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Abstract—Cross-camera video analytics is a major video ana-
lytic task that associates and analyzes information across multiple
cameras. However, the searching cost for existing cross-camera
tracking tasks grows linearly with the number of cameras, lead-
ing to substantial cost in large-scale camera systems. Although
correlation among cameras can greatly reduce the searching
cost, our empirical analysis reveals that the correlation actually
changes over time, leading to sub-optimal performance for
schemes leveraging rigid correlation information. Furthermore,
adjusting the correlations to dynamically guide the searching
process is extremely challenging due to the high construction
cost. In this paper, we propose an adaptive cross-camera video
analytics framework under the guidance of fine-grained estimated
correlation information. Specifically, we propose a mean-field
game approach to estimate the dynamic correlation with only
the initial correlation and the destination correlation. We first
carefully craft the cost functions and constraint functions to
model the dynamics of the users in the camera systems, and
formulate the correlation estimation problem as a tracking-cost
minimization problem. Considering the enormous number of
interactions embedded in the problem, we further reformulate
the proposed problem by introducing the correlation as the
mean-field term. Given the complexity to solve the equilibrium,
we adopt a G-prox primal-dual hybrid gradient algorithm to
solve our problem efficiently. Consequently, the correlation from
the initial to the destination can also be inferred over time.
Extensive experiments on a real-world dataset demonstrate that
our adaptive cross-camera video analytics framework based on
fine-grained correlation can reduce the overall workload by 36%
in general. For queries with a large searching space, the overall
workload reduction can even be reduced by 40 times with 6%
precision improvement.

I. INTRODUCTION

With the advancement of computer vision techniques and
the wide deployment of cameras, video analytics has been
applied in a wide range of industrial verticals. It is estimated
that about 130 million surveillance cameras are deployed
in US, generating over 10 billion hours of video data per
week; even one camera can generate hundreds of gigabytes
of data [1]. Cross-camera video analytics refers to associating
and tracking targeted objects across multiple cameras. Cross-
camera tracking tasks can be widely found in applications
like transportation, retailing, public security, etc [2], [3]. For
example, in AMBER alerts, law enforcement has to search
through video footage from thousands of cameras to locate
the suspected vehicles or person [4].
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Existing studies on video analytics mainly focus on analysis
of a single stream [5], [6], [7], or handling the resource man-
agement problems in the analytic systems [3], [8]. They mostly
ignore the content correlation among networked cameras, and
either treat each stream as an independent entity or focus on
the exploitation of inter-frame correlation via frame sampling.
For cross-camera video analytics, as the objects move across
cameras, knowing the temporal and spatial correlation between
cameras is extremely helpful to perform quick and cost-
effective searching, since objects of interest in real world only
appear in the view of certain cameras at certain given time
[9].

Given the objects of interests in a multi-camera system, the
spatial correlation is commonly defined as the probability dis-
tribution of these objects’ appearance in the field of the desti-
nation cameras from the source cameras. Correspondingly, the
temporal correlation approximates the objects’ travelling time
distribution from the source camera to the destination camera.
Such correlation information has mostly been investigated on
improving object tracking accuracy in computer vision field
but without detailed study on its implications of workload
reduction [10], [11], [12]. Recent efforts in the distributed
system field reveal the benefit of these spatial and temporal
correlations in reducing the searching cost given the growing
need for cross-camera video analytics [9]. In these studies,
the correlation is first generated from a short offline profiling
period, and is then used to guide the searching in all the
following videos in the system. Frames from uncorrelated
video sequences with respect to both spatial and temporal
dimensions, like distant cameras in short periods, are filtered,
and only those highly correlated cameras in the most likely
time period are searched.

However, prior work all assumes the correlation is stable
over time, which has never been verified yet. In fact, intu-
itively, the spatial correlations can be dynamic since the direc-
tion of traffic flow in real-life is time-dependent. For example,
for cameras watching over an urban-rural combination, in the
morning rush hour, most of the vehicles passing by will be
driving in the direction of the city, while in the evening rush
hour, more vehicles are heading out of the city for home. The
possible changes in the objects’ spatial direction over time also
imply the changes of spatial correlation over time.

Given such an observation, when performing searching
tasks on past periods, one primitive approach to keep track
of the drift in the correlation between cameras is to keep
dividing video footage into small periods, and use a portion of



historical data in every period to generate the corresponding
models. With the help of fine-grained correlations, fewer
searching needs be triggered on edge cameras and overall
searching cost can be reduced. However, naively generating
extra correlations in this way introduces substantial expenses.
Frequent profiling makes the model construction cost difficult
to be amortized in the following limited time. Without frequent
profiling, resorting to data-driven approaches to approximate
the correlation changes also becomes infeasible due to the
limited training samples.

