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Abstract In the era of Industry 4.0, robot motion plan-
ning faces unprecedented challenges in adapting those high-
dimension dynamic working environments with rigorous 
real-time planning requirements. Traditional sampling-based 
planning algorithms can find solutions in high-dimensional 
spaces but often struggle with achieving the balance among 
computational efficiency, real-time adaptability, and solution 
optimality. To overcome these challenges and unlock the 
full potential of robotic automation in smart manufacturing, 
we propose bidirectional recurrent motion planning network 
(BRMPNet). As an imitation learning-based approach for 
robot motion planning, it leverages deep neural networks 
to learn the heuristics for approximate-optimal path plan-
ning. BRMPNet employs the refined PointNet++ network to 
incorporate raw point-cloud information from depth sensors 
and generates paths with a bidirectional strategy using long 
short-term memory (LSTM) network. It can also be inte-
grated with traditional sampling-based planning algorithms, 
offering theoretical assurance of the probabilistic complete-
ness for solutions. To validate the effectiveness of BRM-
PNet, we conduct a series of experiments, benchmarking 
its performance against the state-of-the-art motion planning 
algorithms. These experiments are specifically designed to 
simulate common operations encountered within generic 
robotic platforms in smart manufacturing such as mobile 
robots and multi-joint robotic arms. The results demonstrate 
BRMPNet’s superior performance on key metrics including 
solution quality and computational efficiency, suggesting the 

promising potential of learning-based planning in addressing 
complex motion planning challenges.

Keywords Robot motion planning · Imitation learning · 
Deep neural network · Smart manufacturing · Adaptive and 
real-time planning

1 Introduction

As the fourth industrial revolution advances, robots are 
transitioning to the key players in the landscape of smart 
manufacturing [1]. Generic robotic platforms such as auto-
mated guided vehicles (AGVs), multi-joint robotic arms, and 
their combinations (i.e., hybrid robots) are playing increas-
ingly crucial roles in smart factory as shown in Fig. 1. When 
equipped with specific end-effectors such as gripper, screw-
driver or camera, these robotic platforms can take various 
tasks from material handling, precise assembly to production 
inspection [2, 3].

A diverse range of tasks mean more complex working 
environments for robots. Besides avoiding regular static 
obstacles like raw materials and equipment, robots must 
also adapt to dynamic environments where interactions with 
human operators, running machinery or other moving robots 
occur frequently. For example, consider a robotic arm in a 
flexible assembly line: it must efficiently navigate around 
obstacles such as fixtures or material boxes while also adapt-
ing its motion in real-time to cope with shifts in component 
and part sizes, alterations in workbench configurations, and 
changes in production schedules. An absence of real-time 
motion planning for robots not only jeopardizes the safety 
of equipment and human workers, but also risks creating a 
chain reaction such as disturbing production schedule with 
increasing manufacturing cost. Therefore, the development 
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of motion planning methods with real-time dynamic adapt-
ability is significant for robots to strive for both safety and 
efficiency in smart manufacturing landscapes.

Motion planning aims to compute path that allows the 
robot to move from a starting position to a target destination 
while avoiding collisions with obstacles. Traditional motion 
planning algorithms can be classified into three categories: 
search-based, sampling-based, and optimization-based. 
Search-based algorithms rely on constructing a graph from 
the robot’s configuration space and then employing clas-
sic search techniques (e.g., A*) to find a path [4]. These 
methods guarantee exact solutions but are computationally 
expensive when dealing with high-dimensional configura-
tion spaces. Their dependency on discrete space often leads 
to a loss in solution fineness, potentially overlooking nar-
row but valid paths. Sampling-based algorithms, such as 
rapidly-exploring random trees (RRTs) [5] or probabilistic 
roadmaps (PRMs) [6], focus on randomly sampling the con-
figuration space and connecting these sample points to form 
paths. They are probabilistically complete to find solutions 
with the probability of 1 if the path exists. But under time 
limitations in manufacturing, their random sampling nature 
may produce irregular paths or simply fail to find solutions. 
Optimization-based algorithms take an initial path, poten-
tially infeasible, and iteratively refine it to avoid obstacles 
while optimizing certain criteria such as path length [7]. 
These algorithms require careful tuning of the cost functions 
to ensure convergence and are prone to obtain local optima. 
Furthermore, non-linear optimization is computationally 
expensive and slow for difficult planning problems.

As robots’ operational environments in smart manufac-
turing grow more dynamic and complex, traditional motion 
planning algorithms become increasingly inapplicable. 
Their major limitation is the inability to adapt and gener-
alize across diverse working environments. The scalabil-
ity and computational efficiency of traditional algorithms 
are also called into question when dealing with real-time 
motion planning needs in intricate environments. Recently, 

researchers are turning to learning-based motion planning 
algorithms [8, 9]. Learning-based algorithms, with their 
inherent capability to learn and generalize from vast experi-
ences, offer the exciting prospect of motion planners that 
can adapt to new environments without explicit reprogram-
ming for each new environment [10]. They can handle high-
dimensional spaces to the level of efficacy that traditional 
algorithms may struggle to achieve. This adaptability is 
especially beneficial for generic robotic platforms in smart 
manufacturing, which often have to switch between different 
tasks and environments with limited downtime for recon-
figuration. However, existing learning-based algorithms 
still struggle with achieving well generalizability, real-
time adaptability, and success rate assurance in unknown 
environments.

