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Multi-agent path planning (MAPP) is crucial for large-scale mobile
robot systems to work safely and properly in complex environments.
Existing learning-based decentralized MAPP approaches allow
each agent to gather information from nearby agents, leading to
more efficient coordination among agents. However, these
approaches often struggle with reasonably handling local informa-
tion inputs for each agent, and their communication mechanisms
between agents need to be further refined to treat those congested
traffic scenarios effectively. To address these issues, we propose
a decentralized MAPP approach based on imitation learning and
selective communication. Our approach adopts an imitation learn-
ing architecture that enables agents to rapidly learn complex
behaviors from expert planning experience. The information
extraction layer is integrated with convolutional neural network
(CNN) and gated recurrent unit (GRU) for capturing features

from local field-of-view observations. A two-stage selective commu-
nication process based on graph attention neural network (GAT) is
developed to reduce the required neighbor agents in inter-agent
communication. In addition, an adaptive strategy switching mech-
anism utilizing local expert-planned paths is designed to support
robots to escape from local traps. The effectiveness of our proposed
approach is evaluated in simulated grid environments with varying
map sizes, obstacle densities, and numbers of agents. Experimental
results show that our approach outperforms other decentralized
path planning methods in success rate while maintaining the
lowest flowtime variation and communication frequency. Further-
more, our approach is computationally efficient and scalable,
making it suitable for real-world applications.
[DOI: 10.1115/1.4065167]
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1 Introduction
In the era of Industry 4.0, mobile robots are playing a significant

role in revolutionizing diverse facets of contemporary production
paradigms [1–3]. Consequently, the development of efficient
multi-agent path planning (MAPP) algorithm is of prominent imp-
ortance. Traditional MAPP typically adopts a centralized paradigm,
in which a central planning unit generates paths for all agents. Cen-
tralized approaches can offer optimality and completeness in their
solutions, ensuring that the optimal path is found for each agent if
it exists [4,5]. However, the scalability of these approaches is insuf-
ficient as the number of robots increases, making them less suitable
for complex environments with large-scale robot systems [6].
Recent studies are exploring decentralized MAPP in which each

agent computes its ownpath based on local information [7,8].Decen-
tralized paradigm significantly alleviates the computational burden
of the central planning unit, making it more scalable for large-scale
systems. Nevertheless, in practice, decentralized approaches often
achieve limited successes in complex environments. In addition,
they may fail to consistently produce optimal solutions, as they
focus on generating paths for individual agents based on local infor-
mation rather than considering the overall system performance.
Moreover, decentralized approaches can potentially cause excessive
and unnecessary communication among agents, due to the need of
frequent exchanging of local information during path planning.
Therefore, we propose a novel decentralized MAPP approach

based on imitation learning and selective communication (DILSC)
to enhance the practicality of decentralized path planning. The
effectiveness of the proposed approach is validated in both simula-
tions and physical experiments. The primary contribution of this
study includes:

− A new information extraction layer for imitation learning
(IL)-based decentralized MAPP is designed. This layer inno-
vatively combines convolutional neural network (CNN) and
gated recurrent unit (GRU) to extract critical feature from
local observation.

− A two-stage selective communication process for decentral-
ized MAPP is proposed. This process enables agents to inter-
act efficiently with selected influential neighbors via graph
attention network (GAT).

− A strategy switching mechanism to assist agents navigating
out of local traps is developed. This mechanism adaptively
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utilizes local expert planning method or learning-based algo-
rithm to generate paths.

2 Related Work
MAPP methods can be classified into centralized and decentral-

ized ones. In centralized methods, a central planning unit calculates
coordinated paths for all agents. Since all agents share a common
state space, centralized methods can provide optimal and complete
path plans, but their computational demand is high when the
working environment is complex. For example, conflict-based
search (CBS) and its variant enhanced CBS (ECBS) [4,9] can
find optimal or suboptimal path solutions, where the high-level
central unit searches for a set of collision constraints and imposes
these constraints on individual agents. M* and its variant [5]
extend the standard A* algorithm to generate paths for each agent
and apply a sub-dimensional expansion strategy to dynamically
increase the dimensionality of the search space in regions where
collisions occur. Although some progress has been made in reduc-
ing the computational load, these centralized methods still rely on a
central unit to compute all paths, and thus struggle to handle envi-
ronments with numerous potential path conflicts.
In decentralized MAPP methods, agents make independent deci-

