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Abstract—Ubiquitous deployment of networked cameras has
boosted the prevalence of video analytics. Leveraging machines
to automatically analyze captured videos has become the driving
force behind a variety of contemporary applications. However, it
is known to be resource-hungry with highly dynamic demands,
which mismatches the existing monolithic cloud service deploy-
ment with coarse-grained resource allocation. Recent advances
in serverless computing, which offers ultra-fast and fine-grained
autoscaling, would become a game-changer. This article closely
examines the potentials and challenges of serverless computing
in building modern video analytics applications. We accordingly
present an integrated framework with geo-distributed resources,
and identify the critical design issues towards its implementation.
We further discuss a series of promising research directions in
this field.

Index Terms—Video analytics, cloud computing, serverless
computing

I. INTRODUCTION

NETWORKED cameras have been deployed at a stagger-
ing rate. For instance, the number of surveillance cameras

installed in the world has been expected to increase from 770
million in 2019 to 1 billion in 20211. Leveraging machines to
automatically analyze videos captured by these cameras has
fuelled the development of video analytics [1], [2], which has
been the driving force behind a wide variety of contemporary
applications, such as intelligent transportation, smart retail, and
mobile vision systems.

Fig. 1 shows a typical video analytics application that
answers queries about the number of a specific object (e.g.,
vehicle) passing through a camera’s field of view. It involves
multiple visual computing primitives [3], such as object de-
tection and object tracking. All of them are notorious for
high resource demand and long processing time, especially
when deep neural networks (DNNs) are introduced for high
accuracy [2], [3]. Although cloud and edge resources have
been explored for video analytics [1]–[3], existing efforts typ-
ically allocate and manage coarse-grained resources manually
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Fig. 1: An object counting pipeline. The decoding primitive
decodes frames from the input camera stream and passes
them to the object detection primitive, which detects a specific
object (e.g., vehicle in the figure) from the decoded frames.
The object tracking primitive is subsequently applied to obtain
the moving trajectories of the detected objects, and these tra-
jectories are then fed to the counting primitive for directional
counting.

at a virtual machine (VM) level, which can hardly match the
fine-grained video content dynamics and unpredictable usage
patterns. There have been recent efforts towards camera-to-
camera [7] or camera-to-cloud [1], [4] collaboration so as
to reduce latency and improve resources utilization. Yet their
monolithic deployment architectures hamper the flexibility and
scalability, for the partial execution results can hardly be
shared among multiple video queries, which is particularly
severe for resource-constrained edges.

Since AWS introduced AWS Lambda2 in 2014, serverless
computing [8], represented by Function as a Service (FaaS)
offerings, has been revolutionizing the way to build modern
cloud-native applications. Recent years have witnessed its
successful applications, from building backends for the Web,
Internet of Things (IoT), and mobile applications, to providing
automated infrastructures for on-demand and real-time data
processing [9]. Nearly half of AWS users had adopted AWS
Lambda in 20203, and similar trends have been observed in
other serverless platforms4, such as Google Cloud Functions
(GCF) 5, and Microsoft Azure Functions6. We believe that
serverless computing has great potentials for building new-
generation video analytics platforms, given its fine-grained
autoscaling, its built-in microservice architecture with highly

2https://aws.amazon.com/lambda/
3https://www.datadoghq.com/state-of-serverless-2020/
4https://www.datadoghq.com/state-of-serverless/
5https://cloud.google.com/functions
6https://azure.microsoft.com/en-us/services/functions/
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TABLE I: Representative networked video analytics solutions.

System Type Architecture Core Techniques Description

Focus [2] retrospective data center model approximation
Training specialized, faster DNN models to approximate

the accuracy of full, expensive models.

VideoStorm [3] live data center configuration tuning
Tuning configuration knobs (e.g., frame rate, resolution,

and models) to achieve resource-accuracy trade-off.

FilterForward [4] live edge-to-cloud frame filtering
Training micro-classifiers to filter out irrelevant frames

on edge nodes, backhauling relevant frames to the cloud.

split-brain [5] live edge-to-cloud model splitting
Splitting DNNs into two parts with the first part evaluated

at the edge and the other part evaluated in the cloud.

