
AN ADAPTIVE PATH PLANNING APPROACH FOR DIGITAL TWIN-ENABLED ROBOT ARM
BASED ON INVERSE KINEMATICS AND DEEP REINFORCEMENT LEARNING

Qi Zhou1 Sikai Li1 Jingbo Qu1 Jin Wu1

Haomiao Xu1 Youyi Bi1*

1 University of Michigan – Shanghai Jiao Tong University Joint Institute
Shanghai Jiao Tong University

Shanghai, China

ABSTRACT
Efficient path planning methods for robot arms are crucial

to ensure the quality and safety of their completing various tasks.

Compared to traditional manual instruction, Reinforcement

Learning (RL) based path planning methods show better

adaptability for complex working scenarios. However, the

training of RL is usually time-consuming with limited success

rate. To tackle this problem, we propose an adaptive path

planning approach for robot arm based on Inverse Kinematics

(IK) and Deep Reinforcement Learning (DRL) in a pick-and-

place context. A judgement mechanism is developed to

adaptively select IK or RL based method according to the results

of early-stage collision detection. We separate the pick and place

task into three sequential curriculums (approaching, grabbing

and placing) with modified reward functions to speed up the

training process and achieve a higher success rate. The proposed

approach is validated with a physical robot arm supported by a

high-fidelity digital twin model. The experiment results show that

our proposed approach outperforms traditional RL based

method with improved training speed and guaranteed

performance in collision avoidance and path accuracy. This

work contributes to the practical deployment of RL based path

planning method for digital twin-enabled robot arm in smart

manufacturing.

Keywords: Robot arm, Path planning, Deep reinforcement

learning, Inverse kinematics, Digital twin

1. INTRODUCTION
Robot arms are being used widely in smart manufacturing

to replace human workers for those labor-intensive or dangerous

work, especially in scenarios of assembly, palletizing and

welding [1]. To ensure the quality and safety of completing these

tasks, efficient path planning method for robot arms are needed.

* Corresponding author, Assistant Professor in Mechanical Engineering, Shanghai Jiao Tong University

Email: youyi.bi@sjtu.edu.cn

Traditional manual instruction for robots is easy to use, but

laborious with poor flexibility. It cannot adapt to complex

working conditions where robots have to process multi objects

and avoid multi obstacles agilely [2]. Recent research explored

to use Reinforcement Learning (RL) and Digital Twin (DT)

based methods for robot arm path planning to meet the

requirements of flexible manufacturing and adapt to fast

switching of producing multi-category products [4-6]. RL is a

machine learning approach that enables an agent to learn and

make decisions by interacting with environment. DT is a cutting-

edge technology that creates a virtual replica of a physical system,

allowing real-time monitoring, analysis, and optimization for

enhanced operational efficiency and decision-making. With the

support of Digital Twin, RL based methods allow a robot arm to

learn to find optimal movement trajectories by iteratively

interacting with environment in a high-fidelity virtual space.

These methods show better adaptability for complex working

scenarios without the need of manual guidance [2, 3].

For example, researchers from Shanghai Jiao Tong

University [4] introduced a human-robot cooperation framework

based on the Proximal Policy Optimization (PPO) algorithm, a

flexible RL method that could deal with high-dimensional state

space problems. This framework is able to replan the collision

part of robot path by combining the information of real working

environment during the training process. A peg-in-hole assembly

task was executed with a success rate of 90% achieved. Li et al.

[5] developed a digital twin of robot to support the training of

RL models and previewing the planned paths to avoid collision.

This work contributes to a more feasible Sim-To-Real

application framework of industrial robots. They [6] also

realized a user-friendly control mode of robot arm by leveraging

DT and Augmented Reality (AR) technologies to set up a multi-

robot collaboration system where RL method was adopted for

Proceedings of the ASME 2023
International Mechanical Engineering Congress and Exposition

IMECE2023
October 29-November 2, 2023, New Orleans, Louisiana

IMECE2023-113131

1 Copyright © 2023 by ASME

path planning. This work reduces redundant robot control

learning costs and achieves an intuitive control mode of robot.

Compared to manual instruction, these RL based methods for

robot arm path planning show good adaptability to complex

scenarios.

However, the training process for RL models is time-

consuming which can take dozens of hours or days in laboratory,

let alone in an actual factory [7]. In this regard, accelerating the

training process without sacrificing model accuracy is crucial for

RL based methods to be adopted widely in practice. Various

researchers have made efforts in this area.

For instance, Zhou et al. [8] proposed an adaptive obstacle

size adjustment method to simplify the modeling of obstacles in

robot arm motion planning. Curriculum-based reinforcement

learning is adopted to accelerate the training process. Wang et al.

[9] optimized the PPO algorithm by introducing a value function

update module. A Sim-to-Sim approach is proposed to shorten

the training time, which materialized robot path planning in an

unstructured environment. Matulis et al. [7] set ten curriculums

for Pick-and-Place (P&P) task according to accuracy tolerance

and achieved well performance in training speed.