sions based on local environment information [10]. In recent years,
learning-based decentralized MAPP algorithms have received
increasing interest. Researchers explored to use imitation learning
or reinforcement learning (RL) to train agents tomove independently
according to locally sensed information [11,12]. For example,
PRIMAL (pathfinding via reinforcement and imitation multi-agent
learning) [7] is a classical framework that demonstrates the feasibility
of learning-based decentralized MAPP. Graph neural network
(GNN)-based models are gaining prominence for their adaptability
of managing complex interactions in multi-agent systems. Li et al.
[8,13] explore the use of GNN for explicit communication in
complex multi-agent coordination, utilizing imitation learning to
approximate centralized expert algorithms. Kool et al. [14] focus
on attention mechanism for routing optimization, while Paul et al.
[15] integrate capsule network with multi-head attention for task
allocation. Additional research advancements include Wang et al.’s
[16] heterogeneous graph attention network and Paul et al.’s [17]
graph reinforcement learning method with higher order topological
abstraction.Distributed, heuristic and communication [18] combines
graph neural network with deep Q-learning to improve policy
performance in complex-obstacle environments. These studies
underscore the importance of attention mechanism, communication
efficiency, and dynamic adaptability in complex robotic environ-
ments, offering crucial insights for developing more efficient
MAPP methodology. However, current learning-based MAPP algo-
rithms have not adequately addressed the following important issues:

− Decentralized MAPP algorithms leverage feature extraction
to obtain critical characteristics of the local environment,
thereby assisting in individual path planning. However, the
identification of the most crucial features for decentralized
path planning and the design of proper feature extraction
network remain elusive and demand further exploration.

− In decentralized MAPP, frequent communications among
agents lead to high communication and computational
burden. Researchers have proposed several methods to alle-
viate this issue, such as attention mechanism [13], temporal
message control [19], individually inferred communication
(I2C) [20], decision causal communication [21], learning
structured communication [22], etc. While some of these
methods can adjust information passing among agents,
they may struggle to effectively deal with redundant or repet-
itive data that do not offer new insights into the path planning
process. It is still not fully clear how the communication
between neighbors can be further reduced according to the
local feature information.

− Although existing learning-based MAPP algorithms have
achieved good performance in many scenarios, it is still

challenging for them to handle local traps effectively [23],
in which an agent oscillates around a few positions as its
outward passages are blocked by obstacles or other agents.

In this study, we expect to address the above issues by introduc-
ing a decentralized MAPP approach based on imitation learning
and selective communication.

2.1 Problem Formulation. Our research focus is placed on
2D grid maps, characterized by four-neighbor connectivity. Each
entity (i.e., an agent or an obstacle) occupies a single grid cell.
The map is represented by an lw × lh ∈ Rlw×lh graph matrix. For
each map, we choose the starting and corresponding goal vertices
for M agents from the available free positions.
We consider a partially observable discrete grid world, where

agents can only observe the state of the world in a limited
field-of-view (FOV) rw × rh ∈ Rrw×rh centered around themselves.
The decision-making process of agents is synchronous, operating
within a discretized time framework. At each time-step, agent can
either move to an adjacent vertex or wait at its current vertex, result-
ing in an action space with a size of five (i.e., move upward, down-
ward, left, right, or remain stationary). Each agent can communicate
or share information with only adjacent agents within its FOV.
Compared with the time for the agent’s movement, the communica-
tion between the neighboring agents happens instantly with negligi-
ble delay, and is not blocked by any obstacles. Both the time cost in
move and wait actions will be counted unless the agent waits at its
goal vertex without new assigned tasks. A tuple i, j, v, t

〈 〉
is used to

describe a vertex conflict, where agents i and j are at the same vertex
v at time-step t. A tuple i, j, u, v, t

〈 〉
represents an edge conflict,

where agents i and j traverse the same edge (u, v) in opposite direc-
tions between time-steps t and t + 1. The overall objective is to find
a set of conflict-free paths which move all agents from their start
vertices to goal vertices while minimizing the maximal completion
time of these paths. The objective function for this scenario can be
formulated as Eq. (1):

min max
i∈{1,...,M}

(Ti) (1)

where Ti represents the completion time for agent i to reach its goal
vertex.