In this paper, we propose an adaptive cross-camera video
analytics framework that leverages the dynamic correlation es-
timation to accelerate cross-camera searching. We first conduct
an empirical analysis on real-world dataset to confirm the
dynamics of the spatial correlation model and the potential
benefit in searching cost reduction if an adaptive correlation
model is adopted. We then carefully craft the cost model and
system constraint models to describe the real-world dynamics.
The enormous number of interactions among users in the cam-
era systems make the ideal object tracking problem extremely
challenging and costly to be solved. To handle this complexity,
a novel MFG framework is leveraged to transform this cross-
camera tracking problem to the cost minimization problem
subject to the system dynamics. Our desired correlation el-
egantly emerges as an approximation to the target camera’s
density field in the MFG problem. We then propose a G-
prox primal-dual hybrid gradient algorithm (PDHG) to solve
the problem efficiently. The resulting algorithm calculates
the fine-grained correlation based on the mere knowledge
of the starting correlation and the destination correlation,
greatly reducing the profiling cost. To our best knowledge,
this is the first work to study the adaptive cross-camera video
analytics problem, and the first effort to answer the correlation
estimation with the help of MFG theory. Our contribution can
be summarized as follows:

• We reveal that the spatial correlation changes over time
and identify the significant potential in leveraging such a
dynamic correlation based on a thorough data analysis.

• A novel MFG framework is applied to transform the
ideal tracking problem into a mean-field game, with the
desired correlation information automatically revealed as
the mean-field term.

• Given the complexity of solving the problem, we propose
an efficient G-prox primal-dual hybrid gradient algo-
rithm with the linear computation complexity and grid-
independent convergence rate.

• The extensive experiments on a real-life dataset demon-
strate that our adaptive correlation can reduce 36% work-
load in general, and achieve a 40 times workload reduc-
tion and a 6% increase in precision for larger queries.

The rest of the paper is organized as follows. In Section II,
we introduce the general background for cross-camera video
analytics and correlation model. In Section III, we conduct
data analysis to confirm that the correlation is dynamic in
practice. In Section IV, we formally present the cost models

and formal formulation. In Section V, we reformulate the
problem using the framework of the mean-field game and solve
it using a primal-dual approach. In Section VI, performance
evaluation is conducted. Related work is reviewed in Section
VII, followed by the conclusion in Section VIII.

II. BACKGROUND AND PRELIMINARIES

In this section, we first introduce the general background
for cross-camera video analytics. We then present the defini-
tion, construction, and usage of both spatial correlation and
temporal correlation models in cross-camera video analytics.

A. Cross-camera video analytics

A general camera system in practice consists of a large
number of smart cameras responsible for video capturing
and processing, as well as a central server coordinating the
cross-camera tracking and searching tasks. Previously, when
the server wants to retrieve the path of a target from a
given camera, the central server will trigger searching on
all edge devices simultaneously once the target disappeared
from source camera. While searching for all cameras brings
substantial computation cost, recent studies and systems start
to leverage the correlation among different cameras to greatly
reduce the searching space, and thus reduce the searching
cost. Specifically, the central server will maintain a correlation
model capturing the objective movement correlation among
different cameras. When a target disappears from the current
known camera, matching tasks will only be triggered on those
correlated cameras indicated by the correlation model.

B. Correlation model: definition, construction, and usage

Definition. Correlation models can defined and constructed
from two perspectives: spatial and temporal. A spatial corre-
lation model captures the historical movements of objects in
a camera system and describes the possibilities of an object
going directly to all other destination cameras from a certain
source camera. If an object goes to B from A via C, this
trajectory is counted as the movement from A to C, and from
C to B, separately. The spatial correlation model S(cs, ct) is
defined as the ratio of the number of objects that appear on the
target camera (ct) first after appearing from the source camera
(cs) to the total number of people who appear on the source
camera. In other words, S(cs, ct) approximates the probability
of objects that leaves cs entering ct directly.

A temporal correlation model describes the relationship
among different cameras with respect to traveling time. The
temporal correlation model T (cs, ct) is quantified as the num-
ber of people from source camera to target camera in a given
time period ([t1, t2]) divided by the total number of people
in the same trajectory. Namely, it approximates the traveling
time distribution in the camera system from a source camera
to a destination camera.