 To further improve the training speed in robot arm path

planning, recent studies also explore to combine Inverse

Kinematics (IK) with RL. In the field of robotics, IK can

calculate the needed rotation angles of a robot arm’s joints to

ensure the robot reaches a given posture in a fast and accurate

way. Luipers et al. [10] designed a human-like thinking-

execution framework for the path planning problem of robot

arms. In this framework, RL is used to plan waypoints first and

then the IK solver calculates the trajectory between waypoints.

This method greatly reduced the difficulty of task training,

accelerated the convergence rate of RL models and achieved a

98% success rate. Zhang et al. [11] introduced a hierarchical

reward function including motion accuracy based on robot

inverse kinematics principle. This method speeds up the

convergence of PPO algorithm and improves the motion

accuracy of robot arm. In order to reduce the unnecessary

exploration in state-action space, Zhong et al. [12] added an IK

module into the RL algorithm and designed a gain module to

avoid local optimality. The convergence speed and robustness of

the RL models for robot motion planning are improved.

In the above studies, RL has been commonly employed to

plan the entire motion path for collision avoidance. However,

this approach may be inefficient for certain scenarios such as

P&P task. In a P&P task, collisions mainly occur when the robot

approaches to the target object, and fewer collisions exist in the

initial starting of the robot arm and the final placement of the

target object. For those motion segments with low risk of

collision, inverse kinematics can provide a reasonable path for

robot arm much more efficiently than reinforcement learning

based methods. Thus, we propose an adaptive path planning

approach for robot arm based on inverse kinematics and deep

reinforcement learning in this paper. Our approach can reduce

the training difficulty of the RL model, shorten its training time

and facilitate the rapid deployment of RL-based method in robot

arm path planning.

The core idea of our approach is a judgement mechanism

that can adaptively select IK or RL based method according to

the results of early-stage collision detection. We first leverage

the Cyclic Coordinate Decent (CCD) algorithm from inverse

kinematics to generate an initial robot arm path rapidly without

considering obstacles. If collisions are detected in this path, the

PPO algorithm from RL is applied to regenerate the collided part

of the initial path. Finally, a collision-free path in an environment

with multiple obstacles can be generated by fusing these two

paths. In addition, we separate the P&P task into three sequential

curriculums (approaching, grabbing and placing) with modified

reward functions in the training of RL model to speed up the

training process and achieve a higher success rate.

To validate the proposed approach, we built a high-fidelity

digital twin model of robot arm to support the training of RL and

conducted physical experiments with a real robot arm. The

proposed approach was compared with traditional RL based

method and IK based method. The experiment results show that

our approach outperforms these methods with improved training

speed and guaranteed performance in collision avoidance and

path accuracy.

The rest of this paper is structured as follows. Section 2

introduces the overall structure of the proposed approach, and

elaborates the key methods involved, including the adaptative

path planning method, object detection method, inverse

kinematics method and reinforcement learning method. Section

3 presents the simulation and physical experiments to examine

the validity of the proposed approach and discusses the

experiment results. Section 4 summarizes our work and provides

potential future research directions.

2. METHODS
2.1 Overall Workflow of the Proposed Approach

Figure 1 presents the overall workflow of the proposed path

planning approach for a digital twin-enabled robot arm. Here DT

provides a high-fidelity environment for the visual

representation of physical layer and the offline training of RL

models. As shown in Fig. 1, the physical layer consists of

hardware components such as robot arm, robot controller,

electric gripper, RGB-D cameras and the workspace for the pick-

and-place task. The virtual layer includes the high-fidelity digital

twin model of the physical components built in Unity3D

environment, a path planning module, virtual robot controller

and a user interface. The physical and virtual layers are

connected through socket communication based on TCP

protocol, which enables the efficient modeling of real

environment and transmission of control commands. To create a

digital twin model with high-fidelity, dynamic properties and

physical constraints of real robot arm such as joint weights,

angular friction, angular damping, and joint angle limits are also

incorporated in virtual space.

The overall workflow of our approach is as follows. First,

the object detection module perceives the workspace information

(i.e., the position and rotation of objects and obstacles) and

transmits it to virtual layer. Then, the UI controller generates a

virtual model of the workspace and receives the task commands

2 Copyright © 2023 by ASME

assigned manually (e.g., the ID of target object). Third, the path

planning module utilizes the environment and object information

to generate a proper path using the adaptive path planning based

on inverse kinematics and deep reinforcement learning. The

corresponding action sequence is then outputted to the virtual

robot controller for replaying the robot’s actions. Finally, the

virtual robot controller passes the action sequence and joint

angles to the physical robot controller for execution through

socket communication. The details of the key techniques and

methods involved in our proposed approach are provided in the

following sections.

2.2 Object Detection and Location
Getting precise location information of the working

environment and manipulating objects is the first step in the path

planning for a robot arm. In this work, we set up a visual system

consisting of two RGB-D cameras to detect and locate the

working objects and obstacles due to the limited field of vision

of a single camera. These two cameras are fixed at two sides of

the working area utilizing an eye-to-hand approach. The front

camera can provide the working environment information such

as the position and rotation of all objects and obstacles. The rear

camera is used to measure the position accuracy of the placed

objects when a pick-and-place task completes. To overcome the

occlusion problem in multi-object and multi-obstacle detection,

ArUco markers are used as posture estimation feature. ArUco

markers are fast to deploy with high accuracy and robustness of

detection and location [13]. The output information from object

detection and location is then transmitted to the virtual space for

the use of visualization and path planning.

