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A B S T R A C T

Advanced human-robot interaction (HRI) is essential for the next-generation human-centric manufacturing mode 
such as “Industry 5.0”. Despite recent mutual cognitive approaches can enhance the understanding and 
collaboration between humans and robots, these methods often rely on predefined rules and are limited in 
adapting to new tasks or changes of the working environment. These limitations can hinder the popularization of 
collaborative robots in dynamic manufacturing environments, where tasks can be highly variable, and unfore-
seen operational changes frequently occur. To address these challenges, we propose a co-evolution approach for 
the safe motion planning of industrial human-robot interaction. The core idea is to promote the evolution of 
human worker’s safe operation cognition as well as the evolution of robot’s safe motion planning strategy in a 
unified and continuous framework by leveraging human digital twin (HDT) and mixed reality (MR) technologies. 
Specifically, HDT captures real-time human behaviors and postures, which enables robots to adapt dynamically 
to the changes of human behavior and environment. HDT also refines deep reinforcement learning (DRL)-based 
motion planning, allowing robots to continuously learn from human actions and update their motion strategies. 
On the other hand, MR superimposes rich information regarding the tasks and robot in the physical world, 
helping human workers better understand and adapt to robot’s actions. MR also provides intuitive gesture-based 
user interface, further improving the smoothness of human-robot interaction. We validate the proposed 
approach’s effectiveness with evaluations in realistic manufacturing scenarios, demonstrating its potential to 
advance HRI practice in the context of smart manufacturing.

1. Introduction

Human-Robot Interaction (HRI) is becoming increasingly important 
to manufacturing as human-centric is a pivotal characteristic of next- 
generation manufacturing paradigm such as Industry 5.0 [1]. Unlike 
Industry 4.0, which emphasizes automation and digitalization, Industry 
5.0 extends these advancements by prioritizing human-machine 
collaboration, well-being, and sustainability [2,3]. Advanced HRI 
combines robots’ precision and robustness with human dexterity, 
enhancing collaborative efforts and productivity in manufacturing set-
tings. Although the International Organization for Standardization (ISO) 
has established protocols for HRI safety (e.g., ISO 10,218–2, ISO/TS 15, 
066, etc.), including working distance and force regulations, these 
strategies fall short in dynamic manufacturing environments [4]. For 
example, a flexible assembly line needs to handle products with varying 
specifications, and each assembly process may differ. Emergent issues 
such as mis-installed components, tool failures, or program errors 

require rapid intervention of human experts.
Given these complexities, current research on HRI safety strategies 

focuses on integrating advanced vision, artificial intelligence and 
sensing technologies to enhance the safety and efficiency of HRI [5]. 
Particularly, researchers proposed the concept of mutual cognition to 
enhance the shared understanding and collaboration between humans 
and robots through the system-level integration of various technologies 
[1,6,7]. These existing studies often rely on predefined rules to guide 
human-robot interactions. However, this reliance is limited in dynamic 
and complex environments. Once the interaction rules are set, they often 
hardly update according to new situations or environmental changes. 
This limitation is dangerous when unforeseen issues or changes occur in 
practical scenarios such as changes in worker operating habits or 
equipment positions. If the system cannot quickly adjust and adapt, the 
human’s safety in interaction is highly risky, not to mention the 
decreased interaction efficiency.

To address these issues, we propose a co-evolution approach for the 
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safe motion planning of industrial human-robot interaction. Inspired by 
the co-evolution concept from biology [8], we expect robots can actively 
learn from human behaviors to optimize their operations and get 
continuously evolved safety planning strategies. Concurrently, humans 
can gain a deeper understanding of robot’s working patterns and be-
haviors through interaction, leading to persistently evolved cognition on 
the safe operations in the context of industrial human-robot interaction. 
This bidirectional and collaborative learning strategy allows both 
humans and robots to adapt together to dynamically changing envi-
ronments, thus improving the efficiency and safety of human-robot 
interaction.

The key mechanisms of our co-evolution approach, including infor-
mation sharing and understanding, real-time perception and modeling, 
and dynamic adaptation and learning, are supported by human digital 
twin (HDT) and mixed reality (MR) technologies. Specifically, HDT 
captures and simulates human actions and postures in real time, 
providing detailed information about human operators. This allows ro-
bots to better understand human behavior and adjust their actions 
correspondingly to avoid collisions or other hazardous situations. 
Additionally, HDT provides rich data support for learning-based motion 
planning algorithm, enhancing the system’s adaptability and robust-
ness. Meanwhile, MR allows humans to intuitively view robot status and 
acknowledge its behavior, helping them better understand and antici-
pate robot actions, thereby reducing misunderstandings and un-
certainties in human-robot interaction. The MR system also provides 
operational guidance, assisting humans in performing complex tasks or 
avoiding potential hazards, thereby enhancing their control over and 
trust in the robot system. The main contributions of this study include: 

1. A co-evolution approach for safe motion planning in dynamic 
industrial human-robot interaction environment is proposed. 
Our approach can facilitate the evolution of human worker’s safety 
operation cognition as well as the evolution of robot’s safety plan-
ning strategy in a unified and continuous framework, enhancing the 
adaptability of HRI for complex and dynamic industrial 
environments.

2. A vision-based HDT capturing and modeling method is devel-
oped. This method effectively captures and models human behavior 
with limited computing resources, providing precise human refer-
ence data for human-robot interaction.

3. An HDT-enabled deep reinforcement learning-based motion 
planning method is designed. This method supports robots to 
dynamically adjust their motion paths and adapt to various task 
scenarios, continuously optimizing algorithmic performance through 
learning from past interaction experiences, thereby enhancing their 
ability to handle complex industrial environments.

The rest of the paper is structured as follows: Section 2 reviews 
related work in HRI and the applications of human digital twin and 
extended reality in HRI. Section 3 introduces the overall architecture of 
our approach and explains the key techniques. Section 4 validates the 
performance of the proposed approach with a set of simulation and 
physical experiments. Section 5 summarizes the findings of our study 
and highlights potential directions for future research.

2. Related works

2.1. Safe human-robot interaction

In HRI, safety-oriented robot control strategies mainly include two 
categories: passive and active. For passive robot control, ISO has issued 
two technical specifications, ISO 10,218–2 and ISO/TS 15,066 [4]. The 
former specifies the limits on the power and force of robots, addressing 
dangerous situations when collaborative robots directly contact with 
human operators. The latter defines standards for the motion speed and 
status monitoring of robots to eliminate potential contact hazards.

In contrast, active robot control strategies focus on real-time adap-
tation and planning [9]. The key of safe HRI in active control is adaptive 
motion planning, which allows robots to dynamically adjust their 
movements in real-time based on environmental changes, obstacles, and 
task requirements, ensuring robust and reliable robotic operations [10]. 
For instance, Shaoul et al. [11] proposed a method for accelerating 
multi-robot manipulation planning by reusing online-generated expe-
riences to improve heuristic search efficiency and quality. Feng et al. 
[12] introduced a multi-RRT method combined with information gain 
analysis to enhance exploration quality and adaptability in highly con-
strained settings. Wang et al. [13] presented a real-time motion gener-
ation method using a multi-objective optimization framework with 
relaxed barrier functions to improve the computational efficiency.

Besides the search, sampling, and optimization-based methods 
mentioned above, learning-based methods have attracted considerable 
attention recently, emerging as a class of novel and versatile motion 
planning solutions for robotic systems. Characterized by their high 
adaptability and real-time decision-making ability, these methods 
harness the power of machine learning, particularly imitation learning 
(IL) and deep reinforcement learning (DRL), to model and solve high- 
dimensional, non-linear planning problems that are computationally 
intractable for traditional algorithms [14].

One typical IL-based model is DeepMotion [15], a human-aware 
navigation model that combines convolutional neural networks and 
long short-term memory layers to process laser data for safe navigation. 
Wang et al. [16] proposed a novel imitation learning framework for 
coordinated human-robot collaboration derived from hidden state-space 
models. Zhang et al. [17] introduced a human-robot collaboration 
method based on a human skill imitation model, which utilizes elec-
tromyographic signals and joint angles to directly translate human arm 
forces into robot speed adjustments, enabling the robot to fulfill human 
motion intentions. However, IL depends heavily on high-quality 
demonstration data. Errors, biases, or inadequacies in the training 
data can impair the model’s performance and limit its adaptability to 
unfamiliar environments.

Compared to IL, DRL demonstrates superior capabilities in general-
izing from limited or sparse data and adapting to new environments. 
DRL agents achieve this by interacting directly with environment and 
receiving feedback in the form of rewards or penalties. This process 
enables them to develop robust strategies capable of handling a wide 
variety of scenarios. For example, Sangiovanni et al. [18] proposed a 
model-free DRL method based on the normalized advantage function to 
complete tasks. However, this method only considered collisions be-
tween human and robot end-effector, neglecting human’s potential 
contact with the entire robotic arm. Liu et al. [19] designed a reward 
function-based obstacle avoidance solution using DRL. They introduced 
a reward function optimization method, combining external and inter-
nal reward functions, allowing the robot to dynamically avoid human 
arm. Mohamed et al. [20] proposed a safe HRI method using DRL to 
enhance the intelligence and safety of interaction, providing a system-
atic approach for encoding safety requirements and applicability con-
texts in RL settings. Li et.al. [21] proposed a reinforcement learning 
algorithm for human-robot collaboration, and it only modeled the 
human body as two cylinders, failing to fully capture the complexity of 
human motion.