As an example, Fig.1 presents the temporal and spatial
correlation model constructed from a 6-camera system [13]. In
the spatial correlation model, each row in the model represents
the source camera while each column is a destination camera.
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Fig. 1. Overall spatial correlation and a specific camera’s temporal correlation
from a 6-camera system

The “Exit” entry here represents the probability of the object
leaving the current monitoring area and never showing up
again. Fig. 1(b) is a temporal correlation model constructed
for camera 1 using the same portion of data. As can be seen,
once an object leaves from camera 1 to camera 2, it will most
likely appear at 4 different time intervals.

Construction. During the initial correlation construction
phase, edge cameras are responsible for objects detection and
the corresponding feature extraction. Every time a new feature,
representing an object, is extracted in an edge camera, it will
be matched with a local feature gallery to test whether this
object has been shown before. If not, the camera will send
a message tuple in form of (fi, ti, ci) to the central server,
where fi is the feature of a locally unknown object, ti is its
detected time, and ci is the detected camera-id. In practice,
we reduce the communication cost and preserve privacy by
only uploading the feature extracted by a local neural network
running on edges. The central server maintains a global gallery
to store the features of shown objects in the camera system;
each object has its list of their shown-up time and camera.
Every message tuple sent from edge to the center is compared
with features in the gallery. If matched, the detection time
and camera will be added to the corresponding object list
accordingly. If not, a new object will be added to the global
gallery. With all the data pairs detected from the edge devices
in the model generation phase, the central server is able to
extract the trajectory of objects moving through the camera
system, and then construct the spatial and temporal correlation
in the past periods based on the definitions we described
before.

Usage Given a query request for an object, with the help of
the spatial correlation model, when an object of interest leaves
its current camera cs at tc, we can just trigger searching tasks
on those target cameras ct with spatial correlation S(cs, ct)
greater than a threshold Sth, and omit those frames on the
uncorrelated cameras. This avoids extra searching on all edge
devices and greatly saves the searching cost with respect to
the camera system. Furthermore, by utilizing the temporal
correlation of camera pairs, we can narrow down the searching
time range in target cameras. With the temporal correlation
T (cs, ct), we can obtain a (1−Tth) percent confidence interval
for the passage time [t1, t2] between source (cs) and target

camera (ct) and only search frames and object on ct in
duration [tc+ t1, tc+ t2]. If the system failed to find an object
of interest at first correlated filtering tracking, you may choose
to trigger a search that relaxes the threshold Tth and Sth or
a global search for the remaining frames depending on your
system’s application and needs.

For example, given the spatial-temporal correlation model
in Fig.1, the spatial threshold Sth = 0.1, and the temporal
threshold Tth = 0.05, for a query object first shown up in
camera 1, we can just trigger searching tasks on camera 4,
5 and 6, but not 2, 3. Because S(c1, c2) and S(c1, c3) are
below the threshold and thus being regarded as uncorrelated
cameras. Based on the temporal correlation model, we can
further narrow down the searching time from the total time
span to a specific time range. Under the given threshold, we
only need to examine time intervals 0 to 11 on camera 5 since
95% of objects’ traveling time from camera 1 to camera 5 are
covered by these periods.

III. DATA ANALYSIS AND MOTIVATION

A. Spatial correlation model evolves over time

Existing studies on correlation-supported cross-camera an-
alytic systems usually calculate the correlation model offline
and use the resulting model through the entire online analytic
part. Since the objects moving speeds usually are within a
certain range, the temporal correlation over a representative
period should captures the temporal pattern of the objects
intuitively. However, how representative the spatial correlation
model is remains unknown and has not been studied before.
Instinctively, such correlation can also be affected by traffic
tides associated with time and the environment. For example,
suppose that camera A is in the dormitory building, camera B
is in the cafeteria, and camera C is in the academic building.
During class time, there may be more people following the
trajectory of A to C to attend classes. But during dinner time,
more people will go from A to B for their meals. In order to
verify this assumption, we use the Market-1501 dataset1 and
evenly divide the time range of the dataset into 4 consecutive
periods. The resulting spatial correlation models for these four
periods are presented in Fig.2. As can be seen, the overall
correlation model indeed changes over time. Take camera 5 as
an example, the most correlated camera changes from camera
1 in period 1 to camera 3 in period 4. However, camera 3 is not
even being regarded as correlated with camera 5 in period 1
if the system operator sets the filtering threshold Sth > 0.033.