2.3 Adaptive Path Planning
Figure 2 depicts the workflow of the adaptive path planning

method. After receiving the positions of all targets and obstacles

in the working space, a virtual environment containing these

objects (i.e., the digital twin model) is created in real-time.

Following the pick-and-place command, the Inverse Kinematics

(IK) Module generates the path sequence for the robot arm with

corresponding joint angles. Then the virtual robot arm model

moves according to the generated sequence of joint angles, and

the collision detection module examines if any collision occurs.

The collision detection module leverages the collision detection

mechanism in Unity3D by adding colliders to the robot, gripper,

manipulating objects, obstacles, and the working environment

(e.g., table). The collision detection mechanism is based on the

embedded physics engine in Unity3D, using colliders and rigid

body components to simulate the shape and motion of objects

and calculate the collision response. If no collision is detected in

the generated path from the IK module, this path is considered to

be safe and corresponding action sequence will be transmitted

directly to the physical robot for task execution. Otherwise, the

path interception mechanism intercepts the collided path

sequence and the Reinforcement Learning (RL) module is

invoked to re-plan the collided path. The RL path and truncated

IK path are then fused to form the final feasible path and action

sequence transmitted to the real robot controller.

Figure 3 shows an example of adaptive path planning. The

grey block is the target object for pick-and-place, while the black

blocks are obstacles. We superimpose the different postures of

the robot arm in in this figure. 𝑃0 and 𝑃5 are the initial position

and end position of the robot end effector, respectively. The

FIGURE 1: THE OVERALL WORKFLOW OF THE PROPOSED APPROACH

3 Copyright © 2023 by ASME

yellow line 𝑃0𝑃1𝑃2𝑃3𝑃4𝑃5 is the path generated by IK module

which may contains a collided part 𝑃2𝑃3. To ensure a safe initial

state for RL based path planning method and reduce the

difficulty of RL training, a secure path is added into the initial

and final segments of the intercepted collided path, represented

by 𝑃1𝑃2 and 𝑃3𝑃4. The information of the first and last points

(𝑃1 and 𝑃4) of the truncated collided path, along with the

target position, are inputted to the RL module. In RL module, we

employ the PPO algorithm to re-plan the collided path and

generate a safe path considering the obstacles, as illustrated by

the red lines 𝑃1𝑃2𝑃6𝑃7𝑃4. Finally, this re-planned path is fused

with the truncated safe paths (𝑃0𝑃1, 𝑃4𝑃5) from the IK module

to obtain a complete path sequence 𝑃0𝑃1𝑃2𝑃6𝑃7𝑃4𝑃5, which will

be transmitted to the physical robot controller.

2.4 CCD-based Inverse Kinematics Algorithm for Path
Planning

Inverse Kinematics is widely used in robotics to determine

the needed rotation angles for each joint of a multi-joint robot

arm given its initial and target postures. In our proposed

approach, IK is used to quickly generate a viable path for the

pick-and-place task in those environments with low risk of

collisions, and simplify the training task of RL models. Here we

employ the Cyclic Coordinate Decent (CCD) algorithm [14],

which is a simple but effective IK method that converges quickly

and is free from singularities. As shown in Algorithm 1, the CCD

algorithm is a heuristic search technique that iteratively

computes the angle between the vector from each joint to the end

effector 𝒗𝒃𝒕 and the vector from each joint to the target point

𝒗𝒃𝒑 . The algorithm calculates the rotation angle 𝛼𝑗 starting

from the end effector and rotates each joint sequentially until the

end effector eventually reaches the target position after several

iterations.

 To execute this iterative rotation, we create a robot bone

𝑏𝑜𝑛𝑒[𝑗] that contains the initial position of the robot joints.

Once the robot bone rotates to the target position after IK

calculation, the robot joints will also rotate.

It is worth noting that the CCD algorithm cannot restrict the

rotation angle of the end joint of the robot, which may result in

misalignment between the electric gripper and the target object.

Therefore, we introduce an end joint regulation mechanism to

the CCD algorithm as shown in Line 12 of Algorithm 1. It can

keep the gripper and target object in parallel, and enhance the

success rate of grabbing.

Algorithm 1: CCD-based Inverse Kinematics Algorithm

Input: Target cube position 𝒑, target cube rotation 𝑟

Output: Sequence of joint angles

1：
Initialize robot bone position and robot joint

position

2： for 𝑖 = 1:MaxCcdDepth do

3： for 𝑗 = 1:MaxBoneJoint −1 do

4：
 Transform boneTcp t and p to

bone[𝑗].localCoordinate

FIGURE 2: THE WORKFLOW OF THE ADAPTIVE PATH PLANNING METHOD

FIGURE 3: AN EXAMPLE OF ADAPTIVE PATH

PLANNING

4 Copyright © 2023 by ASME

5：
 Calculate vector of bone [𝑗] to boneTcp:

 𝐯bt ← (𝐭. 𝑥, 0, 𝐭. 𝑧)

6：
Calculate vector of bone [𝑗] to p:

 𝐯bp ← (𝐩. 𝑥, 0, 𝐩. 𝑧)