Thus, in this paper, we introduce the bidirectional recur-
sive motion planning network (BRMPNet) to meet the grow-
ing complexities and demands of robotic applications in 
manufacturing. The core idea of our approach is to harness 
the capabilities of neural networks to perform environment 
feature encoding and construct a motion planning architec-
ture with high adaptability and real-time decision-making 
ability. Compared to existing learning-based algorithms, our 
approach is more scalable, computationally efficient, and 
robust to environmental changes. The main contributions 
of our research include.

 (i) An end-to-end neural network architecture for motion 
planning is proposed to operate on point cloud of the 
environment and generate near-optimal paths while 
avoiding obstacles. This architecture is highly adap-
tive, enabling real-time response to dynamic changes 
of the environment.

 (ii) A refined PointNet++ network is integrated to maxi-
mize the utility of point-cloud information collected 
from depth sensors.

 (iii) A long short-term memory (LSTM) network is 
employed to capture the dynamic temporal depend-
encies inherent in the planning process. This treatment 
can iteratively update the motion plan based on cur-
rent environmental information and historical plan-
ning data, achieving real-time adaptability.

 (iv) A hybrid online execution mechanism is designed 
to maintain the compatibility of our learning-based 
approach with traditional sampling-based planning 
algorithms. This mechanism provides probability 
guarantees on solution completeness, ensuring a reli-
able and robust motion planning performance in vari-
ous applications.

The effectiveness of the proposed approach is examined 
in both computer simulations and physical robot experi-
ments. Results show that our approach has significant 

Fig. 1  Generic robotic platforms in smart factory
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advantages over other state-of-the-art methods in terms of 
computational efficiency and solution quality. The rest of 
the paper is structured as follows. Section 2 presents a litera-
ture review of learning-based motion planning algorithms. 
Section 3 provides the problem formulation, and Section 4 
introduces the proposed approach and explains the key tech-
niques involved. Section 5 showcases the effectiveness of the 
proposed approach through experiments. Section 6 provides 
the summary of this work and highlights potential directions 
for future research.

2  Related work

In recent years, learning-based methods have attracted 
considerable attention, emerging as a class of novel and 
versatile motion planning solutions for robotic systems. 
Characterized by their high adaptability and real-time 
decision-making ability, these methods harness the power 
of machine learning, particularly deep neural networks, to 
model and solve high-dimensional, non-linear planning 
problems that are computationally intractable for traditional 
algorithms. Learning-based motion planning methods can 
be generally classified into two categories: end-to-end and 
module replacement [11]. Representative methods in these 
two categories are reviewed and discussed in the following 
subsections.

2.1  End‑to‑end methods

End-to-end methods aspire to supplant the entire tradi-
tional motion planning pipeline. They leverage deep neu-
ral network architectures to generate end-to-end solutions, 
furnishing collision-free paths in each configuration space 
without intermediate steps. For instance, Pfeiffer et al. [12] 
developed a convolutional neural networks (CNN)-based 
navigation model that enabled robots to map raw 2D-laser 
environment data and target positions directly to steering 
commands. Hamandi et al. [13] introduced DeepMotion, 
a human-aware navigation model that combined CNN and 
LSTM network layers to process laser data for safe naviga-
tion through crowds.

In the quest for iterative, end-to-end collision-free paths, 
several algorithms have emerged. Bency et al. [14] created 
OracleNet, which utilized recurrent neural networks (RNNs) 
for rapid and near-optimal motion planning in static, high-
dimensional settings. Ichter and Pavone [8] proposed latent 
sampling-based motion planning (L-SBMP), a technique 
that integrated autoencoding, dynamics, and collision-
checking networks to learn a plannable latent representation 
of robotic systems. Qureshi et al. [9] introduced motion-
planning networks, which encoded environmental data into 
a latent space and generated predicted collision-free paths 

between start and goal configurations. Fishman et al. [15] 
proposed motion policy networks, an end-to-end model 
trained on over three million planning problems to produce 
collision-free and smooth motions. Inspired by generative 
neural networks, Kurutach et al. [16] presented a causal 
InfoGAN model that learnt to produce feasible observations 
to guide motion. Huh et al. [17] introduced a neural network-
based cost-to-go function for manipulator motion planning 
using workspace sensor inputs.

Deep reinforcement learning (DRL) also offers another 
innovative avenue. It enables robots to learn planning paths 
through trial and error, guided by the principles of reward 
optimization. In DRL, two main components are often 
highlighted: the policy function and the value function. 
The policy function dictates the robot’s actions at any given 
state, while the value function estimates the expected future 
rewards for those actions. By optimizing these components, 
DRL algorithms [18–20] have also been applied in motion 
planning. However, DRL algorithms face challenges includ-
ing high computational cost due to data-intensive training 
and sensitivity to reward function design that can lead to 
failed planning.

2.2  Module replacement methods

Module replacement methods focus on refining specific 
modules within traditional motion planning algorithms. 
Typical modules include the preprocessing, prediction, 
execution, and collision-checking. Various deep learning 
architectures, such as CNN, LSTM, DRL, graph neural 
networks (GNNs), and generative networks, etc., have been 
successfully employed for this purpose.

The preprocessing module aims to generate processed 
configuration space in advance to guide the expansion of 
searching in traditional motion-planning algorithms. To 
refine this module, Khan et al. [21] utilized GNN to encode 
the topology of configuration space and calculate sampling 
distribution parameters. Similarly, Wang et al. [22] intro-
duced Neural RRT*, which combined a pretrained CNN 
with RRT* to guide the sampling process and improve path 
planning performance. In the context of dual-arm assembly 
robots, Ying et al. [23] employed LSTM network to pro-
vide informed sampling points for bidirectional-RRT. Addi-
tionally, Kumar et al. [10] introduced LEGO, an algorithm 
that used conditional variational auto-encoders (CVAEs) 
to improve roadmap generation in sampling-based motion 
planning.

