
Qi Zhou
University of Michigan–Shanghai Jiao Tong

University Joint Institute,
Shanghai Jiao Tong University,

800 Dong Chuan Road, Minhang District,
Shanghai 200240, China

e-mail: zhouqi1998@sjtu.edu.cn

Jin Wu
Laboratory for Computational Sensing and

Robotics,
Johns Hopkins University,

3400 North, Charles Street,
Baltimore, MD 21218

e-mail: jwu220@jh.edu

Boyan Li
University of Michigan–Shanghai Jiao Tong

University Joint Institute,
Shanghai Jiao Tong University,

800 Dong Chuan Road, Minhang District,
Shanghai 200240, China

e-mail: liboyan@sjtu.edu.cn

Sikai Li
University of Michigan–Shanghai Jiao Tong

University Joint Institute,
Shanghai Jiao Tong University,

800 Dong Chuan Road, Minhang District,
Shanghai 200240, China

e-mail: skevinci@sjtu.edu.cn

Bohan Feng
University of Michigan–Shanghai Jiao Tong

University Joint Institute,
Shanghai Jiao Tong University,

800 Dong Chuan Road, Minhang District,
Shanghai 200240, China

e-mail: bohan.feng@sjtu.edu.cn

Jiangshan Liu
University of Michigan–Shanghai Jiao Tong

University Joint Institute,
Shanghai Jiao Tong University,

800 Dong Chuan Road, Minhang District,
Shanghai 200240, China

e-mail: jiangshan.liu@sjtu.edu.cn

Adaptive Robot Motion Planning
for Smart Manufacturing Based
on Digital Twin and Bayesian
Optimization-Enhanced
Reinforcement Learning
Advanced motion planning is crucial for safe and efficient robotic operations in various sce-
narios of smart manufacturing, such as assembling, packaging, and palletizing. Compared
to traditional motion planning methods, Reinforcement Learning (RL) shows better adapt-
ability to complex and dynamic working environments. However, the training of RL models
is often time-consuming, and the determination of well-behaved reward function parameters
is challenging. To tackle these issues, an adaptive robot motion planning approach is pro-
posed based on digital twin and reinforcement learning. The core idea is to adaptively select
geometry-based or RL-based methods for robot motion planning through a real-time dis-
tance detection mechanism, which can reduce the complexity of RL model training and
accelerate the training process. In addition, Bayesian Optimization is integrated within
RL training to refine the reward function parameters. The approach is validated with a
Digital Twin-enabled robot system through five kinds of tasks (Pick and Place, Drawer
Open, Light Switch, Button Press, and Cube Push) in dynamic environments. Experiment
results show that our approach outperforms the traditional RL-based method with improved
training speed and guaranteed task performance. This work contributes to the practical
deployment of adaptive robot motion planning in smart manufacturing.
[DOI: 10.1115/1.4067616]

Keywords: robot motion planning, reinforcement learning, digital twin, Bayesian
optimization, smart manufacturing, assembly, control and automation, robotics and
flexible tooling

1Corresponding author.
Manuscript received August 7, 2024; final manuscript received December 15, 2024;

published online January 24, 2025. Assoc. Editor: Ran Jin.

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-1
Copyright © 2025 by ASME

mailto:zhouqi1998@sjtu.edu.cn
mailto:jwu220@jh.edu
mailto:liboyan@sjtu.edu.cn
mailto:skevinci@sjtu.edu.cn
mailto:bohan.feng@sjtu.edu.cn
mailto:jiangshan.liu@sjtu.edu.cn

Youyi Bi1

University of Michigan–Shanghai Jiao Tong
University Joint Institute,

Shanghai Jiao Tong University,
800 Dong Chuan Road, Minhang District,

Shanghai 200240, China
e-mail: youyi.bi@sjtu.edu.cn

1 Introduction
Robots are playing an increasingly significant role in manufactur-

ing owing to their efficiency and accuracy in executing repetitive
tasks, such as stacking, welding, and assembly [1]. In the context
of smart manufacturing, robotic operations are frequently involved
with human-robot collaboration and multi-robot cooperation [2]. In
these environments, robots face various challenges, such as avoid-
ing moving objects, interacting with other robots, and adapting to
human interventions [3,4]. However, traditional robot motion
control based on manual instruction may not adapt well to fre-
quently changing working scenarios. Therefore, it has become
highly challenging for robots to operate safely and efficiently in
dynamic environments, and the research for advanced motion plan-
ning methods is crucial.
The core of robot motion planning is path planning, which aims

to generate safe paths from start positions to target positions. Con-
ventional path planning methods (e.g., geometry-based method [5],
potential field method [6], and bio-inspired heuristic method [7]) are
often limited in adapting to complex working environments [8].
Sampling-based methods, such as Rapidly Exploring Random
Trees (RRT) [9] and its variations [10], generate viable paths by
sampling the configuration space and have been used widely in
motion planning. However, these methods suffer from long compu-
tation times when dealing with constantly changing surroundings
[11]. In contrast, learning-based methods, especially Reinforcement
Learning (RL), are gaining more attention recently. RL treats the
robot as an intelligent agent that learns to take actions through inter-
actions with environment [12]. With strong self-learning capabili-
ties, RL can enhance the adaptability and efficiency of robotic
systems in complex and dynamic settings [13].
Despite RL-based motion planners having shown favorable per-

formance in dynamic scenarios, they still confront several chal-
lenges in a practical industrial context. One challenge is the
time-consuming training of RL models. Training a workable RL
model for robot motion planning in a laboratory environment
often takes several hours. In real industrial scenarios, it may
require even more time, limiting the practical use of such
methods [14]. In addition, the performance of RL models is sensi-
tive to the choice of reward functions, especially under complex
tasks and environments. Slight adjustments to these parameters
may significantly impact the model performance. Therefore, there
is a need to quickly select refined reward function parameters of
RL models [15].
To address these issues, a robot motion planning approach is pro-

posed for the dynamic manufacturing environment. It can adap-
tively select geometry-based or RL-based methods with a
real-time distance detection mechanism. This adaptive switching
of methods can reduce the complexity of the training RL model
and accelerate the training speed. In addition, a mechanism is pro-
posed for refining the reward function parameters of the RL model
based on Bayesian Optimization (BO). To demonstrate the
approach, a Digital Twin (DT)-enabled robot system with a high-
fidelity training environment is established. With the support of
DT, RL-based methods allow robots to train within the virtual envi-
ronment with highly realistic working spaces in a parallel way,
facilitating the learning of optimal motion trajectories. We validate
the approach through five kinds of tasks (Pick and Place, Drawer
Open, Light Switch, Button Press, and Cube Push) in dynamic

environments. Experiment results show that our approach outper-
forms the traditional RL-based method with improved training
speed and guaranteed task performance. The main contributions
of this study include the following:

• A comprehensive robot motion planning framework for
dynamic working scenarios based on digital twin and rein-
forcement learning is proposed. Our framework can be
applied in multiple robotic operations in smart manufactur-
ing and exhibits strong adaptability to different dynamic
environments.

• An adaptive robot motion planning method integrating
geometry-based methods and reinforcement learning is devel-
oped. This method can improve the model performance and its
robustness to various reward magnitudes with faster conver-
gence speed.

• A Bayesian Optimization–based mechanism is designed for
determining reward function parameters of the RL model.
This mechanism facilitates automatic optimization of reward
function parameters in relatively few iterations.

The rest of this paper is organized as follows. Section 2 reviews
related work in robot path planning, methods for accelerating RL
training, and optimization of reward function parameters. Section
3 introduces the architecture of the proposed approach and explains
its key components. Section 4 presents the simulation and real-
world experimental setups used to validate our approach, and pro-
vides a detailed discussion of the experimental results. Section 5
summarizes our work and highlights potential future research
directions.

2 Related Work
2.1 Robot Motion Planning in Dynamic Environment. In

the robot motion planning area, sampling-based methods are com-
monly used and have achieved success in certain dynamic environ-
ments. For example, Adiyatov and Varol [16] proposed RRT*FN-
Dynamic algorithm for dynamic scenarios, which retains tree parts,
uses heuristics for repair, and achieves shorter pathfinding times.
Chen et al. [17] introduced a framework that combines generalized
velocity obstacles (GVO) with RRT* for nonholonomic robots and
validated for feasibility in environments with moving obstacles. Qi
et al. [18] presented a multi-objective dynamic rapidly exploring
random (MOD-RRT*) algorithm for robot navigation in an
unknown dynamic environment. This approach consists of a path
generation stage and a path replanning stage, demonstrating
improved performance in path cost, smoothness, and stability.
However, sampling-based methods often remain slow and ineffi-
cient, especially in complex scenarios [19].
To tackle this issue, researchers explore to use of reinforcement

learning (RL) for motion planning in dynamic scenarios due to its
strong self-learning capabilities [20]. For instance, Zhang and
Chen [21] proposed an improved Soft Actor–Critic Long Short-
Term Memory (SAC-LSTM) algorithm for fast path planning of
mobile robots in dynamic environments. By incorporating historical
and current states, the method exhibits a better performance in
higher path planning success rate and shorter path length. Schmitt
et al. [22] presented a feedback planner for manipulation tasks

051009-2 / Vol. 147, MAY 2025 Transactions of the ASME

mailto:youyi.bi@sjtu.edu.cn

and achieved increased robustness in dynamic environments using a
switching-control scheme guided by a reinforcement learning agent.
Besides, Chai et al. [23] developed a hierarchical deep learning-
based control framework for mobile robots operating in uncertain
environments, employing a recurrent deep neural network
(RDNN) for motion planning and a deep reinforcement learning
(DRL) algorithm for collision-free waypoint tracking. However,
the training for RL models is time-consuming for complex robot
tasks due to the low utilization of samples and low learning effi-
ciency of agents, which limits the practical application of
RL-based methods.