CloudSeg [6] live edge-to-cloud frame compression
Sending low-resolution videos to the cloud, and then

recovering the resolution via super-resolution.

parallelizable compute units, and its truly pay-as-you-go pric-
ing strategy. Unfortunately, unlike lightweight Web or IoT
applications, the computing primitives of video analytics are
generally much heavier, particularly with advanced learning,
and the video queries are highly heterogeneous, which can
hardly be unified. These present a series of distinct challenges
when meeting with serverless computing.

In this article, we first review the state-of-the-art video
analytics solutions and discuss their trade-offs. We then closely
investigate the potentials when serverless computing becomes
the foundation for video analytics. We accordingly present
an integrated framework with geo-distributed resources and
elaborate on the key design issues of its implementation. We
finally identify several future directions that are worthy of
investigation.

II. VIDEO ANALYTICS: STATE-OF-THE-ART SOLUTIONS
AND CHALLENGES

Table I summarizes the representative solutions to date,
which seek to accommodate the huge and highly dynamic
resource demands of video analytics from different aspects.

A. From Retrospective to Live

Retrospective video analytics queries the recorded videos
for post-event intelligence. It works when query events are
only known after the videos are captured, and/or only a small
fraction of the historical videos are to be queried. DNN model
compression and approximation have been widely used in
this context. For instance, Focus [2] accelerates large-scale
retrospective video analytics by training specialized, faster
DNN models to approximate the accuracy of full, expensive
models. Most retrospective video analytics systems are built
on VM clusters, with coarse-grained and often manual-scaling
resources. Though not to be in real-time, analyzing a large-
scale historical video dataset with low latency and cost remains
challenging in response to unpredictable queries.

To enable real-time interactions (e.g., in augmented reality
applications) or decision makings (e.g., in intelligent traffic
systems), live video analytics arises to process camera feeds in
real-time [1]. Streaming camera feeds over dedicated network

links to a remote resource-rich cloud data center is the initial
attempt. Achieving effective resource management is a signif-
icant challenge in this context. Video analytics applications
typically expose several general configuration knobs, such as
video resolution, frame rate, and models. Different configura-
tions require different resources to achieve real-time responses
while leading to different accuracies. Configuration tuning
is thus a core technique to balance resource and accuracy.
For example, VideoStorm [3] manages cluster resources
for massive live video queries by tuning multi-dimensional
configuration knobs.

B. From Cloud to Cloud-Edge

Users’ increasing appetite for Ultra-High-Definition (UHD)
videos has exacerbated the scarce network bandwidth issue
of live video analytics. Edge computing provides a natural
solution by bringing computing resources to video sources’
proximity. Edge video analytics further extends from edge
servers to cameras as the cameras are becoming “smart” with
onboard computing resources7. DNN model compression and
approximation are also widely used in this context to enable
in-situ video analytics on these resource-constrained devices.

Recent years have witnessed the development of cross-
camera video analytics [7] that facilitates the building of
efficient space-time object tracking systems over an array
of collaborative cameras. An integrated deployment across
cameras, edges, and the cloud has been conceived as an ideal
solution [1]. Reducing data transfer overhead across these
heterogeneous components is critical for efficient collabora-
tion. One prevalent technique is frame filtering. For example,
FilterForward [4] executes lightweight classification al-
gorithms on cameras or edge devices to filter out irrelevant
frames; since only query-related frames are backhauled to the
powerful backends for processing, it preserves accuracy with
considerably reduced bandwidth use. As DNN architectures
become increasingly deeper, DNN model splitting has also
been introduced, which executes a portion of a model on
the camera and transfers the intermediate results (e.g., high-
level features) to the cloud for further inference [5]. Frame

7https://aws.amazon.com/deeplens/
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Fig. 2: The evolution of application deployment architecture. Users take diminishing responsibilities and can focus on
the development of application codes with serverless computing. The increasingly lightweight virtualization technologies
significantly improve the development and deployment speeds, agility, portability, and time-to-market.

compression further allows cameras or edge devices to transfer
low-resolution frames to the cloud, which then recovers the
resolution via super-resolution [6].

