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Smart community microgrids are capable of efficiently addressing the energy and environmental challenges faced by cities.
However, the inherent instability of renewable energy sources and the diverse nature of user demands pose challenges to the
safe operation of community power systems. In this article, we first introduce a comprehensive system architecture, and an
operational framework based on Energy Internet of Things (EIoT), which considers system-level safety, reliability, and cost-
effectiveness, thereby enhancing the system’s coordination and performance. Next, we propose a bi-level coordinated optimization
method based on the users’ electricity consumption behaviors. At the planning level, we employ a multiobjective optimization
approach to determine the most suitable microgrid configurations that cater to the requirements of various user groups, and the
results derived from adaptive weight particle swarm optimization (PSO) algorithm are fed back to the operational level. At the
operational level, a 24-h time scale is selected, and the economic efficiency problem is addressed using a linear programming
method. The operational decision results are then fed back to the planning level for major maintenance of the microgrid system.
Meanwhile, we employ trend prediction methods to categorize maintenance tasks into short-term and long-term operations based
on an analysis of daily operational data. The short-term prediction results can serve as a reference to guide daily short-term
operations and maintenance tasks, while the long-term prediction results can inform renovation and reconstruction initiatives for
community microgrid. Finally, we choose a community as the subject of our study, and the results indicate that our research can
provide new methods for the design and operation of microgrid in smart communities, thereby improving the scalability of the
community’s power system.

Keywords: community microgrid systems; multilayer collaborative optimization; operation and maintenance; smart energy
systems; system configuration

1. Introduction

Energy has become an increasingly significant role in the
development of various aspects of human societies [1]. How-
ever, as the scale of the grid continues to expand, community
grids are increasingly reliant on external electricity, and fossil
fuels are putting pressure on environmental protection. Tra-
ditional power systems struggle to meet the growing demand
for reliability and diverse power supply needs from users, etc.
[2]. With the recent progress in Internet of Things (IoTs),

data analysis, and power control technology, smart energy
systems have become essential in addressing these challenges
[3]. As a typical smart energy system, community microgrid
consists of renewable distributed generation (DG, e.g., wind
turbines (WT), photovoltaic (PV)), responsive loads, and
battery energy storage systems (BESS), as shown in Figure 1.
It can provide energy to communities based on real-time load
demands from the internal power sources as well as the public
grid, which also supports the development of smart and low-
carbon cities and communities.
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However, the unpredictable and fluctuating nature of
renewable energy resources, coupled with the consumption
characteristics of load users, introduces multiple uncertain-
ties into the microgrid system. The large-scale deployment of
intermittent renewable energy not only affects the accuracy
of power system forecasting and scheduling but also tends to
cause safety and quality issues. This amplifies the complexity
and decision risks in the system design and scheduling of
microgrids. Therefore, community microgrid grappling with
fluctuations and safety concerns stemming from the integra-
tion of renewable energy sources require an urgent adoption
of a new approach. The approach should consider optimized
design and flexible control mechanisms to facilitate real-time
operational control and energy management of intermittent
renewable energy sources. It is vital for the sustainable devel-
opment of communities and cities.

Addressing these challenges requires various computa-
tional, control, and analytical techniques tailored to the spe-
cific characteristics of microgrids [4]. Previous research has
focused on the architecture and strategies for integrating
microgrids into smart communities, considering factors such
as DG output, energy storage capacity, and operational control
methods [5]. For instance, Tercan [6] argued that optimizing
the sizes and locations of DG units could mitigate the inter-
mittent and uncontrollable nature of renewable energy sources.
Although their approach effectively addressed reliability chal-
lenges associated with DG integration, it did not specifically
consider the challenges arising from the increasing number
of DG units in the power grid. Studies by Tan et al. [7] and
Yan et al. [8] examined the impact of growing DG on the
network and introduced a reactive power optimization method
along with a genetic algorithm (GA) that accounts for the
output characteristics of the DG sources. However, the
optimization method may not be well-suited for complex
microgrid scenarios, as it relies on the traditional linear

weighting approach to reduce multiobjective optimization
to a single-objective problem [9, 10]. While these studies
provided valuable insights into the monitoring and opera-
tion of microgrids and addressed someDG related challenges,
they often overlooked other critical aspects, such as system
economics [11] or reliability [12].

To enhance the economic, reliability, and security aspects
of new community energy systems integrating microgrids,
researchers have explored various approaches, including archi-
tecture, planning, design, and operational optimization meth-
ods, all aimed at improving the economic and environmental
benefits of microgrid operations [13]. Research on microgrid
architecture design has primarily focused on operation modes,
energy sources, and load composition, including islanded
microgrids [14], grid-connected microgrid [15], and hybrid
grid-connected configurations. Further attention has been
directed towards the architectural configuration of microgrids
[16]. Although these approaches offer simplicity in imple-
mentation, they often depend heavily on available resources
and specific application scenarios, lacking a comprehensive
approach to architectural planning across diverse applica-
tion contexts.

Optimizing the design of microgrids—including layout,
planning, and operation—and implementing effective con-
trol strategies can enhance their scalability, applicability, and
flexibility. Microgrid design optimization is a complex, mul-
tivariable, multiconstrained, and nonlinear multiobjective
optimization problem. Commonly used optimization algo-
rithms include particle swarm optimization (PSO) [17],
GA [18], and nondominated Sorting Genetic Algorithm-II
(NSGA-II) [19]. These methods typically focus on specific
scenarios and often lack consideration for personalized and
diverse user needs, resulting in limited generalizability in
design and planning. To address this, researchers are increas-
ingly incorporating scenario-specific characteristics into
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FIGURE 1: Basic structure of a typical community microgrid systems.
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design and planning, leading to the development of new
optimization algorithms for contexts. Examples include Sequen-
tial Quadratic Programming with Gradient Sampling (SQP-
GS) [20], Nelder-Mead method [21], and the Sine augmented
scaled arithmetic optimization algorithm (SCA-AOA) [22].
Although these studies improve the generalizability of micro-
grid designs to some extent, they often overlook specific char-
acteristics of community microgrids (e.g., user preferences,
microgrid online/offline states), which may impact the safety
and stability of the distribution network.

To address these challenges, some scholars have pro-
posed hierarchical division methods that facilitate comple-
mentary balance in operational decisions, thereby ensuring
the safe and stable operation of the distribution network.
Examples include hierarchical optimization [23], bi-level
robust optimization [24–26], and tri-level optimization [27].
While multilevel optimization can integrate diverse energy
sources and improve energy utilization efficiency, these archi-
tectural designs and methods often overlook or underem-
phasize coordination optimization across different levels,
potentially resulting in imbalances in community energy
distribution and load.