3 Methods
3.1 The Overall Structure of the Proposed Approach.

Figure 1 shows the overall workflow of our approach, which
adopts an imitation learning architecture consisting of three
layers: information extraction, information aggregation, and
action output. The observation of agent i within its FOV is first pro-
cessed through the local observation processing to get oti . The agent
i′s local observation is updated at each time-step. The local obser-
vation oti is first encoded into õti ∈ RH by the CNN module. Then

by adopting the last time-step aggregation outcome h̃
t−1
i ∈ RH as

the hidden state and õti , the GRU module generates ôti ∈ RH . Sub-
sequently, ôti is passed into the information aggregation layer,
which aggregates information through the two-stage selective com-
munication process and graph attention network to obtain h̃

t
i ∈ RH .

Finally, h̃
t
i is directed to the action output layer to generate the

action output ati . Additionally, in the application inference stage,
we design a strategy switching mechanism that adaptively switches
between the expert A* algorithm and the learning-based algorithm
to help agents escape from local traps. In the following subsections,
the detailed explanations of our approach are provided.

3.2 Local Observation Process. We denote the observation of
agent i within its FOV through the local observation process as oti .
As illustrated in Fig. 2, the available information in the finite FOV
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for path planning is divided into four distinct channels to aid learn-
ing. Specifically, channel 1 contains the obstacles in the agent i’s
FOV. Channel 2 represents the position of goal vi,g or its projection
into the boundary of FOV pti,g. Channel 3 displays the expert path e

t
i

from the location of agent i to pti,g calculated by A* algorithm.
Channel 4 shows the location of agent i and the relative positions
of other neighboring agents j ∈ Ni with respect to agent i. By sep-
arating the information into different channels, agents can under-
stand and process their local observations with higher efficiency.

3.3 Information Extraction Layer. Our information extrac-
tion layer leverages the robust feature extraction capabilities of
CNN [24] and the temporal sequence capturing ability of GRU
[25]. As depicted in Fig. 3, the input observation oti is processed
by a CNN operating internally on agent i. Within this CNN archi-
tecture, each of the three modules comprises a sequence of opera-
tions: Conv2D, followed by BatchNorm2D, ReLU activation, and
MaxPooling. CNN generates a vector õti ∈ RH , where H refers to
the dimensionality of the output vector (õti = CNN(oti)). Then õti
serves as the input state for the GRU, while ĥt−1i is employed as

its corresponding hidden state. Crucially, ĥt−1i represents the aggre-
gated feature extracted from the information aggregation layer at the
preceding time-step. For the GRU, the reset gate Rt ∈ RH and
update gate Zt ∈ RH are computed as follows:

Rt = σ(õtiWor + ĥt−1i Whr + br) (2)

Zt = σ(õtiWoz + ĥt−1i Whz + bz) (3)

where Wor, Woz ∈ RH×H and Whr , Whz ∈ RH×H are weight parame-
ters and br , bz ∈ RH are bias parameters. Next, we integrate the
reset gate Rt with the updating mechanism, leading to the following
candidate hidden state �h

t
i at time-step t:

�h
t
i = tanh (õtiWoh + (Rt ⊙ ĥt−1i )Whh + bh) (4)

where Woh ∈ RH×H and Whh ∈ RH×H are weight parameters, bz ∈
RH is the bias, and the symbol ⊙ is the Hadamard product operator.
Also, we use tanh activation function.

Fig. 1 The overall workflow of the proposed decentralized MAPP approach

Fig. 2 The available information in the finite FOV for path planning (i.e., four channels)
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Finally, we incorporate the effect of the updating gate Zt and get
the final update equation for the GRU:

ôti = GRU(oti , ĥ
t−1
i ) = Zt ⊙ ĥt−1i + (1 − Zt)⊙ �h

t
i (5)

The generated ôti will undergo further processing through infor-
mation aggregation layer as detailed in the subsequent section.

3.4 Information Aggregation Layer. The information
aggregation layer comprises two parts: the two-stage selective
communication process and the implementation of a graph attention
network for feature aggregation with the selected agents.