We further dive into this multi-camera system and extract
the number of visits from camera 1 to all other source cameras
for 4 consecutive periods in Fig.3. We can see that the amount
of visits from camera 1 to camera 6 is the second-highest
in the first period, but nearly no people go through this
path in periods 2, 3, and 4. This also demonstrates that the
dynamics of correlation in the camera network are significant.
Consequently, only using the correlation relationship generated
from a specific period can not be representative enough and

1Details about this dataset can be found in the evaluation section.
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Fig. 2. Spatial correlation in four consecutive periods

may even be counterproductive. Note that we have not found
significant changes in the temporal correlation between cam-
eras because of the fixed distance between camera locations
and the similar range of objects’ walking speed. Therefore, in
the following paper, the correlation model refers to the spatial
correlation model, if not specified explicitly. Our empirical
analysis thus reveals the temporal property within the spatial
correlation model.

B. Potential of a dynamic correlation model

Previous analysis reveals that the spatial correlation model
is highly dynamic. If we use the obsolete spatial correlation
to guide query search for the later periods, the result can be
easily sub-optimal and even becomes worse. Conversely, if
we can dynamically update the spatial correlation model, and
use the corresponding model to guide the query, the searching
space can be fully reduced. In order to study the potential
benefit of applying a dynamic model, we conduct a posterior
cross-camera searching task based on the correlation models
constructed under various time granularity. Namely, we divide
the dataset into periods with different lengths and generate
the corresponding spatial correlation in each period. We then
trigger tracking on the same set of random query objects
guided by the corresponding spatial correlation we have for
that period. We calculate the cost ratio, defined by the value
of the searching cost based on global searching divided by
the searching cost aided by the dynamic models. The result
is shown in Fig.4. We can find that if we use the whole
dataset to generate a general global model, the tracking cost
can be reduced by 3×, as indicated by the first point on the
left. However, the cost saved can even reach 70× if we had
the guidance from the corresponding fine-grained correlation
model. The results demonstrate the significant potential of
having such an accurate model that captures the correlation.
It is also worthwhile to mention that there is a saturation
point to the breakdown of time granularity with the cost ratio
decreasing from 69.3× to 67.6× when the time granularity
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changes from 14 to 16. This is due to the intrinsic limitation
of such a statistical model construction. If the profiling period
is too short, and the number of objects that emerged in a period
is too small, the generated correlation lacks its statistical
representativeness, leading to more uncertain results.

Though our presented empirical analysis so far has demon-
strated the significant benefit of adopting a dynamic model, the
model construction cost is extremely expensive in practice.
Naively dividing the examined period into finer granularity,
and constructing fine-grained models based on each offline
sub-period can lead to significant profiling costs. Furthermore,
the construction of the correlation model relies on actually
conducting object tracking tasks, which is exactly what we
want to avoid as much as possible under the help of the
correlation model. In other words, the approach towards model
construction is in nature conflicts with the goal of searching
for fewer frames. The more frequently we conduct offline
profiling, the less gain it helps to our systems. Therefore,
we need a more efficient approach to construct the dynamic
correlation models in order to fully unleash the power of
correlations.

IV. SYSTEM MODELS AND PROBLEM FORMULATION

A. System model

We consider a multi-camera system responsible for video
processing, as well as a central server coordinating cross-
camera object searching tasks. We have an n-camera system
deployed in a two-dimensional monitoring area S, with K
users/agents traversing within the area. T is the time range



of the whole tracking task. The set of agents appeared in the
camera system is denoted as A = {a1, ..., ak, ..., aK} where
ak denotes the kth agent. We denote the physical location
for all agents at time t as X = {x1(t), ..., xk(t), ..., xK(t)}
where xk(t) ∈ R2. Let V = {v1(t), ..., vk(t), ..., vK(t)} where
vk(t) is the traveling speed for agent ak at time t. The
cross-camera objects tracking aims at identifying the next
frames containing a queried object and its location based on
a tracker. Our tracker outputs a predicted position for all
agents at time t as Y = {y1(t), ..., yk(t), ..., yK(t)}, with
the corresponding speed V̂ = {v̂1(t), ..., v̂k(t), ..., v̂K(t)}. The
overall system workflow is described in Fig.5: (1) As describe
in Construction part of section II-B, edge cameras uploading
message tuples containing detected feature to center server;
(2) With all information from the edge, center server extracts
the movement track of each person and then construct the
temporal and spatial correlations; (3) An analytic agent is
interested in querying the movement of a target disappear
from c1 at t0; (4) The central server conducts spatial and
temporal inferences aided by correlations generated at step 2,
and triggers tasks to edge cameras accordingly; (5) The edge
camera which identifies the target report back to the central
server and then to the analytic agent.