Despite these efforts, building resource-efficient live video
analytics systems remains an elusive goal. The unpredictability
of video queries and video content dynamics can cause fine-
grained resource demand variations. These variations can
hardly be addressed by systems built on coarse-grained com-
puting infrastructures. Moreover, the monolithic deployment
architectures of existing systems couple different components
tightly. It impairs flexibility and scalability, especially in an
edge context where one needs to handle multiple tenants with
constrained resources.

III. WHEN VIDEO ANALYTICS MEETS SERVERLESS
COMPUTING

A. Serverless Computing: Emergence and Attractiveness
The last decade has witnessed the success of cloud comput-

ing represented by low-level VMs (e.g., Amazon EC28). As
shown in Fig. 2, the VM-based architecture relieves users of
physical infrastructure investment but also stresses them with
complex virtual resource management and monitoring. To set
up a VM cluster in the cloud, developers have to address such
issues as predetermining the number and types of VMs in the
cluster, routing requests to balance the load, and scaling up or
down in response to workload variations. These are known to
be barriers to the general cloud users [10].

As the microservices architecture and containerized de-
ployment become popular, cloud providers further abstract
infrastructures and propose serverless computing. It enables
cloud users to run their applications without thinking about
servers (runtimes). As a general implementation of serverless
computing, FaaS is popularizing the serverless paradigm [8]
and has been offered by major cloud providers, under the name
of AWS Lambda, Google Cloud Functions, and Microsoft
Azure Functions. As the public cloud extends to the edge,
serverless functions can be executed in the content delivery
network (e.g., AWS Lambda@Edge9) and IoT devices (e.g.,
AWS IoT Greengrass10). Open-source projects (e.g., Apache

8https://aws.amazon.com/ec2/
9https://aws.amazon.com/lambda/edge/
10https://aws.amazon.com/greengrass/

OpenWhisk11, and Kubeless12) further create possibilities for
the private deployments of serverless functions. Specifically,
the popularity of serverless computing can be attributed to its
following attractiveness.
Fully Managed Infrastructures: In FaaS platforms, users
decompose monolithic applications into small, short-lived, and
stateless functions, each implementing a microservice. As the
unit of computation, functions are code snippets typically
written with popular high-level programming languages, such
as Python, Node.js, and Go [8]. For deployment, users
register functions to the FaaS platform with minimal configu-
ration efforts (e.g., specify memory only) and declare events to
trigger their executions. The FaaS platform is responsible for
handling every triggering request, scaling resources precisely
with the size of workloads, ensuring fault tolerance and service
availability. With offloaded operational responsibilities, users
can focus on application development, thus improving agility,
innovation, and time-to-market, as shown in Fig. 2.
Fine-grained Autoscaling: Benefiting from the event-driven
programming model of serverless computing, the resource
allocation and release in FaaS platforms are automatically
driven by input workloads. Specifically, each triggering event
for a function is served by a dedicated function instance,
which executes the function code with the input message in a
specialized container or sandbox [8], [9]. Function instances
can spin up or down in tens of milliseconds, significantly
faster than VMs that typically require many seconds to startup
[8], [11]. Such fine-grained autoscaling responds quickly to
input workload dynamics, making FaaS a perfect match for
unpredictable and sporadic workloads.
Truly Pay-as-you-go Pricing Strategy: A function instance
of FaaS is only invoked for handling a triggering request and
put into sleep immediately after completion. Developers are
charged for their function codes’ execution duration, and there
is no charge for idle function instance time. The fine-grained
billing timescale of FaaS, typically 1 millisecond, makes it a
truly pay-as-you-go service [8].

Given the aforementioned advantages, serverless computing
has attracted considerable attention from both industry and

11https://openwhisk.apache.org
12https://kubeless.io
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Fig. 3: Video analytics statistics on real-world camera streams. (a) The respective costs of using VMs and serverless functions
to answer randomly generated object detection queries on 4 video streams (Q1-Q4) in 30 minutes. (b) and (c) depict the
corresponding average objects per frame (AOPF) and average unique object per frame (AUOPF) for querying the number of
vehicles (top) and pedestrians (bottom) on a crossroad camera stream.

academia [8], [9]. It is employed to address an increasing vari-
ety of workloads. Typical industrial use cases include building
backends for Web and IoT applications, processing streaming
data in real-time, developing request-response microservices,
and infrastructure automation [9]. Recently published research
projects also attempt to unlock serverless computing’s poten-
tial in handling more challenging workloads, such as data
analytics [12] and machine learning training [13].