3.4.1 The Two-Stage Selective Communication Process.
Figure 4 illustrates the two-stage selective communication
process. The first stage is quadrant selection based on local obser-
vation information. Let Qi = {Q1, Q2, Q3, Q4} be the four quad-
rants of agent i’s observation. We can then determine a smaller
quadrant setQ′

i, such asQ1 andQ4 illustrated in Fig. 4, that contains
pti,g and e

t
i , in which p

t
i,g is the projection of the agent’s goal position

into the boundary of the agent’s FOV and eti is the local expert-
planned path. Agents situated in Q′

i are assumed to have additional
communication value, thereby the set of neighboring agents with
necessity of communication for agent i can be narrowed down.
Here we use Ni to represent the set of neighboring agents in the
local field view of the agent i, and N ′

i (agents j, k, and l in
Fig. 4) as the set of agents located in Q′

i.
The second stage is the request-reply mechanism-based selec-

tion. The request-reply mechanism depends on the information

extraction layer and the action output layer to get temporary
actions. Agent i gets its local observation oti from the environment
and constructs another output oti,−j (−j means without agent j,
j ∈ N ′

i) by setting the information at agent j’s position to some
special value, such as zero.
Each oti,−j is passed through the information extraction layer to

get an embedding ôti,−j. By skipping the information aggregation
layer, ôti and ôii,−j are directly fed into the action output layer to
compute action-values. Actions ãti and ã

t
i,−j are inferred by applying

argmax function over action-values. If these two actions match with
each other, we infer that the existence of agent j will not affect
agent i’s policy, then agent i will not request communication with
agent j. Equation (5) shows the selective communication function
for agent i:

ρij =
0 if ãti = ãti,−j, i ∈ M, j ∈ N ′

i
1 otherwise

{
(6)

Note that temporary actions ãti and ãti,−j are only used to deter-
mine the communication scope, not the final actions to be
executed. Then the communication scope of agent i can be deter-
mined by the set of agents Si (j and k agents in Fig. 4) as shown
in Eq. (6):

Si = { j∣ρij = 1, j ∈ N ′
i} (7)

3.4.2 The Graph Attention Network. After getting the neigh-
boring agents with necessity of communication through the selec-
tive communication, we use GAT [26] to aggregate the feature

Fig. 3 The CNN module and GRU module for information extraction

Fig. 4 An illustration of the two-stage selective communication process

084501-4 / Vol. 24, AUGUST 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/doi/10.1115/1.4065167/7328652/jcise_24_8_084501.pdf by Shanghai Jiaotong U
niversity user on 17 April 2024



information of these agents. In the GAT process, we first apply the
linear transformation to the feature vector of each agent ôti (i ∈ M),
using a shared weight matrix W ∈ RH′×H , where H and H ′ are the
input and output feature dimensions, respectively.

hti =W(ôti)
T (8)

The attention mechanism computes the importance of each
selected neighboring agent’s feature to the current agent i. The
attention function is denoted by attention:RH′

× RH′ � R, and
the attention coefficients etij are computed as

etij = attention(hti , h
t
j) = LeakyReLU(βT [hti ⊕ htj]) (9)

where β ∈ R2H′
is a trainable weight vector, .T represents matrix

transposition, and ⊕ denotes the concatenation of two vectors.
The attention coefficients are then normalized using the softmax
function:

αtij = softmax(etij) =
exp (etij)∑

k∈S(i) exp (e
t
ik)

(10)

Now, we can update the features of each agent by aggregating the
information from its neighbors, weighted by the normalized atten-
tion coefficients:

h̃
t
i = σ

∑
j∈S(i)

αtijh
t
j

( )
(11)

where σ:R � R denotes a sigmoid activation function. To improve
the model’s capacity and stability, we use multi-head attention [27],
where we learn K independent attention mechanisms:

h̃
t(k)
i = σ

∑
j∈S(i)

αt(k)ij Wk(ôti)
T

( )
(12)

The final output features can be obtained by concatenating the
output of all attention heads:

ĥti = f
(
⊕K

k=1h̃
t(k)
i

)
(13)

where⊕ represents concatenation and f is one neural network layer.
Note that, in this setting, the final returned output, ĥti , will consist of
H features for each node.

3.5 Action Output Layer. The final movement decision for
agent i at time-step t is determined by the action output layer. In
this layer, we employ a multi-layer perceptron (MLP) as the
decision-making component, i.e., ati =MLP(ĥti). A softmax function
is applied after the MLP layer to convert the action vector into a
probability distribution vector for five discrete actions. The argmax
function is used to choose the action with the highest probability,
i.e., the final output action. The final generated path for the agent i
is a set of sequential actions {a1i , . . . , a

t
i}, which represents the

agent i’s movement from the starting position to the goal position.