Almost all the reviewed studies focused on single com-
munity microgrids or island operation. However, additional
techniques to enhance system economy and stability, partic-
ularly in relation to renewable energy integration and diverse
user groups, were not utilized. The main existing issues are
summarized as follows:

a. Community microgrids face stemming from the com-
plexity and diversity of electricity consumption beha-
viors, as existing architecture often lack compatibility
and synergy for efficient and secure power delivery.

b. The integration of multiple energy sources and devices
exhibiting stochastic behaviors complicates the optimi-
zation of system parameters, and current approaches
struggle to generalize effectively across diverse user
needs.

c. Incorporating new energy sources introduces operational
uncertainties and intermittency; however, short-term
and long-term forecasting and maintenance strate-
gies for community microgrids are still significantly
underdeveloped.

This article aims to address these gaps by presenting a
multilayer coordinated optimization method based on the
users’ electricity consumption behaviors, along with an adap-
tive weight PSOmethod and a linear programming approach
tailored for the planning and operational levels of smart
community microgrid. Through simulation studies, we dem-
onstrate the effectiveness of this method in improving grid
reliability, enhancing power quality, and facilitating the inte-
gration of renewable energy sources. By offering a compre-
hensive understanding of the benefits and challenges in the
design and operation of community microgrid, this research
seeks to contribute to:

a. This article investigates the safety, reliability, and eco-
nomic challenges of community microgrid in power
systems operating under uncertain conditions. It intro-
duces community microgrid architecture based on
EIoT that enables seamless coordination among energy
components for power balance and optimization, while
supporting effective monitoring and management for
power systems.

b. Amultilayer collaborative optimizationmethod for the
system design, energy allocation, and operation man-
agement of community microgrid is presented. At the
planning level, analysis and constraint models are
developed based on energy resources and electricity
demand, while at the operational level, microgrids are
allocated and scheduled based on real-time demand
and supply. The interaction between the two layers
ensures economic, safe, and stable operation of the
microgrid.

c. The approach predicts future operational trends by
using the operational results of the community micro-
grid, provides contingency plans for short-term daily
operation and maintenance, and offers safety strate-
gies or upgrade guidelines after the microgrid’s long-
term operation.

The remainder of this article is organized as follows. In
Section 2, we introduce a bi-level optimization method and
present a comprehensive system architecture for the com-
munity microgrid. Section 3 offers a case study to validate the
proposed approach and delves into the results obtained from
the study. Finally, Section 4 offers a summary of our work
and outlines potential future research directions.

2. Materials and Methods

2.1. Overall Architecture of the Proposed Approach. Figure 2
illustrates the comprehensive system configuration, opera-
tion, and maintenance architecture of the proposed smart
community microgrid approach. Our approach adopts a
data-driven architecture built upon the EIoT framework,
leveraging original power consumption data sourced directly
from the community. This architecture comprises four main
components: power user analysis and classification, design
and operation, short-term daily operation, and long-term
redesign.

As delineated in Figure 2, the process encompasses sev-
eral key steps: gathering real-time power consumption data,
conducting sample analyses, extracting user group informa-
tion, and formulating a design-operation dual optimization
model based on the power consumption behavior character-
istics of different user groups (e.g., elderly, office workers,
etc.). The system parameters obtained from the operational
aspect are then integrated into the microgrid for its opera-
tion. Using daily operational data as a basis, we analyze both
short-term and long-term operations of the community
microgrid. In the short term, considerations include options
such as purchasing or selling power to/from the microgrid
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and the public grid, as well as managing the charging or
discharging of the BESS. For long-term operations, leverag-
ing historical microgrid usage data is invaluable. Predictive
insights derived from this analysis can guide decisions
regarding redesigning the current microgrid or transitioning
energy within older residential areas.

In Figure 2, energy storage systems (ESSs) play a pivotal
role in optimizing the operation of microgrids, achieved
through a combination of real-time and predictive charging
and discharging strategies. Real-time charging and dischar-
ging operations are crucial for maintaining a dynamic bal-
ance between supply and demand within the grid at any
given moment. Conversely, predictive charging and dischar-
ging techniques offer additional opportunities for enhancing
microgrid efficiency by forecasting future power require-
ments and availability. Further insights into these strategies
are elaborated upon in Part Three.

The secure and stable operational system architecture of
the community microgrid depicted in Figure 2 cannot be
adequately addressed by traditional monitoring and data
collection system architectures. They lack the capability to
manage the transitions between on-grid and off-grid operations,
coordinate control, and oversee the operation management of
the distributed entities within the microgrid. Therefore, this

article proposes a community microgrid systems architecture
based on EIoT, as illustrated in Figure 3. In this architecture,
EIoT serves as the essential cornerstone for enabling “thing-
to-thing connectivity” and facilitating information exchange
across different layers. It plays a crucial role in ensuring the
secure and stable operation of every aspect of the microgrid
system, including generation, transmission, transformation,
distribution, and utilization. Additionally, the operational
architecture depicted in Figure 3 forms the foundation for
the overall architecture of the communitymicrogrid in Figure 2.
It seamlessly integrates various phases of the energy life
cycle, encompassing production, distribution, transmission,
and consumption. Furthermore, it fosters seamless connectiv-
ity between decentralized energy sources, storage solutions,
and the public grid.

The operation architecture based on EIoT comprises five
layers: the sensor layer, network layer, service layer, applica-
tion layer, and security layer. EIoT and security mechanisms
span the entire system. At the sensor layer, hardware, load,
and distributed energy sensors are deployed to provide basic
data. The network layer is responsible for uploading collected
data to the server via various transmission networks. The
service layer, which constitutes the system’s core, includes
data storage and computation. The application layer handles
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FIGURE 2: Overall architecture for the system configuration, operation, and maintenance of smart community microgrid.
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business applications and system display, including manage-
ment and maintenance. Additionally, data related to commu-
nity energy can be uploaded to a cloud energy server, enabling
users to access and review diverse real-time data and infor-
mation through the client interface, ensuring secure and
dependable energy resource management.