The prediction module is to anticipate the structure of 
the unknown space and feasible path in the motion planning 
process. To improve this module, Qureshi and Yip [24] com-
bined the Contractive AutoEncoder with a stochastic neural 
network to enable informed sample generation. Elhafsi et al. 



 B.-H. Feng et al.

[25] employed a conditional neural process (CNP) architec-
ture to forecast unobserved environmental terrains.

The execution module generates a new state by taking 
actions. Several key contributions have emerged to improve 
this module. For instance, Kim and An [26] developed a 
learning heuristic A* algorithm that employed neural net-
works to improve the efficiency of graph-based search. 
Similarly, Guzzi et al. [27] designed a data-driven planning 
algorithm that integrated a state estimator with a sampling-
based planner to optimize path generation.

The collision-checking module examines the safety of 
the generated path. Several contributions have been made to 
refine this module. For example, Chase et al. [28] introduced 
ClearanceNet, a collision checking heuristic network and a 
planning algorithm CN-RRT which leveraged Clearance-
Net’s capabilities for efficient motion planning. Zhang et al. 
[29] used DRL to develop a rejection sampling model and 
optimized the sampling distribution to reduce the number 
of collision detection by a policy gradient approach. Tran 
et al. [30] formulated a framework that combined Convolu-
tional Autoencoders with Multi-layer Perceptrons to predict 
sample collisions effectively. Yu and Gao [31] utilized GNN 
for path exploration and path smoothing to significantly 
alleviate the computational burden of collision checking in 
sampling-based motion planning.

2.3  Summary of existing learning‑based motion 
planning methods

While the aforementioned methods have made significant 
strides in learning-based motion planning, there are still 
challenges to be addressed, particularly in the context of 
smart manufacturing where robots often need to plan their 
motions rapidly to adapt to high-dimensional dynamic 
spaces and flexible jobs. The increasing need for efficient 
fusion of multi-sensor data and strict safety constraints for 
human-machine interaction brings more complexity for 
motion planning that existing methods cannot fully handle. 
Also, existing end-to-end methods often lack the flexibility 
to be integrated with traditional motion planning algorithms, 
limiting their applicability in diverse environments. Mod-
ule replacement methods, on the other hand, tend to refine 
specific stages of the planning pipeline without offering a 
comprehensive solution. Moreover, most existing methods 
do not fully exploit the rich data available from advanced 
depth sensors, which is crucial for real-world applications 
in smart manufacturing.

To fill these gaps, we introduce BRMPNet, a compre-
hensive and adaptable solution for robot motion planning. 
It extends the principle underlying end-to-end methods, and 
can easily switch to module replacement methods under nec-
essary conditions, thus bridging the advantages of two prin-
cipal categories of learning-based motion planning methods.

3  Problem formulation

The configuration space C of robot represents the set of all 
potential states, characterized by a given degree of freedom 
for the robot. Let C be a subset of ℝd,where d ∈ ℕ, d ≥ 2 . 
And the robot’s workspace W , the physical area where it 
interacts with the environment, serves as the real-world 
instantiation of these abstract configurations, and is repre-
sented as a subset of ℝm , where m ∈ {2, 3} indicating the 
workspace’s dimensional characteristics. Let Cobs be the 
obstacle region of configuration space. The representation 
of obstacle spaces Cobs is typically not pre-defined. Instead, 
a collision-checker is used to determine if C intersects with 
any obstacle Wobs in the workspace W . The obstacle-free 
configuration space is denoted as Cfree = cl

(

C ⧵ Cobs
)

 , where 
cl(⋅) denotes the closure of a set. The start point xstart and 
goal point xgoal are both elements of Cfree . A planning prob-
lem is defined by a triplet (xstart, xgoal, Cfree) . The definitions 
of key concepts in robot motion planning, such as feasible 
path planning and probabilistic completeness are provided 
as follows.
Definition 1 (Feasible path planning) 
Given a path planning problem (xstart, xgoal, Cfree) , find a 
feasible path � ∶ [0,T] → Cfree such that �(0) = xstart and 
�(T) = xgoal , if one exists. If no such path exists, report 
failure.
Definition 2 (Probabilistic completeness) 
Given any feasible path planning problem (xstart, xgoal, Cfree) , 
the motion planning algorithm is probabilistic completeness 
if the probability which returns a feasible path goes to one as 
the number of planning attempts goes to infinity,

where n is the number of planning attempts and 𝜎n ⊂ 𝜎feasible 
is the set of feasible paths found by the planner from those 
attempts.

4  Methods

4.1  Model architecture

Figure 2 shows the overall architecture of BRMPNet, which 
integrates a refined PointNet++ network with an LSTM net-
work. The workflow initiates with the refined PointNet++ 
network processing the point cloud data to extract critical 
environmental features, which are then passed to the LSTM 
network for path generation. Imitation learning is incor-
porated within the BRMPNet, where the learning-based 
approach is trained to mimic expert-provided paths, allow-
ing for the generation of near-optimal paths in unknown 

(1)liminf
n→∞

P
(

�n ≠ �
)

= 1,
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environments. The refined PointNet++ network and the 
LSTM network are particularly designed for sophisticated 
feature extraction from environment information (i.e., point 
cloud data), and generating paths, respectively. The details 
regarding their structures are provided as follows. 

