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ABSTRACT 
Multi-agent path planning is a crucial problem in numerous 

industrial robotic implementations, ranging from smart material 

transportation, mobile patrolling to automated warehousing. In 

this paper, we introduce a decentralized multi-agent path 

planning approach based on imitation learning and global static 

feature extraction. Our approach employs a convolutional 

neural network in the information extraction layer to obtain 

features from local field-of-view observations and expert-

planned paths under a global static map. The information 

aggregation layer then uses a graph attention network to 

combine feature information from selected neighboring agents. 

The request-reply based selective communication is also applied 

in the information aggregation layer to identify appropriate 

neighboring agents to be included in the graph attention 

network. Finally, the action output layer translates the 

aggregated feature information into actions for each agent. 

Additionally, we develop a strategy switching mechanism that 

adaptively utilizes expert-planned paths under a global static 

map to support agents to escape from local traps. The 

effectiveness of our proposed approach is evaluated in simulated 

grid environments with varying map sizes, obstacle densities, 

and numbers of agents. Experimental results demonstrate that 

our approach outperforms other decentralized path planning 

methods in success rate and generalizability. Furthermore, our 

approach is computationally efficient and scalable, making it 

suitable for real-world applications. 
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1. INTRODUCTION
In the era of Industry 4.0, mobile robots are playing a

significant role in transforming various aspects of modern 

manufacturing, such as mobile assembly, smart material 

transportation, and production line patrolling [1,2]. 

Consequently, the development of efficient multi-agent path 

planning (MAPP) algorithms is crucial to ensure these robots to 

work safely and properly [3]. 

The aim of MAPP is to generate collision-free paths for 

multiple agents to move from their initial positions to target 

positions on a given map. Traditional MAPP typically adopts a 

centralized approach, in which a central planning unit generates 

paths for all agents based on global information. Centralized 

methods can offer optimality and completeness in their solutions, 

ensuring that the best possible path is found for each agent if it 

exists [4,5]. However, these methods suffer from scalability 

issues as the number of robots increases, making them less 

suitable for applications with large-scale robots in complex 

environments [3]. 

Recent studies explore to develop decentralized MAPP 

methods in which each agent computes its own path and make 

movement decisions based on local information [6,7]. In the case 

of conflicts, only the affected agents need to replan their paths. 

Decentralized methods significantly reduce the computational 

burden of the central planning unit, making it more scalable for 

large-scale systems. Nevertheless, decentralized methods may 

not always produce optimal solutions since they prioritize 

generating efficient paths for individual agents with a lack of 
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considering the overall system efficiency. These methods also 

face the problem of limited successful deployment in complex 

scenarios as they cannot fully exploit the information from 

global static environment, e.g., the result of single-agent path 

planning in the global static map. This information can assist 

with more comprehensive perception of local environment 

features and support more efficient communication among 

neighboring agents. 

Therefore, in this paper we propose a novel decentralized 

multi-agent path planning approach based on imitation learning 

and global static feature extraction. The core idea is to utilize a 

learning-based architecture integrated with global static feature 

information to enhance the accuracy and practicality of 

decentralized path planning without compromising its scalability 

in complex environments. The effectiveness of the proposed 

approach is validated in simulated grid environments with 

varying map sizes, obstacle densities, and numbers of agents. 

The experiment results show that our approach outperforms 

other decentralized path planning methods in success rate and 

generalizability. The primary contribution of this paper includes: 

− A decentralized multi-agent path planning approach based 

on imitation learning and global static feature extraction is 

proposed. 
− A graph attention network to combine feature information 

from request-reply based selective communication 

procedure is designed. 
− A strategy switching mechanism that adaptively utilizes 

expert-planned paths under a global static map to support 

agents to escape from local traps is developed. 
The rest of the paper is structured as follows: Section 2 

presents a literature review of related work in multi-agent path 

planning. Section 3 introduces the problem formulation. Section 

4 shows the overall architecture of our approach and explains the 

key techniques involved, including the three layers of imitation 

learning and the strategy switching mechanism. Section 5 

compares the performance of our approach with other state-of-

the-art algorithms in a simulated grid environment. Lastly, 

Section 6 provides a summary of our study and highlights 

potential directions for future research. 