3.6 Training Procedure. We generate random cases for each
grid map, consisting of pairs of starting and goal vertices for all
agents. Duplicate or invalid cases are eliminated, and the remaining
cases are stored in a pool of training sets, which are randomized
during training. For each case, we first use the expert algorithm
ECBS to compute the solution. ECBS is guaranteed to find solu-
tions whose costs are no more than a user-specified factor ωE

away from optimal. The methodology of our imitation learning
approach specifically utilizes behavior cloning, a straightforward
yet effective strategy where the agent’s policy is directly learned
by mimicking the expert’s actions in similar states. At the beginning
of training, we have the expert actions {Et} for all agents and the
corresponding local observation {Ot}, collected in the training set

T = {({Et}, {Ot})}. Then, we use the cross-entropy loss function
L to train the network function approximator F(Ot ; θ):

L = −
1
M

∑Ti
t=1

∑M
i=1

Et
i logF(o

t
i; θ) (14)

where M is the count of agents, Ti represents the completion
time-step for agent i, and θ denotes the parameter of the function
approximator F.
Moreover, to refine our training dataset and improve the perfor-

mance of the learned policy, we employ the DAgger (dataset aggre-
gation) technique [28], which iteratively updates the training set by
aggregating data from both the expert’s policy and the learned
policy. For every κ epochs, we select nrandom cases from the training
set and check these cases. For the failed cases, we use the expert
algorithm ECBS to continue planning and obtain successful solu-
tions. The successful cases are then added back to the training set,
which augments its diversity with an expanded range of examples
and enhances its comprehensiveness by incorporating a wider spec-
trum of scenarios that the model might face. Additionally, for the
successfully planned cases in nrandom cases, we check whether the
planned paths deviate significantly from the expert-planed paths.
If the deviation ratio exceeds a threshold value rd , these cases will
be added back to the training set for re-training. This treatment
can support the planned paths from our approach to approximate
the expert-planned paths as much as possible, thereby increasing
decision-making quality and mitigating future path deviations.

3.7 The Strategy Switching Mechanism. To mitigate local
trap issue and increase the success rate, we develop a strategy
switching mechanism. As depicted in Fig. 5, the mechanism oper-
ates as follows:

(1) Detection of local traps: We first design a local trap detector
that monitors the states of agents and identifies the trapping
situations. We create a visit counter matrix C and each
element in this matrix corresponds to a grid cell and stores
the number of times that the agent has visited to that cell.
At each step t, the current grid cell’s visit count in the
matrix will be checked. If the visit count exceeds the thresh-
old δ, it is considered as the agent i falling into local trap.

(2) Switching to expert guidance: Once local trap is detected, the
mechanism expands agent i’s outer boundary of FOV by
adding an additional grid-based square layer of blank cells.
We get the new goal projection p̃ti,g into the new outer
boundary. Then the path planning strategy switches to
expert-planed path guidance for the agent i from current loca-
tion to p̃ti,g (see the purple cells in Fig. 5) generated from the
A* algorithm.

(3) Switching back to learning-based algorithm: If the agent has
successfully completed the predetermined number of steps η
or reaches the boundary of its FOV, the path planning strat-
egy reverts to the learning-based path planning algorithm
(see the green cells in Fig. 5).

4 Experiment Setting and Results
4.1 Model Parameters and Environment Settings. In the

information extraction layer, we use a convolutional kernel size
of 3, with a stride of 1 and no padding for the CNN module. The
GRU module consists of one layer. Prior to the aggregation layer,
we set the number of shared features (H) to 64. In the information
aggregation layer, a graph attention network of one layer is
employed, using a K value of 4 for the multi-head attention mech-
anism. During the network training phase, we perform a check
every κ = 4 epochs by randomly selecting nrandom = 200 cases
from the training set, identifying any failed cases or those deviating
significantly (rd = 1.2) from expert-planned paths. The Adam opti-
mizer, featuring a momentum of 0.9, is utilized. A dynamic learning
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rate is used with a starting value of 10−4, which is decreased by 50%
at 200 epochs and 400 epochs, respectively. For the inference
phase, we set the visit count threshold (δ) at 4 and predetermine
the number of steps (η) to rw. We test our approach on a computer
with Intel i7-10300 CPU, Nvidia RTX3090 GPU and 32 GB RAM.
According to the environment settings in previous research

[8,13], we initialize 500 different maps of size lw × lh = 20 × 20,
with 70% of them being used for training, 15% for validation,
and 15% for testing. Furthermore, each map contains 40 randomly
placed obstacles. It is also worth mentioning that each map gener-
ates 60 cases, with each case consisting ofM = 10 agents. The opti-
mality bound factor ωE of ECBS is set to 1.1. The local FOV is set
as rw × rh = 7 × 7. We generate 1000 test cases based on each pre-
defined map as shown in Table 1. The robot density of predefined
map is calculated by ρr =M/(lw∗lh). Figure 6 shows three examples
of the simulated grid maps.