B. Serverless Video Analytics: Opportunities

Traditional video analytics systems have suffered from the
lack of fine-grained computing infrastructures, which can be
fortunately provided by serverless computing. For example,
recent years have witnessed several attempts to introduce the
serverless paradigm in data center video processing [14]. We
next illustrate the opportunities brought by empowering video
analytics with serverless computing in detail.
Accelerating video analytics through thousands of function
instances: Serverless computing is well-suited for embarrass-
ingly parallel jobs [10] since it provides fine-grained, readily
available infrastructures. This creates new possibilities for
video analytics since there are inherently parallelizable struc-
tures in videos, such as groups of pictures (GOPs) and frames.
After decoding a video into frames, we can invoke massively
concurrent function instances. Each function instance runs the
same image-based computer vision algorithm to process a
frame, thus reducing the processing latency and monetary cost.
Since a variety of vision algorithms are developed to target
a single image (e.g., object detection, face recognition, and
image classification), this kind of parallelism can be harnessed
broadly in video analytics.
Handling unpredictable usages by workload-driven re-
source reshaping: Large-scale deployed low-cost cameras
operate in 24 × 7, producing a staggering volume of video
data. Up to 100 MB uncompressed data can be generated
every second from a real-world HD camera 13 (1080p, 30
FPS). Only a small fraction of them may have events of
interest. Hence, maintaining a dedicated VM cluster can be of
prohibitively high costs. Yet accidental video queries can occur
at any time (e.g., in response to an AMBER alert to find an

13https://www.youtube.com/watch?v=1EiC9bvVGnk

abducted child) with no particular patterns, rendering resource
reservation based solutions slow (due to insufficient resources)
or inefficient (due to overprovisioning). Serverless computing
is a natural fit in this case since functions are invoked in an
event-driven way. Variations in the input workload (e.g., a
sudden surge of video query requests) automatically trigger
allocation or deallocation of resources. Fig. 3a compares the
monetary cost of VMs and serverless functions when serving
unpredictable object detection queries on four video clips
collected from the aforementioned camera. To enable real-
time responses, the VM instance is provisioned based on
peak workloads, and functions instances are configured with
sufficient memory. As suggested by the figure, with improved
resource utilization, serverless functions greatly reduce the
monetary cost by 65.17% of its VM counterpart.

Adapting fine-grained video content dynamics: Primitives
in a video analytics application are often tightly coupled.
The input workload of each primitive and further resource
demands are affected by video content dynamics. Take the
object counting pipeline (shown in Fig. 1) as an example. If
the object detection primitive detects no object of interest on
decoded frames, there is no need to execute the downstream
primitives. To understand the impact of coupling, we run this
pipeline to query the number of vehicles or pedestrians on the
aforementioned real-world camera stream. We use two metrics
to quantify the video content dynamics: (1) Average objects
per frame (AOPF), which indicates how many queried objects
appear in a frame on average, and (2) Average unique object
per frame (AUOPF), because the same object can appear in
multiple successive video frames.

As can be seen from Fig. 3b and Fig. 3c, coarse-grained
VM-based allocation can hardly keep pace with the video
content, which typically changes in minutes or even shorter
timescale. In contrast, serverless function instances can be
invoked to process tiny workloads, e.g., a video chunk, a
frame, or even an image cropped from a frame. Consequently,
the downstream functions in a pipeline can flexibly and agilely
respond to upstream functions’ results.
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IV. SVAG: GEO-DISTRIBUTED SERVERLESS VIDEO
ANALYTICS