2. RELATED WORK
MAPP methods can be classified into centralized and

decentralized. In centralized methods, a central planning unit 

calculates coordinated waypoints for all robots based on their 

locations and destinations. The robots then use this information 

for real-time navigation. By considering all robots sharing a 

common state space, centralized methods can provide optimal 

and complete path plans, but their computational demand is high 

when the working environment for robots is complex. For 

example, conflict-based search (CBS) and its variant Enhanced 

CBS (ECBS) [4,8] can find optimal or suboptimal path solutions 

in which the high-level central unit searches for a set of collision 

constraints and impose these constraints on individual agents. 

M* and its variant [5] extend the standard A* algorithm to 

generate paths for each agent and apply a sub-dimensional 

expansion strategy to dynamically increase the dimensionality of 

the search space in regions where agent collisions occur. The 

operator decomposition (OD) and M* are combined by OD-

recursive-M* (ODrM*) [9] to keep the branching factor small 

during the search, which reduces the agents that require joint 

planning. Despite some progress has been made in reducing the 

computational load, these centralized methods still struggle to 

handle environments with numerous potential path conflicts. 

In contrast to centralized methods, decentralized MAPP 

methods rely less on a central unit and more on individual agents 

to make independent planning decisions based on local 

environment information. Optimal reciprocal collision 

avoidance (ORCA) [10] is a classical decentralized method, 

which assumes that each agent has complete knowledge of the 

shape, position, and velocity of its neighbor agents. Using this 

information, the robot computes its velocity to ensure safe 

planning within its next time step. In recent years, learning-based 

decentralized MAPP algorithms are receiving higher interest. 

Researchers explored to use imitation learning or reinforcement 

learning to train robots to move independently according to 

locally sensed information [11]. PRIMAL [6] is a classical 

decentralized MAPP framework based on reinforcement 

learning and imitation learning, allowing robots to plan paths and 

coordinate in real-time within a partially observable world. Li et 

al. [7] demonstrate the potential of graph neural networks 

(GNNs) in learning explicit communication policies for complex 

multi-robot coordination. They also use imitation learning to 

enable decentralized algorithms to approximate the performance 

of centralized expert algorithms. Distributed, Heuristic and 

Communication (DHC) [12] combines graph neural networks 

with deep Q-learning to improve policy performance in complex 

obstacle environments. Chen et al. [13] introduce a new 

framework based on imitation learning and reinforcement 

learning that combines transformer structures, contrastive 

learning, and dual deep Q networks to achieve feasible MAPP in 

dense environments without requiring inter-robot 

communication. 

In the field of large-scale robotic systems, the ability of 

learning-based approaches to handle high-dimensional state-

space representations is of particular interest. One advantage of 

learning-based decentralized planning is that each robot can 

gather information from other nearby robots, enabling more 

efficient coordination. However, current learning-based 

algorithms have not adequately addressed the following 

important questions: 

− What feature information should be effectively shared 

among agents? While effective communication is key to 

decentralized path planning, it is not yet obvious what 

information is critical to the planning and what information 

should be shared among agents. Due to the complexity of 

MAPP problems, the optimal strategy of coordination is 

unknown and the rule-based coordination usually cannot 

provide the required performance [11]. Existing learning-

based decentralized MAPP algorithms mainly rely on the 

guidance of target directions for path planning, and they 

often ignore the auxiliary information from global static 
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map in local feature extraction. By making full use of this 

auxiliary information, it is expected that the success rate of 

learning-based decentralized MAPP algorithms can be 

further improved.  