4.1.1  Refined PointNet++ network

The reason for refining PointNet++ [32] stems from its 
superior performance in encoding environmental variables 
compared to traditional approaches such as MLP, Voxel-
Net [33], and its predecessor, PointNet [34]. Several sali-
ent features contribute to its performance. For example, the 
hierarchical structure of PointNet++ excels at capturing 
local spatial patterns within point clouds, thereby enabling 
learning at multiple scales of point clouds. By processing 
point clouds directly, PointNet++ can maintain the fidelity 
of environment data without resorting to voxelization and 
relying on the specific ordering of points. Also, its ability 
to manage variations in density and scale of point clouds 
not only reduces computational overhead but also preserves 
high-resolution details. These features collectively make 
PointNet++ a suitable choice for encoding environmental 
data in robot motion planning.

To further enhance its effectiveness of environmental 
feature extraction for motion planning, we refine the Point-
Net++ structure. We first remove the segmentation and clas-
sification networks in the original PointNet++ architecture. 
This decision is driven by the need to streamline the archi-
tecture for specific applications in robot motion planning, 
where the primary focus is on precise spatial feature extrac-
tion rather than object identification or categorization. In 
addition, we improve the design of the set abstraction layers 
in original PointNet++ by changing the number of neurons, 
sampling size, grouping scope and other related parameters 

in these layers to ensure the point cloud information from 
generic robotic platforms can be processed more efficiently.

Our refined PointNet++ structure is composed by three 
set abstraction levels. Each level is meticulously engineered 
to enhance the extraction and processing of spatial features. 
At each set abstraction level, a set of points is processed 
and abstracted to produce a new set with fewer elements. 
The set abstraction level is made of two key operations: 
sampling and grouping operation, and PointNet operation. 
The sampling and grouping operation pick a subset of N × 3 
points from the input to serve as local region centroids, and 
subsequently identify neighboring points around these cen-
troids to form localized sets. The outputs are groups of point 
sets of size N1 × K × 3, where each group corresponds to a 
local region and K is the number of points in the neighbor-
hood of centroid points. PointNet operation is a set function 
f ∶ W → ℝ to encode local region patterns 

{

w1,w2,⋯ ,wN1

}

 
into feature vectors

where � and � are MLP networks; MAX is a max pooling 
operation to aggregate the whole point set.

The environmental point cloud data obtained from the 
camera are denoted as pe, and the point cloud data of the 
robot arm are denoted as pr. These data are then fed into 
the refined PointNet++. Specifically, in the first abstrac-
tion layer, an iterative furthest point sampling procedure is 
deployed to generate a set of 1 024 points. Subsequently, we 
conduct a grouping query within a 10 cm radius, limiting the 
group size to a maximum of 256 points. This is followed by 
the PointNet structure, composed of three MLP layers with 
sizes of 32, 64 and 64, respectively.

The second abstraction layer operates at a lower reso-
lution, employing a furthest point sampling technique to 
select 256 representative points. Grouping is then performed 
within a 30 cm radius, with each group containing up to 256 
points. The corresponding PointNet architecture consists of 
layers with sizes of 64, 128 and 128, respectively.

In the third abstraction layer, furthest point sampling is 
omitted, and all points are grouped together. The subsequent 
PointNet component is composed of layers with sizes of 256, 
512 and 512, respectively. Following the abstraction lay-
ers, we address the fusion of point cloud data related to the 
robotic arm’s initial state and environment. For the robotic 
arm’s point cloud data, we employ fully connected layer 
comprising 512 and 128 neurons, respectively. For the envi-
ronmental information, our approach leverages fully con-
nected layer with sizes of 512 and 256 neurons. Through 
the refined PointNet++ network, we obtain the environment 
point feature p′

e
 and the robot point feature p′

r
.

(2)f
(

w1,w2,⋯ ,wN1

)

= �

(

MAX
i=1,2,⋯,N1

{

�
(

wi

)}

)

,

Fig. 2  BRMPNet architecture
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Overall, the first layer’s accurate analysis of local fea-
tures and subsequent two layers’ analysis on global features 
collectively ensure efficient, comprehensive processing of 
point cloud data of robot and environment. Our design aims 
to achieve the balance of detail and scope in environmental 
feature extraction, thereby optimizing our system for motion 
planning tasks.

4.1.2  LSTM network

The incorporation of LSTM network in BRMPNet offers 
three distinct advantages tailored for dynamic usage con-
texts. Unlike traditional feedforward networks, LSTM is 
good at retaining relevant historical information, owing 
to the gating mechanism that alleviates vanishing gradient 
problems. This capability enables the recognition of long-
term dependencies that can be pivotal for future motion 
planning. Additionally, the adaptability of LSTM to irregular 
data sampling frequencies enhances its robustness, a critical 
feature when processing sensor data with varying sampling 
rates. Also, the recursive nature of LSTM enables real-time 
adaptability by iteratively updating motion plans based on 
both current environmental conditions and historical plan-
ning data. This is a vital feature in dynamic settings where 
real-time decision-making is significant.