A. SVAG Overview

To fully unleash the potentials of serverless computing
in video analytics, we envision a Serverless Video Analytics
framework with Geo-distributed resources (SVAG) (see Fig. 4),
through which analytics pipelines can be executed across IoT
devices, edge nodes, and the cloud. In SVAG, developers can
decouple the monolithic code into a pipeline of serverless
functions, each implementing a microservice. For instance,
the application shown in Fig. 1 can be decoupled into a
pipeline of four serverless functions corresponding to its four
primitives. The same serverless pipeline can be deployed in
multiple IoT devices, edge nodes, and the cloud to enable
possible collaborations in the same hierarchy (e.g., device-to-
device) and between distinct hierarchies (e.g., edge-to-cloud).
After debugging in local and live environments, the serverless
pipelines will be ready to serve video queries.
SVAG allows users to issue queries on pre-collected or live

videos. Users can specify their performance (e.g., latency,
monetary cost, and accuracy) goals for a specific video query.
They can issue distinct video queries on the same or dif-
ferent camera streams concurrently. SVAG then orchestrate
the corresponding analytics pipelines across geo-distributed
infrastructures. Unlike other geo-distributed video analytics
frameworks [1] that manage coarse-grained resources with

pre-reservation, SVAG offers fine-grained resources in an on-
demand manner. To enable the resource-accuracy trade-off,
it exposes multiple configurable parameters (e.g., frame rate,
resolution, and models), which can be dynamically speci-
fied at runtime by function invocation events. According to
available resources and performance goals, the original video
or intermediate execution results may be redirected multiple
times to appropriate places (i.e., IoT devices, edge nodes,
and the cloud) for further processing. For video queries with
stringent latency constraints, corresponding serverless function
instances may be pre-warmed to mitigate the influences of
function instance cold-start14.

B. Preliminary Evaluation

Based on our existing work on fine-grained and adaptive
partitioning of cloud-edge workloads [15], we have imple-
mented a slim version of SVAG over AWS Lambda and
AWS IoT Greengrass. Our current prototype consists of five
surveillance cameras with very limited computing capability,
one edge node, and a cloud. Assume the network bandwidth
between the cameras, the edge node, and the cloud is sufficient
for real-time streaming. We use two video clips collected from
a real-world traffic camera15 (traffic streams) and three video

14https://docs.aws.amazon.com/lambda/latest/dg/configuration-
concurrency.html

15https://www.youtube.com/watch?v=1EiC9bvVGnk
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clips collected from a roadside restaurant camera16 (restaurant
streams) to driven the experiments. Users can issue vehicle
counting queries on the traffic streams and customer age and
gender queries on the restaurant streams.

The performance goal of all queries is to analyze streams in
real-time while minimizing the cloud-edge data transfer over-
head and cloud expenditure. We implement a lightweight con-
troller to orchestrate geo-distributed pipeline functions. It inte-
grates a content-aware predictor to handle fine-grained video
content dynamics. The predictor can forecast the content-
variant resource demands of each query and help determine
which version (edge or cloud) of the function to be invoked. To
evaluate the pipeline analysis speed, we calculate the percent-
age of the pipeline output frame rate over the pipeline input
frame rate, which can be viewed as a normalized throughput of
the pipeline, i.e., 100% throughput implies real-time analytics.
We also examine the amount of data transferred between the
edge node and the cloud and the monetary costs for executing
functions in the cloud (cloud expenditure).

To fairly evaluate the performance with different system
configurations, we compare SVAG with an Edge-only scheme
only relying on functions deployed on the edge node to analyze
streams, and a Cloud-only scheme only invoking functions
deployed in the cloud. In this experiment, all camera streams
are persistently queried for a one-hour duration. The compar-
ison results are shown in Fig. 5a. It can be seen that although
there are no data transfer overhead and cloud expenditure for
the Edge-only scheme, it cannot support real-time analytics
due to insufficient resources. On the other hand, the Cloud-
only scheme achieves real-time processing at relatively high
costs. By contrast, the geo-distributed design has the best of
both worlds. Specifically, SVAG reaches real-time analytics
with only 25.6% data transfer overhead and 13.1% cloud
expenditure of the Cloud-only scheme.

