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ABSTRACT 
Efficient path planning methods for robot arms are crucial 

to ensure the quality and safety of their completing various tasks. 

Compared to traditional manual instruction, Reinforcement 

Learning (RL) based path planning methods show better 

adaptability for complex working scenarios. However, the 

training of RL is usually time-consuming with limited success 

rate. To tackle this problem, we propose an adaptive path 

planning approach for robot arm based on Inverse Kinematics 

(IK) and Deep Reinforcement Learning (DRL) in a pick-and-

place context. A judgement mechanism is developed to 

adaptively select IK or RL based method according to the results 

of early-stage collision detection. We separate the pick and place 

task into three sequential curriculums (approaching, grabbing 

and placing) with modified reward functions to speed up the 

training process and achieve a higher success rate. The proposed 

approach is validated with a physical robot arm supported by a 

high-fidelity digital twin model. The experiment results show that 

our proposed approach outperforms traditional RL based 

method with improved training speed and guaranteed 

performance in collision avoidance and path accuracy. This 

work contributes to the practical deployment of RL based path 

planning method for digital twin-enabled robot arm in smart 

manufacturing. 

Keywords: Robot arm, Path planning, Deep reinforcement 

learning, Inverse kinematics, Digital twin 

1. INTRODUCTION
Robot arms are being used widely in smart manufacturing

to replace human workers for those labor-intensive or dangerous 

work, especially in scenarios of assembly, palletizing and 

welding [1]. To ensure the quality and safety of completing these 

tasks, efficient path planning method for robot arms are needed. 
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Traditional manual instruction for robots is easy to use, but 

laborious with poor flexibility. It cannot adapt to complex 

working conditions where robots have to process multi objects 

and avoid multi obstacles agilely [2]. Recent research explored 

to use Reinforcement Learning (RL) and Digital Twin (DT) 

based methods for robot arm path planning to meet the 

requirements of flexible manufacturing and adapt to fast 

switching of producing multi-category products [4-6]. RL is a 

machine learning approach that enables an agent to learn and 

make decisions by interacting with environment. DT is a cutting-

edge technology that creates a virtual replica of a physical system, 

allowing real-time monitoring, analysis, and optimization for 

enhanced operational efficiency and decision-making. With the 

support of Digital Twin, RL based methods allow a robot arm to 

learn to find optimal movement trajectories by iteratively 

interacting with environment in a high-fidelity virtual space. 

These methods show better adaptability for complex working 

scenarios without the need of manual guidance [2, 3]. 

For example, researchers from Shanghai Jiao Tong 

University [4] introduced a human-robot cooperation framework 

based on the Proximal Policy Optimization (PPO) algorithm, a 

flexible RL method that could deal with high-dimensional state 

space problems. This framework is able to replan the collision 

part of robot path by combining the information of real working 

environment during the training process. A peg-in-hole assembly 

task was executed with a success rate of 90% achieved. Li et al. 

[5] developed a digital twin of robot to support the training of 

RL models and previewing the planned paths to avoid collision. 

This work contributes to a more feasible Sim-To-Real 

application framework of industrial robots. They [6] also 

realized a user-friendly control mode of robot arm by leveraging 

DT and Augmented Reality (AR) technologies to set up a multi-

robot collaboration system where RL method was adopted for 
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path planning. This work reduces redundant robot control 

learning costs and achieves an intuitive control mode of robot. 

Compared to manual instruction, these RL based methods for 

robot arm path planning show good adaptability to complex 

scenarios. 

However, the training process for RL models is time-

consuming which can take dozens of hours or days in laboratory, 

let alone in an actual factory [7]. In this regard, accelerating the 

training process without sacrificing model accuracy is crucial for 

RL based methods to be adopted widely in practice. Various 

researchers have made efforts in this area. 

For instance, Zhou et al. [8] proposed an adaptive obstacle 

size adjustment method to simplify the modeling of obstacles in 

robot arm motion planning. Curriculum-based reinforcement 

learning is adopted to accelerate the training process. Wang et al. 

[9] optimized the PPO algorithm by introducing a value function 

update module. A Sim-to-Sim approach is proposed to shorten 

the training time, which materialized robot path planning in an 

unstructured environment. Matulis et al. [7] set ten curriculums 

for Pick-and-Place (P&P) task according to accuracy tolerance 

and achieved well performance in training speed. 

    To further improve the training speed in robot arm path 

planning, recent studies also explore to combine Inverse 

Kinematics (IK) with RL. In the field of robotics, IK can 

calculate the needed rotation angles of a robot arm’s joints to 

ensure the robot reaches a given posture in a fast and accurate 

way. Luipers et al. [10] designed a human-like thinking-

execution framework for the path planning problem of robot 

arms. In this framework, RL is used to plan waypoints first and 

then the IK solver calculates the trajectory between waypoints. 