By integrating the architectures depicted in Figures 2 and
3, the system incorporates two control algorithms for grid
connection and islanding modes, facilitating smooth switch-
ing between the two operating modes. Furthermore, the sys-
tem can predict both short-term and long-term electricity
consumption, enabling advanced energy management of
the microgrid system through predictive analysis to ensure effi-
cient and safe operation. The system supports cross-platform
operation and can be deployed on operating systems such as
Windows and Linux, in addition to being compatible with
nationwide production platforms.

2.2. User Classification Method. Analysis of community resi-
dents’ power use behavior is pivotal for the foundational
aspects of microgrid planning, energy efficiency optimization,
and effective energy dispatch management [28]. The intrica-
cies of electricity data provide insights into user consumption
patterns. It is imperative to sift through extensive datasets to
derive meaningful insights into users’ electricity behavior. By
doing so, we can analyze the specific consumption patterns of

community residents. Such an approach not only mitigates
the adverse effects of uneven load distribution within commu-
nities on the broader power grid but also enhances the reliability
and resilience of the microgrid system [29]. Furthermore, it
paves the way for tailored microgrid configurations and cus-
tomized electricity services, catering to the diverse needs of
various community types. Ultimately, this fosters a harmo-
nious integration between decentralized energy sources and
the primary power grid, establishing a robust foundation for
smart grid management and sustainable energy practices in
advanced communities [30].

As shown in Figure 4, the analysis of community user
electricity consumption behavior is structured around three
primary steps:

Step 1. Gathering electricity consumption data: This step
involves collecting detailed data on electricity consumption
from individual users within the community. The data
should include metrics such as time of use, load levels, volt-
age, and current. This information is fundamental for under-
standing the patterns and trends in electricity consumption.

Step 2. Processing and refining data using machine learn-
ing: Once the data is collected, machine learning techniques
are employed to process and refine it. This may include data
cleaning to remove errors or inconsistencies, outlier removal
to eliminate extreme values that could skew the analysis, and
categorization to group similar consumption patterns together.
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FIGURE 3: Intelligent microgrid system operation architecture for community based on EIoT.
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Machine learning algorithms can also help identify hidden
patterns and correlations within the data that might not be
immediately apparent.

Step 3. Labeling users based on characteristics: In this
step, users are categorized based on their demographic char-
acteristics, such as age group (elderly, middle-aged, young
adults), which can influence their electricity consumption
behavior. Understanding these differences can help tailor
energy services and microgrid configurations to better meet
the needs of different community members.

With the increase in smart home appliances and the
adoption of new energy vehicles, the dataset reflecting resi-
dential electricity consumption has become increasingly
multidimensional. These intricate datasets provide a wealth
of information for both research endeavors and practical
applications. However, given the interconnected nature of
various data dimensions, it is imperative to delve deeply
into this vast, multidimensional dataset to discern underly-
ing patterns. Predominantly, the analytical tools applied to
decipher residential electricity consumption data encompass
machine learning methodologies, such as clustering algorithms
[31], support vector machine (SVM) techniques [32], and deci-
sion tree algorithms [33].

Given the similarities in electricity consumption data
among residents of a community, clustering algorithms prove
invaluable in grouping objects with closely aligned attribute
characteristics. This approach not only ensures the differenti-
ation of various categories but also enhances computational
efficiency in data mining endeavors [34]. In this research,
the k-means algorithm is utilized to analyze residential elec-
tricity consumption data, leading to the identification of dis-
tinct behavioral patterns and operational scenarios [35–37].
Through a detailed clustering analysis of residents’ electricity
consumption behaviors, pivotal features were identified to
construct the ultimate feature model.

If the total number of electricity consumers in a commu-
nity is denoted as M, then the load curve for the m-th user is

denoted as

lm ¼ l1m;  l2m;  ……;  ltmf g ð1Þ

The electricity load of M users in the same community
can be represented as

L¼

l11; l
2
1;⋯; lt1

l12; l
2
2;⋯; lt2

⋯⋯ ⋮⋯
l1m; l2m;⋯; ltm

2
6664

3
7775 ð2Þ

In the matrix described by Equation (2), each row sig-
nifies the electricity consumption load data for a single user,
while each column denotes the total electricity consumption
load for all users during the same period [38, 39].

During the data processing phase, any missing values are
eliminated, and metrics are established to assess daily elec-
tricity consumption patterns. Within the electricity dataset L,
prevalent feature metrics include the peak load rate, off-peak
load rate, base load rate, average load, load factor, load skew-
ness coefficient, and load variation coefficient, as detailed in
Table 1 [40–42].

The daily average load curve provides insights into a
user’s electricity consumption patterns. To determine the
average daily electricity usage for user m, it is essential to
first compute the daily load data for that individual. Given a
load sampling interval of 30min, a full day’s data would
comprise 48 distinct data points, depicted as follows:

lm ¼ l1i ;  l
2
i ;  ……;  l48i g

n
ð3Þ

Subsequently, the daily average load for each user under-
goes normalization, which ensures that disparities in electric-
ity consumption across users do not influence the clustering
outcomes. The normalization formula is as follows:

Lm ¼ lm −min lm
max lm −min lm

ð4Þ

In the equation, Lm stands for the normalized daily aver-
age electricity consumption of user m, while l m represents
the unnormalized daily average electricity load for the same
user. The terms “max” and “min” denote the maximum and
minimum values within that user’s daily average electricity
load range.

Assuming there are k clusters, it is crucial to identify
similar elements within each cluster while seeking a solution.
With clusters denoted as [C1, C2,…, Ck], and the intracluster
dissimilarity metric denoted as [W (Ck)], the goal is to mini-
mize the dissimilarity within each cluster, aiming to bring the
data points as close as possible within each cluster. Specifi-
cally

Classification of electricity usage behavior characteristics

Electricity usage information of user
(time, power consumption, etc.)

Data processing
(data cleaning, classification, etc.)