7：
 Calculate rotation angle for bone[𝑗]:
 𝛼𝑗 =Vector3.Angle(𝐯bp, 𝐯bt)

8：
 Calculate rotation axis for bone[𝑗]:
 𝐥 =Vector3.Cross(𝐯bp, 𝐯bt). normalized

9： Rotate bone[𝑗] by 𝛼𝑗 along 𝐥

10： end for

11： end for

12：
Calculate rotation angle for bone[6]:
 𝛼6 = 𝑟 − bone[6].rotation

13： Rotate bone[6] by 𝛼6 along axis 𝐲

14：

15：

for 𝑘 = 1:MaxJoint do

 Rotate Joint[𝑘] to bone[𝑘].localRotation

16： end for

2.5 Reinforcement Learning Based Path Planning

As mentioned in Sec. 2.3, if collisions are detected in the

generated path from the IK module, the reinforcement learning

(RL) model is invoked to re-plan the collided path. The core

framework of reinforcement learning is a sequential decision-

making problem referred to as Markov Decision Process (MDP)

[15]. In an MDP, the machine that learns and makes decisions is

called agent, while the object that interacts with agent is the

environment. At each time step 𝑡 , the agent observes the

environment state 𝑆𝑡 ∈ 𝒮 and chooses an action 𝐴𝑡 ∈ 𝒜(𝑠)

based on the strategy 𝜋(𝑎|𝑠). The agent then receives a reward

𝑅𝑡+1 ∈ ℛ and enters a new state 𝑆𝑡+1 . This process forms a

sequence 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, … between the MDP and the

agent. In MDP, the occurring probability of reward 𝑅𝑡 and

environment state 𝑆𝑡 depends only on the preceding state and

action, as described in Equation (1):

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟| 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (1)

where 𝑝: 𝒮 × ℛ × 𝒮 × 𝒜 → [0,1] is the probability of 𝑅𝑡 and

𝑆𝑡 occurring at time t. 𝑆𝑡−1 and 𝐴𝑡−1 are the state and action

at time 𝑡 − 1. The goal of the agent is to maximize the expected

return 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +··· = ∑ 𝛾𝑖𝑅𝑡+𝑖+1
∞
𝑖=0 (2)

where 𝛾 ∈ [0,1] is a discount factor to help maximize future

expected return rather than the current reward. In the context of

robot arm path planning, the agent of robot arm can learn to find

optimal paths by iteratively interacting with environment to

achieve maximum reward, i.e., arriving at the target position

without collision. In the proposed approach, we employ

Proximal Policy Optimization (PPO) algorithm as the RL

method. Its basic idea, setting of environment states and actions,

and the design of curriculum learning and reward functions are

explained in the following subsections.

2.5.1 Proximal Policy Optimization
PPO is a deep reinforcement learning (DRL) method based

on policy gradient [16]. Compared with other DRL method, PPO

is more stable with high sampling efficiency for continuous

motion space and high dimensional state space problems. It

utilizes a new objective function known as the clipped surrogate

objective, which maximizes the expected return of the new

policy while keeping the difference between the old and new

policies small. PPO algorithm avoids issues that may arise from

overly large or small policy updates, thereby achieving more

stable performance. The core of the PPO algorithm is the

maximization of a constrained objective function defined in

Equations (3) and (4):

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴𝑡)] (3)

𝑟𝑡(𝜃) =
𝝅𝜽(at|st)

𝝅𝜽old(at|st)
 (4)

Where 𝔼 is the expected value over all samples at time

step 𝑡, 𝜽 denotes the policy parameters, 𝑟𝑡 is the ratio between

the new and old policies. 𝐴𝑡 represents the advantage function,

which is the expected difference in returns when taking action

𝒂𝒕 in state 𝒔𝒕 compared to the old policy, and 𝜀 is a

hyperparameter that controls the range of the ratio. In this study,

we trained our robot agent using the PPO algorithm in ML-

Agents, an open-source toolkit that supports the training of

multiple deep reinforcement learning algorithms within the

Unity3D environment [17].

2.5.2 Environment States and Actions
The state parameters 𝒔𝒕 of the robot arm agent are shown

as follows:

𝒔𝒕 = {𝐽, 𝑃𝑔, 𝑃𝑡 , 𝑃𝑎 , 𝑂𝑔, 𝑂𝑡 , 𝑋𝑠𝑎𝑓𝑒𝑡𝑦} (5)

 𝐽 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6) Joint angle of robot arm

𝑃𝑔 = (𝑃𝑔
𝑥 , 𝑃𝑔

𝑦
, 𝑃𝑔

𝑧) Position of gripper catch center

𝑃𝑡 = (𝑃𝑡
𝑥 , 𝑃𝑡

𝑦
, 𝑃𝑡

𝑧) Position of target object center

𝑃𝑝 = (𝑃𝑝
𝑥 , 𝑃𝑝

𝑦
, 𝑃𝑝

𝑧) Position of placement area

𝑂𝑔 = (𝑂𝑔
𝑥, 𝑂𝑔

𝑦
, 𝑂𝑔

𝑧) Rotation of gripper

𝑂𝑡 = (𝑂𝑡
𝑥, 𝑂𝑡

𝑦
, 𝑂𝑡

𝑧) Rotation of target object

𝑋𝑠𝑎𝑓𝑒𝑡𝑦 Collision status, bool

 𝑋𝑠𝑎𝑓𝑒𝑡𝑦 indicates any possible collision during P&P task

(e.g., collisions in Gripper-Table, Gripper-Obstacle, Gripper-

Cube, Robot Arm-Table, Robot Arm-Obstacle, Cube-Obstacle,

and Cube-Cube). The collision detection is realized using the

collider component in Unity. The action 𝒂 of robot arm agent

is designed as:

5 Copyright © 2023 by ASME

𝒂 = (𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝛿6, 𝛼) (6)

 The action 𝒂 is a 7-dimensional vector that controls the

rotation of six joints of the robot arm and the gripper. 𝛿𝑖 is

controlled to rotate 1° in two different directions at each time

step to reduce the control difficulty on the premise of ensuring

accuracy. 𝛼 is a binary-value variable controlling the opening

and closing of the gripper.

2.5.3 Design of Learning Curriculums and Reward
Functions

Curriculum learning is a technique to gradually introduce

and increase the complexity of tasks which can effectively

reduce the training difficulty in complex tasks and facilitate the

model convergence of the RL methods. In this work, we divide

the pick-and-place task into three curriculums for learning,

including (1) Approaching (approach the target object), (2)

Grabbing (grab the object), and (3) Placing (accurately place the

object in the designated position). In each curriculum,

corresponding reward functions are designed for better

convergence of the RL model as shown in Table 1 and Equations

(7) to (11).

Table 1. Three curriculums with associated reward functions for

reinforcement learning-based path planning.

Curriculum Reward Function

Approaching 𝑓1 + 𝑓2 + 𝑓5

Grabbing 𝑓1 + 𝑓2 + 𝑓3 + 𝑓5

Placing 𝑓3 + 𝑓4 + 𝑓5

𝑓1 = −𝜆1𝐷𝑔𝑡 (7)

𝑓2 = −𝜆2𝑂𝑔𝑡 (8)

𝑓3 = −𝜆3𝛼, 𝛼 = {
0 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑖𝑛𝑔

 1 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑖𝑠 𝑜𝑝𝑒𝑛𝑖𝑛𝑔
 (9)

𝑓4 = 𝜆5(𝜆4 − 𝐷𝑡𝑝) (10)

𝑓5 = −𝜆6𝑋𝑠𝑎𝑓𝑒𝑡𝑦, 𝑋𝑠𝑎𝑓𝑒𝑡𝑦 = {
 0 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑓𝑟𝑒𝑒

 1 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠
 (11)

We introduce five reward functions here from 𝑓1 to 𝑓5 ,

and 𝜆1 to 𝜆6 are the scale parameters for each reward function.

In each curriculum, different combinations of reward functions

are used to improve the training of RL model.
In the first curriculum Approaching, the main goal is to

approach the target object and adjust the posture of the gripper

to keep it parallel to the target object. Two criteria are designed,

the relative distance 𝐷𝑔𝑡 and the relative rotation 𝑂𝑔𝑡 . The 𝐷𝑔𝑡

is the distance between the gripper catch center and the target

object center. The 𝑂𝑔𝑡 is the rotation difference between the

gripper and the target object. The distance reward 𝑓1 and the

rotation reward 𝑓2 will increase when the gripper approaches the

target and rotates to the posture parallel with the target object,

respectively. Besides, the collision punishment 𝑓5 is introduced

in all three curriculums to avoid any possible collision.

In the second curriculum Grabbing, the robot needs to grab

the target object without collision. The relative distance and

rotation criteria (𝑓1 and 𝑓2) are used to fine-tuning the posture

of gripper. A grabbing action reward function 𝑓3 is designed to

encourage the agent to close the gripper and grab the target

object when the gripper is in a proper posture (i.e., 𝐷𝑔𝑡 <

10𝑚𝑚 and 𝑂𝑔𝑡 < 5°).

In the third curriculum Placing, the agent is supposed to

place the target object in the designated position. Different from

other reward functions, the distance reward 𝑓4 is set to positive

by introducing a distance threshold value 𝜆4 and 𝐷𝑡𝑝

indicating the distance between the target cube center and the

placing position. This is because if the target position is far away,

the robot arm needs to take a large number of steps to reach it.

The negative reward will cause the reward to shrink continuously.

When the cumulative reward is smaller than the penalty of

collision, the agent will collide to obtain a relatively large reward.

The grabbing action reward function 𝑓3 is also used to hold the

object during the placing process.

3. EXPERIMENT AND RESULTS

To validate the proposed approach, we built a high-fidelity

digital twin model of a real robot arm and conducted physical

experiments in the context of pick-and-place task. In this task,

the robot arm needs to grab cubes initially located in random

positions and then move and place them in target positions. We

expect to examine and compare the performance of the proposed

approach with other approaches in this task. The experiment

settings and results are presented in the following subsections.