DRL can effectively enhance a robot’s adaptability and flexibility, 
enabling robots to perform collision-avoidance motion planning effi-
ciently. However, significant challenges remain, including the gap be-
tween simulation and reality, and the complexities of extracting 
accurate environmental information in real-world settings. These chal-
lenges hinder the practical deployment of DRL-based motion planning 
systems. In this study, we expect to utilize human digital twin to train 
and deploy reinforcement learning algorithms. By continuously col-
lecting real-time human motion data, adaptive motion planning algo-
rithms can better learn and evolve, thereby enhancing the performance 
of DRL in dynamic human-robot interaction scenarios.
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2.2. Human digital twin in human-robot interaction

Human digital twin (HDT) is a multidimensional representation of 
human, facilitating bidirectional interaction between the physical and 
digital worlds. In addition to human individuality and characteristics, 
HDT also considers human interactions with other objects, such as ma-
chines and environments, to provide a comprehensive depiction of a 
person. This representation may include various models related to 
interactive attributes, such as motion and perception models. For 
example, external sensors can capture human operational commands to 
recognize human actions and instructions. Simao et al. [22] used 
wearable sensors to identify static and dynamic human gestures. Robots 
receive commands from these human gestures, such as stopping move-
ment, rotating the robot end-effector, and opening/closing grippers. 
Lanini et al. [23] estimated upper body movements from force sensor 
signals as commands to robots. He et al. [24] estimated human lower 
limb motion intentions using surface electromyography signals and 
developed a coupled dynamics model for exoskeleton robot control. To 
ensure human safety, Buerkle et al. [25] used mobile electroencepha-
logram sensors to detect potential emergencies in industrial tasks, such 
as dropped workpieces, crushed workpieces on the workbench, and 
operation malfunctions. Awareness of potential emergencies enables 
robots to quickly take actions to prevent harmful consequences for 
humans. Mohammad et al. [26] studied the application of HRI in dy-
namic environments with moving obstacles/humans using lidars and 
inertial measurement units. Humans and robots were represented by 
capsules, allowing for real-time calculation of the minimum safe 
human-robot distance.

Although wearable sensors have been widely recognized for their 
accuracy in posture capture, they pose several challenges in practical 
industrial applications. Firstly, wearing these sensors can be uncom-
fortable for workers and cause fatigue, especially during long hours of 
work. Secondly, deploying these sensors incurs high costs, and limited 
noise immunity and data processing speed. Moreover, in actual 
manufacturing workshops, wearing sensors may affect the operational 
flexibility of workers and increase the complexity of maintenance and 
management. To overcome these issues, another research trend is to 
utilize computer vision technology to non-invasively analyze human 
posture and actions through RGB or depth cameras. Classic methods 
include the work of Liu et al. [27], in which RGB-D sensors and deep 
learning models are utilized to accurately capture human skeletal 
posture and spatial occupancy, thereby achieving real-time collision 
avoidance in HRI systems. Parsa et al. [28] proposed a spatiotemporal 
convolutional neural network for recognizing human behaviors and 
associated ergonomic risks from RGB-D video streams. Fan et al. [29] 
proposed a method for constructing digital humans, which while 
capable of recognizing various human actions, can be further improved 
to meet real-time modeling requirements in complex human-robot 
interaction scenarios. Yi et al. [30] reported a vision-based digital 
twin system for human-robot collaborative assembly primarily focusing 
on human skeletal recognition, but did not achieve accurate 3D human 
pose estimation.

In summary, existing computer vision methods often struggle to 
ensure real-time and accurate human modeling under limited compu-
tational resources. Additionally, they fail to effectively integrate human 
models with safe motion planning. To overcome these limitations, we 
expect to enhance human state perception to ensure real-time and 
effective human recognition in dynamic, resource-constrained sce-
narios. Additionally, we plan to advance the training of motion planning 
algorithms with HDT, thereby improving the overall effectiveness and 
safety of HRI.

2.3. Extended reality in human-robot interaction

Extended reality (XR) technology encompasses augmented reality 
(AR), virtual reality (VR), and mixed reality (MR), offering a suite of 

capabilities that integrate virtual and real-world experiences. AR dis-
plays virtual information in the real environment, enhancing user’s 
perceptional dimension of reality. VR generates a completely virtual 
environment, isolating the user from the physical world. MR combines 
elements of both AR and VR, enabling human’s interaction with both 
virtual and real-world objects.

In manufacturing, the immersive characteristics of VR can signifi-
cantly reduce manual workload and enhance information processing 
efficiency. For instance, Galambos et al. [31] demonstrated high-fidelity 
virtual collaboration for the design, programming, and orchestration of 
heterogeneous manufacturing systems through VR-powered remote 
collaboration. Vogel et al. [32] introduced a projection- and 
camera-based method to visualize rectangular safety zones on the floor 
for humans during human-robot interaction.

With advancements in vision technology, current AR/MR devices 
possess improved computational capabilities and flexible deployment 
options, extending their use beyond mere visualization and monitoring 
[33]. For example, Hietanen et al. [34] developed a shared spatial 
awareness model to compute the robot’s workspace, presenting it 
through AR glasses in the form of 2D projections and 3D models. 
Papanatasiou et al. [35] proposed an AR-based human-robot collabo-
rative assembly system that utilizes visual and auditory signals to warn 
operators of potential risks. Siew et al. [36] introduced haptic support to 
enhance AR system interaction, combining visual, auditory, and tactile 
feedback to provide comprehensive maintenance information and in-
structions, thereby improving user efficiency and safety. Jost et al. [37] 
suggested an AR-based human-machine safety interaction method for 
factory logistics, enabling AR glasses to inform humans about the loca-
tions of nearby robots in automated warehouses. Beyond visualization 
and monitoring, AR can also serve as a perception and control device for 
hazard prediction and management. Li et al. [6] utilized the sensing and 
computational capabilities of AR head-mounted displays (HMDs) to 
assist in digital twin (DT)-based collision detection and path planning. 
Similarly, Li et al. [38] proposed a human-robot collaboration (HRC) 
safety control framework that leverages VR and DT simulations along 
with vision-based human-robot distance perception to ensure human 
safety during the design phase.

Due to its powerful virtual and real interaction capabilities, inte-
grating MR technology into HRI has significant potential for enhancing 
the safety, efficiency, and user experience of interaction. For instance, 
Choi et al. [39] introduced a novel integrated MR system for 
safety-aware HRI, utilizing deep learning and DT. This method accu-
rately measures safety distances through robot digital twins and 3D 
offset human skeletal models, providing real-time MR-based task assis-
tance to human operators. Su et al. [40] proposed a mixed reality in-
tegrated 3D/2D vision and motion mapping method for immersive and 
intuitive remote operation of complex mobile manipulators. Khatib et al. 
[41] suggested a multi-sensor control system for safe, non-contact 
human-robot collaboration, coordinating constrained motion tasks 
through a mixed reality interface.

While prior research has made significant progress in the field of 
industrial human-robot interaction, it has generally not fully considered 
the enhancement effects of HDT models on MR systems within dynamic 
industrial environments. Existing studies mostly focus on single- 
direction improvements, such as real-time information display or 
robot motion planning optimization, but lack an approach that in-
tegrates human operator cognition with robot adaptability in a collab-
orative manner.

Against this backdrop, our study aims to leverage HDT models dis-
played through MR glasses to provide real-time operational information 
and historical trajectory data, enabling operators to better understand 
robot behaviors and predict potential risks. This approach not only fa-
cilitates timely adjustments in operator actions but also records histor-
ical interaction data, which serves as a foundation for further 
optimization of motion planning algorithms. Specifically, the historical 
data recorded through MR functionality can support the training of 
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motion planning algorithms at various stages, allowing for the pro-
gressive evolution of these algorithms to better adapt to complex and 
dynamic industrial environments.

3. Methodology

3.1. Overall architecture

Fig. 1 illustrates the overall architecture of the proposed approach, 
which primarily consists of modules of mixed reality (MR), object 
detection, human detection, motion planning, and digital twins. The MR 
module serves as an information bridge between human workers and 
robots by providing real-time visualization of critical information about 
robot status, task details, human presence, and safety warnings. Addi-
tionally, the MR module allows workers to issue commands through the 
MR interface.

The object detection module processes images captured by cameras 
to identify objects and determine their poses. The human detection 
module uses vision-based techniques to detect and estimate human 
skeletal information, identifying and tracking the presence of humans 
within the workspace. This data is crucial for planning safe human-robot 
collaborative movements.

The motion planning module integrates multi-source data from HDT 
and MR, utilizes reinforcement learning (RL) and geometry-based 
planning methods to compute safe paths for the robot, and ensures 
obstacle avoidance and safe interaction with humans. It considers both 
static and dynamic elements in the environment to generate efficient, 
collision-free trajectories and makes real-time adjustments based on 
continuous feedback from the MR and detection modules. The incre-
mental learning mechanism continuously updates and optimizes the 
motion planning algorithm’s performance.

A virtual digital twin of the physical robot and environment is 
created, allowing for real-time simulation and monitoring. The virtual 
layer is continuously updated with external data to ensure high fidelity 
and accuracy. Communication between the virtual and physical layers is 
achieved through TCP protocol sockets, enabling the mapping of 
workspace information from the physical layer to the virtual layer and 
the real-time transmission of motion commands from the virtual layer to 
the physical robot.