Our LSTM network produces planned path 
�(x) =

{

x0, x1,⋯ , xT−1, xT
}

 . Within the context of plan-
ning, vital information for each step is extracted from refined 
PointNet++. We treat the environmental point feature p′

e
 

as the memory cell internal state ct and the concatenated 
feature of xt and the robot point feature p′

r
 as the hidden 

state ht. To address the challenge of generating goal-oriented 

path sequences, we adopt an approach of incorporating the 
goal’s location xstart or xgoal as an auxiliary input during each 
prediction step. This auxiliary input serves as a constant 
reminder to the network regarding its ultimate convergence 
point. The output is obtained by passing h(t+1) through a 
fully connected layer to yield x(t+1). Since our LSTM net-
work’s execution is bidirectional, the motion planning will 
be conducted in both forward (i.e., from the start point to 
the goal) and backward (i.e., from the goal to the start point) 
ways. This bidirectional planning process continues until the 
forward and backward path converge. It’s important to note 
that Fig. 2 illustrates the points xstart or xgoal explicitly. When 
planning forward, xgoal is input. While planning backward, 
xstart is used instead. A detailed algorithmic description of 
this process will be presented in Sect. 4.3.

4.2  Model training

The BRMPNet model is trained using a collection of expert-
generated planning results that span the configuration space. 
Utilizing imitation learning techniques, BRMPNet aims to 
approximate the behavior of the expert algorithm. For each 
planning case provided by the expert, the network’s output 
is compared against the expert’s output using a behavior 
cloning loss function. Each expert planning case can be 
represented as 𝜎(x̂) =

{

x̂0, x̂1,⋯ , x̂T−1, x̂T
}

 , which is a list 
of waypoints in configuration space that can be connected 
to the start and goal positions to form a path. BRMPNet 
generates a sequence of outputs, denoted as �(x) , based on 
input conditions that are consistent with those used in expert 
planning cases. The behavioral cloning (BC) loss from one 
demonstrated planning case can be interpreted as follows

(a) (b)

Fig. 3  Schematic representation of the replanning and rewiring processes in BRMPNet
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where L1 and L2 refer to the Manhattan and Euclidean norms, 
respectively. The L1 norm is robust to outliers, as each com-
ponent of the error contributes linearly to the total error. 
However, the L1 norm is not smooth and lacks differenti-
ability at zero. The squaring operation makes the L2 norm 
sensitive to larger errors, effectively emphasizing them more 
in the total error calculation. However, the L2 norm can be 
vulnerable to the influence of outliers. Using both norms 
can potentially leverage their respective benefits and create 
a more comprehensive and robust error measure.

4.3  Hybrid online execution

Algorithm 1 outlines the hybrid online execution logic of 
BRMPNet. Given a pre-trained BRMPNet, we focus on 
online path planning where both the start position xstart and 
the goal position xgoal are selected from Cfree . The primary 
objective is to compute a path � that connects xstart to xgoal 
while avoiding collisions with obstacles in the environment. 
To enhance the robustness of our path planning process, 
we implement a bi-directional path generation strategy. This 
strategy not only improves the feasibility and success rate of 
path planning with trivially additional computational cost, 
but also resolves key challenges in learning-based motion 
planning. Primarily, it reduces cumulative prediction error 
by decreasing the number of planning steps in each direc-
tion. Furthermore, in dynamic environments, the planning 
points generated in the backward direction serve as valuable 
references, aiding in the identification of alternative feasible 
paths and enhancing the system’s adaptability to changing 

(3)LBC =
T−1
∑

t=1

�

∥ x̂t − xt ∥L1 + ∥ x̂t − xt ∥L2

�

,
conditions. This strategy alternately extends paths from 
xstart or xgoal , allowing two sub-paths ( �forward and �backward ) 
to grow towards each other. In Fig. 3, orange points indicate 
those generated during forward planning, while blue points 
denote those from backward planning. The algorithm termi-
nates this phase once a feasible connection between these 
sub-paths is formed, resulting in a unified path � (refer to 
Line 8 in Algorithm 1). If all sequentially generated points 
in � are connectable (i.e., the path lies within a collision-
free space), no further planning is necessary. However, if 
this is not the case, the next step involves assessing � for 
beacon points, defined as consecutive and non-connectable 
waypoints in � (see Line 14 in Algorithm 1). The discov-
ery of beacon points triggers a replanning phase. As shown 
in Fig. 3a, the purple dotted circle encapsulates the area 
undergoing replanning, with green point generated during 
this phase. BRMPNet decomposes the given planning task 
into sub-problems and recursively solves them to find a path 
solution. If the replanning phase fails M times, a hybrid 
planning strategy is invoked (Line 18 shows M = 1 ). Then 
an RRT-based algorithm that uses the beacon points xi and 
xi+1 as the start and goal points is employed, ensuring the 
algorithm’s probabilistic completeness. Finally, after secur-
ing a collision-free path, a rewiring process is initiated to 
refine the path by eliminating redundant points. This process 
involves evaluating if connecting two non-adjacent points 
directly would reduce the overall path cost (Lines 10 and 
21 in Algorithm 1). Figure 3b depicts the rewiring process 
with red lines representing the refined path after rewiring. 
In a word, our hybrid online execution mechanism not only 
maintains high computational efficiency but also ensures 
robust planning performance.
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4.4  Analysis of the probabilistic completeness 
for BRMPNet

In this section, we provide proof of the probabilistic com-
pleteness for BRMPNet.

Theorem (Probabilistic completeness) BRMPNet attains 
probabilistic completeness for motion planning as the num-
ber of planning attempts goes to infinity.