3.1 Experiment Settings
Figure 4 shows the setting of the physical equipment and

working space. A robot arm (JAKA Zu3) with an electric gripper

(CTEK CTP2F50) is fixed to a 1.2m × 1.2m table. The plane

of the table was set as the plane with 𝑧 = 0 in world

coordinate system. The center of the robot arm base was set as

the origin point (0,0). Two RGB-D cameras (RealSense D435i)

are deployed at (-0.45, 0.65) and (-0.45, -0.65) to detect the cubes

and obstacles in the picking area and measure the accuracy of

cube placements in the placing area, respectively. The target

cubes and obstacle cubes are wooden blocks with sizes of

3cm × 3cm × 6cm and 6cm × 6cm × 9cm. Seven target

cubes were placed randomly in the rectangular area defined by

the four vertices (-0.25, 0.35), (0.25, 0.35), (-0.25, 0.55) and

(0.25, 0.55). Two obstacle cubes were placed on (-0.10, 0.45)

and (0.10, 0.45). To ensure the safety during tasks, adjacent

cubes must keep a minimum spacing of 5 cm in the initial setting.

This distance also considers the width of the gripper (9 cm).

6 Copyright © 2023 by ASME

A high-fidelity digital twin model of the robot and the

working environment is established in Unity3D as shown in Fig.

5. Besides displaying the visual representation of these physical

entities, DT also provides the status data of environment and

robot (e.g., the position of objects and obstacles, the joint angle

and end effector position of robot) for offline RL training. In fact,

the training of RL model needs the real-time status of the agent

(i.e., robot arm) and environment. DT can provide such

information in a virtual space without acquiring data from

physical space which is obviously expensive and time-

consuming. Besides, high-fidelity DT model is the significant

foundation for collision detection which enables the adaptive

switch of two path planning methods (i.e., IK and RL).

Meanwhile, DT bridges the virtual environment and real entity,

and the action sequence generated in virtual space could be

transmitted to the real robot controller for execution in physical

space. A user interface is established for a more convenient way

to control. On the interface, three path planning methods

(Adaptive method, IK method, RL method) are available for

users to choose and all the generated paths are recorded. Here the

IK method refers to the CCD algorithm-based IK method, and

the RL method is the PPO algorithm-based method. Besides, the

commands with operating physical robot arm and cameras are

also integrated in the user interface for Sim-To-Real control. The

positions of the virtual cubes and obstacles are updated in real

time according to their actual position information in physical

world captured by the front RGB-D camera. The training process

of the proposed adaptive path planning method and RL method

runs on a workstation with Intel Core i7-12700F CPU, 16GB

RAM, and RTX3080 GPU.

 Table 2 shows the setting of hyperparameters for the RL

training process. The batch size is the experience samples used

for each training batch. The buffer size refers to the capacity of

replay buffer used to store the training experience. The learning

rate controls the training speed, which is set to 0.0003 to avoid

reward divergence. Epsilon is set to 0.2, which is a key parameter

influencing the range of policy updating. A small value of

Epsilon can slow down the rate of convergence while big values

may lead to divergence. Lambda is a discount factor calculating

cumulative return. We set lambda to 0.95 to prioritize current

rewards. Beta controls the advantage function in PPO algorithm

and the epoch number indicates rounds of the training model in

each training batch. Linear learning rate schedule makes the

learning rate to decrease linearly before max steps. These

parameters are chosen based on previous work and preliminary

experiments.

Table 2. Hyperparameters for the PPO training process.
Hyperparameter Value

Batch size 512

Buffer size 10240

Learning rate 0.0003

Epsilon 0.2

Lambda 0.95

Beta 0.005

Epoch number 3

Learning rate schedule Linear

3.2 Experiment and Results
3.2.1 Convergence Speed Analysis in the Simulated
Environment

We first compare the convergence speed of our proposed

adaptive path planning approach and RL method (original PPO

algorithm) for the pick-and-place tasks in the simulated

environment. In each task, 7 target cubes and 2 obstacle cubes

are placed on the picking area. A target cube is randomly

assigned to the robot arm and then transferred to the target

position by the robot arm. The positions of target cubes are

randomly shuffled after completing each task. In order to

improve the success rate, curriculum learning is applied in both

FIGURE 4: OVERALL EXPERIMENT SETTING

FIGURE 5: THE DIGITAL TWIN MODEL OF THE ROBOT

AND WORKING ENVIRONMENT WITH A USER

INTERFACE.

7 Copyright © 2023 by ASME

methods. The training of our proposed approach and the RL

method takes 15 million steps and each curriculum takes 5

million steps respectively. The obtained average cumulative

reward of the two methods in the training process for

approaching, grabbing and placing curriculums is shown in Fig.

6.

As we can see in Fig. 6, the rewards of both methods

converge at the end, indicating that the agents in both methods

complete the approaching, grabbing and placing tasks. In the first

5 million steps, the RL method’s reward function remains

unchanged, indicating that the agent has not learned how to

approach the target object. This is mainly because the initial

position of the gripper in the RL method is far away from the

target object, making the task more difficult and leading to

collisions in the training process all the time. In contrast, the

adaptive method’s reward keeps increasing and converges at 4

million steps, as the starting position of the gripper assigned by

IK module is quite close to the target. Which makes the task

easier to complete and the agent learns the curriculum quickly.