4.2 Performance EvaluationMetrics. In the experiments, we
evaluate the performance of the proposed approach with three
metrics, namely, success rate, flowtime variation, and communica-
tion frequency.

(1) Success rate. It measures the ability of the algorithm to com-
plete MAPP within a given time-step. It is defined as
sr = nsuccess/ntotal, the proportion of successful cases nsuccess
over the number of total tested cases ntotal.

(2) Flowtime variation. It quantifies the deviation of the planning
completion time between learning-based methods and expert
algorithms. It is described as fv = (Lp − Ep)/Ep. Here, Ep rep-
resents the time taken by expert algorithms for all agents to
reach their respective goals, while Lp denotes the time
taken by learning-based algorithms for the same task. A
lower value of fv indicates greater resemblance to expert
algorithms and superior performance.

(3) Communication frequency cf . It characterizes the frequency
of feature interaction in the information aggregation layer,
reflecting the cost associated with communication. The
lower cf observed under the same success rate and flowtime
variation indicates higher communication efficiency and
better performance of the algorithm.

4.3 Compared Methods. Our study evaluates the DILSC
against various ablation models:

(1) DILSC-G: This variant omits the GRU module, testing the
impact of recurrent processing on performance.

(2) DILSC-S: This version excludes selective communication,
with the central agent aggregating features from all agents
within its FOV instead.

For a broader comparison, DILSC is also benchmarked against
leading IL-based MAPP methods like GNN [8] and MAGAT
(message-aware graph attention network) [13]. Both methods use
convolutional neural network for feature extraction: GNN integrates
features via graph neural network, while MAGAT leverages multi-
head attention network for aggregation. To ensure a fair compari-
son, we set the planning time limit to three times that of the
expert algorithm, and consider a case as failed if it cannot find
the solution within the time limit. RL-based methods are not
included in this comparison due to their inherent differences in
learning paradigms and evaluation criteria as well as the complex-
ities in ensuring fair comparisons between them and IL-based
methods.

4.4 Experimental Results

4.4.1 Success Rate and Flowtime Variation. Figure 7(a) shows
that our proposed approach DILSC outperforms other methods in
success rate. It has a consistently high success rate of approximately

Table 1 Predefined two categories of test case maps

Maps in category 1
(same robot density)

Maps in category 2
(varying robot density)

lw × lh M lw × lh M

20 × 20 10 50 × 50 10
28 × 28 20 50 × 50 20
35 × 35 30 50 × 50 30
40 × 40 40 50 × 50 40
45 × 45 50 50 × 50 50
65 × 65 100 50 × 50 60

Note: lw × lh is the size of a map, andM is the number of robots on the map.
In each map, the obstacle density is set to 0.1.

Fig. 5 An illustration of the strategy switching mechanism
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97% in the maps with same robot density, which is the highest
among all methods. Moreover, DILSC also shows the best perfor-
mance in flowtime variation, with values consistently below
0.061 as shown in Fig. 7(c). Even in the map with varying robot
density, DILSC achieves a success rate of over 96% (see
Fig. 7(b)), with a flowtime variation maintained around 0.1 (see
Fig. 7(d )), which is the best performance among all methods.
These results markedly illustrate the distinct advantages that
DILSC holds over other imitative learning-based algorithms, such
as GNN and MAGAT, specifically in terms of success rate.
Drawing insights from the flowtime variation results, it is note-
worthy that our decentralized approach parallels the performance
of the centralized expert algorithm closely, affirming the efficacy
of our decentralized approach.
Furthermore, a comparison between DILSC and DILSC-G shows

that the inclusion of GRU module in DILSC results in a significant
improvement in the success rate (see Figs. 7(a) and 7(b)), suggest-
ing that incorporating the ability to capture temporal dependencies

in MAPP can contribute to higher success rate. A comparison
between DILSC and DILSC-S reveals that focusing on specific
valuable neighboring agents rather than all agents in the FOV for
feature aggregation can achieve better results, particularly in maps
with high density of robots.