B. Tracking cost modeling

We model the tracking cost with respect to the individual
agent from two aspects: the speed deviation cost and the
destination prediction cost.

Speed deviation cost. In practice, the traveling speed of
agents usually falls within a certain range. The speed deviation
cost aims at quantifying the fluctuation of agents’ speed in the
system. The more deviated an agent from the normal speed,
the harder it is for us to construct a stable correlation model.
To model the degree of difference from our predicted speed
for agent and the system average speed, we use the l2-norm
function to simulate the cost across all agents,

J1 = α1
1

K

K∑
k=1

∫ T

0

||v̄k(t)||2dt, (1)

v̄k(t) = v̂k(t)− v̄, (2)

where v̄k(t) is the deviation of predicted speed from system
actual average speed accordingly. α1 is the coefficient to
weigh the speed deviation cost and facilitate key parameters
comparison.

Destination prediction cost. The destination prediction cost
is the sum of the distance of agents between their actual
target location and a predicted one at time t, which measures
how well our predictions of agent dynamics simulate the real
situation, i.e.,

J2 = α2
1

K

K∑
k=1

dis(xk(t), yk(t)), (3)

dis(x, y) =

{
0, x = y

1, x ̸= y,
(4)

where dis is a boolean function return whether two inputs
are identical, xk(t) is the real position of agent k at time t and
yk(t) is the predict position of agent k at time t. Similarly, α2

is a coefficient to weight the destination prediction cost.
System constraint. We introduce the kinematic modeling

for a single user as an epitome for constraint at system scale,
which is given by

dxk(t) = vk(t)dt (5)

for k = 1, 2, ...,K. In addition, we have the information for
the initial position for every agent, that is

xk(0) = xk0 (6)

for k = 1, 2, ...,K.

C. Problem formulation

With the system cost functions and constraint functions
defined above, we intend to find a tracker with minimized
tracking cost subject to the user dynamics. Formally, our
problem becomes

min J = J1 + J2 (7)

s.t.

{
C1 : dxk(t) = vk(t)dt,

C2 : xk(0) = xk0,

where C1 describes the kinematic constraint for all agents, and
C2 is the the initial condition regarding agents’ positions.

V. MEAN-FIELD GAME APPROACH

A. MFG framework

With the enormous number of interactions among agents
in real-world systems, solving the previous problem becomes
extremely challenging and costly. The mean-field theory spec-
ifies a very efficient way to deal with a wide variety of
situations where there are too many particles contributes to the
dynamics or equilibrium by modeling the interactions between
all particles through constructing a good approximation of the
situation by introducing a “mean-field term” m as a mediator
for describing inter-particle interactions.

Mean field games study the interaction of individual agents
with others by modeling the interaction and system dynam-
ics through two coupled partial differential equations: the
Hamilton-Jacobi-Bellman (HJB) equation and the Fokker-
Plank-Kolmogorov (FPK) equation, where the HJB equation
is the optimal condition for the system and FPK equation
studies the system dynamics. The goal of MFG is to find
out the Nash equilibria in games modeled by controlled
stochastic dynamical systems that involve a great number of
asymptotically negligible players.

A mean field game consist of large number of homogeneous
agents A = {a1, a2, ..., ak} and want to derive an optimal
control V = {ν1, ν2, ..., νk}. The cost for agent ak can be
formulated as

Jk(ν(t)) = E
[ ∫ T

t0

C(ν(t), ρ(t))dt+ U(ρT , ρ(T ))
]
, (8)



where ρ(t) is the mean-field term at time t, C(ν(t), ρ(t))
measures the cost of moving at a given input and U(ρT , ρ(T ))
determines the terminal cost.

MFG first defines the value function

ϕ(t, x) = inf
ν(t)

{
E[
∫ T

t0

C(ν(t), ρ(t))dt+U(ρT , ρ(T ))]

}
. (9)

The optimal control ν(t) can be derived by solving the
following partial differential equations (PDEs).

−∂tϕ− β∆ϕ+H(∇xϕ) = 0, (10)

−∂tρ+ β∆ρ+∇x · (ρH ′(∇xϕ)) = 0, (11)

ρ(0, x) = ρ0(x), ρ(T, x) = ρT (x), (12)

where β := 1
2σ

2 is the viscosity term, and the Hamiltonian
function H is a convex function with respect to ϕ.