2.2 Accelerate the Training of Reinforcement Learning
Models. In order to speed up the training process of RL models,
researchers have made several attempts. For example, Chen et al.
[24] integrated the RL algorithm with Priority Experience Replay
(PER) to replay training experiences with higher learning values
at a higher frequency. This method improves the convergence
speed and stability of the training process. Zhou et al. [25] intro-
duced curriculum learning to divide the Pick and Place task into
three stages, which helps the RL agent learn the task faster and
achieves better task performance in a static environment.
In the context of robot motion planning, traditional planning

methods have been integrated to reduce the training workload of
RL models. For example, Luipers et al. [26] leveraged RL to plan
waypoints first and then invoked the Inverse Kinematics (IK)
solver to calculate the trajectory between waypoints. This method
greatly accelerates the convergence rate of RL models. Zhong
et al. [27] added an IK module into the RL algorithm to provide
prior knowledge and reduce unnecessary exploration in the
state-action space. Li et al. [28] combined traditional path planners
and DRL and demonstrated a more powerful performance in length-
optimal path planning problems. Faust et al. [29] integrated RL
with a sampling-based method, Probabilistic Roadmaps (PRMs).
The RL agents learn short-range, point-to-point navigation policies
while the PRMs planners provide roadmaps that connect robot
configurations.
In earlier studies, RL is usually employed to plan the entire

motion path for collision avoidance, which can be inefficient
when obstacles are confined to certain areas. In other words, the
various safety conditions of different working areas are not
treated targetedly. Thus, we expect to develop a method that can
adaptively select an RL-based method or alternative planning
method for planning areas with different safety conditions, which
can further reduce the difficulty of RL model training and
improve its adaptability to diverse dynamic environments.

2.3 Optimization of Reward Function Parameters in
Reinforcement Learning Models. Reward function is a core
design of RL models and the reward function parameters (e.g.,
the proportional coefficient to adjust the strength of reward signal,
or the threshold coefficient controlling critical decision points
during the training process) can influence the model performance
greatly [15]. Due to the inherent trade-off between exploration
and exploitation in RL model training, there is no straightforward
mapping between reward functions and the model performance.
Thus, traditional optimization methods face challenges when
applied to optimize the reward function parameters of RL models.
Inverse reinforcement learning (IRL) is a versatile approach and
has been used to learn reward function of an agent from human
demonstrations [30], such as learning a socially adaptive control
manner of robotic wheelchair and playing video games [31,32].
When applied in optimizing reward function parameters, IRL
requires a large amount of high-quality human demonstration
data, which is especially difficult in complex and dynamic industrial
manufacturing environments.
Recently, researchers have started to utilize BO to refine the

hyperparameters of RL models because of their probabilistic
nature and balance between exploration and exploitation [33]. For

example, Wilson and Fern [34] demonstrated an application of
BO in RL to optimize parametric policies by making use of the
sequential trajectory data generated by RL agents. Young et al.
[35] presented “HyperSpace,” a distributed BO technique that lever-
ages statistical correlations among hyperparameters to discover
optimal configurations which has shown good performance in deli-
vering superior results for DRL tasks. Gong et al. [36] enhanced the
efficiency of RL by utilizing BO to predict the decisions made by
Unmanned Aerial Vehicles using historical trajectory data, which
helps prevent inefficient exploration of actions and leads to
improved convergence speed. These mentioned works focus on
optimizing RL policies or hyperparameters, while few of them con-
centrate on optimizing the reward function parameters. Thus, in this
study, we expect to develop a BO-based mechanism to refine the
parameters of reward functions in RL models for robot motion
planning.

3 Methods
3.1 Overall Structure of the Proposed Approach. In this

study, the motion planning problem can be defined as follows.
Let be the configuration space and Cobs be the obstacle region.
Denote the obstacle-free space as Cfree = C \ Cobs. The goal of
motion planning is to find a collision-free path σ:[0, T] � Cfree
that connects the initial state q(xinit) to the goal state q(xgoal).
Figure 1 presents the overall structure of the proposed adaptive
robot motion planning approach enabled by digital twin (DT).
Here, DT provides a high-fidelity virtual environment for the
visual representation of physical entities which also benefits the
offline training of RL models. The whole structure comprises a
physical layer and a virtual layer. The former contains hardware
components such as the multi-joint robot arm, electric gripper,
RGB-D camera, physical robot controller, and workspace. The
latter includes the high-fidelity digital twin model of the physical
components, virtual robot controller, object detection, robot path
planning, and reward function parameters refining with Bayesian
Optimization. The communication between the virtual and physical
layers is achieved through socket communication with TCP proto-
col. The working space information in physical layer can be mapped
to virtual layer and the motion strategy generated by the virtual
layer can be sent to the physical robot instantly.
The flow of our approach works as follows. Initially, the path

planning model with refined RL reward function parameters is
obtained by the Bayesian Optimization module. Then RGB-D
camera captures the workspace information, which is transmitted
to the virtual layer to update the digital twin model. Then, the
path planning module adaptively chooses RL-based or geometry-
based methods to generate path points according to the safety con-
dition of the current state. These path points are sent to the Inverse
Kinematics module to generate an action sequence in robot joint
space, which are then provided to both the virtual robot for simula-
tion and the physical robot for execution. To ensure synchronized
movement between physical robot and virtual robot, the virtual
layer generates the subsequent action sequence only after the real
robot has executed the previous command. The key techniques
involved in our approach are explained in detail in the following
subsections.

3.2 Object Detection and Location. The first step for robot
motion planning in a dynamic environment is to obtain real-time
information about the environment (e.g., the position of obstacles
and target objects). In this study, we develop an object detection
mechanism based on OVE6D [37], a 6D pose estimation algo-
rithm where the six dimensions involve the position (x, y, z) and
orientation (Rx, Ry, Rz) of the object. OVE6D demonstrates out-
standing generalizability in object detection applications and can
handle unseen objects without a fine-tuning process. Additionally,
OVE6D’s fast response speed can benefit real-time detection in
dynamic scenarios. Figure 2 presents the workflow of the object

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-3

detection mechanism which consists of four steps. First, prepro-
cessing is executed using the provided 3D models of objects to
generate codebooks. With uniformly distributed views of the
CAD model, rendered images from various viewpoints are
encoded into high-dimensional feature vectors, which are then
stored in a database for pose matching. The codebooks serve as
a reference for the subsequent pose estimation. Then, an
RGB-D camera is employed to capture the environmental image
and the mask image is generated using RGB color thresholding
and edge detection techniques. After that, the captured image,
mask image, and the corresponding codebooks undergo process-
ing via the OVE6D algorithm, providing the prediction of the
label and pose for each object. Finally, the label and pose are
transmitted to Unity3D to update the digital models’ shape and
pose simultaneously. This process is iteratively executed to
track environmental changes in real time. Additionally, if an
unexpected object (out of codebooks) suddenly appears, it is con-
sidered an interruption. The robot will halt until the object is
removed, ensuring the safety and robustness of the robotic
system during task execution.

In order to improve the adaptability and efficiency of object
detection, we designed a new mechanism to eliminate the necessity
of prior semantic information in the pose estimation neural network.
Specifically, we calculate similarity scores between generated
masks and views of each object during the viewpoint prediction
process. Then, we determine the average of the top 10 scores for
each object, representing the probability that the mask corresponds
to the respective object. This mechanism is applied to each mask,
attributing them to specific object types with the highest probability.

3.3 Adaptive Motion Planning

3.3.1 Workflow of the Adaptive Motion Planning Method.
Figure 3 illustrates the workflow of the adaptive motion planning
method. In the beginning, the RGB-D camera captures images of
the environment. Then, the object detection mechanism computes
real-time locations of target objects and obstacles from the images
and transmits this location data to Unity3D for model update.
Simultaneously, the safety distance detection mechanism monitors
the minimum distance Dro between the robot and obstacles. If Dro

Fig. 2 The workflow of the object detection

Fig. 1 Overall structure of the proposed adaptive robot motion planning approach

051009-4 / Vol. 147, MAY 2025 Transactions of the ASME

is greater than the switch distance DT (determined through
Bayesian Optimization, as detailed in Sec. 3.5), indicating that the
robot is sufficiently away from obstacles, the geometry-based
method is triggered without considering obstacles. Otherwise, the
RL method will engage motion planning and generate action
(Δx, Δy, Δz, ΔRx, ΔRy, ΔRz) for robot to avoid collision.
Subsequently, the IK module calculates the joint angles of the

robot arm based on its current and target poses with cubic spline
interpolation. The generated joint angles will be transmitted to
both the virtual robot and the real robot to execute the correspond-
ing motions. This motion planning procedure continues each time
when the camera captures the change of the environmental status
(i.e., one step) until the robot successfully accomplishes the task.