The core of co-evolution lies in the bidirectional flow of information 
within the architecture, enabling humans and robots to continuously 
learn from and adapt to each other. For human workers, real-time 
visualization and instructions from various modules enhance their un-
derstanding of robot behavior, allowing them to predict robot actions 
more accurately. This dynamic information exchange and continuous 
feedback improve operational awareness, reducing misunderstandings 
and potential accidents. As a result, workers can perform tasks more 
safely and efficiently, adjusting their actions swiftly in response to robot 
behavior, thereby evolving their cognitive strategies for safe operations. 
For robots, human behavior data obtained from the HDT module and 
processed within the digital twin, along with real-time instructions from 
the MR system, allow the robot to better understand human actions and 
adapt to the worker’s movements. The motion planning module not only 
supports dynamic adjustments to the robot’s movement paths but, 
through an incremental learning mechanism, also enables continuous 
policy updates. This adaptive capability allows the robot to refine its 
motion planning strategies over time, ensuring dynamic avoidance and 
smoother interaction with humans in complex environments. In a word, 
the co-evolution of human and robot behaviors continually enhances 
both the robot and human’s decision-making abilities and action stra-
tegies, which drives the human-robot interaction system to operate 
safely and intelligently.1

The following sections will delve into the key techniques involved in 
our approach. Section 3.2 focuses on the construction of the digital twin, 
detailing the detection of environmental and human information. Sec-
tion 3.3 discusses the principles of the DRL-based robot motion planning 
algorithm, including its incremental learning feature. Section 3.4 in-
troduces the design and use of the MR module.

3.2. Digital twin construction

Digital twin (DT) construction involves the creation of a virtual 
replica of physical entities, allowing real-time monitoring, simulation, 
and optimization of interactions between robots and humans. Two key 
techniques in DT construction are object detection and human detection. 
The former ensures real-time tracking of objects, and the latter provides 
continuous updates of human skeletal data, both essential for main-
taining synchronization between physical and digital environments. 
With accurate representation of objects and humans, DT enables precise 
and adaptive robot motion planning in dynamic HRI scenarios. Section 
3.2.1 and Section 3.2.2 detail the methodologies of object detection and 
human detection, respectively.

3.2.1. Object detection
The initial step in robot motion planning within dynamic environ-

ments is the real-time acquisition of positions for both obstacles and 
operational objects. In this study, we developed an object detection 
module leveraging OVE6D [42], an algorithm that estimates 
six-dimension information of object position and orientation. OVE6D 
exhibits outstanding generalizability in object detection tasks, capable 
of managing unseen objects without the need for a fine-tuning process. 
Moreover, the algorithm’s rapid response speed is particularly beneficial 
for real-time detection in dynamic settings. Fig. 2 depicts the workflow 
of the object detection module, which comprises four stages. Initially, a 
3D model of the target object undergoes preprocessing to generate 
codebooks, which are encoded with uniformly distributed views of the 
model and serve as references for subsequent pose estimation. Next, the 
environmental images captured by an RGB-D camera, along with their 
corresponding codebooks, are then processed through the OVE6D al-
gorithm to provide pose predictions for each object. Finally, the 
resulting pose outputs and their respective object identifiers, are trans-
mitted to Unity to update the digital model. The last three stages are 
iteratively executed to continuously track changes of the environment in 
real time.

3.2.2. Human detection
In dynamic industrial environments, effective human-robot interac-

tion relies on real-time visual processing models that accurately capture 
human skeletal information. However, achieving fast and accurate 3D 
Human Pose Estimation (HPE) with limited computational resources 
remains a significant challenge. Recent advancements in transformer- 
based architectures have shown favorable performance in video-based 
HPE [43–46]. These video pose transformers (VPT) treat each video 
frame as a pose token and use transformers to capture spatial and 
temporal information from long video sequences. However, these 
methods are computationally demanding, as the complexity of 
self-attention in VPT grows quadratically with the number of tokens (i. 
e., frames), making their deployment on devices with limited compu-
tational resources challenging. Although some researchers have sug-
gested pruning pose tokens from video frames [47], these methods still 
require predefined parameters (e.g., human action classifications), 
limiting their application in diverse human-robot interaction scenarios.

To address these challenges, we propose an Adaptive Clustering- 
based 3D HPE (AC-HPE) method to achieve efficient and accurate 
human 3D pose estimation under constrained computational resources. 
The workflow of the AC-HPE method is illustrated in Fig. 3, which be-
gins by embedding spatial and temporal information from 2D pose se-
quences, followed by a domain adaptive density clustering algorithm 

1 For the code files of our system, please visit: https://github.com/bohan 
feng/Towards-Safe-Motion-Planning-for-Industrial-Human-Robot-Interaction.
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(DADC) that selects keyframes to reduce computational redundancy. 
These representative tokens are then processed through a transformer- 
based architecture for 3D pose estimation, culminating in the synchro-
nization of real-time skeletal data with a digital twin model. The 

detailed processes are explained as follows.
Given the input 2D pose sequence p ∈ RF×J×2 detected using a pre- 

trained 2D human skeleton detector (OpenPose [48]), we first input 
them into the pose embedding module to embed the spatial and 

Fig. 1. Overall architecture of the co-evolution approach for safe motion planning of industrial human-robot interaction based on human digital twin and 
mixed reality.

Fig. 2. Workflow of the object detection module based on OVE6D algorithm.
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temporal information of the pose frames, resulting in tokens 
xn ∈ RF×J×C. Here, F, J, and C represent the number of input frames, 
body joints, and the feature dimension.

Then, we propose a domain adaptive density clustering algorithm 
(DADC) for keyframe selection. This algorithm extracts key frames from 
temporal data to reduce redundant information, decreasing computa-
tional load while enhancing responsiveness to dynamic changes. DADC 
processes the full-length pose tokens xn ∈ RF×J×C from the n-th trans-
former block and outputs a subset of representative tokens x̃ ∈ Rf×J×C 

(where f≪F). Here, f denotes the representative tokens, respectively. 
DADC computes the similarity matrix S ∈ RF×F for all pose tokens. The 
similarity is computed using the Euclidean distance: 

Sij=‖xi − xj‖
2 =

∑C

c=1

(
xi(c) − xj(c)

)2
, (1) 

where xi and xj are the input pose tokens. To capture local density in-
formation, we determine the K-nearest neighbors (KNN) and compute 
the KNN distance: 

KDisti = (1/K)⋅
∑

j∈N(xi)

dij, (2) 

where K denotes the number of neighbors for each data point. The KNN 
density, reflecting the local neighborhood’s density distribution, is then 
calculated as follows: 

KDeni = K

/
∑

j∈N(xi)

dij. (3) 

Next, we compute the domain density to incorporate both the local 
and neighboring densities: 

∂i = KDeni +
∑

j∈N(xi)

(
KDenj⋅

(
1
/
dij
))

(4) 

To identify high-density points, we determine the maximum domain 
density: 

∂max = max(∂). (5) 

To distinguish significant high-density points and ensure that cluster 
centers are representative, we introduce a Delta distance calculated as 
follows: 

δi =

{
max

(
dij
)

if ∂i = ∂max

minj:∂j>∂i

(
dij
)

otherwise
(6) 

The domain adaptive density, which captures both local and global 
data distribution, is then defined by: 

∂i = ∂i⋅δi. (7) 

To identify cluster centers, the critical point is computed as: 

Cp(x, y) = (∂max/2, δmax/4) (8) 

To identify cluster centers, we compute the critical point: 

Λcenter = xi
⃒
⃒∂i > Cp(x) and δi > Cp(y) (9) 

Λoutlier =
{
xi
⃒
⃒∂i < Cp(x) and δi > Cp(y)⋅∂i

/
Cp(x)

}
(10) 

Λremaining = {xi|xi ∕∈ Λcenter and xi ∕∈ Λoutlier} (11) 

By establishing these critical points and classification criteria, we 
ensure that the generated clusters exhibit high intra-cluster point den-
sities and large inter-cluster distances, thereby enhancing the repre-
sentativeness and accuracy of the clustering process. The remaining data 
points are subsequently assigned to the nearest cluster center, guaran-
teeing the completeness of the clustering.

These cluster centers exhibit high semantic diversity, containing 
more informative data than other tokens, and serve as the representative 
tokens x̃ ∈ Rf×J×C for efficient estimation. To leverage these represen-
tative tokens effectively, we input x̃ into a state-of-the-art transformer- 
based 3D HPE architecture. Specifically, we employ MotionBert [46], a 
sequence-to-sequence model known for its efficacy in 3D HPE. The ar-
chitecture includes dual-stream spatiotemporal multi-head self--
attention blocks, with DADC pruning tokens before these blocks and 
restoring the full token sequence afterward. After the token recovering 
attention, we recover the original temporal resolution, producing the 
recovered tokens x́ ∈ RF×J×C. A regression head is then added to esti-
mate the 3D pose sequence q ∈ RF×J×3. Finally, by binding skeletal in-
formation to the human model, the skeletal point data transmitted to 
Unity is used to update the digital twin model. This step is crucial as it 
synchronizes the real-time detected skeletal information with the virtual 
model, ensuring the real-time accuracy of human-robot interactions.

Overall, our method enables the model to adaptively refine its key-
frame selection based on observed data to improve its computational 
efficiency and maintain its responsiveness to environmental changes. By 
reducing computational redundancy through keyframe selection, the 
method also infers occluded joint positions, compensating for brief oc-
clusions by capturing both the temporal progression of poses and spatial 
relationships among joints. By integrating real-time skeletal data with 
the digital twin model, the system allows for continuous, robust pose 

Fig. 3. Workflow of the adaptive clustering-based 3D human pose estimation.
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estimation in dynamic environments, and can continually improves its 
understanding of human movement, facilitating more accurate and 
efficient human-robot interactions.