Proof: In the planning phase, BRMPNet initially identi-
fies rough solutions denoted as � , which may encompass 
beacon points characterized by being unconnectable and 
consecutive (see Fig. 3a). Our proposed algorithm addresses 
the connectivity of these beacon points through replanning 
or hybrid planning procedure in online execution. During the 

replanning procedure, we subject the identified beacon states 
to neural replanning over a fixed number of M iterations, 
thereby iteratively refining the solutions represented by � . In 
instances where our iterative neural replanning fails to yield 
a solution, we resort to employing a hybrid planning which 
utilizes the RRT-based algorithm to establish connections 
between any remaining unconnected beacon points. Thus, 
BRMPNet exhibits probabilistic completeness of the RRT-
based planner. According to the probabilistic completeness 
of RRT [5], there exists a constant a > 0 that

where 𝜎BRMPNet
n

⊂ 𝜎feasible is the set of feasible paths found 
by BRMPNet planner. The probabilistic completeness proof 
for the BRMPNet algorithm is complete.

(4)liminf
n→∞

P
(

𝜎BRMPNet
n

≠ �
)

> liminf
n→∞

(1 − e−an) = 1,
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5  Experiments

5.1  Experiment settings

To examine the efficacy and efficiency of the proposed 
BRMPNet, a series of incremental experiments are designed 
to simulate common robotic operations in smart manufac-
turing. Experiment 1 performs the path planning within 2D 
and 3D environments, which represent the regular work-
ing environments for mobile robots such as AGVs or UAVs 
(unmanned aerial vehicles) in a simplified manner. This 
experiment aims to test the algorithmic performance in low-
dimensional space by eliminating complexities introduced 
by robot dynamics. Building on this, Experiment 2 intro-
duces a desktop multi-joint robotic arm navigating through 
static obstacles, a scenario reflective of common material-
handling or assembly tasks in smart manufacturing. This 
experiment enables us to assess BRMPNet’s performance in 
higher-dimensional configuration spaces and its real-world 
applicability for industrial robots. Experiment 3 escalates 
the complexity by focusing on dynamic obstacle-avoidance 
within the same desktop robotic arm setup in Experiment 
2. This serves to evaluate the algorithm’s robustness and 
adaptability to variable environments. Experiment 4 involves 
a collaborative assembly task between a hybrid robot (i.e., 
a mobile robotic platform equipped with a robotic arm) and 
a desktop robotic arm, mimicking the multi-robot coopera-
tive scenarios frequently seen in smart manufacturing. This 
test is designed to evaluate BRMPNet’s scalability and effi-
ciency in multi-robot dynamic environments. Collectively, 
these four experiments provide a comprehensive assessment 
of BRMPNet in an incremental way, starting from basic to 
complex, real-world operations commonly encountered in 
generic robotic platforms. These incremental tests enable 
a thorough evaluation of the proposed algorithm as well as 
closely align with the procedures that a novel motion plan-
ning algorithm will take from laboratory testing to practical 
deployment in industry.

We compare the performance of the proposed BRMPNet 
approach against several well-established motion planning 
algorithms, namely RRT [5], RRT-Connect [35], batch-
informed RRT (BIT) [36] and MPNet [9]. MPNet utilizes 
an end-to-end learning architecture, employing contractive 
autoencoders for environmental encoding and MLP for the 
planning module. For the BIT algorithm, we configure it to 
operate with a batch size comprising 50 sampling points. All 
algorithms are implemented in Python, utilizing a uniform 
planning framework, and are tested on a computer with an 
Intel i7-10300 CPU and 32 GB RAM.

5.2  Experiment results

5.2.1  2D and 3D scenarios with mass‑point type robot

Experiment 1 aims to assess the fundamental capabilities 
of BRMPNet in simplified 2D and 3D environments. The 
2D workspace is a square area with sides extending from 
negative 20 to positive 20 units along both axes. The 3D 
workspace is a cube with sides ranging from negative 20 
to positive 20 units along the X, Y and Z axes. In the 2D 
setup, we introduce ten identically-sized rectangular obsta-
cles, while the 3D setup features ten randomly-sized cuboid 
obstacles. These obstacles are randomly placed to ensure 
no complete overlap exists, and are converted to point cloud 
data for training. We construct training datasets for both 2D 
and 3D environments, encompassing a total of 100 distinct 
training scenarios. Each scenario comprises 3 000 pairs of 
randomly generated initial and goal states. The expert paths 
for training datasets are derived using RRT algorithm imple-
mented in Python. An additional 10 test scenarios, distinct 
from the training set, are created to ensure experimental fair-
ness. In the comparative analysis, RRT, RRT-Connect, and 
BIT algorithms are used directly without the need for pre-
training. In contrast, BRMPNet and MPNet are trained on 
the same dataset. Exemplary planning results of BRMPNet 
are presented in Fig. 4. Figures 4a and c show the paths gen-
erated by BRMPNet in an end-to-end manner. As depicted in 
Figs. 4b and d, BRMPNet serves as a preprocessing module 
for RRT algorithm by generating informed sampling points 
that direct RRT in forming a path.

Figure 5 compares the planning time (mean time ± stand-
ard deviation) of different algorithms for achieving initial 
solutions across 1 000 test cases in 2D and 3D scenarios. 
In both 2D and 3D scenarios, the planning time of tradi-
tional sampling-based algorithms (RRT, RRT-Connect, and 
BIT) are consistently higher than those of learning-based 
algorithms (MPNet and BRMPNet). This underscores the 
efficiency benefits of learning-based methods in motion 
planning. The proposed BRMPNet algorithm outperforms 
all others in terms of planning time. In the 2D scenario, 
BRMPNet achieves an initial solution in just 0.19 ± 0.07 s, 
which is markedly faster than the top-performing sampling-
based algorithm, BIT, which requires 0.93 ± 0.21 s. This 
indicates that BRMPNet operates at approximately 20% 
of the planning time of BIT in this context. The trend is 
consistent in the 3D scenario, where BRMPNet demands 
only 0.37 ± 0.09 s, showcasing its scalability across differ-
ent complexities. Furthermore, the notably lower standard 
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deviation associated with BRMPNet compared to other algo-
rithms indicates its robustness and reliability across a variety 
of test cases.