……OlderWorker

User classification labels

Data
collection

Behavior
modeling

User
segmentation Youth

FIGURE 4: Resident electricity consumption behavior analysis process.
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minC1;…;Ck
∑
K

k¼1
W Ckð Þ

� �
ð5Þ

In this context, utilizing the Euclidean distance, we can
ascertain that W (Ck) is calculated as follows:

W Ckð Þ ¼ 1
Ckj j ∑

i;i02Ck

∑
p

j¼1
xij − xi0j
À Á

2 ð6Þ

So, the problem of minimizing variance in Equation (5)
can be articulated as follows:

minC1;…;Ck
∑
K

k¼1

1
Ckj j ∑

i;i02Ck

∑
p

j¼1
xij − xi0j
À Á

2

( )
ð7Þ

For each specified cluster count k, utilize clustering algo-
rithms to analyze the dataset and derive the clustering results
associated with each k. Assess the efficacy of the clustering by
employing the silhouette coefficient to ascertain the optimal
number of clusters. The calculation is executed as follows:

S¼ 1
N

∑
N

i¼1

b ið Þ − a ið Þ
max a ið Þ; b ið Þ½ �

a ið Þ ¼ 1
Ninside

∑
Ninside

j¼1
pi − pj
�� ��2

b ið Þ ¼ 1
Noutside

∑
Noutside

j¼1
pi − qj
�� ��2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð8Þ

In the equation, N represents the total number of sam-
ples, a (i) denotes intracluster cohesion, b (i) stands for
intercluster separation, Ninside is the number of sample points
in the cluster to which pi belongs, Noutside is the number of
samples outside the cluster to which pi belongs, pj represents
the other samples in the same cluster as pi, and qj represents
the samples outside the cluster.

Ultimately, user groups categorizing the electricity con-
sumption habits of community residents can be derived from
the clustering results. Cluster users into N user groups based
on their electricity consumption behavior characteristics {C1,
C2, …, CN}. Based on the clustering results, each user group
is separately aggregated to obtain one load curve. If the num-
ber of electricity consumption data points is T, the clustered
load information can be represented as

C ¼
c11; c

2
1;…; cT1
⋮…⋮

c1N ; c
2
N ;…; cTN

2
64

3
75 ð9Þ

2.3. Bi-Level Optimization Method. Bi-level optimization is
frequently employed in various design and planning scenar-
ios, encompassing upper level and lower level optimization
objectives [43]. The model and definition of bi-level optimi-
zation were initially deduced by Jerome, Falk, and Mcgill
[44], and the mathematical expression can generally be for-
mulated as follows:

min
F1 ¼ F x; yð Þ

s:t:G x; yð Þ ≤ 0

(

min
F2 ¼ f x; yð Þ

s:t:H x; yð Þ ≤ 0

(
2
666664 ; ð10Þ

where F (•) and f (•) are the objective functions of the upper
and lower levels, x and y are the decision variables, and G and
H represent the constraints for the upper and lower levels,
respectively.

Based on the characteristics of the energy supply mode,
which involves multiple power sources complementation,
active load coordination, and two-way electrical energy
interaction, the basic bi-level optimization model for a com-
munity microgrid is formulated using bi-level planning the-
ory, as illustrated in Figure 5. The upper level functions as the
system design module, determining the optimal configura-
tion of the microgrid system (e.g., the number and capacity
of WTs, PV panels, and energy storage units). Once these
system parameters are determined, the lower level serves as
the system scheduling module, deciding the optimal opera-
tional strategy for the microgrid system in daily scheduling
(e.g., how much electricity is purchased from or sold to the
public grid each day). Over time, operational decision results
from the lower level, including capacity adjustments and
deployment methods, are fed back to the upper level for
major maintenance and adjustments of the microgrid system
(e.g., adding or decommissioning certain WTs, PV panels,
and energy storage units).

Utilizing the principles of bi-level optimization, we develop
a model to tackle the planning and operational challenges
inherent in wind–solar battery systems within community
microgrid. The upper-level optimization primarily focuses

TABLE 1: Feature description of electricity usage for residential consumers.

Feature parameters Feature description

Peak load rate The ratio of electricity consumed during peak hours to the daily electricity consumption
Off-peak load rate The ratio of electricity consumed by users during off-peak hours to the daily electricity consumption
Base load rate The ratio of electricity consumed outside of peak and off-peak hours to the daily electricity consumption
Daily load rate The ratio of the electricity load within a day to the maximum load
Load factor coefficient The ratio of average load to maximum load per user
Load skewness coefficient The ratio of the third central moment to the cube of the standard deviation
Load variation coefficient The ratio of the standard deviation of daily electricity consumption sequence to the average load

International Journal of Energy Research 7
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on optimizing capacities, power configurations, and related
parameters. Concurrently, the lower-level optimization aims
to enhance the economic efficiency of microgrid operations.
The specific modeling process is outlined as follows.

2.3.1. Planning Level Analysis Models

2.3.1.1. Objective Functions. In this article, system planning
during the construction cycle of a community microgrid is
assessed using indicators such as system economy and envi-
ronmental friendliness, which aligns with the approach
described in reference [45].

Minimize:

F1 ¼ f1 xð Þ; f2 xð Þ½ �; x ¼ x1; x2ð Þ 2 RD; ð11Þ

where f1 and f2 denote the economic and environmental
objectives, respectively, x¼ ½X� :T (e.g., WT, PV, and BESS)
are a vector of optimization variables that optimizes the
capacities of distributed power sources, ESSs, and other rele-
vant components. RD denotes the decision variable space
within which the optimization process searches for the opti-
mal values of x.

1. Economic Objectives

The economic analysis primarily focuses on the con-
struction and operational costs of the microgrid, which
encompasses the overall expenses for deploying WT, PV,
and BESS within the community. Additionally, it accounts
for penalty costs stemming from the unpredictability of
renewable energy sources and user electricity consumption
patterns, as well as compensation for load interruptions. The
formulation of the total cost of the microgrid is presented as
follows [46]:

f1 xð Þ ¼ CWT þ CPV þ CBESS þ Ctrans þ IR; ð12Þ

where CWT, CPV, CBESS represent the total cost of WT, PV,
BESS, Ctrans denotes the penalty cost, and IR denotes the cost
of interruptible load compensation.

CWT ¼ NWT eWTPWT
r 1þ rð Þm
1þ rð Þm − 1

þ u PWTð Þ
� �

ð13Þ

CPV ¼ NPV ePVPPV
r 1þ rð Þm
1þ rð Þm − 1

þ u PPVð Þ
� �

ð14Þ

CBESS ¼ NBESS eBESSPBESS
r 1þ rð Þm
1þ rð Þm − 1

þ u PBESSð Þ
� �

ð15Þ

Ctrans ¼ Ntrans

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
24

∑
24

m¼1
Ptrans mð Þ − 1

24
∑
24

m¼1
Ptrans mð Þ

� �
2

s
;

ð16Þ

whereNWT;NPV;NBESS denote the number of WT, PV, BESS,
respectively; Ntrans denotes the penalty cost coefficient for
uncertainties in renewable energy output (solar irradiance,
wind speed) and users’ load in community microgrid; eWT;
ePV; eBESS represent their unit costs, PWT; PPV; PBESS indicate
their output powers, Ptrans indicates exchanged power between
system and grid, m signifies a lifespan of the system; r denotes
the discount rates for each; and uðPWTÞ :; uðPPVÞ :; uðPBESSÞ : rep-
resent their operating costs, respectively.