3.3. Deep reinforcement learning-based safe robot motion planning

Fig. 4 illustrates the workflow of our motion planning method. Once 
the pose of objects and the real-time modeling and mapping information 
of the human body are constructed in the digital twin environment, the 
safety distance detection module monitors the distance between the 
robot and obstacles (dro) and the minimum distance between the robot 
and the human (drh). If these distances exceed the safety threshold, the 
robot is sufficiently distant from obstacles, thereby triggering a 
geometry-based motion planning algorithm. Otherwise, the reinforce-
ment learning (RL) algorithm is employed to generate actions for the 
robot (Δx, Δy, Δz, ΔRx, ΔRy, ΔRz) to avoid collisions. The output pose 
differences allow for direct control adjustments in task space, keeping 
the system efficient and in line with real-time control needs. This 
adaptive approach enhances the flexibility and efficiency of motion 
planning, as the geometry-based method handles straightforward path 
planning when the robot is in a safe zone, while the RL-based method 
takes over near obstacles to ensure sophisticated collision avoidance. 
Additionally, the system is configured with a fixed control rate (e.g., 
10Hz) and a buffer to stabilize pose transitions, thus reducing system 
jitter and enabling smooth operations within real-time constraints.

Subsequently, the inverse kinematics (IK) module is used to compute 
the joint angles required for the robot’s end-effector to achieve the 
desired position and orientation. Specifically, we employ the Cyclic 
Coordinate Descent (CCD) algorithm [49] as the IK solver, which iter-
atively adjusts the robot’s joints by prioritizing those with the smallest 
deviation from the target pose, gradually converging towards the 
desired configuration. The IK module calculates the joint angles based 
on the current and target poses of the robot arm, using cubic spline 
interpolation. The resulting joint angles are then transmitted to both the 
virtual and physical robots to execute the corresponding motions.

3.3.1. Safety distance detection
To accurately determine the minimum distance between the robot 

and obstacles (dro) as well as between the robot and the human model 
(drh) at each step, we implemented a vertex-based distance detection 
mechanism as illustrated in Fig. 5. This mechanism relies on the collision 
detection and coordinate transformation functions of the Unity3D en-
gine. Based on our previous work [50], we first select key vertices prone 
to collision from the mesh models of the robot and obstacles (e.g., joint 
surfaces and end-effectors of the robot, and surfaces of obstacles). At 
each step of the RL training process, the spatial distances between these 
selected vertices on the robot and the obstacles are calculated. The 

shortest distance between the robot and obstacles is then set as dro. 
Simultaneously, we add capsule colliders to the human model and 
calculate the distance between the centers of these colliders and the key 
vertices of the robot as the minimum distance, which is set as drh. Fig. 5
provides an illustrative example of the human capsule colliders and the 
robot arm mesh model.

Given that our study focuses on a desktop-level scenario, where 
human interaction primarily involves hands and arms, we prioritize 
collision avoidance for these specific configurations. This simplifies the 
problem by detecting human poses using vision-based methods. Such a 
scenario allows us to validate the feasibility and effectiveness of our 
framework while ensuring real-time performance.

Additionally, we introduce Gaussian noise (dnoise) to smooth out 
inevitable errors during the measurement process, mitigating the impact 
of distance measurement errors due to sparse vertices on the robot, 
human, and obstacles, thereby enhancing safety.

3.3.2. Reinforcement learning
If the distance between the robot and an obstacle falls below a pre-

defined safety threshold, a RL algorithm is triggered to prevent a colli-
sion. At the heart of RL lies the concept of sequential decision-making, 
formalized as a Markov Decision Process (MDP). Within MDP, the 
decision-making entity is termed the agent, while the entity interacting 
with the agent is the environment. At each discrete time step, the agent 
observes the current state of the environment st and selects an action at 
based on a policy π(a|s). Subsequently, the agent receives a reward Rt+1 
and transitions to a new state st+1.

Fig. 4. Workflow of deep reinforcement learning-based planning.

Fig. 5. Example of human capsule colliders and robot arm mesh model.
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In the domain of robotic motion planning, the robotic arm, acting as 
the agent, iteratively interacts with its environment to learn an optimal 
motion strategy that maximizes cumulative rewards, specifically aiming 
to reach the target position without collisions. Our approach leverages 
the Proximal Policy Optimization (PPO) algorithm [51] as the RL model, 
which offers notable advantages in terms of stability and sample effi-
ciency in continuous action spaces and high-dimensional state spaces.

Proximal Policy Optimization:
PPO is a cutting-edge deep reinforcement learning method grounded 

in policy gradient techniques. Unlike other DRL methods such as Deep 
Deterministic Policy Gradient (DDPG) [52] and Soft Actor-Critic (SAC) 
[53], PPO enhances stability and sample efficiency by employing a novel 
objective function known as the clipped surrogate objective. This 
function aims to maximize the expected return of the new policy while 
constraining the divergence between the old and new policies. By 
avoiding excessively large or small policy updates, PPO achieves a more 
stable performance. The core principle of the PPO algorithm revolves 
around maximizing a constrained objective function, as delineated in 
the following equations:

The clipped objective function LCLIP(θ) is central to the PPO algo-
rithm: 

LCLIP(θ) = Et [min(rt(θ)⋅At , clip(rt(θ), 1 − ϵ,1 + ϵ)⋅At)]. (12) 

Here, rt(θ) represents the probability ratio between the new and old 
policies, defined as rt(θ) = (πθ(at |st))/

(
πθold (at |st)

)
. The term At is the 

advantage function, estimating the relative benefit of taking at in state st . 
The clipping operation clip(rt(θ), 1 − ϵ,1 + ϵ) restricts the probability 
ratio to the range 1 − ϵ to 1+ ϵ, preventing excessive updates to the 
policy. This clipped objective aims to maximize the expected return of 
the new policy while ensuring the updates remain within a safe 
boundary, thereby enhancing training stability.

The total objective function LPPO(θ) is defined as: 

LPPO(θ) = Et

[
LCLIP(θ) − c1⋅Et

[(
Vθ(st) − Vtarget

t
)2
]
+ c2⋅Et [S[πθ](st)]

]
. (13) 

Here, c1⋅Et

[(
Vθ(st) − Vtarget

t
)2
]

is the value function error term, rep-

resenting the mean squared error between the value function Vθ(st) and 
the target value Vtarget

t . This term aims to minimize the value function’s 
estimation error. c2⋅Et [S[πθ](st)] is the policy’s entropy term. This term 
encourages exploration by preventing the policy from prematurely 
converging to suboptimal solutions.

Environment States and Actions:
The state parameters st of the robot arm agent are shown as follows: 

st =
{
Pg, Pt , Po, Pp, dro, drh, dgt, dgp

}
, (14) 

where

Pg =
(

xg,yg, zg,Rxg ,Ryg ,Rzg

)
Position and orientation of the gripper

Pt =
(
xt ,yt ,zt ,Rxt ,Ryt ,Rzt

)
Position and orientation of the target object center

Po =
(
xo,yo, zo,Rxo ,Ryo ,Rzo

)
Position and orientation of the obstacle

Pp =
(

xp ,yp,zp

)
Position of task area

dro Minimum distance between the robot and obstacle
drh Minimum distance between the robot and human
dgt Distance between the gripper and target object
dgp Distance between the gripper and task area

The action a is defined as a 7-dimensional vector as Eq. (15) shows: 

a = Δx,Δy,Δz,ΔRx,ΔRy,ΔRz,α (15) 

where (Δx,Δy,Δz,ΔRx,ΔRy,ΔRz) are the translational and rotational 
displacements of gripper center in Cartesian space. α is a binary-value 
variable controlling the opening and closing of the gripper. An action 
step size factor β is introduced to control the amplitude of robot action, 

where (Δx,Δy,Δz) ∈ β× [ − 1,1]m,
(
ΔRx,ΔRy,ΔRz

)
∈ β× [ − 1,1]rad.

Design of Reward Functions:
To reduce the difficulty of motion planning, we divide it into three 

stages: (1) Approach, (2) Manipulate, and (3) Execute. The reward 
functions are designed as follows: 

r(s) = Ra + Ro + Rp + R(s), (16) 

The components are defined as: 

Ra =
(
λ1 − dgt

)
⋅I{stage = (1) ∨ stage = (2)}, (17) 

where I is the indicator function that returns 1 if the condition is true 
and 0 otherwise. This term rewards the agent for reducing the distance 
to the target object during the approach and manipulate stages. 

Ro = − λ2⋅max
(
0,1 − dro

/
dsafety

)
, (18) 

where dsafety is a predefined safety threshold. These terms penalize the 
robot for proximity to the obstacle and the human, encouraging safe 
navigation. 

Rp =
(
λ3 − λ4⋅dgp

)
⋅I{stage = 3}. (19) 

This term incentivizes precise placement of objects during the final 
stage. In these formulas, λ1→4 are positive constants. 

R(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1⋅I{collide}

+1⋅I{approach}

+5⋅I{manipulate}

+10⋅I{execute}

(20) 

Specifically, I{approach} indicates whether the gripper has arrived 
at the manipulation area, which is defined as dgt < 3mm. This term 
dynamically adjusts the reward based on the success of specific actions, 
thereby promoting the completion of the task.

Overall, these reward functions integrate both progressive rewards 
(Ra,Ro,Rp) and phase rewards (R(s)) to address issues of sparse rewards 
and local optima, which are common challenges in reinforcement 
learning model training. The progressive rewards provide dense feed-
back, offering gradient information that facilitates effective learning at 
each stage. In contrast, the phase rewards are sparse and are only 
applied when the agent reaches specific states, such as collision, arrival 
at the gripping area, successful gripping of the target object, and release 
of the target object in the placing area. This combination of dense and 
sparse rewards ensures a balanced learning process, helping the agent 
avoid local optima and achieve overall task success.

3.3.3. Incremental learning
In our approach, we also incorporate incremental learning to 

enhance the continuous evolution of the robot’s motion planning algo-
rithm. Incremental learning combines offline training with online 
adaptation, allowing the model to more accurately emulate worker be-
haviors during actual interactions, as illustrated in Fig. 6. Initially, the 
RL model undergoes offline training in a simulated environment where 
human movements are generated randomly. This stage provides a 
foundational understanding of various potential interaction scenarios, 
ensuring the model’s robustness and its ability to handle unexpected 
behaviors.