Compared to MPNet, the other learning-based algorithm, 
BRMPNet consistently demonstrates superior performance. 
For example, in 2D scenarios, BRMPNet achieves approxi-
mately twice the speed of MPNet. This efficiency under-
scores the impact of BRMPNet’s advanced architectural 
design, which facilitates the generation of highly informed 
points, crucial for efficient pathfinding.

The modified version of BRMPNet, named as 
BRMPNet(S), is integrated as a preprocessing module within 
the RRT algorithm to act as an informed sampling function. 
According to Figs. 4c and d, the informed sampling points 
generated by BRMPNet play a crucial role in obtaining the 
initial solution. In both 2D and 3D scenarios, the integration 
of BRMPNet(S) with RRT reduces the computation time to 
approximately one-third of the original RRT: 0.82 ± 0.19 
s from 2.10 ± 0.31 s in 2D, and 1.28 ± 0.23 s from 3.76 ± 
0.40 s in 3D. This demonstrates a roughly triple speed-up, 

signifying that BRMPNet(S) enhances RRT’s performance 
significantly. This integration showcases the flexibility and 
versatility of BRMPNet to seamlessly switch between end-
to-end and module replacement strategies.

5.2.2  Static obstacle‑avoidance with desktop robotic arm

In Experiment 2, a desktop multi-joint robotic arm navi-
gates through static obstacles, representing common mate-
rial-handling or assembly tasks in smart manufacturing. As 
illustrated in Fig. 6a, distinct obstacles: cubes, cones, and 
labeling machine are incorporated in the Gazebo simula-
tion environment. Multiple Kinect cameras, strategically 
positioned to minimize occlusions and maximize the field 
of view, are used to capture point cloud data from the envi-
ronment setup (see Fig. 6b). The point cloud data are then 
merged and refined through subsequent point cloud fusion 
operations. BRMPNet utilizes point cloud information for 
planning which can be validated (see Fig. 6c) and sent to 
the physical robot arm (see Fig. 6d). We design ten training 

Fig. 4  Exemplary planning results of BRMPNet in 2D and 3D environments
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scenarios by placing various numbers and combinations of 
obstacles. This diverse setup can represent real-world envi-
ronment as well as introduce varying complexities for the 
navigation algorithms. To ensure comprehensive spatial cov-
erage and eliminate potential bias, each of these scenarios 
include a training set comprised of 3 000 randomized pairs 
of start and goal points. The expert paths needed for our 
model training are obtained from the RRT algorithm within 

the MoveIt robotics platform, utilizing the open motion plan-
ning library (OMPL) plugin [37] . It’s crucial to note that the 
test scenario in Fig. 6 is different from the training scenarios 
to ensure the fairness of our experiment. We conduct 100 
trials in which the robot arm places the object (i.e., the blue 
item in Fig. 6d) on top of one cube and then moves it to the 
top of another cube in the test scenario.

Fig. 5  Planning time of various algorithms to get initial solutions for 1 000 test cases in both 2D and 3D environments

Fig. 6  Experiment 2 setup and the information flow of BRMPNet



 B.-H. Feng et al.

Figure 7 depicts the path cost (mean cost ± standard devia-
tion) of various algorithms for obtaining an initial solution 
within the planning time limit of one second. The path cost is 

a quantitative metric to encapsulate the optimality and feasibil-
ity of trajectories generated by motion planning algorithms. 
A lower path cost usually signifies a more direct and efficient 
trajectory, while higher values might indicate circuitous routes 
or potential inefficiencies in the planning process. BRMPNet 
exhibits the lowest path cost (8.94 ± 0.53), underscoring its 
prowess in planning near-optimal paths in rapid time. Tra-
ditional sampling-based algorithms show higher path costs, 
with RRT topping the list at 12.31 ± 2.23. MPNet gets a path 
cost of 9.41 ± 0.86, while commendable, still falls short when 
compared with BRMPNet. The success rate quantifies the con-
sistency and reliability of an algorithm in successfully finding 
a path within the specified time limit. Table 1 presents the 
success rates of various algorithms for obtaining initial solu-
tions within one second. BRMPNet again shines with a 91% 
success rate, outperforming other methods. Overall, BRMP-
Net not only yields a better success rate but also achieves a 
lower path cost in Experiment 2, highlighting its superiority 
in motion planning.

5.2.3  Dynamic obstacle‑avoidance with desktop robotic 
arm

In Experiment 3, we increase the task difficulty by adding 
dynamic obstacle into the desktop robotic arm environ-
ment. This experiment serves as a stringent test of the algo-
rithm’s adaptability in changing environmental intricacies. 
The BRMPNet model parameter utilized is trained with the 
same dataset from Experiment 2. A pivotal distinction in 
this experiment lies in the handling of point cloud data. We 
leverage a depth camera to capture the point cloud data of 
a moving cube obstacle. As depicted in Fig. 8, the cube 1 
obstacle is strategically situated on a sliding platform that 
traverses in the X-direction at a speed of 5 cm/s. To account 
for the dynamic obstacle, the BRMPNet operates synchro-
nously with the point cloud fusion, outputting each planning 
step at a consistent frequency of 5 Hz. One hundred tests are 
conducted, moving the blue object from cube 2 to cube 3 
in this scenario. Table 2 shows the planning success rate of 
the learning-based approach in the dynamic scenario. Tradi-
tional sampling-based algorithms like RRT, RRT-Connect, 
and BIT are not effective in dealing with moving obstacles, 
as they do not predict or respond to changes in obstacle 
positions without specific reconfigurations. Consequently, 
sampling-based algorithms are not involved in algorithmic 
effectiveness comparisons.

