multimedia, IEEE ICC, IEEE GLOBECOM, and IEEE ICME.
He was a recipient of the IEEE ICME Quality Reviewer Award (2011). He has
served as the Program Vice Chair for the International Conference on Internet
of Vehicles (IOV) 2014 and the TPC Co-Chair for IEEE CloudCom 2017 for
Internet of Things and Mobile on Cloud Track.

Fangxin Wang (Member, IEEE) received the B.Eng.
degree in computer science and technology from
the Beijing University of Posts and Telecommu-
nications, the M.Eng. degree in computer science
and technology from Tsinghua University, and the
Ph.D. degree in computer science and technology
from Simon Fraser University. He is currently an
Assistant Professor at The Chinese University of
Hong Kong, Shenzhen (CUHKSZ). Before joining
CUHKSZ, he was a Post-Doctoral Fellow at The
University of British Columbia. He leads the Intel-

ligent Networking and Multimedia Laboratory, CUHKSZ. He has published
more than 30 papers at top journals and conference papers, including INFO-
COM, Multimedia, IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE
TRANSACTIONS ON MOBILE COMPUTING, and IEEE INTERNET OF THINGS

JOURNAL. His research interests include multimedia systems and applica-
tions, cloud and edge computing, deep learning and big data analytics, and
distributed networking and systems. He has served as the Publication Chair
for IEEE/ACM IWQoS, a TPC Member for IEEE ICC, and a Reviewer
for many top conferences and journals, including INFOCOM, Multimedia,
IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS ON
MOBILE COMPUTING, and IEEE INTERNET OF THINGS JOURNAL.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2022 at 02:41:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