3.3.2 Safety Distance Detection. In order to detect the
minimum distance (Dro) between the robot and the obstacle in
each step, a vertex-based distance detection mechanism is estab-
lished, as Fig. 4 shows. This mechanism relies on the collision
detection and coordinate transformation capabilities of the
Unity3D engine. First, select several key vertices from the mesh
model of the robot and obstacle which are prone to collision (e.g.,
the sixth joint and end effector of the robot, and the upper surface

of the obstacle). Then, in each RL training step, the spatial distances
between these selected vertices on the robot and obstacles are cal-
culated. Finally, the shortest distance between the robot and the
obstacle is set as Dro. Usually, more vertices can improve the detec-
tion accuracy but may slow down the detection efficiency. Thus, the
number of key vertices is determined through empirical tests to
strike a balance between detection precision and computational
cost. When observing a sudden slowdown of the detection speed
as the number of vertices increases, the corresponding vertex
number at this inflection point can be chosen. In addition, Gaussian
noise Dn is added to Dro to reflect the distance measurement inaccu-
racies caused by the sparse vertices of the robot and obstacle,
making the RL model more robust to potential measurement
errors during practical deployment. The proposed vertex-based dis-
tance detection offers both computational efficiency and adaptabil-
ity compared to traditional convex hull detection techniques.

3.3.3 Geometry-Based Path Planning Method. When the
minimum distance between robot and obstacle (Dro) is greater
than switch distance (DT), indicating the robot is far from obstacles,
the geometry-based path planning method will be triggered.
Geometry-based methods are selected for their simplicity and effi-
ciency when the working space is clear and path planning is
straightforward, in contrast to RL-based methods that require exten-
sive training and computational resources to handle dynamic envi-
ronments. Separating the use of geometry-based and RL-based
methods can reduce the complexity of the RL model’s training
and accelerate the overall training process. Commonly used
geometry-based methods include linear interpolation, spline inter-
polation, and Bezier curve interpolation. In view of the need for
fast computation and collisions being not taken into consideration,
linear interpolation is selected as the geometry-based method in our
case. Specifically, given two waypoints representing the current and
target positions of the robot’s end-effector, linear interpolation cal-
culates the intermediate positions along a straight line between these
points in the Cartesian space.
After the RL or linear interpolation generates robot action in each

step, IK method is utilized to convert the Cartesian action space into
joint angle space for direct control of the robot. IK has been widely
used in robotics to determine the needed rotation angles for each
joint of a multi-joint robot arm given its initial and target poses.
In this study, the Denavit–Hartenberg (DH) method [38], a com-
monly used method for describing the kinematics of robotic manip-
ulators, is employed to standardize the kinematic model. Using the
DH model, the joint angles are then calculated through an analytical
IK approach, which ensures rapid and stable solutions compared to
numerical IK methods. After obtaining the joint angles, cubic spline
interpolation is applied to generate a smooth trajectory as the final
output.

Fig. 3 The workflow of adaptive motion planning method

Fig. 4 Illustration of vertex-based distance detection. Here, six
and nine vertices are selected from the robot and the surface
of the obstacle, respectively. The lines between robot and obsta-
cle indicate the detection lines between vertices.

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-5

3.4 Reinforcement Learning. As mentioned earlier, if the
distance between the robot and the obstacle is equal to or below
the switch distance, the RL algorithm will be invoked to avoid col-
lision. The core of reinforcement learning is a sequential decision-
making problem referred to as Markov Decision Process (MDP)
[39]. At each time-step t, the agent observes the environment
state St ∈ S and chooses an action At ∈ A(s) based on the strategy
π(a|s). The agent then receives a reward Rt+1 ∈ R and enters a new
state St+1. In MDP, the occurring probability of reward Rt and envi-
ronment state St depends only on the preceding state and action, as
described in Eq. (1):

p(s′, r|s, a) = Pr {St = s′, Rt = r|St−1 = s, At−1 = a} (1)

where p:S ×R × S ×A � [0, 1] is the probability of Rt and St
occurring at time t. The goal of the agent is to maximize the
expected return Gt:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∑∞
i=0

γiRt+i+1 (2)

where γ ∈ [0, 1] is a discount factor to help maximize future
expected returns rather than the current reward. In the context of
robot arm motion planning, the agent of the robot arm can learn
to find optimal motion strategy by iteratively interacting with the
environment to achieve maximum reward, i.e., arriving at the
target position without collision. In the proposed approach, we
employ the Proximal Policy Optimization (PPO) algorithm [40]
as the RL model. Its basic idea, the setting of the environment,
states and action space, and the design of reward functions are
explained as follows.

3.4.1 Proximal Policy Optimization. PPO is a deep reinforce-
ment learning (DRL) method based on policy gradient. Compared
with other DRL methods, PPO is more stable with high sampling
efficiency for continuous action space and high-dimension state
space problems. It utilizes a new objective function known as the
clipped surrogate objective, which maximizes the expected return
of the new policy while keeping the difference between the old
and new policies small as defined in Eqs. (3) and (4):

LCLIP(θ) = Êt[min(rt(θ)Ât , clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)] (3)

rt(θ) =
πθ(at | st)
πθold(at | st) (4)

where Êt is the expected value over all samples at time-step t, θ
denotes the policy parameters, and rt is the ratio between the new
and old policies. Ât represents the advantage function, and ϵ is a
hyperparameter that controls the range of the ratio.

3.4.2 Environment States and Action Space:. The state param-
eters st of the robot arm agent are set as follows:

st = {Pg, Pt, Po, Pp, Dro, Dgt, Dgp} (5)

where

Pg = (Px
g, P

y
g, P

z
g, Rxg, Ryg, Rzg) Pose of gripper

Pt = (Px
t , P

y
t , Pz

t , Rxt , Ryt , Rzt) Pose of target object

Po = (Px
o, P

y
o, P

z
o, Rxo, Ryo, Rzo) Pose of obstacle

Pp = (Px
p, P

y
p, P

z
p) Position of placing area

Dro Minimum distance between robot and obstacle, float

Dgt Distance between gripper and target object, float

Dgp Distance between gripper and placing area, float

The pose vectors of gripper, target object, and obstacle men-
tioned above contain both position (e.g., Px

g, P
y
g, P

z
g) and orientation

(e.g., Rxg, Ryg, Rzg) information. The action space of robot arm

agent is continuous for more flexible control as shown below:

a = (Δx, Δy, Δz, ΔRx, ΔRy, ΔRz, α) (6)

Δx, Δy, Δz ∈ [−DS, DS]m (7)

ΔRx, ΔRy, ΔRz ∈ [−DS, DS]rad (8)

where (Δx, Δy, Δz), (ΔRx, ΔRy, ΔRz) are the translational displa-
cement and rotational displacement of gripper center in Cartesian
space, respectively. α is a binary-value variable controlling the
opening and closing of the gripper. An action step size factor DS

is introduced to control the amplitude of robot action.

3.4.3 Design of Reward Functions. In order to reduce the dif-
ficulty of each task (Pick and Place, Drawer Open, Light Switch,
Button Press, Cube Push), we divide the robot manipulation
process into three stages: (1) Approaching, (2) Manipulating, and
(3) Executing. The details of the three stages of each task are illus-
trated in Table 1.
The reward functions are designed as follows:

r(s) = RA + RO + RE + RS0 + RS1 + RS2 + RS3 (9)

where

RA =
λ1 − Dgt if Stage = 1 or 2
0 else

{
(10)

RO =
−max 0, 1 −

Dro

DF

()
if Dro ∈

1
2
DF , DF

[]

−2 ·max 0, 1 −
Dro

DF

()
if Dro ∈ 0,

1
2
DF

[)
⎧⎪⎪⎨
⎪⎪⎩

(11)

RE =
λ2 + λ3 · (λ4 − Dgp) if Stage = 3
0 else

{
(12)

RS0 =
−1 if PCollide = 1
0 if PCollide = 0

{
(13)

RS1 =
1 if PArrive = 1
0 if PArrive = 0

{
(14)

RS2 =
5 if PManipulate = 1
0 if PManipulate = 0

{
(15)

RS3 =
10 if PFinish = 1
0 if PFinish = 0

{
(16)

These reward functions include progressive rewards (i.e., RA, RO,
and RE) and phase rewards (i.e., RS0, RS1, RS2, and RS3) to avoid
sparse reward and local optimum issues, which are commonly

Table 1 Illustration of the three stages for each task

Task
Stage 1:

Approaching
Stage 2:

Manipulating
Stage 3:
Executing

Pick and
place

Approach object Grab object Move to place
object

Drawer
open

Approach handle Grab handle Move to pull
drawer

Light
switch

Approach switch Grab switch Move to turn on/
off switch

Button
press

Approach button Touch button Move to press
button

Cube push Approach cube Touch cube Move to push cube

051009-6 / Vol. 147, MAY 2025 Transactions of the ASME

utilized during RL training [41]. The progressive reward is dense
reward which could provide gradient information of reward to
help agent learn better during each stage. The phase rewards are
sparse rewards and are only added when the agent achieves
certain states, such as collision, gripper arriving at manipulation
area, target object being gripped or touched, and robot’s finishing
task. The phase reward could help the agent avoid falling into
local optimum. The λ1 to λ4 are positive coefficient parameters to
adjust the weight of each reward.
In Stage 1 (Approaching), the main goal is to approach the target

object. RA will increase if the distance between gripper and target
(Dgt) is reducing. PArrive means whether the gripper has arrived at
the gripping area (e.g., Dgt < 3 mm). A phase reward RS1 will be
added if the gripper arrives at manipulation area. RO indicates the
safety condition and will punish potential collision conditions
(i.e., too close to the obstacle). If the minimum distance between
robot and obstacle (Dro) is among 1

2DF , DF

[]
(DF is the safety dis-

tance threshold), the agent will get a punishment. If Dro is smaller
than 1

2DF , which means the probability of collision at the current
state is high, a larger punishment will be added. RS0 is a collision
reward penalizing collision state and will be invoked during all
stages.
In Stage 2 (Manipulating), the gripper needs to grab target object

(for Pick and Place, Drawer Open, Light Switch) or touch target
object (for Button Press and Cube Push). A phase reward RS2 will
be added if Stage 2 is finished. RA and RO are still invoked at this
stage.
In Stage 3 (Executing), the agent is expected to arrive at the des-

ignated placing area to finish task. RE will increase if the distance
between gripper and placing area (Dgp) is reduced. A phase
reward RS3 will be added if the task is finished. RO is still
invoked during this stage to avoid collision and RA will be 0.

3.5 Refine Reward Function Parameters Based on Bayesian
Optimization. To obtain better-performing RL models, we
propose a method to refine the reward function parameters based
on Bayesian Optimization. We adopt Gaussian Process Regression
(GPR) and Expectation Improvement (EI) as the probabilistic
model and acquisition function, respectively. GPR has high flexibil-
ity and scalability and is suitable for optimization problems without
a large number of samples. Given samples X, Y and a new sample
point x∗, the corresponding predicted distribution of the output y∗
can be calculated:

p(y∗|X, Y , x∗) = N(m∗, σ∗) (17)

where m∗ and σ∗ refer to mean value and variance, respectively. EI
explores the regions that have the potential to enhance performance
by calculating the expected increase in the objective function’s
value, as Eq. (18) [42] shows:

EIy∗ (x) =
�+∞
−∞max (y∗ − y, 0)pM(y|x)dy (18)

where EIy∗ (x) is an expectation of sample point x and y∗ is a thresh-
old value.
In this study, the RL reward function parameters to be optimized

include DT (switch distance for geometry-based method and
RL-based method), DS (the step size factor for RL action), and
DF (safety distance threshold). The optimization goal is to minimize
the objective function YBO as follows:

YBO = ω1Rsuccess + ω2Rovertime + ω3Rcollide (19)

where Rsuccess represents the success rate of task, Rovertime is task
timeout rate, which refers to the rate of tasks not completed
within the specified number of steps, and Rcollide is the collision
rate. These metrics serve as indicators of task performance. ω1,
ω2, and ω3 are weighting coefficients. YBO is the overall task perfor-
mance metric, and a lower YBO indicates better model performance.
Figure 5 depicts the optimization process for refining RL reward

function parameters. We first collect an initial BO set
(DT init, DS init, DF init, YBO init) that contains the evenly distributed
reward function parameters and the corresponding BO objective
function values obtained by training the RL model. This initial set
is passed to the BO algorithm, which then generates the next
set of reward function parameters (DT next, DS next, DF next) that
are more likely to produce better objective function value.
The path planning model updates the reward function parameters
and re-trains to acquire task performance metric values
(Rsuccess, Rovertime, Rcollide). Subsequently, the new objective func-
tion value YBO is calculated and convergence is evaluated. The
BO iteration terminates if the objective function value converges.

4 Experiment Settings and Results
To demonstrate and validate our approach, we built a high-

fidelity digital twin model of a real robot arm and the physical
working environment. Five commonly seen tasks in manufacturing
scenarios (Pick and Place, Drawer Open, Light Switch, Button
Press, and Cube Push) were constructed to evaluate the performance
of the proposed robot motion planning approach. The experiment
settings and results are presented in the following subsections.

4.1 Experiment Settings. Figure 6 shows the setting of the
physical equipment and working space. A robot arm (JAKA Zu3,
JAKA Robotics, Shanghai, China) equipped with an electric
gripper (CTEK CTP2F50, Zhixing Robotics Technology
(Suzhou) Co., Ltd., Suzhou, Jiangsu, China) is fixed to the table.
The plane of the table is set as the plane with z = 0 in world coor-
dinate system. The center of the robot arm base is set as the origin
point (0, 0). An RGB-D camera (RealSense D435i, Intel Corpora-
tion, Santa Clara, CA) is deployed at (0.80, −0.50, and 0.50) to
detect the obstacle and target object. The obstacle is a 3D-printed
plate made of PLA material with a size of 10 cm× 10 cm×
0.3 cm, which is fixed to a linear rail and moves linearly with

Fig. 5 Workflow of the Bayesian Optimization–based reward function parameter
optimization method

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-7

random initial positions and speeds (ranging from 5 to 10 cm/s). Its
movement range is 30 cm along the x-axis and 80 cm along the
y-axis. The target object of each task is placed randomly in a rect-
angular area (i.e., the white dashed box in Fig. 6) defined by the
four vertices (0.35, 0.20), (0.35, −0.20), (0.45, 0.20), and (0.45,
−0.20). In this area, the robot is highly likely to collide with obsta-
cles for each task.
A high-fidelity digital twin model of the robot and the working

environment is established in Unity3D as shown in Fig. 7.
Besides visualizing these physical entities, DT provides the real-
time status of the environment and robot (e.g., the poses of object
and obstacle, the joint angle, and end effector pose of robot) for
offline RL model training. Meanwhile, high-fidelity DT model is
the foundation for collision detection which enables the adaptive
switch of geometry-based or RL-based method in path planning.
In addition, DT bridges the virtual environment and real entity,
and the action sequence generated in virtual space could be

transmitted to the physical robot controller for execution. The train-
ing of the proposed approach runs on a workstation with Intel Core
i7-12700F CPU, 16 GB RAM, and RTX3080 GPU.
The hyperparameters of the RL model are chosen based on pre-

liminary experiments. The batch size and buffer size of PPO are set
as 512 and 10,240, respectively. The learning rate controls the train-
ing speed, which is set to 0.0003 to avoid reward divergence. The
discount factor is γ= 0.95, and the linear learning rate schedule is
adopted.
The conducted experiments are organized as follows. We first

performed Bayesian Optimization to get a refined parameter config-
uration of RL reward functions in Sec. 4.2.1. Then, we compared
the task performance of our approach with benchmark methods in
a virtual environment, with a detailed analysis of each performance
index presented in Sec. 4.2.2. In Sec. 4.2.3, our approach’s robust-
ness on reward magnitude was evaluated. Besides, the adaptability
of our approach to more complex dynamic environments was
further investigated in Sec. 4.2.4. Finally, physical experiments
were conducted to validate the sim-to-real capability of the pro-
posed approach in Sec. 4.2.5.