In this context, the term “interruptible load” refers to a
strategy employed by the microgrid to temporarily discon-
nect noncritical loads during peak demand periods, while
providing economic compensation for such interruptions.

IR¼ Aþ B × PH þ C × P2
H ; ð17Þ

where A¼ 6:14; B¼ 1:2;C¼ 1:23× 10−4 denote interrup-
tion cost factors according to previous research [47] and
PH denotes interruption power respectively.

2. Environmental objectives

Since the WT and PV in the microgrid studied in this
paper are clean energy sources, their environmental costs are
not considered. Instead, the environmental consideration
primarily focuses on the carbon emission penalty cost, which
pertains to the carbon emissions resulting from the micro-
grid’s purchase of electricity from the grid, specifically from
thermal power units.

Planning level 

Operational level 

Economic and reliability design indexes

Optimized configuration models
Optimized algorithms

Economic operation scheduling plan

Optimized operation models
Optimized algorithms

Cost Capacity Power Reliability

System
planner

System
operator

FIGURE 5: Basic bi-level optimization analysis model of resident microgrid system.
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f2 xð Þ ¼ ∑
N

n¼1
CnP nð ÞΔt þ ke ∑

N

n¼1
P nð ÞΔt; P nð Þ＞0

0; P nð Þ ≤ 0

8<
: ; ð18Þ

where Cn denotes electricity price at n-th period, PðnÞ: repre-
sents the exchanged power between the microgrid and the
public grid in the n-th period, N as the total number of time
periods, Δt as the smallest scheduling unit, and Ke represents
the carbon penalty cost factor per unit of electricity. This
factor is introduced to account for the carbon emissions
associated with acquiring additional power from the public
grid during periods of power shortage. This consideration is
pertinent because unlike the wind–solar power generation
units within the microgrid, which do not contribute to car-
bon emissions, the public power obtained during shortages
may originate from thermal power plants, known for their
significant carbon emissions. As can be seen from the above
analysis, the carbon emission penalty coefficient for clean
energy sources such as WT and PV is 0. Therefore, the
optimization objectives presented for the two energy system
scenarios: (i) clean energy/public grid and (ii) diesel/public
grid, considers economic aspects and component prices
based on the Chinese market and regulations. For scenario
(i), the carbon penalty cost factor is set at 0.035 kg/kWh, and
for scenario (ii) is 0.598 kg/kWh. This latter value quantifies
the environmental costs associated with the additional car-
bon emissions [48].

2.3.1.2. Constraints. As this constitutes a multiobjective opti-
mization problem, it is necessary to constrain the objective
function within a specific range to ensure that the optimiza-
tion goal remains within an acceptable limit.

Subject to:

fi＜fi;maxi¼ 1; 2 ð19Þ

NWT 2 0; 30½ � ð20Þ

NPV 2 0; 180½ � ð21Þ

NBess 2 0; 30½ � ð22Þ

2.3.2. Operational Level Analysis Models

2.3.2.1. Objective Functions. In this study, the selected time
scale for the operational-level scheduling optimization is 24
h, with the daily operation cost serving as the objective func-
tion. This cost primarily comprises the daily expenses for
power purchase and the revenue from power sales [49, 50].

Minimize:

F2 ¼ y1 xð Þ þ y2 xð Þ½ � ¼ ∑
N

n¼1
C nð ÞP nð ÞΔt; ð23Þ

where y1ðxÞ : refers to the daily power purchase cost of the
microgrid system, y2ðxÞ : is the daily revenue of the system
from power sales, PðnÞ : is the power exchanged between the

microgrid and the public grid, PðnÞ :>0 means the power
purchased by the microgrid, PðnÞ :<0 means the power sold
by the microgrid, and CðnÞ : is the time-of-use tariff.

Cn ¼
Cin nð Þ; P nð Þ＞0

Cout nð Þ; P nð Þ＜0

(
; ð24Þ

where CinðnÞ : and CoutðnÞ : denote the purchase price and sale
price of electricity at time n, respectively.

2.3.2.2. Constraints. Subject to:

1. Power balance constraint

PG − PS þ PBESS ¼ PL − PPV − PWT; ð25Þ
where PG represents purchased power, PS represents power
sold, PBESS represents energy storage, PL represents load
power, PPV represents PV power, and PWT represents wind
power.

2. Energy storage state of charge (SOC) constraint

SOCmin ≤ SOCt ≤ SOCmax; ð26Þ

where SOCmin and SOCmax denote the minimum and maxi-
mum storage charge state, respectively, and SOCt denotes
the storage charge state at time t [51].

3. System operating constraint

Within community microgrid systems, the following
constraint must be satisfied for the purchase and sale of
electricity.

0 ≤ PG ≤ PGmax

0 ≤ PS ≤ PSmax

(
ð27Þ

Δt 2 0; 24½ �; ð28Þ

where PGmax and PSmax denoted by the system purchase and
sale electrode values, respectively, must adhere to certain
limits [52–54]. Specifically, these values are constrained by
the economic and operational conditions of the microgrid, as
well as by external factors such as market prices and regula-
tory policies.

2.3.3. System Analysis Models

2.3.3.1. PV Analysis Model. The output power of a PV system
is related to the local light intensity, and it can be expressed
as [55]:

Ppv ¼ ξηmApηpcos θ; ð29Þ

where PPV is the actual PV power, ξis the light intensity, ηm is
the light intensity conversion efficiency, Ap is the PV panel
area, ηp is the PV cell efficiency, and θ is the light angle.

International Journal of Energy Research 9
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2.3.3.2. WT Analysis Model. The output power of the WT is
correlated with the wind speed. The relationship between the
output power PWT of the WT, and the wind speed v can be
expressed as

PWT ¼
0; ν ≤ νinorν ≥ νout
ν3 − ν3in
νr

3
− ν3in

Prate; νin ≤ ν ≤ νr

Pr; νr ≤ ν ≤ νout

8>>><
>>>:

; ð30Þ

where PWT is the actual power, and Pr is the rated power.
According to the actual situation, vin is 3m/s, vout is 25m/s,
vr is 14m/s.