This method greatly reduced the difficulty of task training, 

accelerated the convergence rate of RL models and achieved a 

98% success rate. Zhang et al. [11] introduced a hierarchical 

reward function including motion accuracy based on robot 

inverse kinematics principle. This method speeds up the 

convergence of PPO algorithm and improves the motion 

accuracy of robot arm. In order to reduce the unnecessary 

exploration in state-action space, Zhong et al. [12] added an IK 

module into the RL algorithm and designed a gain module to 

avoid local optimality. The convergence speed and robustness of 

the RL models for robot motion planning are improved. 

In the above studies, RL has been commonly employed to 

plan the entire motion path for collision avoidance. However, 

this approach may be inefficient for certain scenarios such as 

P&P task. In a P&P task, collisions mainly occur when the robot 

approaches to the target object, and fewer collisions exist in the 

initial starting of the robot arm and the final placement of the 

target object. For those motion segments with low risk of 

collision, inverse kinematics can provide a reasonable path for 

robot arm much more efficiently than reinforcement learning 

based methods. Thus, we propose an adaptive path planning 

approach for robot arm based on inverse kinematics and deep 

reinforcement learning in this paper. Our approach can reduce 

the training difficulty of the RL model, shorten its training time 

and facilitate the rapid deployment of RL-based method in robot 

arm path planning. 

The core idea of our approach is a judgement mechanism 

that can adaptively select IK or RL based method according to 

the results of early-stage collision detection. We first leverage 

the Cyclic Coordinate Decent (CCD) algorithm from inverse 

kinematics to generate an initial robot arm path rapidly without 

considering obstacles. If collisions are detected in this path, the 

PPO algorithm from RL is applied to regenerate the collided part 

of the initial path. Finally, a collision-free path in an environment 

with multiple obstacles can be generated by fusing these two 

paths. In addition, we separate the P&P task into three sequential 

curriculums (approaching, grabbing and placing) with modified 

reward functions in the training of RL model to speed up the 

training process and achieve a higher success rate.  

To validate the proposed approach, we built a high-fidelity 

digital twin model of robot arm to support the training of RL and 

conducted physical experiments with a real robot arm. The 

proposed approach was compared with traditional RL based 

method and IK based method. The experiment results show that 

our approach outperforms these methods with improved training 

speed and guaranteed performance in collision avoidance and 

path accuracy. 

The rest of this paper is structured as follows. Section 2 

introduces the overall structure of the proposed approach, and 

elaborates the key methods involved, including the adaptative 

path planning method, object detection method, inverse 

kinematics method and reinforcement learning method. Section 

3 presents the simulation and physical experiments to examine 

the validity of the proposed approach and discusses the 

experiment results. Section 4 summarizes our work and provides 

potential future research directions. 

 
2. METHODS 
2.1 Overall Workflow of the Proposed Approach 

Figure 1 presents the overall workflow of the proposed path 

planning approach for a digital twin-enabled robot arm. Here DT 

provides a high-fidelity environment for the visual 

representation of physical layer and the offline training of RL 

models. As shown in Fig. 1, the physical layer consists of 

hardware components such as robot arm, robot controller, 

electric gripper, RGB-D cameras and the workspace for the pick-

and-place task. The virtual layer includes the high-fidelity digital 

twin model of the physical components built in Unity3D 

environment, a path planning module, virtual robot controller 

and a user interface. The physical and virtual layers are 

connected through socket communication based on TCP 

protocol, which enables the efficient modeling of real 

environment and transmission of control commands. To create a 

digital twin model with high-fidelity, dynamic properties and 

physical constraints of real robot arm such as joint weights, 

angular friction, angular damping, and joint angle limits are also 

incorporated in virtual space. 

The overall workflow of our approach is as follows. First, 

the object detection module perceives the workspace information 

(i.e., the position and rotation of objects and obstacles) and 

transmits it to virtual layer. Then, the UI controller generates a 

virtual model of the workspace and receives the task commands 
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assigned manually (e.g., the ID of target object). Third, the path 

planning module utilizes the environment and object information 

to generate a proper path using the adaptive path planning based 

on inverse kinematics and deep reinforcement learning. The 

corresponding action sequence is then outputted to the virtual 

robot controller for replaying the robot’s actions. Finally, the 

virtual robot controller passes the action sequence and joint 

angles to the physical robot controller for execution through 

socket communication. The details of the key techniques and 

methods involved in our proposed approach are provided in the 

following sections. 
 