During the offline training phase, the simulation environment gen-
erates diverse human movement patterns, including varied paths, 
speeds, and interactions with the environment. This diversity aids the RL 
model in generalizing its learning, thus preventing overfitting to specific 
movement patterns. Utilizing the RL module described in Section 3.3.2, 
the model develops a baseline policy πθ(a|s) focused on avoiding colli-
sions, accurately reaching target objects, and ensuring task 
completation.

Once deployed in a real-world setting, the model collects data on 

B. Feng et al.                                                                                                                                                                                                                                     Robotics and Computer-Integrated Manufacturing 95 (2025) 103012 

8 



actual human movements and interactions. This continuous data 
collection encompasses detailed positional information, movement tra-
jectories, and interaction frequencies. The RL model then engages in 
incremental learning, adjusting its policy based on newly acquired data 
D new while retaining previously learned policies. This ongoing adapta-
tion phase ensures the model’s policy θ closely aligns with the actual 
behaviors of the workers. The policy parameters θʹ are updated incre-
mentally as follows: 

θʹ = θ + α⋅∇θLER(θ), (21) 

∇θLER(θ) = E(s,a,r,sʹ)∼B∈D ∪D new [∇θlogπθ(a|s)At ], (22) 

where α is the learning rate and B is the experience replay buffer that 
has been newly updated with D new.

During the online adaptation phase, the robot can consistently avoid 

Fig. 6. Incremental learning workflow for enhancing RL model performance.

Fig. 7. The design of the MR system: (a) instruction interface; (b) safety warning information interface; (c) detailed operational status about robots, tasks, and 
workers; (d) overview of the MR system’s user interface.
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collisions and perform tasks efficiently. The incremental learning 
approach, characterized by continuous adaptation, results in a motion 
planning algorithm that evolves over time, improving the robot’s safety 
and efficiency continuously. This evolutionary process enables the robot 
to better align its movements with the dynamic behaviors of human 
workers, leading to more seamless and productive human-robot 
interaction.

3.4. Mixed reality system

The mixed reality (MR) system is crucial for enhancing efficient HRI 
by providing an intuitive and informative user interface, as depicted in 
Fig. 7. The MR system’s key functionalities include instruction, safety 
warning information, and detailed status on robots, tasks, and human 
workers. The system employs a gesture-based user interface, allowing 
operators to intuitively interact with the MR environment through 
natural hand movements.

Fig. 7 (a) illustrates the instruction functionality of the MR system, 
encompassing various aspects such as task allocation, historical display, 
path visualization, safety alerts, environment segmentation, and online 
adaptation. Task allocation dynamically assigns tasks to robots and 
human workers based on their real-time capabilities and availability, 
optimizing workflow and ensuring efficient resource utilization. The 
historical display feature allows operators to review past tasks and in-
teractions, providing insights into performance trends and potential 
bottlenecks, thereby improving future task execution processes. Path 
visualization offers a graphical representation of the paths that robots 
will take, enabling operators to anticipate and mitigate potential colli-
sions or interferences, thus enhancing operational safety and efficiency. 
The safety alert system monitors real-time operational data, detecting 
and warning potential hazards, ensuring that both human workers and 
robots are aware of unsafe conditions, thereby reducing the risk of ac-
cidents. Environment segmentation utilizes technology embedded in MR 
glasses to continuously scan and segment the workspace, identifying and 
highlighting potential hazards or unexpected changes in the environ-
ment in real time. Online adaptation records workers’ interaction 
movements and incrementally updates the reinforcement learning- 
based motion planning algorithm based on the recorded operational 
trajectories, ensuring continuous improvement in task execution.

Fig. 7 (b) shows the safe warning information functionality, which is 
vital for maintaining a secure working environment. By tracking and 
displaying real-time trajectories of robots, this feature allows operators 
to monitor movements closely, predict potential collisions, and take 
preventive measures, ensuring safe interactions between robots and 
workers. The workspace display provides a comprehensive view of the 
entire robot workspace, emphasizing hazardous zone, thereby 
enhancing situational awareness and effective spatial management, 
which is crucial in dynamic industrial settings.

Additionally, the MR system includes a detailed information func-
tionality about the operational status of robots, tasks, and human 
workers, as depicted in Fig. 7 (c). The robot information display shows 
critical data such as joint angles and the operational status of robotic 
arms, aiding in diagnosing issues, planning maintenance, ensuring that 
robots operate with defined parameters. Task information provides real- 
time status updates, helping tracking task progress and identifying areas 
requiring intervention. Human information offers data on workers’ 
operational status, including current activities, facilitating effective 
integration of human workers within the MR system and promoting 
better coordination and safety.

Fig. 7 (d) presents the overall effect of MR system’s user interface, 
showcasing how it integrates these functionalities to provide a 
comprehensive user experience. In summary, the multi-faceted design of 
the MR system aims to support seamless and safe human-robot inter-
action in industrial environments. The information presented in the MR 
environment influences both the robot’s cognition of its operations and 
the worker’s operating habits, helping workers better understand the 

robot’s status. Simultaneously, real-time instructions are conveyed to 
both the worker and the robot through the mixed reality interface, 
providing immediate guidance and corrections. By integrating adaptive 
interaction capabilities, the MR system facilitates dynamic co-evolution 
between robots and human workers. This continuous feedback loop 
ensures that both robots and humans learn and adapt to each other’s 
behaviors over time, leading to more harmonious and productive 
collaboration.

4. Experiments and results

To validate and demonstrate the proposed co-evolution approach for 
human-robot interaction, we conducted a series of experiments to 
evaluate the performance of HDT methods, DRL algorithms, and their 
combined use in improving the efficiency and safety of HRI. The 
experimental settings and results are detailed as follows.

4.1. Experiment settings

Fig. 8 illustrates the configuration of the physical workspace. A ro-
botic arm (JAKA Zu3) equipped with an electric gripper (CTEK 
CTP2F50) is mounted on the workbench. Two RealSense D435i cameras 
are deployed: one to capture human skeletal data and the other to detect 
obstacles and target objects (not shown in the figure due to perspective 
constraints). For the experimental tasks, we designed dynamic sce-
narios, including randomly moving target objects and various work 
tasks, such as pick-and-place, drawer opening, and switch operation. To 
increase the complexity of the tasks, a 3D-printed board (10 cm×10 
cm×0.3 cm) was placed on a linear track, moving linearly at random 
initial positions and speeds ranging from 5 to 10 cm/s. The physical 
scene and DT of the human body are constructed in Unity3D. We inte-
grated the scene into MR system using HTC’s equipment HoloLens 2. 
Our method is executed on a computer with an Intel i7–10,300 CPU, 32 
GB RAM, and an NVIDIA 3090 GPU.

In Section 4.2.1, the HDT experiments evaluate the accuracy of 
capturing and modeling human movements. In Section 4.2.2, the DRL 
experiments examine the robot’s motion planning capabilities in com-
plex HRI task environments. In Section 4.2.3, the integrated demon-
stration experiments showcase the joint effects of HDT, MR, and DRL 
technologies in real-world industrial scenarios. These demonstrations 
provide a clear illustration of how humans and robots can achieve 
efficient and safe collaboration through information sharing and real- 
time feedback.

4.2. Experiment results

4.2.1. Human digital twin performance
We evaluated the effectiveness of our adaptive clustering-based 3D 

HPE (AC-HPE) method using a benchmark dataset, Human3.6M [54], 
the most widely used dataset in 3D HPE. It comprises 3.6 million video 
frames recorded at 50 Hz by four RGB cameras in an indoor 
environment.

Evaluation Metrics:
For Human3.6M dataset, we utilized the Mean Per Joint Position 

Error (MPJPE) as the primary evaluation metric. This metric measures 
the average Euclidean distance in millimeters, between the estimated 3D 
joint coordinates and the ground truth 3D joint coordinates, providing a 
direct measure of accuracy for pose estimation. In terms of computa-
tional efficiency, we employed Floating Point Operations (FLOPs) as the 
evaluation metric. FLOPs provide a standard measure of computational 
complexity, indicating the number of arithmetic operations required to 
process a single forward pass of the model.

Performance Validation: We verified the performance of our al-
gorithm through several key aspects: joint position accuracy, computa-
tional efficiency, and robustness across different environments. By 
conducting thorough experiments and analyses, we demonstrate the 
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superior real-time perception and modeling capabilities of our method.
(1) Comparison with state-of-the-art methods
We first compared our proposed method, AC-HPE, with several state- 

of-the-art methods including Hossain & Little [44], VideoPose3D [45], 
MixSTE [43], and MotionBert [46]. Two key metrics were adopted, 
computational complexity, measured in FLOPs, and accuracy, assessed 
through MPJPE. The objective was to demonstrate that AC-HPE not only 
reduces computational cost but also enhances accuracy, thereby 
providing a more efficient and effective solution for human pose esti-
mation in dynamic industrial environments.

Table 1 presents the comparison results. In terms of computational 
efficiency, AC-HPE achieves a significant reduction in computational 
complexity with 64.33 GFLOPs, which is substantially lower than 
MixSTE (277.25 GFLOPs) and MotionBert (131.09 GFLOPs). This 
reduction indicates that our method requires fewer computations, 
making it more suitable for real-time applications with limited compu-
tational resources. Regarding parameter efficiency, AC-HPE has 16.39 
million parameters, which is comparable to Hossain & Little (16.96M) 
and MotionBert (16.00M), but significantly fewer than MixSTE 
(33.78M) and VideoPose3D (29.5M). This smaller model size helps in 
reducing memory usage and potentially leads to faster inference time. 
Even slight reductions in computational cost, as observed in our method, 
are meaningful in real-time systems where rapid and reliable processing 
is essential.