In the process from 5 million to 10 million steps, the

rewards of the two methods keep increasing. The adaptive

method converges at 7.3 million steps, while the RL method

converges at 8.5 million steps. This is probably because the

approaching experience learned from the adaptive method in the

first curriculum can be directly applied to the second curriculum,

speeding up the training speed. However, the experience of RL

method learned in the first curriculum has poor effect, so it is

necessary to re-train this action in the second curriculum, which

increases the difficulty of the task.

In the last 5 million steps, the cumulative reward of RL

method gradually shrinks and converges to 5. In contrast, the

cumulative reward of the adaptive method begins to rise after a

period of oscillation and converges to 25 in the end. One possible

reason is that the placing task of adaptive method is easier to

accomplish since the placing position is assigned by IK module

which is closer than that of RL method. Thus, the agent of

adaptive method could learn this curriculum better.

In summary, the proposed adaptive path planning method

simplifies the P&P task by introducing the IK module, speeds up

the training process and achieves a higher effectiveness.

3.2.2 Generalization Performance and Robustness
Analysis in Physical Environment

In order to test the generalization performance and

robustness of the proposed approach, we designed a pick-and-

 FIGURE 6: THE OBTAINED AVERAGE CUMULATIVE REWARD OF PROPOSED METHOD AND RL METHOD

FIGURE 7: PICK AND PLACE EXPERIMENT (10 GROUPS

IN TOTAL, 7 TARGET CUBES AND 2 OBSTACLE CUBES

ARE PLACED RANDOMLY IN EACH GROUP.)

8 Copyright © 2023 by ASME

place scene as shown in Fig. 4. The proposed adaptive path

planning approach, RL method and IK method were employed

respectively to pick up 7 target cubes and place them at the target

position (0, -0.50), which was 50 cm directly behind the robot.

Ten groups of pick-and-place tasks were conducted for each

method. In each group of tasks, the target cubes were placed

randomly to examine the generalization performance of three

methods, as shown in Fig. 7. Figure 8 shows a complete cycle of

the pick-and-place task in physical environment.

In the physical experiments, we use the collision avoidance

rate, first attempt success rate and placing accuracy as the three

metrics to evaluate the performance of different methods.

Collision avoidance rate is defined as the ratio of the cases with

no collision occurring during P&P task to the total cases. Note

that any improper contact between robot and other objects (e.g.,

cube, obstacle, table), gripper and obstacle, gripper and other

cube, gripper and table, target cube and obstacle or other cube

(during moving), will be considered as collision. First attempt

success rate means the rate of successfully placing the target in

the target area without any collision for the first try. Here the

target area is defined as a circular shape within 5 cm around the

target position (0, -0.50). Placing accuracy is calculated as the

difference between target position and the actual center position

of placed cube obtained from the rear RGB-D camera.

Figure 9 shows the comparison results of three methods.

The collision avoidance rate of the IK method is 43%, while that

of the RL method and adaptive method are 100%, since IK

method is unable to avoid collisions automatically. Both RL

method and the adaptive method can generate a collision-free

path after several attempts. The first attempt success rate of the

IK method is equal to its collision avoidance rate. This is mainly

because of the target cube in the same position, the paths planned

by the IK method are the same each time. The first attempt

success rate depends on the effect of approaching, grabbing, and

placing actions. The first attempt success rate of the RL method

and the adaptive method is 41% and 53%, respectively. This

result indicates that the proposed approach has a higher success

rate for the three curriculums in the P&P task. It is worth noting

that the first attempt success rate is measured in the simulation

environment. When collision occurs in the simulation

environment, both the RL method and the adaptive method will

re-plan the path until a safe path is generated. Therefore, both

methods can generate a safe path after several attempts, and the

actual task success rates of both methods are 100% although their

first attempt success rates are not high.

As shown in Fig. 9, the placing accuracy of the IK method,

adaptive method, and RL method are 3mm, 19mm, and 50mm,

respectively. The accuracy of the proposed method is lower than

the IK method since the grabbing process mainly relies on the

RL module, which has certain positioning errors. The accuracy

of the proposed method is higher than the RL method since the

path in the last part of the placing action is generated by the IK

module, which can guarantee the placing accuracy to a certain

extent. In summary, the proposed adaptive path planning

approach has high collision avoidance rate, first attempt success

rate and relatively good placing accuracy compared to the IK

method and RL method. The experiment results validate the

effectiveness of our proposed approach in realistic application

scenarios.

FIGURE 8: AN EXAMPLE OF PICK AND PLACE TASK IN PHYSICAL ENVIRONMENT. ① AND ②: APPROACHING

STAGE; ③ AND ④: GRABBING STAGE; ⑤ TO ⑩: PLACING STAGE.

FIGURE 9: PERFORMANCE COMPARISON OF IK (CCD),

RL (PPO) AND ADAPTIVE METHOD (CCD+PPO) IN P&P

TASKS.

9 Copyright © 2023 by ASME

4. CONCLUSION
In this paper, we propose an adaptive path planning

approach for robot arm based on inverse kinematics and deep

reinforcement learning. We divide the movement path of a robot

arm into several segments, and adaptively employ IK-based or

RL-based method for segments with different risk levels of

potential collisions. Our approach integrates the fast calculation

speed and high accuracy of IK-based method and the flexible

collision avoidance ability of RL-based method. A high-fidelity

digital twin model of the robot arm is built to support the training

of our approach in the context of pick-and-place task, a

commonly seen scenario in automatic assembly line. Compared

to traditional reinforcement learning based method, our approach

can reduce the difficulty of training RL models, improve the

training speed with guaranteed performance in collision

avoidance and path accuracy. Our work contributes to the

practical deployment of reinforcement learning based path

planning methods for digital twin-enabled robot arm in smart

manufacturing.