2.2 Object Detection and Location  
Getting precise location information of the working 

environment and manipulating objects is the first step in the path 

planning for a robot arm. In this work, we set up a visual system 

consisting of two RGB-D cameras to detect and locate the 

working objects and obstacles due to the limited field of vision 

of a single camera. These two cameras are fixed at two sides of 

the working area utilizing an eye-to-hand approach. The front 

camera can provide the working environment information such 

as the position and rotation of all objects and obstacles. The rear 

camera is used to measure the position accuracy of the placed 

objects when a pick-and-place task completes. To overcome the 

occlusion problem in multi-object and multi-obstacle detection, 

ArUco markers are used as posture estimation feature. ArUco 

markers are fast to deploy with high accuracy and robustness of 

detection and location [13]. The output information from object 

detection and location is then transmitted to the virtual space for 

the use of visualization and path planning. 
 

2.3 Adaptive Path Planning 
Figure 2 depicts the workflow of the adaptive path planning 

method. After receiving the positions of all targets and obstacles 

in the working space, a virtual environment containing these 

objects (i.e., the digital twin model) is created in real-time. 

Following the pick-and-place command, the Inverse Kinematics 

(IK) Module generates the path sequence for the robot arm with 

corresponding joint angles. Then the virtual robot arm model 

moves according to the generated sequence of joint angles, and 

the collision detection module examines if any collision occurs. 

The collision detection module leverages the collision detection 

mechanism in Unity3D by adding colliders to the robot, gripper, 

manipulating objects, obstacles, and the working environment 

(e.g., table). The collision detection mechanism is based on the 

embedded physics engine in Unity3D, using colliders and rigid 

body components to simulate the shape and motion of objects 

and calculate the collision response. If no collision is detected in 

the generated path from the IK module, this path is considered to 

be safe and corresponding action sequence will be transmitted 

directly to the physical robot for task execution. Otherwise, the 

path interception mechanism intercepts the collided path 

sequence and the Reinforcement Learning (RL) module is 

invoked to re-plan the collided path. The RL path and truncated 

IK path are then fused to form the final feasible path and action 

sequence transmitted to the real robot controller. 

Figure 3 shows an example of adaptive path planning. The 

grey block is the target object for pick-and-place, while the black 

blocks are obstacles. We superimpose the different postures of 

the robot arm in in this figure. 𝑃0 and 𝑃5 are the initial position 

and end position of the robot end effector, respectively. The 

FIGURE 1: THE OVERALL WORKFLOW OF THE PROPOSED APPROACH 
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yellow line 𝑃0𝑃1𝑃2𝑃3𝑃4𝑃5 is the path generated by IK module 

which may contains a collided part 𝑃2𝑃3. To ensure a safe initial 

state for RL based path planning method and reduce the 

difficulty of RL training, a secure path is added into the initial 

and final segments of the intercepted collided path, represented 

by 𝑃1𝑃2 and 𝑃3𝑃4. The information of the first and last points 

(𝑃1  and 𝑃4)  of the truncated collided path, along with the 

target position, are inputted to the RL module. In RL module, we 

employ the PPO algorithm to re-plan the collided path and 

generate a safe path considering the obstacles, as illustrated by 

the red lines 𝑃1𝑃2𝑃6𝑃7𝑃4. Finally, this re-planned path is fused 

with the truncated safe paths (𝑃0𝑃1, 𝑃4𝑃5) from the IK module 

to obtain a complete path sequence 𝑃0𝑃1𝑃2𝑃6𝑃7𝑃4𝑃5, which will 

be transmitted to the physical robot controller.  
 

2.4 CCD-based Inverse Kinematics Algorithm for Path 
Planning 

Inverse Kinematics is widely used in robotics to determine 

the needed rotation angles for each joint of a multi-joint robot 

arm given its initial and target postures. In our proposed 

approach, IK is used to quickly generate a viable path for the 

pick-and-place task in those environments with low risk of 

collisions, and simplify the training task of RL models. Here we 

employ the Cyclic Coordinate Decent (CCD) algorithm [14], 

which is a simple but effective IK method that converges quickly 

and is free from singularities. As shown in Algorithm 1, the CCD 

algorithm is a heuristic search technique that iteratively 

computes the angle between the vector from each joint to the end 

effector 𝒗𝒃𝒕 and the vector from each joint to the target point 

𝒗𝒃𝒑 . The algorithm calculates the rotation angle 𝛼𝑗  starting 

from the end effector and rotates each joint sequentially until the 

end effector eventually reaches the target position after several 

iterations.  

    To execute this iterative rotation, we create a robot bone 

𝑏𝑜𝑛𝑒[𝑗]  that contains the initial position of the robot joints. 

Once the robot bone rotates to the target position after IK 

calculation, the robot joints will also rotate. 

It is worth noting that the CCD algorithm cannot restrict the 

rotation angle of the end joint of the robot, which may result in 

misalignment between the electric gripper and the target object. 