2.3.3.3. BESS Analysis Model. ESSs play a crucial role in
mitigating the uncertainty and intermittency inherent in dis-
tributed energy sources within community microgrid. The
charging and discharging states of these ESSs are expressed
as follows.

PBESS tð Þ ¼
PBESS t − 1ð Þ þ Ptotal tð Þ −

Pload1
ηinv

�� �
ηBESS;Charge

PBESS t − 1ð Þ − Pload1 tð Þ
ηinv

− Ptotal tð Þ
� �

ηBESS;Discharge

8>>><
>>>:

ð31Þ

Ptotal tð Þ ¼ PPV tð Þ þ PWT tð Þ; ð32Þ

where PBESS (t) represents the stored energy at time t, Pload1
(t) denotes the electrical load at time t, Ptotal (t) indicates
the total supply at time t, ηinv and ηBESS represent the work
efficiency and the charge/discharge efficiency, respectively.

2.3.4. Solving Method for Bi-Level Optimization. Building
on the described microgrid architecture that leverages EIoT
and the bi-level optimization approach for planning and
operational levels, the overall process for collaborative opti-
mization of community microgrid systems is illustrated in
Figure 6.

By utilizing clustering validity metrics, we meticulously
determined the optimal number of clusters, thus generating
representative and diverse typical operational scenarios. Sub-
sequently, a bi-level collaborative optimization is employed,
grounded in these typical user profile scenarios.

The planning layer is tasked with coordinating the opti-
mized configuration of distributed renewable energy genera-
tion (DREG) systems and ESSs. Through the meticulous
optimization of installation capacity, grid connection points,
and system types of DREGs and ESSs, a comprehensive bal-
ance is struck between the economics, reliability, and envi-
ronmental impact of the microgrid systems.

The operational layer fully integrates the active partici-
pation of the ESS in the management of the microgrid sys-
tem. By refining the operational plans of the ESS across
various typical scenarios, the economic efficiency and reli-
ability of the microgrid system’s operation are significantly
enhanced [56–58].

The fundamental process of bi-level collaborative opti-
mization unfolds as follows:

Step 1: Establish the system’s objectives and parameters
through independent analysis of electricity demand, fore-
casts, environmental factors, and community microgrid
development trends.

Step 2: Construct the microgrid structure based on this
analysis, incorporating energy siting and planning. Define
objective functions and constraints for optimization at the
planning level and select an appropriate algorithm to solve
for the microgrid’s optimization parameters.

Step 3: Simulate the microgrid’s actual operation using
the optimal design parameters derived from the planning
level. Formulate the operational efficiency optimization
model and constraints. Develop an optimization algorithm
to address the problem and obtain the optimal operational
dispatch results for the community microgrid.

In Figure 6, to bolster the global search capabilities of the
PSO optimization algorithm at the planning level, we adopt
an adaptive weight approach to mitigate the risk of conver-
gence to local optima. The formula for calculating adaptive
weight is presented as follows:

ω¼
ωmax; f > favg

ωmin −
ωmax − ωminð Þ × f − fminð Þ

favg − fmin
; f ≤ favg

8><
>: ; ð33Þ

where ω is the weight coefficient, ω2 ½0:4; 0:9� :, f represents
current fitness value, favg denotes average fitness value, and
fmin indicates the minimum fitness value, f 2 ½0; 1�: [59]. The
algorithm enhancedwith adaptive weight significantly improves
the global search capabilities of the PSO. The test result is
shown in Figure 7.

2.4. Electricity Load Forecasting Method. The current config-
uration of electric power resources is inefficient and urgently
requires optimization. Specifically, issues such as an unclear
distribution of electrical energy consumption, low equip-
ment utilization rates, uneven load distribution, and under-
utilized equipment capacities are evident. Consequently,
accurate forecasting of electricity load is crucial for integrat-
ing new energy sources and facilitating the expansion and
transformation of distribution grids.

10 International Journal of Energy Research
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Forecasting plays a pivotal role in the safe allocation and
economic operation of power systems. The accuracy of these
forecasts directly influences reliability, economic efficiency,
and quality of power supply. Therefore, selecting an appro-
priate load forecasting method to improve prediction accu-
racy is of considerable practical importance.

The system can predict both long-term and short-term
electricity consumption of the load, thereby enabling advanced
energy management of the microgrid system. Through pre-
dictive analysis, it ensures efficient and safe operation by fore-
casting load demand, WT output, PV output, and the status

demand of the BESS. Figure 8 illustrates the necessity for
adjustments to the microgrid in the context of short-term
maintenance tasks, including charge and discharge manage-
ment, as well as electricity trading. Furthermore, for long-term
community planning and operation, factors such as residential
needs, ecological considerations, and regional variations in sun
exposure must be considered, necessitating further adjust-
ments to the microgrid. These adjustments provide a valuable
reference for long-term operational strategies and new grid
construction projects.

3. Results and Discussion

3.1. Experimental Scenario Setup. To assess the viability of
the models and methodologies presented in this article, we
have selected a residential community as the focus of our
case study. Electricity consumption data has been collected
from the community’s residents and supplemented with
datasets from online sources [60, 61]. The models and meth-
odologies have been implemented on a simulation platform
using MATLAB R2024b and Python 3.11, in conjunction
with the YALMIP optimization tool, CPLEX solver, and
Sklearn library. This platform runs on a computer equipped
with Intel i7-11700 processor and a GTX1660 Ti-6G discrete
graphics card.

As shown in Figure 9, the community’s distributed power
sources comprise PV, WT, and BESS systems, among others.
These systems are strategically located in open areas or
alongside roads within the community and are ultimately
into the public grid, providing electrical power to community
residents. Given that the BESS in the microgrid has a maxi-
mum charging and discharging power of 30 kW and a

Planning layer optimization

Typical scenarios analysis

Operation layer optimization

Optimization model and collaborative optimization

Planning scheme
evaluation

Typical
scenario data

Start

Production initial
individuals

Evaluate initial
individuals

Obtaining new
individuals

Evaluate new
individuals

Convergence?

End

Yes

No

GA

LP

Obtaining new
population

Power
usage
data

Typical
usage
scene

FIGURE 6: Overall collaborative optimization process of resident microgrid system. PSO, particle swarm optimization.
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FIGURE 7: Global search capabilities test result of adaptive weight
PSO. PSO, particle swarm optimization.
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capacity of 50 kWh and considering that the interruptible
load accounts for 15% of the total load, the detailed power
parameters of the microgrid are presented in Table 2. Addi-
tionally, the time-of-use electricity tariff is outlined in Table 3.