− Is the feature information of all neighboring agents equally 

important? Most existing learning-based MAPP algorithms 

employ broadcasting communication to all neighboring 

agents. In fact, frequent communications lead to high 

communication and computational burden. Researchers 

have proposed several methods to alleviate this issue, such 

as Attention Mechanism [14], Temporal Message Control 

(TMC) [15], Individually Inferred Communication (I2C) 

[16], Decision Causal Communication [17], etc. While 

some of these methods can adjust information passing 

among agents, they may struggle to effectively deal with 

redundant or repetitive data that does not add new insights 

into the decision-making process of path planning. It is still 

not fully clear how the communication between neighbors 

can be further optimized according to the local feature 

information. 
− How can local traps be effectively handled in learning-

based path planning? Although existing learning-based 

algorithms have achieved good performance in many 

scenarios, it is still challenging for them to achieve a 100% 

success rate [13]. A typical kind of planning failure is local 

trap, in which a robot oscillates around a few positions as 

its outward passages are blocked by obstacles or other 

robots. One possible solution to this issue is to utilize 

expert-planned paths under a global static map to provide 

guidance for these agents to escape from local traps. 

In this paper, we expect to preliminarily address the above 

issues by introducing a decentralized MAPP approach based on 

imitation learning and global static feature extraction. The global 

static feature information is incorporated into the local feature 

extraction for agents, and guides the selection of communication 

between agents within a certain range. With the support of a 

strategy switching mechanism using local expert-planned path 

information based on global static feature, the success rate of 

learning-based MAPP can be further improved. 

3. PROBLEM FORMULATION
In our MAPP research, the focus is placed on 2D grid maps

(see Fig.1), characterized by 4-neighbor connectivity. In this 

setting, each entity (i.e., an agent or an obstacle) occupies a 

single grid cell. The map is represented by an 𝑙𝑤 × 𝑙ℎ  graph

matrix, with 0 representing a free vertex and 1 indicating an 

occupation vertex. For each map, we choose the starting and 

corresponding goal vertices for 𝑀  agents from the available 

free positions. Each goal vertex is reachable from its starting 

vertex, and there is no overlap among the 2𝑀 chosen positions. 

Time is divided into discrete intervals, referred to as time steps. 

At each time step 𝑡, agents can move to adjacent positions or 

wait at their current vertices, resulting in an action space with a 

size of five (i.e., move upward, downward, left, right or remain 

stationary). The path for agent 𝑖  is defined as a series of 

connected vertices (i.e., moving) or identical vertices (i.e., 

waiting). After reaching their goal vertices, agents maintain their 

positions. We consider a partially observable environment, 

which is more representative in real-world scenarios. Each agent 

can access information only within its perceptual space. The 

perceptual space of agent 𝑖  at time 𝑡, denoted by 𝑜𝑖
𝑡 , is the

sensing area of size 𝑟𝑤 × 𝑟ℎ  centered at the agent’s position.

Here, 𝑟𝑤 < 𝑙𝑤 and 𝑟ℎ < 𝑙ℎ represent the width and height of

the perceptual space are smaller than that of the whole map. 

During operation, the agent should avoid collisions with 

obstacles or other agents. The goal of MAPP is to find a set of 

paths devoid of collisions for each agent. The solution’s quality 

is evaluated based on the maximal arrival time steps of all agents 

at their respective goal vertices. 

4. METHODS

4.1 The Overall Structure of The Proposed Approach 
Figure 1 shows the overall workflow of the proposed 

decentralized MAPP approach. Our approach adopts an 

imitation learning architecture, consisting of three major layers: 

information extraction, information aggregation and action 

output. In imitation learning, by leveraging expert 

demonstrations, agents can rapidly learn complex behaviors, 

significantly reducing the learning time compared to trial-and-

error methods such as reinforcement learning. Moreover, 

imitation learning offers transferability, allowing the learned 

decentralized policy to be easily adapted in different scenarios. 

As depicted in Fig.1, the local observation of agent 𝑖 is 

first processed through the local observation space processing.

The agent 𝑖’s local observation is updated at each time step. The 

obtained observation 𝑜𝑖
𝑡  is then fed into the information

extraction layer to get �̃�𝑖
𝑡. Subsequently, �̃�𝑖

𝑡 is passed into the

information aggregation layer, which aggregates information 

through the request-reply based selective communication 

procedure and graph attention network to obtain ℎ̃𝑖
𝑡(𝑘)

. Finally,

ℎ̃𝑖
𝑡(𝑘)

 is directed to the action output layer to generate the action

output 𝑎𝑖
𝑡. Additionally, in the application inference stage, we

design a strategy switching mechanism that adaptively switches 

between the expert A* algorithm using the global static map and 

the learning-based algorithm to help agents escape from local 

traps. In the following subsections, the detailed explanations of 

the major components of our approach and the strategy switching 

mechanism are provided. 