In terms of accuracy, AC-HPE achieves an MPJPE of 39.8 mm, which 
is better than Hossain & Little (41.6 mm), VideoPose3D (41.1 mm), and 
MixSTE (40.9 mm), and on par with MotionBert (39.8 mm). Though the 
difference in MPJPE values may seem marginal (e.g., 39.8 mm vs. 41.6 
mm in Hossain & Little), even small improvements in accuracy are 
critical in dynamic human-robot interaction environments. Such im-
provements reduce potential errors in joint position estimation, 
enhancing the system’s response to human movements and ensuring 
smoother collaboration. This result demonstrates that our method not 
only reduces computational cost but also maintains high accuracy.

The experimental results clearly highlight the advantages of our 
proposed AC-HPE method. It offers a balanced trade-off between 
computational efficiency and accuracy, making it a superior choice for 
human pose estimation in dynamic industrial environments. By signifi-
cantly lowering the FLOPs while maintaining competitive accuracy, AC- 
HPE stands out as an effective solution that addresses the limitations of 
current state-of-the-art methods.

(2) Ablation studies
Our ablation studies focused on three aspects: the block index of 

representative tokens, frame pruning design choices, and visual assess-
ment of 3D pose estimation. Each aspect was tested to evaluate its 
impact on accuracy and computational efficiency, with an emphasis on 
examining AC-HPE’s core components rather than comparing with other 
methods. This approach allows for a clear assessment of how our design 
choices enhance efficiency and accuracy in real-time applications.

(a) Block index of representative tokens
We experimented with different block indexes (n) within the 

sequence-to-sequence pipeline to determine the optimal configuration 
for our method. The evaluation metrics for these experiments include 
MPJPE and computational complexity. The results of this study are 
summarized in Table 2, which highlights how varying the block index 
affects performance. Our method, AC-HPE, with a block index of n=1, 
achieved an MPJPE of 39.8 mm with a computational complexity of 
64.33 GFLOPs, which is a 50.9 % reduction in FLOPs compared to the 

Fig. 8. Experimental setup of the physical workspace.

Table 1 
Comparison with state-of-the-art methods.

Method Param (M) FLOPs (G) MPJPE

Hossain & Little [44] 16.96 33.88 41.6
VideoPose3D [45] 29.5 59.03 41.1
MixSTE [43] 33.78 277.25 40.9
MotionBert [46] 16.00 131.09 39.8
AC-HPE (Our method) 16.39 64.33 (↓ 50.9 %) 39.8
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baseline. As the block index increased, we observed a trade-off between 
computational complexity and accuracy. Specifically, while increasing 
the block index to n=2 resulted in a slightly higher MPJPE of 40.1 mm, it 
also led to a FLOPs reduction to 80.75 GFLOPs. However, further 
increasing the block index to n=3 and n=4 increased the computational 
complexity to 97.14 GFLOPs and 113.65 GFLOPs, respectively, with 
corresponding MPJPE values of 40.4 mm and 40.9 mm. These results 
demonstrate that our method achieves the best balance of accuracy and 
computational efficiency with a block index of n=1, significantly out-
performing higher block index configurations. This optimization high-
lights the efficiency of our approach, making it highly suitable for real- 
time applications where both accuracy and computational cost are 
critical factors.

(b) Frame pruning design choices
This study explored various design choices for frame pruning, 

assessing their impact on MPJPE and frame selection efficiency. Our 
goal was to identify the most effective frame pruning strategy. We 
compared our method’s adaptive clustering against other methods, 
including Uniform Sampling, which evenly selects frames at set intervals 
to ensure balanced distribution. Attention Pruning leverages an atten-
tion mechanism to retain frames rich in information by focusing on their 
importance. Motion Pruning prioritizes frames based on motion ampli-
tude, targeting areas with significant movement. Additionally, the 
Token Pruning Cluster (TPC) method [47] employs K-means clustering 
to select frames based on a predefined number of clusters.

The results detailed in Table 3, provide a comprehensive comparison 
of the different design choices. Our method achieves an MPJPE of 39.8 
mm, demonstrating the highest accuracy among all strategies tested. 
Uniform Sampling achieved an MPJPE of 40.3 mm, while Attention 
Pruning and Motion Pruning resulted in MPJPE values of 41.0 mm and 
41.7 mm, respectively. The TPC method, with an MPJPE of 39.9 mm, 
closely followed our method but did not surpass it. Our method out-
performs the TPC method primarily due to its dynamic adaptation to the 
temporal structure and density of the data. While TPC uses a fixed 
number of clusters, which might not always represent the data’s vari-
ability effectively, our method adapts to the varying density of the 
temporal data. This allows our method to better capture essential vari-
ations and reduce redundancy more efficiently. This flexibility in 
handling different data densities and distributions may contribute to its 
superior performance in keyframe selection, as evidenced by the lower 
MPJPE.

Additionally, Fig. 9 presents the statistical distribution of frames 
selected by our AC-HPE token pruning strategy. From a randomly cho-
sen subset of 50 samples, we observed that the adaptive clustering 
approach effectively identifies key frames that capture significant tem-
poral variations. This highlights its efficacy in both detecting essential 
changes and reducing redundancy.

These results illustrate the effectiveness of our frame pruning strat-
egy in maintaining high accuracy while optimizing frame selection ef-
ficiency. Our approach outperforms traditional methods by effectively 
balancing the retention of informative frames and reducing computa-
tional overhead, making it highly suitable for real-time applications in 
dynamic environments.

(3) Visual assessment of 3D pose estimation
To demonstrate the accuracy of our 3D pose estimation method, we 

provided visual showcases of its performance. Fig. 10 displays results 
from challenging industrial videos, showcasing the effectiveness of our 
method in accurately estimating 3D human poses in complex environ-
ments. Fig. 10 consists of four sub-images: (a) a worker stands and 
performs operations with the right arm partially occluded, (b) a worker 
sits on a chair with legs crossed, and (c) and (d) a worker operates on 
tabletop objects.

Specifically, Fig. 10 (a) illustrates the method’s capability to accu-
rately estimate poses even when parts of the body are occluded, high-
lighting its effectiveness in handling partial visibility. Fig. 10 (b) shows 
the system’s ability to capture complex sitting postures, including 
crossed legs, which is critical for accurate human modeling in varied 
working conditions. Fig. 10 (c) and (d) depict the precision of our 
method during detailed tabletop operations, emphasizing its applica-
bility in tasks requiring fine motor skills. Through these visual assess-
ments, we demonstrate the method’s reliability and precision in real- 
world industrial scenarios, where accurate 3D pose estimation is 
essential for improving human-robot interaction and ensuring worker 
safety. The ability to handle occlusions, complex postures, and detailed 
tasks underscores the method’s potential to enhance operational effi-
ciency and safety in dynamic industrial environments.

4.2.2. Deep reinforcement learning performance
In the experimental setup, we incorporated human motion scenarios, 

where human movements randomly appeared in the robotic arm’s 
workspace, moving at random speed (10–20cm/s). In all subsequent 
tests, human motion was included in the scenes to simulate realistic 
dynamic industrial HRI environments. We compared the performance of 
our algorithm (A-IPPO) against Proximal Policy Optimization (PPO) 
[51], Soft Actor-Critic (SAC) [53], Improved SAC (I-SAC) [55], 
Improved PPO (I-PPO) [56], and Multi-Stage Curricula-based PPO 
(MSC-PPO) [6].

The metrics for performance evaluation include convergence speed, 
task success rate, episode length, collision rate, overtime rate, general-
ization performance in physical environments, and incremental perfor-
mance. By comparing the convergence speeds during the 5 million steps 
of training for each method, we assessed the task success rates and 
episode lengths. We analyzed the collision rates and overtime rates 
during tasks, providing a comprehensive performance evaluation. 
Additionally, we tested each method’s generalization ability in real- 
world physical environments and examined performance changes 
when changing human motion habit, further validating its adaptability 
and robustness in dynamic industrial settings. Through in-depth exper-
iments and analysis, we aim to demonstrate our method’s capability for 
safe motion planning with dynamic adaptation and learning.

(1) Comparison on convergence
We conducted a comparative study to evaluate the convergence of 

our method against other existing methods. The evaluation metrics 
included cumulative reward, convergence speed, and curve smoothness. 
Fig. 11 shows the comparison results, in which the proposed A-IPPO 
method achieved the highest cumulative reward, the smoothest curve, 
and the fastest convergence speed. This superior performance stems 
from our adaptive motion planning approach. In safe zones, geometry- 
based planning provides efficient, straightforward paths. When safety 
thresholds are approached, the system switches to RL, allowing the 
robot to handle more complex tasks, especially in dynamic environ-
ments with human motions.

Additionally, algorithms based on PPO displayed smoother reward 

Table 2 
Ablation study on the block index of representative tokens (n) under the 
sequence-to-sequence pipeline.

Method Param (M) FLOPs (G) MPJPE

AC-HPE, n=1 16.39 64.33 (↓50.9 %) 39.8
AC-HPE, n=2 16.39 80.75 (↓38.4 %) 40.1
AC-HPE, n=3 16.39 97.14 (↓25.9 %) 40.4
AC-HPE, n=4 16.39 113.65 (↓13.3 %) 40.9

Table 3 
Ablation study on the design choices of frame pruning.

Method MPJPE

Uniform Sampling 40.3
Attention Pruning 41.0
Motion Pruning 41.7
Token Pruning Cluster 39.9
Adaptive Clustering (Our method) 39.8
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curves compared to those based on SAC. This difference can be 
explained by the inherent stability of the PPO algorithm. SAC algo-
rithms, while powerful in many aspects, often suffer from higher vari-
ance in reward signals due to their reliance on entropy regularization, 
which encourages exploration. This characteristic can lead to less stable 
learning curves, especially in dynamic environments with frequent 
human interactions. Our choice of PPO as the RL model thus proves to be 
well-founded.