B. Problem reformulation based on the MFG framework

As we try to formulate our system cost in an individual
perspective, we find that accurately tracking the state of every
object in a large-scale system is expensive and not practical.
Thus, we try to simulate the system dynamics by applying
MFG theory. The key technique of MFG that approximate
the states of agents with the density field of the agent groups
comes across our definition of spatial correlation model. We
can model each user as an agent, and regard the target camera
distribution for a certain camera as the approximation to the
mentioned density field. The transformation is valid because
the correlation indeed is the outcome of inter-user interactions
and the probability of the user leaving one camera and entering
any other cameras (exit included) also sums up to one.

Since in practice, users with location x are captured by the
cameras and become an object in the cameras’ frames. Each
camera also covers a wide region, rather than a single location
point. We thus define the agent states X̂ = {x̂1, x̂2, ..., x̂n},
adapted from X, where n is the number of cameras in the
system. Every x̂i ∈ X̂ represents the cover range of camera
i’s sensing area. Our problem related to tracking the users’
location thus can be transformed to tracking of shown camera
x̂i.

With the introduced framework, we can define the running
cost and termination cost in our MFG as follows:

Running cost. We formulate the running cost similar to (1).
However, when the amount of agents is too large, checking all
of their destinations and measuring their speed is expensive in
cost, so we can approximate their next shown-up camera by
the spatial correlation ρ(t, x̂) that served as the mean-field
term here. Also, the speed of the agents at time t can be
approximate by current location x̂i as v(t, x̂i), i.e.,

J̄3 = α1

∫ T

0

Ex̂(t)∽ρ(t)||v(t, x̂)||22dt

= α1

∫ T

0

∫
Ω

ρ(t, x̂)||v(t, x̂)||22dtdx̂

= α1

∫ T

0

∫
Ω

||m(t, x̂)||22
ρ(t, x̂)

dtdx̂,

(13)

m (t, x̂) = ρ(t, x̂)× v(t, x̂). (14)

Here the m(t, x̂) is the momentum of agents flow at camera
x̂ at time t, Ω is the cover range of camera sensing area. And
T is the length of the inspection time range.

Termination cost. The termination cost becomes the sum
of distance of agents between their actual target camera and a
predicted one at time T .

J4 = α2
1

K

K∑
k=1

dis(x̂k(T ), yk(T )), (15)

where yk(t) is the real destination camera for agent k.
The deficiencies emerge when the number of agents is

enormous and costly to keep track of individually. Instead, we
can use the mean-field term ρ(t, x), which is the distribution
of target cameras for camera x. Thus, the cost can be con-
veniently determined by the distance between our prediction
distribution at time T and the actual distribution. In order to
make our model accurate and instructive, our terminal cost
function imposes more severe punishment as the deviation
is larger. We use the Kullback-Leibler (KL) divergence to
measure the distance between distributions.

J̄4 = α2

∫
Ω

ρ(T, x̂)log(
ρ(T, x̂)

ρT,x̂
)dx̂, (16)

where α2 is the significance coefficient, ρ(T, x) is the pre-
dicted correlation at time T and ρT is the true correlation. n
is the number of cameras in this system.

With the above-defined running cost and termination cost,
we have our overall combined form cost function J̄

J̄ = J̄3 + J̄4. (17)

Constraint function. Here, we define the constraint func-
tion in our MFG setting with the help of the FPK equation.
The system constraints mainly consider about the conservation
problems because the distribution of the agents must sum to
one. Assume we know the velocity field v here and the initial
distribution ρ(0, x̂) is given, we can model the process of the
distribution evolution as time goes forward by solving the FPK
and end up with the advection equation which is the PDEs that
governs the motion of a conserved scalar field as it is advected
by a known velocity vector field.

∂tρ(t, x̂) +∇ · (ρv)(t, x̂) = 0, (18)

∂tρ(t, x̂) +∇ ·m(t, x̂) = 0, (19)

where ∇ · m(t, x̂) can be seem as the the dynamics moving
out of position x̂ at time t.

Correspondingly, we present our cost minimization problem
with the help of mean-field term as follows:

min J̄ = J̄3 + J̄4

s.t. ∂tρ(t, x̂) +∇ ·m(t, x̂) = 0,
(20)

where the boundary condition for distribution ρ is known as ρ0
and ρT . The objective means that in order to gain the optimal
transport from initial spatial correlation to terminal one, the



system needs to minimize the running cost and termination
cost as possible. The constraint means that the changing rate
of target camera distribution is equal to dynamics moving out
of the current camera at any position.