We further examine the scalability and adaptability of SVAG
by randomly querying the camera streams. The queries arrive
as a Poisson Process of a 12-minute mean interarrival time,
with the duration being randomly set from 1, 5, or 10 minutes.
Fig. 5b shows a query pattern, where each row indicates if

16https://www.youtube.com/watch?v=sbZNL98Z0GE

there is a Query on a specific camera Stream or not (e.g.,
QS1 corresponds to queries on the first camera stream) in
a given time window. As can be seen from Fig. 5c, SVAG
can flexibly and agilely schedule resources in response to the
fine-grained input workload variations. For example, when the
edge node is overloaded (e.g., from minute 3 to minute 8),
SVAG smartly pushes partial workloads to the cloud for real-
time analytics. Otherwise, only functions deployed on the edge
node are invoked (e.g., from minute 13 to minute 18), leading
to zero cost.

C. Key Design Issues Towards Full Implementation

Considering the design spirit of serverless computing and
video analytics characteristics, before fully realizing SVAG,
one has to address the following key design issues within
current FaaS platforms and beyond.
Orchestration of video analytics pipelines: Video queries
can have different performance goals, e.g., low latency, low
cost, high accuracy, or any combination of them. A function
in a video query pipeline has runtime configurable parameters
that typically need different resources to meet specific goals.
Multiple replicas of a function can be deployed in various
IoT devices, edge nodes, and the cloud, but only one of
them will be invoked to process a particular input workload.
These geo-distributed computing infrastructures that host the
replicas provide heterogeneous compute, storage, and network
resources while requiring distinct data-shipping distances.
Thus, it is already challenging to choose a suitable replica for
a single function, not to mention the execution orchestration
of massively concurrent pipeline functions.

FaaS platforms do not guarantee the completion order of
concurrent function instances. However, the temporal context
information can be paramount for visual primitives executing
across-frame analysis, e.g., object tracking and action recog-
nition. As a result, the orchestration service should be able
to handle the synchronization issue. For instance, multiple
function instances for the same object detection function can
be invoked concurrently, with each processing a frame, to
accelerate the processing. Since these function instances’ com-
pletion order is unpredictable, synchronization mechanisms
should be provided to ensure that the downstream object
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tracking function can process frames in the correct order.
Although cloud providers already offer serverless function
orchestration services like AWS Step Functions17, they tend
to be slow, expensive, and only applicable to pure cloud-based
applications.
Complex model inference: To comply with the abstraction
of serverless computing, i.e., minimizing management efforts
from developers, most FaaS offerings expose only memory
size as the configurable knob for developers to specify the
computing power of function instances. Unlike VM instances,
the computing power of serverless function instances is rela-
tively low. For example, the maximum configurable memory
size for a GCF function is 8 GB, corresponding to a 4.8 GHz
CPU quota18, and there are typically no hardware accelerates
supports (e.g., GPU) for serverless functions. These limits
preclude today’s serverless functions from running computer
vision primitives employing complex DNN models.

The solution suggested by cloud providers is calling cloud
vision APIs (e.g., Amazon Rekognition19) from serverless
functions, i.e., outsourcing heavy liftings to other cloud ser-
vices. This solution inevitably harms flexibility and locks
developers into proprietary APIs. Furthermore, when calling
external services, the function instance’s resources are locked
down to wait for the services to complete. Unfortunately, the
invocation of external vision APIs typically requires several
seconds to return. It is a long time for the lifecycle of function
instances, thus leading to low resource efficiency.
Massive intermediate data sharing: Different functions in
the same video analytics pipeline can exchange highly var-
ied amounts of ephemeral intermediate data. Unfortunately,
function instances are short-lived, stateless, and unaddressable,
impeding direct communications between them. De facto
solutions address this issue by exploiting a general-purpose
cloud storage service (e.g., Amazon S320).

The ideal ephemeral storage services for serverless video
analytics should be serverless (i.e., requiring zero adminis-
trative effort and scaling automatically as fine as serverless
functions.), low-cost, and high-throughput. Unfortunately, ex-
isting serverless storage services, such as Amazon S3 and
Amazon DynamoDB21, are designed to provide high durability
and fault-tolerance for long-term storage. Their costs for high-
throughput intermediate data sharing can be quite high. For
example, uploading one-day long decoded video frames (30
FPS) to Amazon S3 will result in 2, 592, 000 PUT requests of
writing frames, at a monetary cost of $12.96. Thus, designing
high-throughput and low-cost ephemeral storage optimized for
serverless video analytics remains a significant challenge.