3.2. Analysis andDiscussion of Electricity Usage Characteristics.
Building on the community microgrid systems architecture
described previously, daily electricity consumption data is har-
nessed from power users within a specific community. This

Long-term planning

Replacement of
existing

equipment

New community
planning and

design

Long-term forecasting data

Short-term planning

Charge and
Discharge

Electricity
trading

Short-term forecasting data

User electricity consumption Electricity vehicle consumption Distributed generation

Intelligent monitoring and control

Electric big data monitoring center

Gateway

FIGURE 8: Load forecasting for community microgrid.

ðaÞ ðbÞ ðcÞ
FIGURE 9: The deployment of distributed power sources in the community. (a) PV and BESS (b) BESS and WT (c) WT, PV, and BESS. BESS,
battery energy storage system; PV, photovoltaic; WT, wind turbine.

TABLE 2: Parameters of distributed power in community microgrid.

Type
Power (kW)

Cost (¥/kW) Life (a)
Max Min

WT 30 0 0.0296 10
PV 180 0 0.0096 20
BESS 30 0 0.0401 10

Abbreviations: BESS, battery energy storage system; PV, photovoltaic; WT,
wind turbine.
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data is sampled at 15-min intervals, yielding 96 load data
points per day. Subsequently, the daily electricity data under-
goes normalization, and an initial feature set is established
based on usage characteristics. Characteristic curves are then
plotted to illustrate electricity consumption patterns for dif-
ferent users at various time intervals, as shown in Figure 10.
The figure demonstrates that different colors represent dis-
tinct electricity usage patterns associated with various user
types. Furthermore, the observed user characteristics exhibit
considerable variability and necessitate further refinement.

As illustrated in Figure 11, based on their electricity usage
behavior characteristics, community users have been classi-
fied into four distinct categories: the first category encom-
passes commercial users; the second category comprises
working-class households; the third category includes house-
holds with elderly residents; and the fourth category consists
of households that include both elderly and working-class
members.

3.3. Typical User CommunityMicrogrid OptimizationAnalysis.
Based on the community electricity consumption data, the
range of values for determining the primary load feature
parameters has been set to [0,1], and numerical identifiers
have been assigned to these parameters.

Figure 12 illustrates the Pareto frontier solution, show-
casing the optimal configuration of the community micro-
grid at the planning level, considering both economic and
environmental considerations. The graph reveals a tradeoff
between the costs related to environmental sustainability and

economic benefits. Three representative regions are highlighted
for further discussion.

Given the varying requirements of different communities
for power supply system attributes, the corresponding micro-
grid structures and configuration parameters differ accord-
ingly. Communities that prioritize higher economic efficiency
may opt for a configuration nearer to region 1. In this case, the
community would establish a smaller microgrid and purchase

TABLE 3: The time-sharing tariff of community electricity.

Time Buy price (¥/kWh) Sell price (¥/kWh)

00:00–06:00 0.25 0.22
06:00–09:00 0.53 0.42
09:00–14:00 0.82 0.62
14:00–17:00 0.53 0.42
17:00–22:00 0.82 0.65
22:00–00:00 0.53 0.42
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FIGURE 10: Characteristics curves of community users’ daily electricity usage.
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a larger proportion of electricity from the external grid, result-
ing in increased environmental treatment costs.

Conversely, communities that emphasize clean and environ-
mentally friendly energy solutions may choose a configuration
closer to region 3. In this scenario, the microgrid is designed
to minimize environmental output costs, although this may
come with higher construction costs.

For communities seeking a balance between economic
efficiency and environmental friendliness, the configuration
parameters in region 2 would be ideal. In conclusion, com-
munities have the flexibility to choose a microgrid planning
approach that aligns with their specific needs and priorities.

To further assess the feasibility of the methodology pro-
posed in this article, the optimized configuration for the
microgrid in region 2 has been selected. Table 4 presents a
comparative cost analysis, contrasting the results with those
obtained from the original configuration.

As illustrated in Table 4, in comparison to the original
configuration, the optimized configuration presented in this
study significantly enhances overall economic efficiency,
strengthens the microgrid’s robustness against the uncertain-
ties associated with new energy sources, and diminishes both
energy procurement costs and carbon emissions. The scheme
proposed here offers robust support for advancing the clean
and low-carbon transition of community energy systems, and
the results presented validate the accuracy of our findings.

Figure 13 illustrates the SOC of the BESS within the com-
munity microgrid for working-class households. Notably, the

SOC of the BESS undergoes a significant decrease during two
distinct periods: from 10:00 to 15:00 in the afternoon and
from 18:00 to 21:00 in the evening. A comparison of the
output curve of the wind–solar power unit with the load
output curve reveals a substantial disparity, indicating an
inability to meet the load demand during these timeframes.

To address this challenge while ensuring economic effi-
ciency, the BESS intervenes to compensate for the power
deficit. This enables the comprehensive utilization of renew-
able energy and achieves the goal of minimizing energy stor-
age operation costs. Furthermore, real-time electricity power
dispatching, based on the SOC curve of the BESS, has proven
effective in peak shaving and valley filling for the larger
electricity grid, thereby significantly reducing the operational
costs of the community microgrid.

Throughout the operational phase of smart microgrid,
a strong correlation is observed between the interactions of
the microgrid with the main grid and the charging and dis-
charging activities of ESSs. Formulating effective strategies
for microgrid transactions and energy storage operations
requires a comprehensive assessment of various factors,
including energy balance, coordinated functioning, and envi-
ronmental benefits, among others. Additionally, the pursuit
of optimal decision-making is further influenced by consid-
erations such as grid stability, the characteristics of storage
equipment, and prevailing market demands.

Figure 14 presents the analysis results of a community
microgrid operating with a bi-level optimal configuration
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FIGURE 12: Configuration outcomes of the community at the planning level.

TABLE 4: Various costs of the configuration scheme.

Various costs Original configuration (10,000 ¥/kW) Optimized configuration (10,000 ¥/kW)

CWT 0.85 0.61
CPV 1.48 1.15
CBESS 2.30 1.96
Ctrans 0.22 0.14
IR 0.09 0.07
f2 0.46 0.37

Abbreviations: BESS, battery energy storage system; PV, photovoltaic; WT, wind turbine.
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solution over the course of a typical working day. During
peak nighttime hours, the community experiences a signifi-
cant increase in power demand, which poses a challenge for
the PV arrays to meet the electricity needs on their own.
Consequently, a combination of WT and BESS is employed
to address the heightened load.