4.2 Experiment Results

4.2.1 Optimization of Reward Function Parameters. We
first performed the Bayesian Optimization in a virtual environment
with a one-dimensional moving obstacle (along the y-axis) to
get refined reward function parameters for a better motion
planning model. The weights of the BO objective function ω1,
ω2, and ω3 are set to −1, 0.5, and 5, respectively. The range
of the parameters to be optimized is set as DT ∈ [0.1, 0.4] m,
DF ∈ [0.1, 0.4] m, DS ∈ [0.02, 0.05]. As for the RL model,
λ1 = 0.3, λ2 = 0.3, λ3 = 0.1, λ4 = 1. These settings are designed
based on our preliminary experimental results, which show that
their influence on task performance is smaller compared to DT , DF ,
and DS. Each round of training takes 5 million steps, and the
episode length is set to 1500. The RL agent is trained for 5 million
steps to enable the robot to complete five tasks (Pick and Place,
Drawer Open, Light Switch, Button Press, and Cube Push) without
collision. We first selected seven groups of parameters evenly
distributed in the predefined ranges and got corresponding

Fig. 6 Overall experiment setting

Fig. 7 The digital twin model of the robot and working environment with a user interface

051009-8 / Vol. 147, MAY 2025 Transactions of the ASME

BOobjective functionvalues.These initial sampleswere then fed into
the BO algorithm to generate the next set of parameters and the
training would be conducted subsequently. The optimization
iteration would continue until the BO objective function value
converges. The convergence criterion is defined such that the
fluctuation of theBOobjective function value in three successive iter-
ations iswithin a range of 5%of the difference between themaximum
andminimumobjective function values. In order to evaluate the com-
prehensive performance of the RL model, the success rate, overtime
rate, and collision rate in each BO iteration are averaged over five
tasks.
The results of the BO iterations are shown in Fig. 8. Figure 8(a)

shows the obtained parameter sets in each BO iteration, Fig. 8(b)
exhibits the corresponding motion planning model performance
of each model, and Fig. 8(c) presents the BO objective function
values. From Fig. 8(c), we can see that the BO objective func-
tion values have large fluctuations in the initial 7 iterations. As
the optimization process goes on, this value gradually gets smoother
and converges at the 17th round. The 16th round shows the lowest
BO objective function value, and the corresponding reward func-
tion parameters (DT = 0.29 m, DF = 0.18 m, DS = 0.037) are
selected as the final ones, leading to a model performance of
Rsuccess = 98.2%, Rovertime = 1.0%, and Rcollide = 0.8%. From
Figs. 8(a) and 8(b), we can see that DT (switch distance for
geometry-based method and RL-based method) mainly influences
the success rate and collision rate, and a smaller DT may lead to
lower success rate and higher collision rate. This is potentially
because when the RL is invoked, the robot is too close to avoid col-
lision in time with a small value of DT . While the overtime rate
mainly relates to DF (safety distance threshold), a larger DF will
cause higher Rovertime. A possible reason is that the robot controlled
by RL will stay too far away from the obstacle to get higher reward;
thus, longer time is required to finish the task. Additionally, DS (the
step size factor for RL action) affects both the collision rate and
motion smoothness of robot. A larger DS provides the robot
with broader action range to navigate around moving obstacle but
may introduce jitter. Conversely, a smaller DS enhances motion
smoothness while potentially resulting in collisions if obstacle
moves quickly for the robot to evade effectively. In summary, the
proposed optimization process could generate a refined set of
reward function parameters in relatively few iterations, providing
an efficient paradigm to optimize the RL model for robot motion
planning.
Based on the experimental results, we suggest the following

guidelines for parameter tuning. To begin with, it is essential to
get the reasonable testing ranges of these parameters based on
prior knowledge, previous research, or preliminary tests. Then,
experiments should be conducted to evaluate the impact of each
parameter on the model performance. Parameters with insignificant
impact on model performance can be determined through straight-
forward searching techniques such as grid search [43] or random
search [44], while those key parameters can be efficiently fine-tuned
using Bayesian Optimization to achieve better results.

4.2.2 Comparison Experiments to Evaluate the Performance of
the Proposed Approach. To evaluate the performance of the pro-
posed approach, we compare our approach (named Adaptive
PPO) with other reinforcement learning-based methods, including
PPO, Adaptive SAC, SAC, and previous work (Improved SAC
[24], Improved PPO [26]). All of these methods were trained for
5 million steps on the five tasks with one-dimensional moving
obstacles, which took approximately 2 h. After that, the model con-
verged and could be effectively used for motion planning. Here, the
PPO method solely relies on the PPO algorithm to control the robot
throughout all tasks. The Adaptive SAC method employs the SAC
algorithm [45], a type of commonly used actor-critic RL algorithm
for continuous action space, and serves as a benchmark in many RL
tasks. The SAC method only relies on the SAC algorithm without
adaptively integrating the geometry-based method.

4.2.2.1 Comparison of convergence speed. The cumulative
reward during the training process of different methods is illustrated
in Fig. 9. We can see that the proposed adaptive PPO method
achieves the highest cumulative reward, with the smoothest curve
and fast convergence speed. Besides, adaptive methods (adaptive
PPO, adaptive SAC) exhibit much faster convergence speed and
significantly higher cumulative rewards than pure RL methods
(PPO, SAC). This is possible as in the adaptive methods, the
geometry-based method reduces the task difficulty by replacing
RL in certain relatively safe areas (e.g., far away from the
moving obstacles). Thus, RL only needs to handle part of the task
which helps to learn faster and achieve better performance.
Furthermore, the adaptive methods and previous methods

(improved SAC, improved PPO) achieve significant rewards, indi-
cating that they all perform well in this experimental scenario.
While the adaptive methods outperform the previous methods in
convergence speed. We can also find there are some differences
among adaptive methods. The reward curve of adaptive PPO is
smoother, while adaptive SAC exhibits greater fluctuations. This
discrepancy may arise from the SAC algorithm’s utilization of a
random sampling exploration strategy. When reaching a local
optimal solution, it may lead to collisions with obstacles due to
larger exploration ranges. Conversely, the deterministic strategy
employed by the PPO algorithm facilitates a more stable exploration
and utilization of known optimization strategies, resulting in
smoother reward variation trends.

4.2.2.2 Comparison of task success rate and episode length.
To further evaluate the model performance, the six methods men-
tioned earlier were tested 200 times for each task in a virtual envi-
ronment. As shown in Table 2, the performance metrics of different
methods include task success rate and the average task completion
steps of the successful attempts. We can see that the proposed adap-
tive PPO method achieves the highest success rate in five tasks. For
the relatively simple tasks (Drawer Open, Light Switch, Button
Press, and Cube Push), our proposed method achieves a nearly
100% success rate. For the most challenging Pick and Place task,
a success rate of 94.5% is also guaranteed, which outperforms
other methods. Regarding task completion steps, adaptive PPO
exhibits the lowest number of steps in the Pick and Place and
Light Switch among all methods, and for the remaining three
tasks, it is within 15% of the best-performing method.
In comparison, the performance of pure RL methods in terms of

success rate and task completion steps is significantly worse without
the adaptive combination of the geometry-based method. This is
mainly because relying solely on RL necessitates more exploration
and trials to search for a collision-free path, resulting in a higher col-
lision rate under the same training steps. Moreover, with the use of
pure RL-based methods, the robot agent is prone to entering a local
optimum state (e.g., waiting above obstacles to avoid collision) to
obtain a higher cumulative reward, thereby requiring more steps
to complete the task.

4.2.2.3 Comparison of collision rate and overtime rate. To
further explore the impact of the combination of geometry-based
methods, we compared the collision rate and overtime rate across
different methods, as shown in Fig. 10. It can be seen that the
primary cause of task failure is overtime, meaning the robot failed
to complete the task within the limited steps without colliding
with obstacle. This outcome is predictable, as collisions result in
a large penalty for the RL agent. Consequently, when the robot is
in potentially dangerous areas (e.g., close to obstacle or when obsta-
cle moves quickly), it tends to wait or evade to achieve a higher
reward. Besides, the left figure shows that the collision rates for
adaptive methods are much lower than those for pure RL
methods. This may be attributed to the geometry-based method,
which automatically plans the robot’s path within safe areas,
thereby reducing the burden on the RL algorithm. With the same
number of training steps, the RL algorithm can effectively focus
on learning obstacle avoidance strategies. In contrast, SAC and

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-9

PPO are involved in the entire path-planning process, which may
weaken their obstacle avoidance capabilities. From Fig. 10(b), we
can also observe that the overtime rates for adaptive methods are

lower than those for pure RL methods. There are two potential
reasons for this: First, the geometry-based method plans straight
paths within safe areas, which shorten the path length compared

Fig. 8 Bayesian Optimization iteration results: (a) Reward function parameters of each iter-
ation, (b) task performance of each iteration. Here, the results are the average values over
five tasks. (c) Objective function value of each iteration. The dashed boxes on the left high-
light the first seven iterations trained with initially selected parameters. The dashed boxes
on the right show the 16th iteration with the best performance.

051009-10 / Vol. 147, MAY 2025 Transactions of the ASME

to the autonomous exploration by RL algorithms. Second, the adap-
tive methods keep the robot stay at the boundary of safe zones when
it is close to the obstacle, while pure RL methods may adopt overly
cautious strategies to evade obstacle, thereby increasing the path
length. These results indicate that the proposed adaptive methods
outperform traditional RL algorithms in reducing task overtime

rate and collision rate. By combining the advantages of geometric
methods and RL algorithms, the efficiency and safety of robot
path planning are enhanced.

4.2.3 Comparison Experiment to Evaluate the Robustness on
Reward Magnitude of the Proposed Approach. In order to

Fig. 9 Learning curve of the training process for different methods. The convergence step of
each method is marked with circle dots.