4.4.2 Communication Frequency. Table 2 shows the average
communication frequency of DILSC and DILSC-S. Remarkably,
the proposed DILSC approach can reduce communication fre-
quency by an average of 70% compared to DILSC-S in maps
with same robot density 0.025. A closer look at maps sized 50 ×
50 with 100 robots (belonging to category 2) reveals that even
under the most extreme robot density (0.04) conditions, the effi-
ciency of the DILSC approach still holds. It continues to reduce
communication frequency, this time by approximately 58%. The
results in Table 2 are consistent with the results in Fig. 7, implying
that an increase in the frequency of communication interactions
with surrounding agents does not necessarily enhance the

Fig. 6 Three examples of the simulated grid maps: (a) 20 × 20map size, 10 agents; (b) 50 × 50 map size, 60 agents; and
(c) 65 × 65 map size, 100 agents

Fig. 7 The success rate and flowtime variation of different methods: (a) and (c) show the results in maps with same robot
density, while (b) and (d ) show the results in maps with varying robot density
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performance of path planning. This result accentuates the necessity
of active selection of appropriate agents for communication in
decentralized MAPP.

4.4.3 Effect of Strategy Switching Mechanism. To examine the
effect of the strategy switching mechanism, we further introduce a
new model called DILSC-M lacking this mechanism. We compare
the performance of DILSC and DILSC-M within two specific
maps: 65 × 65 and 50 × 50 map both with 100 agents. Figure 8 pro-
vides a detailed histogram of the distribution of cases alongside the
number of agents that successfully reach their destinations.
Remarkably, the DILSC-M algorithm demonstrates that even in
those unsuccessful cases, over 97% of the agents can arrive at
their goals. A few robots encounter local traps, hindering their
movement toward their goals. By comparing the distribution repre-
sented in the histograms of DILSC and DILSC-M, we find that the
strategy switching is instrumental in helping trapped robots escape
from predicaments, thereby ensuring their successful arrival at
intended destinations.

4.4.4 Large-Scale Map Test. Compared to centralized MAPP
methods, a major advantage of decentralized MAPP is its adaptivity
to large-scale maps. To validate this advantage, we compare the per-
formance of the proposed DILSC approach with centralized expert
algorithm ECBS in large-scale map scenarios. The obstacle density
of large-scale map is set to 0.1. Additionally, the optimality bound
(denoted as ωE) of ECBS is set to 3. Ten distinct cases of the
large-scale map are generated. This test is a significant challenge
since DILSC has been primarily trained on small 20 × 20 maps
with a mere count of 10 agents.
Table 3 shows the results of large-scale map test. ECBS demon-

strates difficulty when performs path planning for a significantly
larger number of robots, 500 in this test. It requires averagely
6532 s in the computation, with a standard deviation of 1598 s, indi-
cating a considerable performance variance across different cases.
In contrast, DILSC is significantly more efficient, completing the
planning in 601 s, or around one-tenth of the time consumed by
ECBS. Moreover, DILSC demonstrates a smaller standard devia-
tion of 114 s, implying a more reliable and consistent performance
across varying test cases. Even though its initial training is based on

small 20 × 20 maps with only 10 agents, it has demonstrated the
capability to handle large-scale and complex environments. This
suggests our approach’s promising adaptability and potential appli-
cability in handling even larger maps or more robots.

4.4.5 Real-World Validation Experiment. To demonstrate the
feasibility of deploying our approach in a real-world environment,
we test with three physical mobile robots. As depicted in Fig. 9,
each robot is equipped with multiple sensors, including LiDAR
(light detection and ranging), an inertial measurement unit, and a
wheel tachometer. These sensors facilitate sensing environmental
and robot’s status information, providing each robot with self-
localization ability. Communication between robots occurs via
Wi-Fi, and the surrounding information of each robot is captured
using LiDAR. The robot’s control board transforms this information
as the input of the proposed DILSC approach, and the action com-
mands are issued to the robots’ control board, driving their
movements.
Our real-world experiment takes place in an 8 × 8 grid map, pop-

ulated with eight obstacles and three mobile robots. We establish
the robots’ start positions, goals, and the obstacles’ locations ran-
domly for the experimental setup. Every robot employs our pro-
posed approach to plan their subsequent actions. Notably, this
computation is executed onboard using a Jetson Nano B01 on
each robot, with each planning step completed in about 0.137 s.
Figure 10 provides the snapshots of the robots’ path planning in
the real-world experiment. It starts with an image of the robots’
initial status, followed by images showing the robots’ movement
through the task. Figure 10(e) displays the robots upon reaching
their goals, with their individual paths delineated in different colors.