(2) Comparison on task success rate and episode length
To comprehensively assess model performance, we also compared 

our method with others regarding task success rate and episode length. 

Each task was tested 1000 times in a virtual environment with dynamic 
human motions using six different methods. Table 4 shows that our A- 
IPPO method achieved the highest success rate in three tasks, with 
nearly 95.5 % success for button pressing, 94.0 % success for drawer 
opening, and 90.5 % for the pick and place task. It also required the 
fewest steps in most tasks.

In contrast, pure RL methods (i.e., SAC, PPO, I-SAC, MSC-PPO) 
without adaptive geometry-based combinations showed significantly 
poorer performance. These methods needed more exploration and trials 
to find collision-free paths, leading to higher collision rates and more 
steps. They also tended to fall into local optima, such as waiting above 

Fig. 9. Statistical visualization of selected frames for AC-HPE token pruning adaptive clustering strategy.

Fig. 10. 3D pose estimation in various industrial environments: (a) a worker is performing operations with right arm partially occluded; (b) a worker is seated with 
legs crossed; (c) and (d) a worker is engaged in detailed tabletop operations.
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obstacles to avoid collisions with moving humans, which increased the 
steps needed to complete tasks.

When comparing A-IPPO with I-PPO, both methods use a combina-
tion of IK and RL. However, our algorithm employs a dynamic and multi- 
stage reward structure that promotes efficient path planning and task 
execution by providing continuous and stage-specific feedback. This 
approach can help the agent avoids local optima and adapts more 
effectively to dynamic environments, leading to superior performance 
than I-PPO.

(3) Comparison on collision rate and overtime rate
To further explore the impact of combining geometry-based methods 

in motion planning, we compared the collision rate and overtime rate of 
different methods as shown in Table 5. A-IPPO achieved the lowest 
collision and overtime rates across all tasks: 3.1 % and 1.4 % for button 
press, 4.0 % and 2.0 % for drawer opening, and 6.3 % and 3.2 % for pick 
and place, highlighting the superior performance of the A-IPPO 
algorithm.

In comparison, SAC exhibited the highest collision and overtime 
rates, particularly in the pick and place task with 19.5 % and 17.5 %, 
respectively. This underscores the instability associated with SAC’s high 

exploration tendency in dynamic environments. PPO, although more 
stable, also displayed relatively high collision (21.5 %) and overtime 
(16.5 %) rates in the same task, indicating a need for further optimiza-
tion in complex settings. Both I-SAC and MSC-PPO showed improve-
ments over their baseline counterparts, with reduced collision and 
overtime rates. I-SAC achieved notable reductions, particularly in the 
button press task (collision: 5.3 %, overtime: 6.2 %). MSC-PPO also 
performed better, with a collision rate of 6.1 % and an overtime rate of 
4.5 % for the button press task. The I-PPO algorithm further reduced 
collision and overtime rates by incorporating inverse kinematics and a 
multi-stage reward structure, achieving 5.1 % and 2.4 % for collision 
and overtime rates in the drawer opening task, respectively.

The A-IPPO’s success can be attributed to its adaptive planning 
mechanism, which identifies safe zones within the digital twin envi-
ronment, reducing task difficulty and improving navigation efficiency. 
This results in significantly lower collision and overtime rates, empha-
sizing the importance of integrating advanced safety mechanisms and 
dynamic reward adjustments to enhance the performance of reinforce-
ment learning algorithms in human-robot interaction scenarios.

(4) Evaluation of minimum distance direction in RL input
To assess the impact of incorporating the minimum distance direc-

tion between the robot and obstacles into the RL state input, we con-
ducted additional tests using both a simulated and a real-world pick- 
and-place task. In these experiments, we modified the input configura-
tion by adding the minimum distance direction alongside the original 
obstacle position, orientation, and minimum distance dro, to examine 
whether these additional inputs could enhance the task performance.

To assess the impact of incorporating the minimum distance direc-
tion between the robot and obstacles into the RL state input, we con-
ducted additional tests using both a simulated and a real-world pick- 
and-place task. In these experiments, we modified the input configura-

Fig. 11. Comparison of convergence performance across different methods.

Table 4 
Comparison of task success rates and episode lengths across different methods.

Method Button Press Drawer Open Pick and Place

SAC 80.5 % (534.8) 78.5 % (605.3) 63.0 % (986.3)
PPO 86.5 % (465.4) 73.0 % (679.8) 62.0 % (1074.5)
I-SAC 88.5 % (400.2) 87.0 % (544.3) 66.5 % (807.4)
MSC-PPO 89.4 % (351.7) 88.3 % (493.7) 77.3 % (820.2)
I-PPO 95.0 % (343.2) 92.5 % (598.6) 84.5 % (772.2)
A-IPPO (Our method) 95.5 % (320.8) 94.0 % (412.3) 90.5 % (704.0)

Table 5 
Comparison of collision rates and overtime rates across different methods.

Method Button Press Drawer Open Pick and Place

Collision Rate Overtime Rate Collision Rate Overtime Rate Collision Rate Overtime Rate

SAC 10.3 % 9.2 % 11.8 % 10.2 % 19.5 % 17.5 %
PPO 8.5 % 5.0 % 13.5 % 13.5 % 21.5 % 16.5 %
I-SAC 5.3 % 6.2 % 8.3 % 4.7 % 16.3 % 17.2 %
MSC-PPO 6.1 % 4.5 % 7.8 % 3.9 % 11.0 % 11.7 %
I-PPO 3.8 % 1.2 % 5.1 % 2.4 % 8.7 % 6.8 %
A-IPPO (Our method) 3.1 % 1.4 % 4.0 % 2.0 % 6.3 % 3.2 %
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tion by adding the minimum distance direction alongside the original 
obstacle position , orientation, and minimum distance dro, to examine 
whether these additional inputs could enhance the task performance.

As shown in Table 6, experimental results indicate that adding the 
closest point and minimum distance direction had minimal impact on 
task success rates. In the virtual environment, task success rates were 
comparable between the two configurations, with 90.5 % for the orig-
inal input configuration and a slightly higher 90.8 % with the added 
information. However, in real-world testing, the success rate for the 
original configuration was 80.6 %, while the configuration with the 
additional input parameters slightly decreased to 77.3 %. This suggests 
that the additional information did not contribute meaningfully to the 
RL agent’s ability to handle physical variability in real environments.

In terms of computational efficiency, the configuration with the 
additional inputs required an average decision-making time of 96 ms, 
compared to 142 ms for the original input configuration. This increased 
computational load introduced additional processing time without 
yielding significant gains in task performance.

These results indicate that the RL agent can successfully learn 
effective avoidance behavior with the original input configuration, 
which includes only obstacle position, orientation, and minimum dis-
tance dro. The high task success rates in both the virtual and real envi-
ronments suggest that the original input parameters provide sufficient 
spatial information for the agent to implicitly infer avoidance directions 
during training. In contrast, the closest point and minimum distance 
direction data did not enhance the agent’s ability to avoid obstacles, as 
the agent could already learn such behaviors from the original inputs.

This outcome can be attributed to the agent’s capacity for implicit 
learning, whereby it effectively uses position, orientation, and minimum 
distance dro to generalize collision avoidance across different obstacle 
configurations. Additional spatial information, such as the closest point 
and specific avoidance direction, may introduce redundancy, which can 
increase the computational overhead without necessarily enhancing 
performance. Moreover, in real-world environments with inherent 
sensor noise and dynamic variability, additional input parameters might 
reduce the system robustness, as more complex inputs can be more 
sensitive to inaccuracies. Simpler input configuration, therefore, is 
better at balancing computational efficiency and task performance, 
proving advantageous for dynamic industrial settings.

(5) Incremental learning
To assess the impact of the online adaptation (i.e., incremental 

learning) component, we conducted ablation experiments comparing 
the full A-IPPO algorithm with and without this feature. These tests were 
performed in both simulated and real environments, focusing on specific 
human motion habits and movement patterns. We introduced a new 
worker’s motion habit, characterized by frequent and unpredictable 
stops and starts, to the robotic arm’s working scenario to mimic real- 
world variability in human movement during collaborative tasks.

The evaluation metrics included success rate, collision rate, and 
overtime rate. We conducted 1000 trials in a simulated pick-and-place 
task environment, continuously updating the new worker’s motion 
habits in the A-IPPO algorithm. The results in Table 7 indicate that the 
full algorithm with online adaptation significantly outperformed the 
ablation variant across all metrics. Specifically, the A-IPPO with online 

adaptation achieved a success rate of 90.4 %, compared to 83.3 % 
without adaptation. Collision rates were 2.9 % with adaptation and 9.1 
% without, while overtime rates were 6.7 % and 7.6 %, respectively.

The superior performance with online adaptation can be attributed 
to the algorithm’s ability to swiftly adjust to unique movement patterns 
and environmental changes. By continuously learning and adapting 
based on newly acquired data, the model maintains high performance 
even when encountering new or varying task conditions. This results in 
more efficient and safer task execution, demonstrating the robustness 
and versatility of the proposed method in dynamic industrial settings.

(6) Generalization performance in physical environment
To validate the practicality of the proposed A-IPPO method, we 

conducted physical experiments in dynamic environments with human 
movements. It includes three tasks: button press, drawer open, and pick 
and place. The visual localization accuracy of obstacles, including target 
objects, was within ±2 mm, and the human digital twin environment 
updated at 10 frames per second. Each task was tested 50 times in these 
dynamic obstacle environments, with performance results summarized 
in Table 8.