Therefore, we introduce an end joint regulation mechanism to 

the CCD algorithm as shown in Line 12 of Algorithm 1. It can 

keep the gripper and target object in parallel, and enhance the 

success rate of grabbing. 

 

Algorithm 1: CCD-based Inverse Kinematics Algorithm    

Input: Target cube position 𝒑, target cube rotation 𝑟 

Output: Sequence of joint angles 

1： 
Initialize robot bone position and robot joint 

position 

2： for 𝑖 = 1:MaxCcdDepth do 

3：    for 𝑗 = 1:MaxBoneJoint −1 do 

4： 
  Transform boneTcp t and p to  

bone[𝑗].localCoordinate 

FIGURE 2: THE WORKFLOW OF THE ADAPTIVE PATH PLANNING METHOD 

FIGURE 3: AN EXAMPLE OF ADAPTIVE PATH 

PLANNING 
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5： 
      Calculate vector of bone [𝑗]  to boneTcp: 

     𝐯bt ← (𝐭. 𝑥, 0, 𝐭. 𝑧) 

6： 
Calculate vector of bone [𝑗]  to p: 

               𝐯bp ← (𝐩. 𝑥, 0, 𝐩. 𝑧) 

7： 
      Calculate rotation angle for bone[𝑗]:     
              𝛼𝑗 =Vector3.Angle(𝐯bp, 𝐯bt) 

8： 
      Calculate rotation axis for bone[𝑗]:     
              𝐥 =Vector3.Cross(𝐯bp, 𝐯bt). normalized 

9：       Rotate bone[𝑗] by 𝛼𝑗 along 𝐥 

10： end for 

11： end for 

12： 
Calculate rotation angle for bone[6]:     
 𝛼6 = 𝑟 − bone[6].rotation 

13： Rotate bone[6] by 𝛼6 along axis 𝐲 

14： 

15： 

for 𝑘 = 1:MaxJoint do 

    Rotate Joint[𝑘] to bone[𝑘].localRotation 

16： end for 

 
2.5 Reinforcement Learning Based Path Planning 

As mentioned in Sec. 2.3, if collisions are detected in the 

generated path from the IK module, the reinforcement learning 

(RL) model is invoked to re-plan the collided path. The core 

framework of reinforcement learning is a sequential decision-

making problem referred to as Markov Decision Process (MDP) 

[15]. In an MDP, the machine that learns and makes decisions is 

called agent, while the object that interacts with agent is the 

environment. At each time step 𝑡 , the agent observes the 

environment state 𝑆𝑡 ∈ 𝒮  and chooses an action 𝐴𝑡 ∈ 𝒜(𝑠) 

based on the strategy 𝜋(𝑎|𝑠). The agent then receives a reward 

𝑅𝑡+1 ∈ ℛ  and enters a new state   𝑆𝑡+1 . This process forms a 

sequence 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, …  between the MDP and the 

agent. In MDP, the occurring probability of reward 𝑅𝑡  and 

environment state 𝑆𝑡 depends only on the preceding state and 

action, as described in Equation (1): 

 

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟| 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}    (1) 
 

where 𝑝: 𝒮 × ℛ × 𝒮 × 𝒜 → [0,1] is the probability of 𝑅𝑡 and 

𝑆𝑡 occurring at time t. 𝑆𝑡−1 and 𝐴𝑡−1 are the state and action 

at time 𝑡 − 1. The goal of the agent is to maximize the expected 

return 𝐺𝑡: 

 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +··· = ∑ 𝛾𝑖𝑅𝑡+𝑖+1
∞
𝑖=0        (2) 

 

where 𝛾 ∈ [0,1] is a discount factor to help maximize future 

expected return rather than the current reward. In the context of 

robot arm path planning, the agent of robot arm can learn to find 

optimal paths by iteratively interacting with environment to 

achieve maximum reward, i.e., arriving at the target position 

without collision. In the proposed approach, we employ 

Proximal Policy Optimization (PPO) algorithm as the RL 

method. Its basic idea, setting of environment states and actions, 

and the design of curriculum learning and reward functions are 

explained in the following subsections. 