4.2 Local Observation Space 
We consider a partially observable discrete grid world 

where each agent has a finite field of view defined by an 𝑟𝑤 × 𝑟ℎ
matrix, and the global map is represented by an 𝑙𝑤 × 𝑙ℎ matrix

with random static obstacles. Beyond this field of view, the agent 

cannot perceive any information. Partial observation is crucial 

for real-world deployment of path planning, as it allows the 

policy to be generalized to environments with arbitrary sizes and 

reduces the neural network’s input dimensionality. We denote 

the local observation space as 𝑜𝑖
𝑡. As illustrated in Figure 2, the
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available information in the finite field of view for path planning 

is divided into four distinct channels to simplify the agent’s 

learning. Specifically, Channel 1 contains the agent 𝑖’s local 

observation of the environment. Channel 2 represents the 

position of goal 𝑣𝑖,𝑔, or its projection into the boundary of the

local observation 𝑝𝑖,𝑔
𝑡 . Channel 3 displays the intercepted path

𝑒𝑖
𝑡 calculated by agent 𝑖 using the A* algorithm under global

static map information (here other agents 𝑗 ∈ 𝑀  are not 

considered). Channel 4 shows the relative positions of other 

neighboring agents 𝑗 ∈ 𝑁𝑖  with respect to agent 𝑖 . By

separating the information into different channels, agents can 

understand and process their local environment with higher 

efficiency, leading to improved performance in path planning. 

 
 
 

4.3 Information Extraction Layer 
In the information extraction layer, a Convolutional Neural 

Network (CNN) architecture is leveraged to process the 

information within local observation space. The key role of CNN 

is to extract features from the local observation through local 

receptive fields and weight sharing strategies. This process helps 

preserve and utilize the spatial structural information inherent in 

the input observation. Specifically, the input observation feature 

𝑜𝑖
𝑡 is processed by a CNN operating internally on agent 𝑖. Then

CNN generates a vector �̃�𝑖
𝑡 ∈ ℝ𝐻 , which contains 𝐻

observations (�̃�𝑖
𝑡 = 𝐶𝑁𝑁(𝑜𝑖

𝑡)). The observation matrix �̃�𝑡 can

be expressed as: 

�̃�𝑡 = [

�̃�1,1
𝑡 �̃�1,2

𝑡 ⋯ �̃�1,𝐻
𝑡

⋮ ⋮ ⋱ ⋮
�̃�𝑀,1
𝑡 �̃�𝑀,2

𝑡 ⋯ �̃�𝑀,𝐻
𝑡

] ∈ ℝ𝑀×𝐻  (1) 

The �̃�𝑖
𝑡 can be subsequently transferred to nearby agents.

The primary use of the CNN is to transform the input observation 

features 𝑜𝑖
𝑡 into a higher-level feature �̃�𝑖

𝑡.

Figure 3 shows the CNN architecture for information 

extraction, which is constructed by three sequentially stacking 

convolutional modules according to previous research [7]. Each 

of the three modules comprises Conv2-BatchNorm2d-ReLU-

MaxPool layers. This architecture allows efficient processing of 

local observation information and facilitates effective 

communication between agents. The generated �̃�𝑖
𝑡 will undergo

further processing through information aggregation layer as 

detailed in the subsequent section.  

FIGURE 3: The CNN architecture for information extraction. 

4.4 Information Aggregation Layer 
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FIGURE 1: The overall workflow of the proposed decentralized MAPP approach. 

FIGURE 2: The available information in the finite field of view 

for path planning (i.e., 4 channels). It illustrates how we process 

the partial observations of each robot.  
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The information aggregation layer comprises two parts. The 

first part is a request-reply based selective communication 

procedure, which aims to reduce the communication burden by 

narrowing down the communication scope of agents within a 

certain range. The second part involves the implementation of a 

graph attention network for feature aggregation with the selected 

agents. 