V. FUTURE DIRECTIONS

Serverless computing is still under rapid development, so
does serverless-empowered video analytics. We now highlight
some future directions that we believe to be important toward
its pervasive deployment.

17https://aws.amazon.com/step-functions/
18https://cloud.google.com/functions/pricing
19https://aws.amazon.com/rekognition/
20https://aws.amazon.com/s3/
21https://aws.amazon.com/dynamodb/

A. Geo-distributed Function Orchestration

Decoupling the functions in a monolithic implementation
is the first step toward a serverless deployment. Having more
decoupled functions improves scalability and flexibility but
complicates the function orchestration. Conversely, fewer de-
coupled functions can simplify the function orchestration but
lead to poor scalability and high processing latency. The choice
involves multiple factors and becomes even more challenging
with distributed services and resources.
SVAG expects to meet the heterogeneous performance goals

of video queries. Note that unpredictable video queries can
be submitted, leading to continuous variations in available
resources of IoT devices and edge nodes. Resorting to remote
resources is not always viable, as unreliable communication
channels may lead to unacceptable latencies. On the other
hand, fine-grained video content dynamics bring considerable
instability to the resource demands and intermediate data size
of a pipeline. Tuning the configuration and replica choice of
pipeline functions to accommodate the dynamics needs non-
trivial efforts. To make reasonable decisions for concurrent
video queries, it requires up-to-date knowledge about available
resources, network conditions, video content, query types, and
importantly, their interactions.

B. Function-VM Hybridization

For retrospective video analytics, FaaS is a perfect match for
video queries with highly data-parallelizable operations; For
live video analytics, the splendid use case of FaaS is bursty
queries on cold video streams. Because of resource limits,
today’s FaaS offerings are not ideal for video analytics tasks
that require tremendous resources to ensure low latency or high
accuracy. Furthermore, compared with VM instances, function
instances have a higher price per unit resource, making them
less attractive for persistent queries. It would be interesting
to combine both functions and VMs toward a hybrid video
analytics framework.

C. Intermediate Data Optimization

As we have seen earlier, intermediate data sharing between
serverless functions in video query pipelines can incur sig-
nificant latency and cost. It is necessary to optimize video
queries to reduce the intermediate data size. For example,
distinct video queries on the same stream may share partial
execution results, reducing unnecessary data exchanges caused
by independent computations. Ephemeral storage services also
play an important role in intermediate data sharing. There have
been significant studies for storage in generic data analytics
applications [12], but not for videos. The intermediate data in
video analytics often contain massive redundant information
and are not easy to regenerate. Their processing functions are
also much more computation-intensive. Insights into video
content, vision models, and query patterns are expected to
design efficient ephemeral storage.

D. Security and Privacy Preservation

Video content is known to be sensitive and may contain
much more private information than other types of data,
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e.g., the interior of one’s house. Unfortunately, following
the microservice and event-driven paradigms, serverless video
analytics systems expose an increased attack surface than
their monolithic counterparts since functions can consume
data from a wide variety of event sources (e.g., cloud storage
and message queue). The geo-distributed architecture further
exacerbates the risks of confidential data leakage. For privacy-
preserving purposes, efficient encryption algorithms are nec-
essary to secure the data in transit over the network and at
rest on devices. Effective device authentication and appropriate
access control policies are critical to ensure that confidential
data is only revealed to intended entities in the geo-distributed
architecture. As the underlying resources (e.g., CPU and
memory) are shared by multiple tenants, protecting data from
attacks while it is being processed is also a concern. Trusted
execution environments (TEEs)22 have been introduced in
VMs to protect data in use. We expect it to be embedded in
serverless computing, further preserving the privacy of video
content being analyzed.

VI. CONCLUSION

Video analytics plays an essential role in our daily life.
Due to the lack of fine-grained autoscaling computing infras-
tructures, achieving resource-efficient video analytics is excep-
tionally challenging. Serverless computing is revolutionizing
the way we build applications and opens up new possibilities
for video analytics. In this article, we have explored these
possibilities and envisioned a unified framework, SVAG, which
empowers video analytics with geo-distributed serverless com-
puting. We have discussed its key design issues within the
current FaaS platforms and beyond, which inspire further
explorations on serverless video analytics.
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