 

2.5.1 Proximal Policy Optimization 
PPO is a deep reinforcement learning (DRL) method based 

on policy gradient [16]. Compared with other DRL method, PPO 

is more stable with high sampling efficiency for continuous 

motion space and high dimensional state space problems. It 

utilizes a new objective function known as the clipped surrogate 

objective, which maximizes the expected return of the new 

policy while keeping the difference between the old and new 

policies small. PPO algorithm avoids issues that may arise from 

overly large or small policy updates, thereby achieving more 

stable performance. The core of the PPO algorithm is the 

maximization of a constrained objective function defined in 

Equations (3) and (4): 

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡)]  (3) 
 

𝑟𝑡(𝜃) =
𝝅𝜽(at|st)

𝝅𝜽old(at|st)
                                  (4) 

 

Where 𝔼 is the expected value over all samples at time 

step 𝑡, 𝜽 denotes the policy parameters, 𝑟𝑡  is the ratio between 

the new and old policies. 𝐴𝑡 represents the advantage function, 

which is the expected difference in returns when taking action 

𝒂𝒕 in state 𝒔𝒕  compared to the old policy, and 𝜀  is a 

hyperparameter that controls the range of the ratio. In this study, 

we trained our robot agent using the PPO algorithm in ML-

Agents, an open-source toolkit that supports the training of 

multiple deep reinforcement learning algorithms within the 

Unity3D environment [17]. 

 

2.5.2 Environment States and Actions 
The state parameters 𝒔𝒕 of the robot arm agent are shown 

as follows: 

 

𝒔𝒕 = {𝐽, 𝑃𝑔, 𝑃𝑡 , 𝑃𝑎 , 𝑂𝑔, 𝑂𝑡 , 𝑋𝑠𝑎𝑓𝑒𝑡𝑦}                       (5) 
 
 𝐽 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6)    Joint angle of robot arm 

𝑃𝑔 = (𝑃𝑔
𝑥 , 𝑃𝑔

𝑦
, 𝑃𝑔

𝑧)           Position of gripper catch center 

𝑃𝑡 = (𝑃𝑡
𝑥 , 𝑃𝑡

𝑦
, 𝑃𝑡

𝑧)           Position of target object center 

𝑃𝑝 = (𝑃𝑝
𝑥 , 𝑃𝑝

𝑦
, 𝑃𝑝

𝑧)           Position of placement area  

𝑂𝑔 = (𝑂𝑔
𝑥, 𝑂𝑔

𝑦
, 𝑂𝑔

𝑧)           Rotation of gripper 

𝑂𝑡 = (𝑂𝑡
𝑥, 𝑂𝑡

𝑦
, 𝑂𝑡

𝑧)           Rotation of target object 

𝑋𝑠𝑎𝑓𝑒𝑡𝑦                     Collision status, bool            

     

     𝑋𝑠𝑎𝑓𝑒𝑡𝑦  indicates any possible collision during P&P task 

(e.g., collisions in Gripper-Table, Gripper-Obstacle, Gripper-

Cube, Robot Arm-Table, Robot Arm-Obstacle, Cube-Obstacle, 

and Cube-Cube). The collision detection is realized using the 

collider component in Unity. The action 𝒂 of robot arm agent 

is designed as: 
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𝒂 = (𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝛿6, 𝛼)                                (6) 

 

    The action 𝒂 is a 7-dimensional vector that controls the 

rotation of six joints of the robot arm and the gripper. 𝛿𝑖  is 

controlled to rotate 1° in two different directions at each time 

step to reduce the control difficulty on the premise of ensuring 

accuracy. 𝛼 is a binary-value variable controlling the opening 

and closing of the gripper. 

 
2.5.3 Design of Learning Curriculums and Reward 
Functions 

Curriculum learning is a technique to gradually introduce 

and increase the complexity of tasks which can effectively 

reduce the training difficulty in complex tasks and facilitate the 

model convergence of the RL methods. In this work, we divide 

the pick-and-place task into three curriculums for learning, 

including (1) Approaching (approach the target object), (2) 

Grabbing (grab the object), and (3) Placing (accurately place the 

object in the designated position). In each curriculum, 

corresponding reward functions are designed for better 

convergence of the RL model as shown in Table 1 and Equations 

(7) to (11). 

 
Table 1. Three curriculums with associated reward functions for 

reinforcement learning-based path planning. 

Curriculum Reward Function 

Approaching 𝑓1 + 𝑓2 + 𝑓5 

Grabbing 𝑓1 + 𝑓2 + 𝑓3 + 𝑓5 

Placing 𝑓3 + 𝑓4 + 𝑓5 

 

𝑓1 = −𝜆1𝐷𝑔𝑡                                       (7) 

 

𝑓2 = −𝜆2𝑂𝑔𝑡                           (8) 
 

𝑓3 = −𝜆3𝛼, 𝛼 =  {
0    𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑖𝑛𝑔

  1    𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑖𝑠 𝑜𝑝𝑒𝑛𝑖𝑛𝑔
         (9) 

 

𝑓4 = 𝜆5(𝜆4 − 𝐷𝑡𝑝)                    (10) 
 

𝑓5 = −𝜆6𝑋𝑠𝑎𝑓𝑒𝑡𝑦, 𝑋𝑠𝑎𝑓𝑒𝑡𝑦 =  {
 0     𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑓𝑟𝑒𝑒 

  1   𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠
     (11) 

 

We introduce five reward functions here from 𝑓1  to 𝑓5 , 

and 𝜆1 to 𝜆6 are the scale parameters for each reward function. 