C. A G-prox Primal-Dual Solution

The transformed tracking cost minimization problem con-
sists of two coupled PDE equations constrained with a partial
differential equation and boundary conditions, which is very
complex to solve. There is no closed-form solution to such
a complex problem, and only numerical algorithms [14], [15]
or learning-based algorithms, e.g., the Generative Adversarial
Network (GAN), exist. However, the convergence of the
existing numerical algorithms is usually O(n2) or O(n3) (n is
the grid size). The training time of learning-based algorithms
can be long(usually several hours) and requires a substantial
amount of data. Therefore, we adopts a G-prox PDHG algo-
rithm (PDHG) introduced in [16], whose complexity is linear
with the number of grids, and convergence rate is independent
of grid sizes. PDHG converts a minimization problem into a
saddle point problem so that we can find the optimal solution
easier. In the implementation, we discretize the coverage of
camera system Ω into a Nx×Ny grids and overall video time
span T into NT points. Our PDHG thus is an iterative algo-
rithm that updates (ρni,j)

k+1, (mn
i,j)

k+1, ρ(T, x)k+1
i,j , (Φn

i,j)
k+1

and (λi,j)
k+1 in every iteration k for all t, i and j according to

the defined updating policy. Thus, the computational complex-
ity of every iteration is O(Nx×Ny×Nt), which is linear to the
total number of grids in our MFG problems and independent to
the number of agents in the system. Furthermore, according to
[16], the step sizes of our master problem and dual problem are
set to satisfy the convergence condition. Namely, if there exist
an optimal solution (ρni,j)

∗ in our problem, then the numerical
solution we get will converge to that solution.

VI. PERFORMANCE EVALUATION

A. Experiment setup

Dataset. We use Market-1501 dataset [17] to simulate a
real-world camera system in our experiment. This dataset
was captured in front of a supermarket on the campus of
Tsinghua University by 5 high definition cameras and 1
standard definition camera. In total, 1501 pedestrians, 32,668
detected pedestrians are captured. We randomly select 750
objects as the queries for the testing set.

Parameter setting. The default time granularity Nt = 14.
We set Tth = 0.1 and Sth = 0.1 in our experiments.

Benchmarks. We compare our MFG approach with four
other benchmarks.

• Global search (Global): When the query instance leaves
the current camera, searching jobs are triggered on all
other edge cameras from now on until the target is found
or the searching time exceeds the limits.

• Static correlation (Static): When the query instance leaves
the current camera, searching jobs are triggered on those
spatial-correlated cameras based on the static correlation
model.
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Fig. 6. Results of MFG generated model vs. other benchmarks

• Linear adapted correlation(Linear): Linear adapted corre-
lation approach enhanced the static correlation approach
by assuming the linear growth rate from the correlation
of first period to the correlation of last period.

• Ground truth dynamic correlation (Dynamic): The cor-
relation model is generated from all objects of each
period, which reflects the actual movement of objects.
This hindsight-based approach sets an upper limit for all
approaches.

Metrics. We define the following three metrics to examine
the effectiveness of different searching algorithms.

• Computational cost: Summation of all the frames being
processed at the edge cameras for all queries.

• Precision(%): Ratio of number of correctly matched ob-
jects to number of queries that retrieved objects.

• Recall(%): Ratio of number of correctly matched objects
to number of total queries.

B. Evaluation results

Fig. 6 shows the results of comparison among our method
and all other bench marks.

Computational cost. The global searching method exam-
ined 1,343,345 frames to complete the cost. In comparison,
our MFG methods took only 896,273 frames, which is 36%,
4.2%, and 4.4% less than the global method, linear, and static
method, respectively. Compared with the posterior dynamic
method that builds upon extensive profiling, our method con-
sumes almost the same amount of frames with drastically
less generation cost. This indicates that the cost functions
and constraint functions defined under our setting for MFG
are valid and practical; Our model successfully captures the
system dynamics with only the initial and terminal correlation.

Recall and precision. We noticed that all benchmark
methods as well as our MFG method have a certain decline
in recall rate compared to the global searching method. Such
decline is reasonable because as all these methods excluded
those frames in uncorrelated cameras and uncorrelated time
periods, its ability to retrieve objects from all video sequences
weakens. Recall rates for our MFG methods only drop 3%
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Fig. 8. Results of MFG generated model vs. other benchmarks in queries
that need to process more than 100 frames

compared to the ground truth dynamic method. Our method
has less than a 2% drop in precision compared to the ground
truth dynamic method and outperforms the linear and static
approach by 1% and 2%.