The A-IPPO method demonstrated high success rates and efficient 
task completion times across all tasks. Specifically, the success rates 
were 92.0 % for button press, 90.0 % for drawer open, and 86.0 % for 
pick and place. The few failures were primarily due to task timeout, 
often occurring when the robot hesitated to grasp the target object due 
to rapid obstacle movement. The overtime rates were 6.0 % for button 
press, 6.0 % for drawer open, and 8.0 % for pick and place. Collision 
rates were minimal, with no collisions in the button press task, 4.0 % in 
drawer open, and 6.0 % in pick and place. Completion times averaged 
7.2 s for button press, 7.9 s for drawer open, and 12.3 s for pick and 
place. These results underscore the effectiveness of the A-IPPO method 
in real-world environments with dynamic human motion, validating its 
practical application and robustness. The high success rates and low 
collision and overtime rates indicate that the A-IPPO method can 
maintain performance and safety standards in complex and unpredict-
able environments, highlighting its potential for widespread industrial 
applications.

4.2.3. Integrated demonstration
To demonstrate the overall feasibility and effect of the proposed 

approach, we tested a practical HRI scenario in a typical manufacturing 
environment with dynamic assembly tasks, as illustrated in Fig. 12. In 
this scenario, the control frequency of the DRL-based robot controller 
and the update frequency of the HDT environment are both set to 10Hz, 
which is a common treatment in HRI studies [6,57] striking a balance 
between system performance and computational load.

Fig. 12 (a) depicts a worker using MR glasses to operate a robot and 
assign tasks, such as retrieving a screwdriver. Fig. 12 (b) shows the 
worker viewing the robot’s motion planning trajectory through the MR 

Table 6 
Comparison of task success rates and computational efficiency with varying RL 
input configurations.

Input Configuration Task Success Rate (%) Computational 
Efficiency (ms)

(Simulated) (Real- 
world)

Position, Orientation, dro 

(Original)
90.5 80.6 96

Position, Orientation, dro, and 
Minimum Distance Direction

90.8 77.3 142

Table 7 
Performance comparison of our algorithm with and without online adaptation.

A-IPPO (with online 
adaptation)

A-IPPO (without online 
adaptation)

Success Rate 90.4 % 83.3 %
Overtime 

Rate
6.7 % 7.6 %

Collision Rate 2.9 % 9.1 %

Table 8 
Task performance of A-IPPO method in real environment.

Button Press Drawer Open Pick and Place

Success Rate 92.0 % (46/50) 90.0 % (45/50) 86.0 % (44/50)
Overtime Rate 6.0 % (4/50) 6.0 % (3/50) 8.0 % (4/50)
Collision Rate 0 % (0/50) 4.0 % (2/50) 6.0 % (6/50)
Completion Time (s) 7.2 7.9 12.3
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glasses. This visualization enables the worker to monitor the robot’s 
status and expected trajectory in real-time, and helps the worker better 
comprehend and anticipate the robot’s behavior, thereby preventing 
potential conflicts. In Fig. 12 (c), the worker uses pliers to assemble 
complex components in the assembly area, while the robot retrieves the 
screwdriver from the tool area. This shared workspace scenario requires 
the robot to perform precise movements without interfering with the 
worker’s tasks. The MR system provides detailed instructions and 
guidance directly displayed in the worker’s field of view, assisting the 
worker in locating the correct tools and assembly parts, and offering 
step-by-step assembly instructions. Fig. 12 (d) demonstrates the dy-
namic adjustment capabilities of the robotic arm. Utilizing a safe motion 
planning algorithm, the robot can deftly avoid the worker’s hand as he/ 
she places the pliers, ensuring no collisions occur during task execution. 
The blue path in the figure represents the end-effector avoidance tra-
jectory. This capability showcases the system’s ability to maintain safe 
and efficient operations amidst real-time changes. Finally, Fig. 12(e)
illustrates the robotic arm returning the used pliers to their original 
position while the worker continues with the complex assembly task.

Throughout the task execution, the MR system’s online adaptive 
features enable the reinforcement learning-based motion planning al-
gorithm to update based on the real-time recorded operational trajec-
tories. Additionally, the MR glasses play a crucial role in post-task 
inspection and quality control, highlighting potential issues or assembly 
errors to ensure timely correction and resolution. In summary, the 
practical demonstration of the human-robot interaction scenario in a 
manufacturing environment, as illustrated in Fig. 12, highlights the 
significant advantages of the proposed approach in fostering safe and 
efficient human-robot collaboration. This result validates the potential 
application of our approach in complex and dynamic environments.

4.2.4. System validation via operator performance evaluation
To evaluate the feasibility and effectiveness of the proposed MR- 

based HRI system, we recruited 15 participants (college students with 
engineering background, including 8 males and 7 females) to perform 
dynamic assembly tasks using the system. Prior to the experiment, 
participants received a brief training session to familiarize themselves 
with the MR system’s basic operations and interaction workflows. This 
training covered key aspects, including the reception of real-time 
guidance, response to visual cues, and handling of the robot’s dy-
namic adjustments.

The experimental tasks consisted of three stages: tool retrieval, 
component assembly, and dynamic obstacle avoidance. In the tool 
retrieval stage, operators were required to locate specific tools accu-
rately and efficiently under MR guidance, enabling us to assess the 
system’s impact on task efficiency. During component assembly, oper-
ators followed MR-provided instructions to complete assembly tasks, 
which allowed us to evaluate the system’s ability to enhance operational 
accuracy and reduce assembly errors. In the dynamic obstacle avoidance 
task, operators collaborated with the robot while assembling compo-
nents, which can help with validating the system’s capability to ensure 
operator safety and optimize real-time obstacle avoidance.

Following task completion, participants provided feedback via a 
questionnaire-based survey. This survey collected quantitative data on 
various performance indicators, including task support effectiveness, 
response timeliness, efficiency improvement, error reduction, system 
adaptability, and overall user satisfaction. The following subsections 
present a detailed analysis of both operator and system performance, 
supported by quantified results.

(1) Operator performance metrics
Table 9 presents a comparison of task completion time and accuracy 

between the MR system and traditional method. Under traditional 
method, tool retrieval involved locating tools using static pictorial 

Fig. 12. Practical manufacturing HRI scenario: (a) a worker is assigning tasks using MR glasses; (b) real-time robot motion planning trajectory visualization through 
MR glasses; (c) simultaneous worker’s assembly operations and robot’s tool retrieval; (d) robot arm is dynamically avoiding worker’s arm; (e) robot arm is returning 
tools while worker continues assembly task.
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guides, and component assembly relied on manual references and 
printed instructions. Additionally, obstacle avoidance lacked dynamic 
planning when using traditional method, causing the system to halt 
whenever someone approached closely to the robot. Task completion 
time was measured in seconds, while accuracy was determined based on 
task precision (e.g., tool retrieval and assembly accuracy).

The data shows that the MR system significantly reduced task 
completion time by an average of 18 %, particularly in tasks requiring 
dynamic adjustments like tool retrieval and obstacle avoidance. 
Furthermore, the system improved accuracy by an average of 10 % in 
component assembly, reflecting the effectiveness of the MR guidance 
system. The MR system demonstrated a response time of 0.5 s, which is 
well within acceptable limits for real-time human-robot interaction.

(2) Operators’ satisfaction on using the System
Table 10 presents the operator satisfaction levels, based on a sub-

jective assessment of the system’s impact on task performance, real-time 
feedback, and overall usability.

The subjective feedback indicates a high level of operator satisfac-
tion, with the majority reporting that the MR system improved their 
efficiency and reduced errors. A very small proportion of operators 
(approximately 10 %) noted minor technical issues, primarily related to 
system latency.

The results of operators’ feedback provide strong quantitative evi-
dence supporting the effectiveness of the proposed MR-based human- 
robot interaction system. The MR system not only improved task 
completion efficiency and accuracy but also enhanced operator satis-
faction and system performance. These results validate the feasibility of 
applying the proposed approach in real-world, dynamic environments, 
demonstrating its potential for improving safety and collaboration effi-
ciency in industrial tasks.2

5. Conclusion

In this study, we propose a co-evolution approach to enhance the 
safety of industrial human-robot interaction (HRI). By integrating 
advanced human digital twin (HDT) and mixed reality (MR) technolo-
gies, our approach enables bidirectional information flow, allowing for 
mutual learning and adaptation between humans and robots. For human 
workers, the system provides real-time information visualizations and 
working instructions, helping them better understand and anticipate 
robot’s actions, thereby increasing situational awareness and reducing 
misunderstandings and safety accidents. For robots, human behavior 
data obtained through HDT and MR, along with real-time instructions 
and operational habits, enhance the robots’ understanding of human’s 
working processes and patterns. This enables robots to progressively 
optimize their own behavior strategies, improving operational capabil-
ities in complex environments and refining safety planning strategies for 
both parties. The HDT, DRL, and integrated demonstration experiments 
demonstrate the effectiveness of the proposed approach in dynamic 

manufacturing settings. Our study contributes to the development of 
novel human-robot interaction framework for the next-generation 
human-centric smart manufacturing mode.

One limitation of this study is that, while MR glasses provide 
comprehensive visual guidance, their reliance on real-time data of 
environment, human and robot can be a bottleneck in environments 
with severe network latency or data transmission issues. The user 
experience and usability of the MR interface also require further opti-
mization to ensure broad applicability across different operators.

Future research will address these limitations. We plan to further 
improve the computational efficiency of the HDT and motion planning 
algorithms to reduce dependency on high-frequency updates, thereby 
increasing system applicability and robustness. Additionally, exploring 
edge computing and advanced communication protocols will enhance 
the system’s performance under varying network conditions. Through 
iterative user testing and feedback, we will also refine the MR interface 
to ensure it meets the needs of diverse industrial operational 
environments.
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