4.4.1 The Request-Reply Based Selective 
Communication Procedure 

Figure 4 shows the procedure of the request-reply based 

selective communication. It involves a two-step communication 

filtering process. The first step is quadrant selection based on the 

feature information extracted from the global static map. Let 

𝑄𝑖 = {𝑄1, 𝑄2, 𝑄3, 𝑄4} be the four quadrants of the agent 𝑖’s local

field of view. We can then determine a smaller quadrant set 𝑄𝑖
′

that contains 𝑝𝑖,𝑔
𝑡  and 𝑒𝑖

𝑡, in which 𝑝𝑖,𝑔
𝑡  is the projection of the

agent’s goal position into the boundary of the agent’s local 

observation and 𝑒𝑖
𝑡  is the intercepted path information.

Agents situated in 𝑄𝑖
′  are assumed to have additional

communication value, thereby the set of neighboring agents with 

necessity of communication for agent 𝑖 can be narrowed down. 

Here we use 𝑁𝑖 to represent the set of neighboring agents in the

local field view of the agent 𝑖 , and 𝑁𝑖
′  as the set of agents

located in 𝑄𝑖
′. Obviously, the number of neighboring agents that

agent 𝑖 needs to communicate with becomes smaller.  

The second step is the request-reply mechanism-based 

selection. The request-reply mechanism depends on the 

information extraction layer and the action output layer, to get 

temporary actions. Agent 𝑖 gets its local observation 𝑜𝑖
𝑡 from

the environment and constructs another modified observation 

𝑜𝑖,−𝑗
𝑡 ( −𝑗  means without agent 𝑗 ,  𝑗 ∈ 𝑁𝑖

′ ) by setting the

information at agent 𝑗’s position to some special value, such as 

zero.  

Each 𝑜𝑖,−𝑗
𝑡 is passed through the information extraction 

layer to get an embedding �̃�𝑖,−𝑗
𝑡 . By skipping the information 

aggregation layer, �̃�𝑖
𝑡 and �̃�𝑖,−𝑗

𝑖 are directly fed into the action 

output layer to compute action-values. Actions �̃�𝑖
𝑡  and �̃�𝑖,−𝑗

𝑡

are inferred by applying argmax function over action-values. If 

these two actions match with each other, we infer that the 

existence of agent 𝑗 will not affect agent 𝑖’s policy, then agent 

𝑖 will not request communication from agent 𝑗. Equation (2) 

shows the selective communication function for agent 𝑖: 

𝜌𝑖𝑗 = {
0, if �̃�𝑖

𝑡 = �̃�𝑖,−𝑗
𝑡 , 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁𝑖

′

1,  otherwise
 (2) 

FIGURE 4: An illustration of the request-reply based selective communication procedure. In the first step, the communication range 

is narrowed down to quadrant 𝑄𝑖
′ = {𝑄1, 𝑄4} where 𝑝𝑖,𝑔

𝑡  is located and 𝑒𝑖
𝑡 passes. Then the agents located in these quadrants (i.e., 

agents 𝑙, 𝑗 and 𝑘) are assumed to have potential communication value. By inputting 𝑜𝑖
𝑡, 𝑜𝑖,−𝑙

𝑡 , 𝑜𝑖,−𝑗
𝑡  and 𝑜𝑖,−𝑘

𝑡 to information 

extraction layer and action output layer, we can find the difference or similarity between output action �̃�𝑖
𝑡 and �̃�𝑖,−𝑙

𝑡 , �̃�𝑖,−𝑗
𝑡 , �̃�𝑖,−𝑘

𝑡 . 