Table 2 Success rate and average task completion steps with standard errors of different methods in comparison experiments

Task Pick and place Drawer open Light switch Button press Cube push

Adaptive PPO 94.5%± 1.6%
(586.7± 16.3)

99.5%± 0.5%
(298.5± 8.6)

97.5%± 1.1%
(323.5± 11.2)

98.0%± 1.0%
(383.2± 12.1)

98.5%± 0.9%
(323.7± 9.7)

PPO 66.0%± 3.4%
(895.4± 25.2)

90.5%± 2.1%
(387.8± 13.8)

74.5%± 3.1%
(532.4± 14.9)

77.0%± 3.0%
(566.5± 18.4)

94.5%± 1.6%
(390.2± 11.3)

Adaptive SAC 87.5%± 2.3%
(643.5± 20.1)

96.0%± 1.4%
(360.7± 13.2)

94.5%± 1.6%
(348.6± 10.5)

94.0%± 1.7%
(356.5± 13.5)

92.0%± 1.9%
(382.8± 12.2)

SAC 53.0%± 3.5%
(950.4± 32.9)

80.5%± 2.8%
(495.2± 16.5)

66.5%± 3.3%
(618.7± 18.3)

70.5%± 3.2%
(586.0± 15.8)

79.5%± 2.9%
(481.9± 15.6)

Improved SAC
(Chen et al. [24])

81.5%± 2.8%
(683.5± 23.0)

99.0%± 0.7%
(267.3± 7.7)

88.5%± 2.3%
(461.8± 15.7)

96.5%± 1.3%
(498.8± 14.9)

92.5%± 1.9%
(319.5± 13.4)

Improved PPO
(Luipers et al. [26])

70.5%± 3.2%
(672.8± 22.4)

92.5%± 1.9%
(333.5± 10.2)

95.5%± 1.5%
(512.2± 15.4)

91.0%± 2.0%
(343.6± 10.0)

96.0%± 1.4%
(299.4± 9.7)

Note: The bolded numbers represent the best performance.

Fig. 10 Task performance comparison on (a) collision rate and overtime rate

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-11

Fig. 11 Comparison of success rate for Pick and Place across different reward
factors

Fig. 12 Experiment settings on (a) obstacle plate, (b) obstacle bar, (c) 2D obstacle and (d) 3D obstacle

051009-12 / Vol. 147, MAY 2025 Transactions of the ASME

Fig. 13 Learning curve of the training process in obstacle plate, obstacle bar, 2D and 3D
obstacle scenarios. The convergence step of each method is marked with circle dots.

Table 3 Success rate and average task completion steps with standard errors of adaptive PPO method on different scenarios

Task Pick and place Drawer open Light switch Button press Cube push

Obstacle plate 89.5%± 2.2%
(640.5± 19.2)

99.0%± 0.7%
(363.7± 11.3)

95.0%± 1.5%
(353.3± 12.9)

93.5%± 1.7%
(361.3± 10.2)

96.5%± 1.3%
(433.1± 14.4)

Obstacle bar 93.0%± 1.8%
(618.4± 17.6)

96.5%± 1.3%
(398.9± 11.6)

94.0%± 1.7%
(362.3± 15.2)

96.5%± 1.3%
(377.3± 13.3)

97.0%± 1.2%
(412.9± 14.9)

2D Obstacle 91.5%± 2.0%
(622.7± 18.5)

96.0%± 1.4%
(406.3± 12.7)

93.5%± 1.7%
(345.0± 13.1)

95.0%± 1.5%
(417.9± 12.9)

97.5%± 1.1%
(423.5± 15.1)

3D Obstacle 89.5%± 2.2%
(640.2± 18.7)

92.5%± 1.9%
(428.1± 13.2)

90.5%± 2.1%
(334.4± 14.8)

95.5%± 1.5%
(445.7± 13.4)

93.0%± 1.8%
(459.6± 15.0)

Fig. 14 Object detection results. The first row shows the 3D model of target object for each task (Pick and Place, Drawer Open,
Light Switch, Button Switch, and Cube Push). The second and third rows refer to their mask images and calculated poses of
these objects. The bicylinder is a 3D-printed object made of PLA material.

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-13

explore the impact of reward magnitude on the performance of the
proposed method, a reward factor α is introduced to control the
magnitude of reward. In each training step, reward r(s) was multi-
plied by α. We applied different values of α ([0.5, 1.2]) to the six
methods mentioned in Table 2 and retrained the RL model. To visu-
ally illustrate the impact of reward factors on task performance, we
tested different methods on the most challenging Pick and Place
task. The success rates of each method are shown in Fig. 11.
We can see that the success rate of the adaptive PPO method

remains consistently high (ranging from 89.5% to 94.5%) across
different reward factors and exhibits minimal fluctuations. Con-
versely, the performance of PPO method and SAC method exhibits
significant fluctuations, with success rates ranging from 52.5% to
72.5% and 41.5% to 60.0%, respectively. This could be possibly
attributed to the stable nature of the geometry-based method,
whose integration with RL-based method can enhance the robust-
ness of the proposed approach to reward magnitude, consequently
improving the stability and reliability of motion planning perfor-
mance. Additionally, we find that the fluctuation range of Adaptive
SAC (ranging from 79.5% to 87.5%) is slightly larger than that of
Adaptive PPO. This may be due to the SAC algorithm’s training
objective, which not only maximizes the reward but also takes the
policy’s entropy into account. Therefore, a precise and stable
reward function is required to guide policy learning. In contrast,
PPO maintains stability by limiting the extent of policy update,
making it less sensitive to the reward magnitude.

4.2.4 Comparison Experiments to Evaluate the Performance
on Different Dynamic Scenarios. To further explore the adaptabil-
ity of the proposed method in more complex scenarios, we added
tests with two different obstacle shapes, the obstacle plate and

obstacle bar, as shown in Figs. 12(a) and 12(b). Both shapes
are commonly encountered in manufacturing settings. For
example, in power battery assembly scenarios, the brackets
used to support battery modules are typically plates, while the
mounting parts providing structural stability or serving as align-
ment guides are usually rods. Besides, the movement dimensions
of obstacle were also extended to 2D and 3D, as shown in Figs.
12(c) and 12(d). The obstacle plate and bar are planes with sizes
of 20 cm × 10 cm × 0.3 cm and 5 cm × 20 cm × 0.3 cm, respec-
tively. The 2D moving obstacles had travel distances of 30 cm
and 80 cm along the X and Y axes, respectively, at moving
speeds ranging from 5 to 10 cm/s. In the 3D scenario, an addi-
tional 20-cm travel along the Z-axis was introduced. We
trained the adaptive PPO approach in these environments,
keeping the reward function parameters consistent with those
of the 1D obstacle environment. The training reward curves are
depicted in Fig. 13. We can find that the proposed method
achieved high cumulative rewards in all scenarios. However,
the model’s performance for the obstacle plate experiences a
slight decline. This is primarily due to the larger surface area of
the obstacle plate, which increases the difficulty for the robot
to complete the task during repetitive movements. Besides, as
the dimensionality of obstacle movement increases, the conver-
gence speed decreases. This is likely attributed to the expanded
state space resulting from higher movement dimensions, requir-
ing the RL agent to explore more state-action combinations.
Each RL model was tested 200 times on five tasks, and the

results are summarized in Table 3. We can see that the proposed
method maintains good performance in more complex dynamic
environments, indicating its adaptability to various dynamic
environments.

Fig. 15 Physical scenes of five tasks. Each column shows initial, intermediate, and completion states of each task.

Table 4 Task performance of adaptive PPO method in real environment

Task

Pick and place Drawer open Light switch Button press Cube push

1D 2D 1D 2D 1D 2D 1D 2D 1D 2D

Success rate 27/30 26/30 29/30 29/30 29/30 27/30 28/30 28/30 30/30 29/30
Overtime rate 3/30 3/30 1/30 1/30 0/30 2/30 1/30 2/30 0/30 1/30
Collision rate 0/30 1/30 0/30 0/30 1/30 1/30 1/30 0/30 0/30 0/30
Completion time (s) 11.7 12.5 6.0 8.1 6.5 6.9 7.7 8.4 6.4 8.5

051009-14 / Vol. 147, MAY 2025 Transactions of the ASME

4.2.5 Generalization Performance in Physical Environment.
In order to verify the practicality of the proposed adaptive motion
planning approach, we also conducted physical experiments.
Figure 14 depicts the 3D models, mask images, and calculated
poses of target objects for each task. Figure 15 shows the physical
scenes of five tasks in a dynamic environment. The visual position-
ing accuracy of the obstacle and target object is within ±2 mm, and
the environmental update frequency in the digital twin is 12 Hz,
while the real-time control rate of the robot’s actions in our exper-
iments is 20 Hz. We conducted 30 physical tests for each task in 1D
and 2D obstacle environments. The task performance is shown in
Table 4. We can see that the proposed adaptive motion planning
method exhibits a good performance in real environment.
To validate the generalizability of the proposed method when

facing different target objects, the original target object is replaced
with a stepping motor and aluminum profile in the Pick and Place
task, and the task process is illustrated in Fig. 16. The proposed
method achieved good success rates of 25/30 and 26/30, respec-
tively, in the 2D obstacle environment. The failures mainly resulted
from task overtime, which occurred when the robot hesitated to grab
the target due to the fast-moving obstacles.