Fig. 8 Histogram of percentage of cases distributed over the number of successful agents: (a)
shows the results in map size 65 × 65 with 100 robots, while (b) shows the results in map size 50 ×
50 with 100 robots

Table 2 Average communication frequency (cf ) of DILSC and DILSC-S

Maps in category 1 (same robot density) Maps in category 2 (varying robot density)

lw × lh(M) cf of DILSC cf of DILSC-S lw × lh(M) cf of DILSC cf of DILSC-S

20 × 20(10) 19.1 62.6 50 × 50(20) 51.3 201.7
28 × 28(20) 56.6 173.4 50 × 50(30) 89.8 321.9
35 × 35(30) 101.4 312.3 50 × 50(40) 141.3 482.1
40 × 40(40) 152.8 467.2 50 × 50(50) 215.9 674.3
45 × 45(50) 239.3 598.9 50 × 50(60) 347.5 887.6
65 × 65(100) 722.9 1815.7 50 × 50(100) 651.2 1549.6

Table 3 Average time cost of ECBS and DILSC in the large-scale
map test

lw × lh(M) ECBS time cost (std.) DILSC time cost (std.)

200 × 200(500) 6532 (1598) 601 (114)

Note: The unit used for time cost is second.
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5 Conclusion
This study presents a decentralized MAPP approach based on

imitation learning and selective communication, aiming to
enhance the performance of large-scale mobile robot systems in
complex environments. Our extensive simulations in diverse grid
environments have shown that our approach consistently outper-
forms other IL-based methods. It not only achieves an impressive
success rate of approximately 97% but also maintains the lowest
flowtime variation, consistently below 0.061. Additionally, our
approach markedly reduces communication frequency, maintaining
a substantial 58% reduction even in environments with extreme
robot density. This consistent performance underscores the
balance our method strikes between optimality and efficiency, dem-
onstrating its practicality and scalability for real-world applications.
Note that, the performance of our approach, rooted in imitation

learning, is inherently linked to the expert algorithms it emulates.
The lack of theoretical guarantees poses challenges in achieving a
100% success rate, and the dependence on training data quality
and diversity limits its generalization in rare or unrepresented sce-
narios. Future research can explore the integration of data-driven
learning with rule-based systems to provide stronger theoretical
guarantees and diversified neural network architectures for more
efficient handling of multi-agent interactions and environmental
dynamics.
Moreover, the capability to model MAPP problems as Markov

decision processes positions RL as an effective alternative to
MAPP problems. In RL, an agent can learn to find the path by opti-
mizing its movement actions based on the feedback received in the
form of rewards when interacting with the environment. Thus,
another future research direction is to investigate the potential of
RL in MAPP to relax the dependency of model training on expert-
derived knowledge with enhanced algorithmic resilience and flexi-
bility. Central to this effort will be the thoughtful crafting of the

reward function to ensure that the resulting behaviors of agents
are safe and appropriate. Integrating IL and RL also offers a com-
pelling research pathway, which may lead to a model that not
only learns from expert experiences but also can adapt to
complex, previously unseen scenarios. Designing an appropriate
mechanism for their effective and efficient integration poses a sig-
nificant challenge for future research.
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Nomenclature
H = number of shared features
K = number of heads in the multi-head attention mechanism
M = number of agents
T = completion time for agent to reach its goal vertex
cf = communication frequency
fv = flowtime variation

Fig. 9 Experimental setup and system structure of the mobile robots in a real-world environment

Fig. 10 Snapshots of the robot’s path planning in the real-world experiment
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lw = width of the map
lh = height of the map

nrandom = number of random cases selected from the training set
for rechecking

nsuccess = number of successful cases
ntotal = total number of tested cases
rw = width of local field-of-view
rh = height of local field-of-view
rd = threshold value for deviation ratio
sr = success rate
Ep = time taken by expert algorithms for all agents to reach

their respective goals
Lp = time taken by learning-based algorithms for all agents to

reach their respective goals
δ = visit count threshold
η = predetermined steps an agent takes under expert

guidance
κ = epoch interval at which random cases are selected from

the training set
ρr = robot density on a predefined map
ωE = optimality bound factor for enhanced conflict-based

search
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