Heavy hitter analysis. While some may argue that the
saving in the computational cost of our model is not enough
for compensation of drops on recall and precision, our meth-
ods show its aggressiveness when the frames needed to be
processed in order to match the object is relatively large.
We examine the distribution of processed frames for the
global searching method among 750 queries in Fig. 7. As
can be seen from the figure, more than half of the quires
take more than 100 frames to search for the global searching
method. Studying these quires with a larger searching range
is meaningful since these queries take up 99.3% of all the
computational cost. So we perform identify these heavy hitter
queries requiring more than 100 frames by the global searching
method and reveal the savings of our approach for these
heavy hitters in Fig. 8. As can be seen from Fig.8, the global
searching method processed nearly 40× more frames than our
method. The static and linear adapted method processed almost
3× more frames than our method. Surprisingly, The precision
of our method exceeds the global searching by 6%, showing
its ability to cross out irrelevant frames.
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Fig. 10. MFG approaches under different time granularity Nt

Sensitivity of time granularity Nt. In Fig.9, we show
the comparison results of the dynamic and MFG methods
at different time granularities Nt. With the results, we find
that, in terms of each metric, the searching tasks guided by
the prediction models we obtained through MFG are able to
obtain a performance similar to that of the global generated
dynamic models. For all three metrics, the ratio for the value
of the dynamic approach to the value of the MFG approach is
between 92.3% to 109.3%. And the greatest deviation from the
dynamic method is 8.6%, 5.9%, 7.3%, for precision, recall, and
precision separately. This indicates that the models predicted
by our MFG method simulate the real situation well. Obtaining
such a realistic model with a significant reduction in model
generation cost demonstrates the advantages of our approach.

Another advantage of the MFG model is its ability to gener-
ate a more fine-grained model than the global dynamic model.
Fig.10 compares the performance of the MFG-generated cor-
relation model of different time granularity. From the results,
we find that tracking guided by model of Nt = 32 or Nt = 24
search around 600k frames less than that of Nt = 8 and
Nt = 16 with 5% and 7% increase in precision separately.
We can find that the searching cost is apparently reduced by
using the correlation between cameras.



VII. RELATED WORK

Current cross-camera video analytics studies can be catego-
rized into two types: reducing the individual cost at the edge
camera level [5] [6] [7] and reducing overall overhead through
system coordination [3], [8], [9]. Focus in [5] uses cheap
CNN at the edge and searches only top K matches to lower
respond latency, which compensates for the lower accuracy.
Optasia [3] performs automatic parallelism with respect to
multiple tasks from a single camera as well as sources from
all cameras. Although the above methods provide remarkable
efficient solutions, all of them neglect the inherent correlations
between edge cameras. One recent work in [9] exploits cross-
cameras correlation with respect to both spatial and temporal
to reduce tracking cost by filtering out uncorrelated frames.
However, it fails to conduct complete analysis on correlation
and just adopts a static model. There are some other works
focus on increasing the tracking accuracy in mutli-target multi-
camera tracking tasks by integrating correlation information in
their system flow [10], [11], [12], but these works focus on
precision improving and shed little light on cost reduction in
cross-camera video analytics, which is the focus of this paper.

As a relatively new concept in game theory, MFG theory,
proposed by Lasry and Lions in [18] and Caines, Huang, and
Malhame in [19], has been applied in many applications in
communications and networked systems. While conventional
optimization models and game theory models struggle with
systems of a large number of agents, MFG theory simplifies
the problem by restating the problem as an interaction of each
agent with the mass of others by introducing a concept of the
mean-field term. Multiple applications have been studied, like
UAV control [20], power control [21], price determination in
the Internet markets [22],etc. To the best of our knowledge,
we conduct the first work that investigates cross-camera video
analytics using MFG theory.

VIII. CONCLUSION

Cross-camera video analytics is a key application in large
scale camera systems that tracks the association of objects
across different cameras. However, searching for correlated ob-
jects across cameras is extremely time and computation costly.
Existing efforts on leveraging spatial and temporal correlations
to help the search relies on the static information, which
is inaccurate and suboptimal. In this paper, we identify the
existence of the dynamic correlation and reveal the potential
benefit in leveraging the dynamic correlation. We then present
the first work to apply MFG to the emerging cross-camera
video analytics applications. Our MFG approach captures
the complex dynamics of the real world system, and can
generate fine grained correlation models with a small number
of samples. Extensive experiments on real-world dataset reveal
that our method significantly reduces the number of frames to
be processed with almost equal precision performance.
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