 One limitation of this work is that the geometric model of

each object must be built in advance in our approach, thus the

current object detection and location method may not be able to

handle objects with complex shapes efficiently. Future work will

focus on developing advanced object detection methods to

extend the application of our approach in more complex

environments.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial

support from National Key R&D Program of China

(2022YFB4702400).

REFERENCES
[1] Bragança, S., Costa, E., Castellucci, I., & Arezes, P. M.

(2019). A brief overview of the use of collaborative

robots in industry 4.0: human role and

safety. Occupational and environmental safety and

health, 641-650.

[2] Bae, H., Kim, G., Kim, J., Qian, D., & Lee, S. (2019).

Multi robot path planning method using reinforcement

learning. Applied Sciences (Switzerland), 9(15).

https://doi.org/10.3390/app9153057

[3] Bhuiyan, T., Kästner, L., Hu, Y., Kutschank, B., &

Lambrecht, J. (2023). Deep-Reinforcement-Learning-

based Path Planning for Industrial Robots using

Distance Sensors as Observation.

http://arxiv.org/abs/2301.05980

[4] Li, J., Pang, D., Zheng, Y., Guan, X., & Le, X. (2022).

A flexible manufacturing assembly system with deep

reinforcement learning. Control Engineering Practice,

118. https://doi.org/10.1016/j.conengprac.2021.104957

[5] Li, C., Zheng, P., Yin, Y., Pang, Y. M., & Huo, S. (2023).

An AR-assisted Deep Reinforcement Learning-based

approach towards mutual-cognitive safe human-robot

interaction. Robotics and Computer-Integrated

Manufacturing, 80.

https://doi.org/10.1016/j.rcim.2022.102471

[6] Li, C., Zheng, P., Li, S., Pang, Y., & Lee, C. K. M.

(2022). AR-assisted digital twin-enabled robot

collaborative manufacturing system with human-in-the-

loop. Robotics and Computer-Integrated Manufacturing,

76. https://doi.org/10.1016/j.rcim.2022.102321

[7] Matulis, M., & Harvey, C. (2021). A robot arm digital

twin utilising reinforcement learning. Computers and

Graphics (Pergamon), 95, 106–114.

https://doi.org/10.1016/j.cag.2021.01.011

[8] Zhou, D., Jia, R., & Yao, H. (2021). Robotic Arm Motion

Planning Based on Curriculum Reinforcement Learning.

2021 6th International Conference on Control and

Robotics Engineering, ICCRE 2021, 44–49.

https://doi.org/10.1109/ICCRE51898.2021.9435700

[9] Wang, Y., & Kasaei, H. (2022). IPPO: Obstacle

Avoidance for Robotic Manipulators in Joint Space via

Improved Proximal Policy Optimization.

http://arxiv.org/abs/2210.00803

[10] Luipers, D., Kaulen, N., Chojnowski, O., Schneider, S.,

Richert, A., & Jeschke, S. (2022). Robot Control Using

Model-Based Reinforcement Learning With Inverse

Kinematics. 2022 IEEE International Conference on

Development and Learning, ICDL 2022, 244–249.

https://doi.org/10.1109/ICDL53763.2022.9962215

[11] Zhang, Z., & Zheng, C. (2022). Simulation of Robotic

Arm Grasping Control Based on Proximal Policy

Optimization Algorithm. Journal of Physics: Conference

Series, 2203(1). https://doi.org/10.1088/1742-

6596/2203/1/012065

[12] Zhong, J., Wang, T., & Cheng, L. (2022). Collision-free

path planning for welding manipulator via hybrid

algorithm of deep reinforcement learning and inverse

kinematics. Complex and Intelligent Systems, 8(3),

1899–1912. https://doi.org/10.1007/s40747-021-00366-

1

[13] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas,

F. J., & Marín-Jiménez, M. J. (2014). Automatic

generation and detection of highly reliable fiducial

markers under occlusion. Pattern Recognition, 47(6),

2280–2292.

https://doi.org/10.1016/j.patcog.2014.01.005

[14] Besl, P. J., & McKay, N. D. (1992, April). Method for

registration of 3-D shapes. In Sensor fusion IV: control

paradigms and data structures (Vol. 1611, pp. 586-606).

Spie.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, 2nd ed. Cambridge, MA: MIT Press,

2018, pp. 45-56.

[16] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

& Klimov, O. (2017). Proximal Policy Optimization

Algorithms. http://arxiv.org/abs/1707.06347

[17] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J.,

Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., &

10 Copyright © 2023 by ASME

https://doi.org/10.3390/app9153057
http://arxiv.org/abs/2301.05980
http://arxiv.org/abs/2210.00803

Lange, D. (2018). Unity: A General Platform for

Intelligent Agents. http://arxiv.org/abs/1809.02627

11 Copyright © 2023 by ASME