5 Conclusion
In this study, an adaptive robot motion planning approach for

smart manufacturing is based on digital twin and reinforcement
learning. This approach can adaptively select a geometry-based
method or RL-based method according to the real-time distance
detection result. Our approach integrates the fast calculation
speed and high stability of the geometry-based method, and the
flexible collision avoidance ability of RL-based method. Bayesian
Optimization is leveraged to enable fast acquisition of optimal
reward function parameters for RL model training. In addition, a
high-fidelity digital twin model of the robot arm and dynamic envi-
ronment is built to support the model training in five typical scenar-
ios in smart material transportation and assembly operations.
Compared to traditional reinforcement learning-based methods,

our approach reduces the complexity of RL model training with
enhanced robustness to reward magnitude. Moreover, it ensures
reliable collision avoidance performance in different dynamic man-
ufacturing environments. Experiments show that the proposed
approach exhibits well adaptivity to various RL algorithms, tasks,
and dynamic scenarios. Our work has the potential to facilitate
the practical implementation of reinforcement learning-based
robot motion planning in various smart manufacturing scenarios,
such as robot-assisted label attaching, screwing, polishing, painting,
welding, and gluing operations. For example, in the assembly of

power battery packs, due to the demand for diverse power battery
products, the working environments for robots are frequently
changed. Our approach has the potential to handle changeovers
between different battery modules and configurations. During the
alignment and placement of battery modules, the robot can navigate
around other moving robots or assembly parts to achieve smooth
transporting operations. In screwing operations, the robot can
adjust its motion trajectory to avoid collisions with different fixtures
or tools entering the workspace. By providing an efficient and
adaptable motion planning framework for robotic operations in
varying production environments, our approach can further
enhance the operational efficiency and minimize the production
downtime for advanced flexible manufacturing.
One limitation of this work is that the obstacle in experiments

may not fully reflect the complex dynamic scenarios in real
world. Future research will broaden the scope to include more
complex obstacles, such as other robots and human bodies.
Dynamic working scenarios with multiple obstacles will be intro-
duced to further improve the practicality of the proposed approach.

Acknowledgment
The authors would like to acknowledge the financial

support from the National Key R&D Program of China
(2022YFB4702400).

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

Nomenclature
a = RL action
C = configuration space
st = RL state

Dgp = distance between gripper and placing area
Dgt = distance between gripper and target object
Dn = Gaussian noise
Dro = minimum distance between robot and obstacles
DF = safety distance threshold

Fig. 16 Physical scenes of Pick and Place tasks for steppingmotor and aluminum profile. The figure from left to right shows the
obstacle avoidance process of the proposed method.

Journal of Manufacturing Science and Engineering MAY 2025, Vol. 147 / 051009-15

DS = action step size factor
DT = switch distance

Rcollide = collision rate
Rovertime = timeout rate
Rsuccess = success rate

YBO = objective function value of BO
Cfree = obstacle-free space
Pg = pose of gripper
Po = pose of obstacle
Pp = position of placing area
Pt = pose of target object

q(xgoal) = goal state
q(xinit) = initial state

r(s) = RL reward
α = reward factor

λ1, λ2, λ3, λ4 = coefficient of reward function
σ = collision-free path

ω1, ω2, ω3 = weighting coefficients for BO objective function

References
[1] Flowers, J., and Wiens, G., 2023, “A Spatio-Temporal Prediction and Planning

Framework for Proactive Human–Robot Collaboration,” ASME J. Manuf. Sci.
Eng., 145(12), p. 121011.

[2] Park, J., Han, C., Jun, M. B. G., and Yun, H., 2023, “Autonomous Robotic Bin
Picking Platform Generated From Human Demonstration and YOLOv5,”
ASME J. Manuf. Sci. Eng., 145(12), p. 121006.

[3] Fan, J., Zheng, P., and Lee, C. K. M., 2023, “A Vision-Based Human Digital
Twin Modeling Approach for Adaptive Human–Robot Collaboration,” ASME
J. Manuf. Sci. Eng., 145(12), p. 121002.

[4] Ma, X., Qi, Q., and Tao, F., 2024, “ADigital Twin–Based Environment-Adaptive
Assignment Method for Human–Robot Collaboration,” ASME J. Manuf. Sci.
Eng., 146(3), p. 031004.

[5] Jafarzadeh, H., and Fleming, C. H., 2018, “An Exact Geometry–Based Algorithm
for Path Planning,” Int. J. Appl. Math. Comput. Sci., 28(3), pp. 493–504.

[6] Rasekhipour, Y., Khajepour, A., Chen, S.-K., and Litkouhi, B., 2017, “A
Potential Field-Based Model Predictive Path-Planning Controller for
Autonomous Road Vehicles,” IEEE Trans. Intell. Transp. Syst., 18(5),
pp. 1255–1267.

[7] Gul, F., Mir, I., Alarabiat, D., Alabool, H. M., Abualigah, L., and Mir, S., 2022,
“Implementation of Bio-Inspired Hybrid Algorithm with Mutation Operator for
Robotic Path Planning,” J. Parallel Distrib. Comput., 169, pp. 171–184.

[8] Karur, K., Sharma, N., Dharmatti, C., and Siegel, J. E., 2021, “A Survey of Path
Planning Algorithms for Mobile Robots,” Vehicles, 3(3), pp. 448–468.

[9] LaValle, S. M., and Kuffner Jr, J. J., 2001, “Randomized Kinodynamic Planning,”
Int. J. Rob. Res., 20(5), pp. 378–400.

[10] Elbanhawi, M., and Simic, M., 2014, “Sampling-Based Robot Motion Planning:
A Review,” IEEE Access, 2, pp. 56–77.

[11] Wang, B., Liu, Z., Li, Q., and Prorok, A., 2020, “Mobile Robot Path Planning in
Dynamic Environments Through Globally Guided Reinforcement Learning,”
IEEE Robot. Autom. Lett., 5(4), pp. 6932–6939.

[12] Waseem, M., and Chang, Q., 2023, “Adaptive Mobile Robot Scheduling in
Multiproduct Flexible Manufacturing Systems Using Reinforcement Learning,”
ASME J. Manuf. Sci. Eng., 145(12), p. 121005.

[13] Xiao, J., Gao, J., Anwer, N., and Eynard, B., 2023, “Multi-Agent Reinforcement
Learning Method for Disassembly Sequential Task Optimization Based on
Human–Robot Collaborative Disassembly in Electric Vehicle Battery
Recycling,” ASME J. Manuf. Sci. Eng., 145(12), p. 121001.

[14] Matulis, M., and Harvey, C., 2021, “A Robot Arm Digital Twin Utilising
Reinforcement Learning,” Comput. Graph., 95, pp. 106–114.

[15] Li, T., Lambert, N., Calandra, R., Meier, F., and Rai, A., 2020, “Learning
Generalizable Locomotion Skills With Hierarchical Reinforcement Learning,”
Proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA), Paris, France, May 31–Aug. 31, pp. 413–419.

[16] Adiyatov, O., and Varol, H. A., 2017, “A Novel RRT*-Based Algorithm for
Motion Planning in Dynamic Environments,” Proceedings of the 2017 IEEE
International Conference on Mechatronics and Automation (ICMA),
Takamatsu, Japan, Aug. 6–9, pp. 1416–1421.

[17] Chen, Y., Liu, M., and Wang, L., 2018, “RRT* Combined With GVO for
Real-Time Nonholonomic Robot Navigation in Dynamic Environment,”
Proceedings of the 2018 IEEE International Conference on Real-Time
Computing and Robotics (RCAR), Kandima, Maldives, Aug. 1–5, pp. 479–484.

[18] Qi, J., Yang, H., and Sun, H., 2021, “MOD-RRT*: A Sampling-Based Algorithm
for Robot Path Planning in Dynamic Environment,” IEEE Trans. Ind. Electron.,
68(8), pp. 7244–7251.

[19] Tamizi, M. G., Yaghoubi, M., and Najjaran, H., 2023, “A Review of Recent
Trend in Motion Planning of Industrial Robots,” Int. J. Intell. Robot. Appl.,
7(2), pp. 253–274.

[20] Wang, X., Fu, H., Deng, G., Liu, C., Tang, K., and Chen, C., 2023, “Hierarchical
Free Gait Motion Planning for Hexapod Robots Using Deep Reinforcement
Learning,” IEEE Trans. Ind. Inform., 19(11), pp. 10901–10912.

[21] Zhang, Y., and Chen, P., 2023, “Path Planning of a Mobile Robot for a Dynamic
Indoor Environment Based on an SAC-LSTM Algorithm,” Sensors, 23(24),
p. 9802.

[22] Schmitt, P. S., Wirnshofer, F., Wurm, K. M., Wichert, G. V., and Burgard, W.,
2019, “Planning Reactive Manipulation in Dynamic Environments,”
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, Macau, China, Nov. 4–8, IEEE, pp. 136–143.

[23] Chai, R., Niu, H., Carrasco, J., Arvin, F., Yin, H., and Lennox, B., 2024, “Design
and Experimental Validation of Deep Reinforcement Learning-Based Fast
Trajectory Planning and Control for Mobile Robot in Unknown Environment,”
IEEE Trans. Neural Netw. Learn. Syst., 35(4), pp. 5778–5792.