In each curriculum, different combinations of reward functions 

are used to improve the training of RL model. 
In the first curriculum Approaching, the main goal is to 

approach the target object and adjust the posture of the gripper 

to keep it parallel to the target object. Two criteria are designed, 

the relative distance 𝐷𝑔𝑡  and the relative rotation 𝑂𝑔𝑡 . The 𝐷𝑔𝑡  

is the distance between the gripper catch center and the target 

object center. The 𝑂𝑔𝑡  is the rotation difference between the 

gripper and the target object. The distance reward 𝑓1 and the 

rotation reward 𝑓2 will increase when the gripper approaches the 

target and rotates to the posture parallel with the target object, 

respectively. Besides, the collision punishment 𝑓5 is introduced 

in all three curriculums to avoid any possible collision. 

In the second curriculum Grabbing, the robot needs to grab 

the target object without collision. The relative distance and 

rotation criteria (𝑓1 and 𝑓2) are used to fine-tuning the posture 

of gripper. A grabbing action reward function 𝑓3 is designed to 

encourage the agent to close the gripper and grab the target 

object when the gripper is in a proper posture (i.e., 𝐷𝑔𝑡 <

10𝑚𝑚 and 𝑂𝑔𝑡 < 5° ).  

In the third curriculum Placing, the agent is supposed to 

place the target object in the designated position. Different from 

other reward functions, the distance reward 𝑓4 is set to positive    

by introducing a distance threshold value 𝜆4  and 𝐷𝑡𝑝 

indicating the distance between the target cube center and the 

placing position. This is because if the target position is far away, 

the robot arm needs to take a large number of steps to reach it. 

The negative reward will cause the reward to shrink continuously. 

When the cumulative reward is smaller than the penalty of 

collision, the agent will collide to obtain a relatively large reward. 

The grabbing action reward function 𝑓3 is also used to hold the 

object during the placing process. 

 
3. EXPERIMENT AND RESULTS 

To validate the proposed approach, we built a high-fidelity 

digital twin model of a real robot arm and conducted physical 

experiments in the context of pick-and-place task. In this task, 

the robot arm needs to grab cubes initially located in random 

positions and then move and place them in target positions. We 

expect to examine and compare the performance of the proposed 

approach with other approaches in this task. The experiment 

settings and results are presented in the following subsections. 

 

3.1 Experiment Settings 
Figure 4 shows the setting of the physical equipment and 

working space. A robot arm (JAKA Zu3) with an electric gripper 

(CTEK CTP2F50) is fixed to a 1.2m × 1.2m table. The plane 

of the table was set as the plane with 𝑧 =  0  in world 

coordinate system. The center of the robot arm base was set as 

the origin point (0,0). Two RGB-D cameras (RealSense D435i) 

are deployed at (-0.45, 0.65) and (-0.45, -0.65) to detect the cubes 

and obstacles in the picking area and measure the accuracy of 

cube placements in the placing area, respectively. The target 

cubes and obstacle cubes are wooden blocks with sizes of 

3cm × 3cm × 6cm  and 6cm × 6cm × 9cm.  Seven target 

cubes were placed randomly in the rectangular area defined by 

the four vertices (-0.25, 0.35), (0.25, 0.35), (-0.25, 0.55) and 

(0.25, 0.55). Two obstacle cubes were placed on (-0.10, 0.45) 

and (0.10, 0.45). To ensure the safety during tasks, adjacent 

cubes must keep a minimum spacing of 5 cm in the initial setting. 

This distance also considers the width of the gripper (9 cm). 
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A high-fidelity digital twin model of the robot and the 

working environment is established in Unity3D as shown in Fig. 

5. Besides displaying the visual representation of these physical 

entities, DT also provides the status data of environment and 

robot (e.g., the position of objects and obstacles, the joint angle 

and end effector position of robot) for offline RL training. In fact, 

the training of RL model needs the real-time status of the agent 

(i.e., robot arm) and environment. DT can provide such 

information in a virtual space without acquiring data from 

physical space which is obviously expensive and time-

consuming. Besides, high-fidelity DT model is the significant 

foundation for collision detection which enables the adaptive 

switch of two path planning methods (i.e., IK and RL). 

Meanwhile, DT bridges the virtual environment and real entity, 

and the action sequence generated in virtual space could be 

transmitted to the real robot controller for execution in physical 

space. A user interface is established for a more convenient way 

to control. On the interface, three path planning methods 

(Adaptive method, IK method, RL method) are available for 

users to choose and all the generated paths are recorded. Here the 

IK method refers to the CCD algorithm-based IK method, and 

the RL method is the PPO algorithm-based method. Besides, the 

commands with operating physical robot arm and cameras are 

also integrated in the user interface for Sim-To-Real control. The 

positions of the virtual cubes and obstacles are updated in real 

time according to their actual position information in physical 

world captured by the front RGB-D camera. The training process 

of the proposed adaptive path planning method and RL method 

runs on a workstation with Intel Core i7-12700F CPU, 16GB 

RAM, and RTX3080 GPU. 