As shown in Table 2, BRMPNet, with a success rate of 
93%, stands out as the top performer in dynamic scenario. 
The other learning-based method MPNet achieves an 80% 
success rate. The 13% advantage underscores the BRMP-
Net in terms of adaptability and robustness. While BRM-
PNet achieves a success rate of 93%, it is also important 

Fig. 7  Path cost comparison for different algorithms to obtain initial 
solutions within one second

Table 1  Success rate of different algorithms to obtain initial solu-
tions within one second (%)

RRT RRT-Connect BIT MPNet BRMPNet

Success rate 77 85 87 83 91

Fig. 8  Experiment 3 setup and the trajectory of the robotic arm in 
motion

Table 2  Success rate for different algorithms to complete tasks (%)

RRT RRT-Connect BIT MPNet BRMPNet

Success rate – – – 80 93
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to analyze the factors preventing a 100% success rate. One 
possible reason is that the current algorithm considers scene 
modifications to update point cloud solely after the robot 
reaches its previous planning step. Additionally, real-world 
point cloud data acquisition is rarely perfect. The presence of 
noise, or occlusions can lead to imperfect scene representa-
tions. These imperfections, in turn, can introduce discrepan-
cies in the planning process, sometimes causing the robot to 
misinterpret or misjudge obstacles.

In summary, BRMPNet algorithm excels in dynamic 
robotic planning, outperforming its counterparts. Its 

adaptability and real-time responsiveness, especially in envi-
ronments with moving obstacles, sets it apart.

5.2.4  Dual‑arm coordinated assembly with hybrid robot 
and desktop robot arm

Experiment 4 explores collaborative assembly by integrating 
a hybrid robot, which combines a mobile robot platform with 
a robotic arm, and a desktop robotic arm. This configuration 
reflects common multi-robot collaborative scenarios seen 
in smart manufacturing. Our main goal is to investigate the 

Fig. 9  Procedure of the collaborative assembly with dual robotic arms

Fig. 10  Illustration of the dual-arm coordinated assembly task robotic arms
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scalability and efficiency of BRMPNet in a dynamic multi-
robot scenario. Figures 9 and 10 illustrate the procedure 
of the collaborative assembly of the two robotic arms with 
schematic diagrams and site photos, respectively. In the ini-
tial stage, the hybrid robot coordinates the grasp planning 
for component A (see Fig. 10a). Subsequently, the desktop 
robotic arm plays the supporting role by grasping and hold-
ing the component B (see Fig. 10b). Finally, the hybrid robot 
attempts to assemble component A with component B (see 
Figs. 10c, d). 

As shown in Fig. 11, during the collaborative assembly 
task, we conduct 20 tests of BRMPNet and find that it meets 
the rigorous requirements of real-time applications with an 
average planning time of one second. This rapid response 
time is indicative of BRMPNet’s inherent adaptability in 
dynamically changing environments. Such proficiency 
speaks to the algorithm’s ability to process complex infor-
mation efficiently as making real-time decisions is critical in 
high-paced, intricate manufacturing scenarios. Furthermore, 
BRMPNet’s proven scalability and efficiency in cooperative 
frameworks render it a suitable choice for further explora-
tions and applications in smart manufacturing.

6  Conclusions

The contemporary shift towards Industry 4.0 demands con-
tinuous evolutions in robotic motion planning. As tradi-
tional motion planning approaches grapple with the rising 
complexities of working environments in smart manufac-
turing, the development for alternative solutions becomes 
imperative. We introduce the BRMPNet, a novel archi-
tecture that employs imitation-based learning technique 
to achieve highly efficient real-time motion planning. The 

integration of refined PointNet++ enables fully utilizing 
point cloud information from depth sensors. The design of 
bi-directional recurrent neural networks aids in capturing 
the dynamic temporal dependencies of planning results. Fur-
thermore, BRMPNet’s compatibility with traditional sam-
pling-based algorithms not only amplifies its versatility but 
also fortifies its reliability. Experiment results consistently 
underscore BRMPNet’s superior capabilities against other 
state-of-the-art algorithms across various configurations of 
generic robotic platforms, both in solution quality and com-
putational efficiency. This offers the compelling evidence 
of the transformative potential of BRMPNet in addressing 
the multifaceted challenges of robotic applications in smart 
manufacturing.

While our work establishes BRMPNet as a robust frame-
work for robot motion planning, there are still several 
promising directions for future research. One key direction 
involves investigating methods for swiftly accommodat-
ing fine-tuned pre-trained BRMPNet models to new appli-
cations. This could further reduce the training time and 
computational load, streamlining the deployment process. 
Another possible direction is the integration of human-robot 
interaction within the BRMPNet framework. As smart man-
ufacturing increasingly necessitates seamless collaboration 
between human and robots, improving BRMPNet for safe 
and effective human-robot collaborative working space will 
become critical. Collectively, these future research direc-
tions will bolster the capabilities of BRMPNet and align it 
more closely with the emerging requirements of Industry 
4.0.
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Fig. 11  Planning time of BRMPNet for 20 tests in Experiment 4
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