[24] Chen, P., Pei, J., Lu, W., and Li, M., 2022, “A Deep Reinforcement Learning
Based Method for Real-Time Path Planning and Dynamic Obstacle
Avoidance,” Neurocomputing, 497, pp. 64–75.

[25] Zhou, Q., Li, S., Qu, J., Wu, J., Xu, H., and Bi, Y., 2023, “An Adaptive Path
Planning Approach for Digital Twin-Enabled Robot Arm Based on Inverse
Kinematics and Deep Reinforcement Learning,” Proceedings of the 2023
ASME International Mechanical Engineering Congress and Exposition, New
Orleans, LA, Oct. 29–Nov. 2, p. V003T03A079.

[26] Luipers, D., Kaulen, N., Chojnowski, O., Schneider, S., Richert, A., and Jeschke,
S., 2022, “Robot Control Using Model-Based Reinforcement Learning With
Inverse Kinematics,” Proceedings of the 2022 IEEE International Conference
on Development and Learning (ICDL), London, UK, Sept. 12–15, IEEE,
pp. 244–249.

[27] Zhong, J., Wang, T., and Cheng, L., 2022, “Collision-Free Path Planning for
Welding Manipulator via Hybrid Algorithm of Deep Reinforcement Learning
and Inverse Kinematics,” Complex Intell. Syst., 8(3), pp. 1899–1912.

[28] Li, X., Liu, H., and Dong, M., 2022, “A General Framework of Motion Planning
for Redundant Robot Manipulator Based on Deep Reinforcement Learning,”
IEEE Trans. Ind. Inform., 18(8), pp. 5253–5263.

[29] Faust, A., Ramirez, O., Fiser, M., Oslund, K., Francis, A., Davidson, J., and
Tapia, L., 2018, “PRM-RL: Long-Range Robotic Navigation Tasks by
Combining Reinforcement Learning and Sampling-Based Planning,”
Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, May 21–25, pp. 5113–5120.

[30] Arora, S., and Doshi, P., 2021, “A Survey of Inverse Reinforcement Learning:
Challenges, Methods and Progress,” Artif. Intell., 297, p. 103500.

[31] Kim, B., and Pineau, J., 2016, “Socially Adaptive Path Planning in Human
Environments Using Inverse Reinforcement Learning,” Int. J. Soc. Robot.,
8(1), pp. 51–66.

[32] Tucker, A., Gleave, A., and Russell, S., 2018, “Inverse Reinforcement Learning
for Video Games.” arXiv preprint arXiv:1810.10593, 2018.

[33] Frazier, P. I., 2018, “A Tutorial on Bayesian Optimization.” arXiv preprint
arXiv:1807.02811.

[34] Wilson, A., Fern, A., and Tadepalli, P., 2014, “Using Trajectory Data to Improve
Bayesian Optimization for Reinforcement Learning,” J. Mach. Learn. Res., 15(1),
pp. 253–282.

[35] Young, M. T., Hinkle, J. D., Kannan, R., and Ramanathan, A., 2020, “Distributed
Bayesian Optimization of Deep Reinforcement Learning Algorithms,” J. Parallel
Distrib. Comput., 139, pp. 43–52.

[36] Gong, S., Wang, M., Gu, B., Zhang, W., Hoang, D. T., and Niyato, D., 2023,
“Bayesian Optimization Enhanced Deep Reinforcement Learning for Trajectory
Planning and Network Formation in Multi-UAV Networks,” IEEE Trans. Veh.
Technol., 72(8), pp. 10933–10948.

[37] Cai, D., Heikkia, J., and Rahtu, E., 2022, “OVE6D: Object Viewpoint Encoding
for Depth-Based 6D Object Pose Estimation,” Proceedings of the 2022 IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR), New
Orleans, LA, June 19–24, IEEE, pp. 6793–6803.

[38] Denavit, J., and Hartenberg, R. S., 1955, “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices,” J. Appl. Mech., 22(2), pp. 215–221.

[39] Littman, M. L., 1994, “Markov Games as a Framework for Multi-Agent
Reinforcement Learning,” Proceedings of the 1994 Machine Learning
Proceedings, San Francisco, CA, July 10–13, pp. 157–163.

[40] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.,
2017, “Proximal Policy Optimization Algorithms.” arXiv preprint
arXiv:1707.06347.

[41] Li, J., Pang, D., Zheng, Y., Guan, X., and Le, X., 2022, “A Flexible
Manufacturing Assembly System With Deep Reinforcement Learning,” Control
Eng. Pract., 118, p. 104957.

[42] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N., 2016,
“Taking the Human Out of the Loop: A Review of Bayesian Optimization,”
Proc. IEEE, 104(1), pp. 148–175.

[43] Belete, D. M., and Huchaiah, M. D., 2022, “Grid Search in Hyperparameter
Optimization of Machine Learning Models for Prediction of HIV/AIDS Test
Results,” Int. J. Comput. Appl., 44(9), pp. 875–886.

[44] Bergstra, J., and Bengio, Y., 2012, “Random Search for Hyper-Parameter
Optimization,” J. Mach. Learn. Res., 13(2), pp. 281–305.

[45] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., 2018, “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning With a Stochastic
Actor,” Proceedings of the 2018 International Conference on Machine Learning
(PMLR), Stockholm, Sweden, July 10–15, pp. 1861–1870.

051009-16 / Vol. 147, MAY 2025 Transactions of the ASME

http://dx.doi.org/10.1115/1.4063502
http://dx.doi.org/10.1115/1.4063502
http://dx.doi.org/10.1115/1.4063107
http://dx.doi.org/10.1115/1.4062430
http://dx.doi.org/10.1115/1.4062430
http://dx.doi.org/10.1115/1.4064040
http://dx.doi.org/10.1115/1.4064040
http://dx.doi.org/10.2478/amcs-2018-0038
http://dx.doi.org/10.1109/TITS.2016.2604240
https://dx.doi.org/10.1016/j.jpdc.2022.06.014
http://dx.doi.org/10.3390/vehicles3030027
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1109/ACCESS.2014.2302442
http://dx.doi.org/10.1109/LRA.2020.3026638
http://dx.doi.org/10.1115/1.4062941
http://dx.doi.org/10.1115/1.4062235
http://dx.doi.org/10.1016/j.cag.2021.01.011
http://dx.doi.org/10.1109/TIE.2020.2998740
http://dx.doi.org/10.1007/s41315-023-00274-2
http://dx.doi.org/10.1109/TII.2023.3240758
http://dx.doi.org/10.3390/s23249802
http://dx.doi.org/10.1109/TNNLS.2022.3209154
http://dx.doi.org/10.1016/j.neucom.2022.05.006
http://dx.doi.org/10.1007/s40747-021-00366-1
http://dx.doi.org/10.1109/TII.2021.3125447
http://dx.doi.org/10.1016/j.artint.2021.103500
http://dx.doi.org/10.1007/s12369-015-0310-2
https://dx.doi.org/10.5555/2627435.2627443
http://dx.doi.org/10.1016/j.jpdc.2019.07.008
http://dx.doi.org/10.1016/j.jpdc.2019.07.008
http://dx.doi.org/10.1109/TVT.2023.3262778
http://dx.doi.org/10.1109/TVT.2023.3262778
http://dx.doi.org/10.1115/1.4011045
http://dx.doi.org/10.1016/j.conengprac.2021.104957
http://dx.doi.org/10.1016/j.conengprac.2021.104957
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1080/1206212X.2021.1974663
https://dx.doi.org/10.5555/2188385.2188395

	1 Introduction
	2 Related Work
	2.1 Robot Motion Planning in Dynamic Environment
	2.2 Accelerate the Training of Reinforcement Learning Models
	2.3 Optimization of Reward Function Parameters in Reinforcement Learning Models

	3 Methods
	3.1 Overall Structure of the Proposed Approach
	3.2 Object Detection and Location
	3.3 Adaptive Motion Planning
	3.3.1 Workflow of the Adaptive Motion Planning Method
	3.3.2 Safety Distance Detection
	3.3.3 Geometry-Based Path Planning Method

	3.4 Reinforcement Learning
	3.4.1 Proximal Policy Optimization
	3.4.2 Environment States and Action Space:
	3.4.3 Design of Reward Functions

	3.5 Refine Reward Function Parameters Based on Bayesian Optimization

	4 Experiment Settings and Results
	4.1 Experiment Settings
	4.2 Experiment Results
	4.2.1 Optimization of Reward Function Parameters
	4.2.2 Comparison Experiments to Evaluate the Performance of the Proposed Approach
	4.2.2.1 Comparison of convergence speed
	4.2.2.2 Comparison of task success rate and episode length
	4.2.2.3 Comparison of collision rate and overtime rate

	4.2.3 Comparison Experiment to Evaluate the Robustness on Reward Magnitude of the Proposed Approach
	4.2.4 Comparison Experiments to Evaluate the Performance on Different Dynamic Scenarios
	4.2.5 Generalization Performance in Physical Environment

	5 Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 Nomenclature
	 References