    Table 2 shows the setting of hyperparameters for the RL 

training process. The batch size is the experience samples used 

for each training batch. The buffer size refers to the capacity of 

replay buffer used to store the training experience. The learning 

rate controls the training speed, which is set to 0.0003 to avoid 

reward divergence. Epsilon is set to 0.2, which is a key parameter 

influencing the range of policy updating. A small value of 

Epsilon can slow down the rate of convergence while big values 

may lead to divergence. Lambda is a discount factor calculating 

cumulative return. We set lambda to 0.95 to prioritize current 

rewards. Beta controls the advantage function in PPO algorithm 

and the epoch number indicates rounds of the training model in 

each training batch. Linear learning rate schedule makes the 

learning rate to decrease linearly before max steps. These 

parameters are chosen based on previous work and preliminary 

experiments. 
 

Table 2. Hyperparameters for the PPO training process. 
Hyperparameter Value 

Batch size 512 

Buffer size 10240 

Learning rate 0.0003 

Epsilon 0.2 

Lambda 0.95 

Beta 0.005 

Epoch number 3 

Learning rate schedule Linear 

 

3.2 Experiment and Results 
3.2.1 Convergence Speed Analysis in the Simulated 
Environment  

We first compare the convergence speed of our proposed 

adaptive path planning approach and RL method (original PPO 

algorithm) for the pick-and-place tasks in the simulated 

environment. In each task, 7 target cubes and 2 obstacle cubes 

are placed on the picking area. A target cube is randomly 

assigned to the robot arm and then transferred to the target 

position by the robot arm. The positions of target cubes are 

randomly shuffled after completing each task. In order to 

improve the success rate, curriculum learning is applied in both 

 
FIGURE 4: OVERALL EXPERIMENT SETTING 

FIGURE 5: THE DIGITAL TWIN MODEL OF THE ROBOT 

AND WORKING ENVIRONMENT WITH A USER 

INTERFACE. 
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methods. The training of our proposed approach and the RL 

method takes 15 million steps and each curriculum takes 5 

million steps respectively. The obtained average cumulative 

reward of the two methods in the training process for 

approaching, grabbing and placing curriculums is shown in Fig. 

6. 

As we can see in Fig. 6, the rewards of both methods 

converge at the end, indicating that the agents in both methods 

complete the approaching, grabbing and placing tasks. In the first 

5 million steps, the RL method’s reward function remains 

unchanged, indicating that the agent has not learned how to 

approach the target object. This is mainly because the initial 

position of the gripper in the RL method is far away from the 

target object, making the task more difficult and leading to 

collisions in the training process all the time. In contrast, the 

adaptive method’s reward keeps increasing and converges at 4 

million steps, as the starting position of the gripper assigned by 

IK module is quite close to the target. Which makes the task 

easier to complete and the agent learns the curriculum quickly. 

In the process from 5 million to 10 million steps, the 

rewards of the two methods keep increasing. The adaptive 

method converges at 7.3 million steps, while the RL method 

converges at 8.5 million steps. This is probably because the 

approaching experience learned from the adaptive method in the 

first curriculum can be directly applied to the second curriculum, 

speeding up the training speed. However, the experience of RL 

method learned in the first curriculum has poor effect, so it is 

necessary to re-train this action in the second curriculum, which 

increases the difficulty of the task. 

In the last 5 million steps, the cumulative reward of RL 

method gradually shrinks and converges to 5. In contrast, the 

cumulative reward of the adaptive method begins to rise after a 

period of oscillation and converges to 25 in the end. One possible 

reason is that the placing task of adaptive method is easier to 

accomplish since the placing position is assigned by IK module 

which is closer than that of RL method. Thus, the agent of 

adaptive method could learn this curriculum better.  

In summary, the proposed adaptive path planning method 

simplifies the P&P task by introducing the IK module, speeds up 

the training process and achieves a higher effectiveness. 

 

3.2.2 Generalization Performance and Robustness 
Analysis in Physical Environment 

In order to test the generalization performance and 

robustness of the proposed approach, we designed a pick-and-

  FIGURE 6: THE OBTAINED AVERAGE CUMULATIVE REWARD OF PROPOSED METHOD AND RL METHOD  

FIGURE 7: PICK AND PLACE EXPERIMENT (10 GROUPS 

IN TOTAL, 7 TARGET CUBES AND 2 OBSTACLE CUBES 

ARE PLACED RANDOMLY IN EACH GROUP.) 
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place scene as shown in Fig. 4. The proposed adaptive path 

planning approach, RL method and IK method were employed 

respectively to pick up 7 target cubes and place them at the target 

position (0, -0.50), which was 50 cm directly behind the robot. 