Furthermore, the operation of the community microgrid
is influenced by time-of-use tariffs. During periods of lower
and standard tariffs, purchasing electricity from the public
grid to charge the BESS becomes a viable option. Conversely,
during high-tariff periods, the microgrid prioritizes the utili-
zation of WT and PV to meet the community’s load
demands. Any shortfall in load is compensated by dischar-
ging the BESS, thereby avoiding the need to purchase

electricity from the public grid. During periods of lower
load, the BESS is charged to prepare for future demand.

The microgrid dynamically monitors the output power
of the WT and PV, continuously assesses the SOC of the
BESS, and adjusts the output power accordingly to minimize
BESS charging cycles and enhance its lifespan. In practical
applications, real-time charging and discharging, coupled
with predictive strategies, synergize to optimize the opera-
tion of microgrid systems. Real-time actions ensure a precise
balance between supply and demand, thereby reducing
energy wastage resulting from either shortages or surpluses.

However, real-time operations are limited to reacting to
current grid conditions and cannot predict or manage poten-
tial fluctuations in future power demand or supply. To
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address this limitation, predictive charging and discharging
strategies are employed. By forecasting power needs and
availability, these strategies enable the proactive formulation
of sensible charging and discharging plans. This foresight
helps to alleviate grid supply pressure and enhances the effi-
ciency and cost-effectiveness of energy systems.

3.4. Prediction and Analysis of Electricity Consumption
Trends. Based on forecasted WT, PV, and power load data,
a bi-level collaborative optimization model was utilized to
plan and schedule the operation of the community micro-
grid. Using a single day as the calculation cycle and collecting
data every 15min (resulting in a total of 96 data points), the
predicted trends for typical daily load, PV, and WT output
were obtained, as illustrated in Figure 15. This approach
allows for a detailed and accurate assessment of the micro-
grid’s performance and enables optimal decision-making to
ensure reliable and cost-effective energy supply.

Predicting and analyzing electricity consumption trends
is crucial in modern energy management and planning. With
the continuous growth in electricity demand, understanding
consumption patterns and making informed predictions are
essential for ensuring a stable and efficient energy supply.
This article delves into the methodologies and insights sur-
rounding the prediction and analysis of electricity consump-
tion trends, particularly within the context of microgrid.

Microgrids represent dynamic energy systems whose
electricity consumption patterns are influenced by a multitude
of factors. Below, we present a comprehensive guide outlining
strategies for both short-term charging and discharging prac-
tices, as well as insights into long-term strategic replanning to
achieve optimal performance and sustainability.

3.4.1. Short-Term Charging and Discharging Recommendations

a. Load management: Optimize electricity usage pat-
terns by implementing load management techniques.
Charge during periods of low electricity prices and

reduce consumption during high-price periods to
minimize electricity costs.

b. Energy storage: Enhance energy storage capabilities
with devices such as batteries or ESSs. This allows for
the release of energy during demand peaks, balancing
supply and demand discrepancies and reducing reli-
ance on the main power grid.

c. Intelligent charging control:Utilize intelligent charg-
ing control systems to adjust charging and discharging
processes based on factors like energy prices, load
demand, and battery status. This improves energy uti-
lization efficiency and optimizes system performance.

d. Optimization of renewable energy: Schedule charg-
ing and discharging periods based on weather forecasts
and real-time output of PV and WT power genera-
tion units. This maximizes the utilization of renew-
able energy and reduces carbon emissions.

3.4.2. Long-Term Replanning Recommendations

a. Network expansion and optimization: Consider
expanding the microgrid’s scale or increasing distrib-
uted energy resources based on future demand fore-
casts. This ensures the growing electricity demand is
met and optimizes the power supply network structure.

b. Diversification of energy sources: Introduce a variety
of energy resources, such as solar, wind, and biomass
energy, to reduce dependence on traditional energy
sources. This enhances the reliability and stability of
the energy supply.

c. Intelligent management systems: Implement intelli-
gent management systems that leverage advanced data
analysis and prediction technologies for real-time mon-
itoring, optimization scheduling, and fault diagnosis
of microgrid systems. This boosts system operation effi-
ciency and reliability.
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d. Participation in power markets: Explore opportu-
nities for microgrid participation in power markets,
such as selling surplus electricity or engaging in energy
trading. This maximizes economic benefits and sup-
ports the sustainable development of microgrid.

In conclusion, adopting these short-term charging and
discharging recommendations alongside long-term replan-
ning strategies enables microgrid to better adapt to changing
electricity demand and energy environments. This enhances
the stability, reliability, and economic efficiency of the sys-
tem, ensuring a sustainable and resilient energy future.

4. Conclusions

To address the issues of intermittency and uncertainty inher-
ent in new energy sources, such as PV and WT systems, as
well as the diverse electricity consumption behaviors of
residents, which collectively impact the economic viability,
environmental sustainability, and reliability of community
microgrid. This article proposes a multilayer collaborative
optimization system architecture and method tailored for
community microgrid based on the EIoT. This approach
facilitates greater flexibility in integrating distributed energy
resources, enhances the reliability of community power sup-
ply, improves energy utilization efficiency, and reduces oper-
ational costs. The summary of our findings is as follows:

a. An overall and operation architecture of community
microgrid based on EIoTwas proposed, which addressed
the challenges of seamless integration and flexible
grid connection of distributed renewable energy sources,
enhanced the reliability of community microgrid power
supply, and facilitated efficient utilization of diversi-
fied energy sources.

b. A bi-level coordinated optimization method has been
developed for community microgrid, considering user
electricity consumption behaviors. It obtains configu-
ration parameters and operational data of the commu-
nitymicrogrid through adaptive weight PSO and linear
programming algorithms, ensuring optimal operation
of community microgrid under varying conditions.

c. The short-term daily intelligent operation strategies
and long-term maintenance plans for community
microgrids are systematically integrated through the
prediction of electricity usage trends using machine
learning algorithms, resulting in a substantial enhance-
ment of the scheduling and operational efficiency of
community energy systems.

One limitation of this study is that the optimization
models do not account for various application scenarios
in microgrid clusters. To address this, future research will
employ new optimization methods and models to further
enhance the environmental adaptability and operational sta-
bility of community microgrid.
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