Ten groups of pick-and-place tasks were conducted for each 

method. In each group of tasks, the target cubes were placed 

randomly to examine the generalization performance of three 

methods, as shown in Fig. 7. Figure 8 shows a complete cycle of 

the pick-and-place task in physical environment. 

In the physical experiments, we use the collision avoidance 

rate, first attempt success rate and placing accuracy as the three 

metrics to evaluate the performance of different methods. 

Collision avoidance rate is defined as the ratio of the cases with 

no collision occurring during P&P task to the total cases. Note 

that any improper contact between robot and other objects (e.g., 

cube, obstacle, table), gripper and obstacle, gripper and other 

cube, gripper and table, target cube and obstacle or other cube 

(during moving), will be considered as collision. First attempt 

success rate means the rate of successfully placing the target in 

the target area without any collision for the first try. Here the 

target area is defined as a circular shape within 5 cm around the 

target position (0, -0.50). Placing accuracy is calculated as the 

difference between target position and the actual center position 

of placed cube obtained from the rear RGB-D camera. 

Figure 9 shows the comparison results of three methods. 

The collision avoidance rate of the IK method is 43%, while that 

of the RL method and adaptive method are 100%, since IK 

method is unable to avoid collisions automatically. Both RL 

method and the adaptive method can generate a collision-free 

path after several attempts. The first attempt success rate of the 

IK method is equal to its collision avoidance rate. This is mainly 

because of the target cube in the same position, the paths planned 

by the IK method are the same each time. The first attempt 

success rate depends on the effect of approaching, grabbing, and 

placing actions. The first attempt success rate of the RL method 

and the adaptive method is 41% and 53%, respectively. This 

result indicates that the proposed approach has a higher success 

rate for the three curriculums in the P&P task. It is worth noting 

that the first attempt success rate is measured in the simulation 

environment. When collision occurs in the simulation 

environment, both the RL method and the adaptive method will 

re-plan the path until a safe path is generated. Therefore, both 

methods can generate a safe path after several attempts, and the 

actual task success rates of both methods are 100% although their 

first attempt success rates are not high.  

As shown in Fig. 9, the placing accuracy of the IK method, 

adaptive method, and RL method are 3mm, 19mm, and 50mm, 

respectively. The accuracy of the proposed method is lower than 

the IK method since the grabbing process mainly relies on the 

RL module, which has certain positioning errors. The accuracy 

of the proposed method is higher than the RL method since the 

path in the last part of the placing action is generated by the IK 

module, which can guarantee the placing accuracy to a certain 

extent. In summary, the proposed adaptive path planning 

approach has high collision avoidance rate, first attempt success 

rate and relatively good placing accuracy compared to the IK 

method and RL method. The experiment results validate the 

effectiveness of our proposed approach in realistic application 

scenarios. 

 

FIGURE 8: AN EXAMPLE OF PICK AND PLACE TASK IN PHYSICAL ENVIRONMENT. ① AND ②: APPROACHING 

STAGE; ③ AND ④: GRABBING STAGE; ⑤ TO ⑩: PLACING STAGE. 

FIGURE 9: PERFORMANCE COMPARISON OF IK (CCD), 

RL (PPO) AND ADAPTIVE METHOD (CCD+PPO) IN P&P 

TASKS. 
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4. CONCLUSION  
In this paper, we propose an adaptive path planning 

approach for robot arm based on inverse kinematics and deep 

reinforcement learning. We divide the movement path of a robot  

arm into several segments, and adaptively employ IK-based or 

RL-based method for segments with different risk levels of 

potential collisions. Our approach integrates the fast calculation  

speed and high accuracy of IK-based method and the flexible 

collision avoidance ability of RL-based method. A high-fidelity 

digital twin model of the robot arm is built to support the training 

of our approach in the context of pick-and-place task, a 

commonly seen scenario in automatic assembly line. Compared 

to traditional reinforcement learning based method, our approach 

can reduce the difficulty of training RL models, improve the 

training speed with guaranteed performance in collision 

avoidance and path accuracy. Our work contributes to the 

practical deployment of reinforcement learning based path 

planning methods for digital twin-enabled robot arm in smart 

manufacturing. 

    One limitation of this work is that the geometric model of 

each object must be built in advance in our approach, thus the 

current object detection and location method may not be able to 

handle objects with complex shapes efficiently. Future work will 

focus on developing advanced object detection methods to 

extend the application of our approach in more complex 

environments. 
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