This information will be used to determine the necessity of communicating between agent 𝑖 and other agents (𝑙, 𝑗, 𝑘), completing 

the second step of selective communication procedure. Finally, the GAT is used to aggregate the feature information of agents 𝑗 
and 𝑘 as these two agents have passed the check of the selective communication procedure. 
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Note that temporary actions �̃�𝑖
𝑡 and �̃�𝑖,−𝑗

𝑡  are only used to

decide the communication scope, not the final actions to be 

executed. Then the communication scope of agent 𝑖  can be 

determined by the set of agents 𝒮𝑖 as shown in Equation (3):

𝒮𝑖 = {𝑗 ∣ 𝜌𝑖𝑗 = 1, 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁𝑖
′} (3) 

4.4.2 The Graph Attention Network (GAT) 
After getting the neighboring agents with necessity of 

communication through the selective communication procedure, 

we use the graph attention network (GAT) [18] to aggregate the 

feature information of these agents. The goal of the GAT is to 

update the features of each agent by aggregating information 

from its neighboring agents, considering both the features of the 

selected neighbor agents and the edge weights obtained from the 

attention mechanism. 

In the GAT process, we first apply the linear transformation 

to the feature vector of each agent �̃�𝑖
𝑡 (𝑖 ∈ 𝑀), using a shared

weight matrix 𝑊 ∈ ℝ𝐻′×𝐻, where 𝐻 and 𝐻′ are the input and

output feature dimensions, respectively. 

ℎ𝑖
𝑡 = 𝑊(�̃�𝑖

𝑡)𝑇  (4) 

The attention mechanism computes the importance of each 

selected neighboring agent’s information to the current agent 𝑖. 

The attention function is denoted by 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛:ℝ𝐻′
× ℝ𝐻′

→
ℝ, and the attention coefficients 𝑒𝑖𝑗

𝑡  are computed as:

𝑒𝑖𝑗
𝑡 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑖

𝑡, ℎ𝑗
𝑡)  (5) 

The choice for the attention mechanism 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  is a 

single-layer feedforward neural network with the LeakyReLU 

activation function: 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑖
𝑡 , ℎ𝑗

𝑡) = LeakyReLU(𝑎𝑇[ℎ𝑖
𝑡 ⊕ℎ𝑗

𝑡])  (6) 

where 𝑎 ∈ ℝ2𝐻′
 is a trainable weight vector, .𝑇  represents

matrix transposition, and ⊕ denotes the concatenation of two 

vectors. The attention coefficients are then normalized using the 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function: 

𝛼𝑖𝑗
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗

𝑡 ) =
exp(𝑒𝑖𝑗

𝑡 )

∑ exp(𝑒𝑖𝑘
𝑡 )

𝑘∈𝒮(𝑖)

 (7) 

Now, we can update the features of each agent by 

aggregating the information from its neighbors, weighted by the 

normalized attention coefficients: 

ℎ̃𝑖
𝑡 = 𝜎( ∑ 𝛼𝑖𝑗

𝑡 ℎ𝑗
𝑡

𝑗∈𝒮(𝑖)

)  (8) 

where 𝜎: R → R denotes a sigmoid activation function. To 

improve the model’s capacity and stability, we use multi-head 

attention, where we learn 𝐾 independent attention mechanisms: 

ℎ̃𝑖
𝑡(𝑘) = 𝜎( ∑ 𝛼𝑖𝑗

𝑡(𝑘)𝑊𝑘(�̃�𝑖
𝑡)𝑇

𝑗∈𝒮(𝑖)

) (9) 

The final output features can be obtained by concatenating 

the output of all attention heads: 

ℎ̃𝑖
𝑡(𝑘) = ⨁𝑘=1

𝐾 ℎ̃𝑖
𝑡(𝑘)  (10) 

where ⨁ represents concatenation. Note that, in this setting, the 

final returned output, ℎ̃𝑖
𝑡(𝑘)

, will consist of 𝐾 × 𝐻′  features 

(rather than 𝐻′) for each node. The final feature ℎ̃𝑖
𝑡(𝑘)

 is further

translated into actions through the action output layer as 

described in the following section. 

4.5 Action Output Layer 
The final movement decision for agent 𝑖 at time step 𝑡 is 

determined by the action output layer. In this layer, we employ a 

Multi-Layer Perceptron (MLP) as the decision-making 

component, i.e., 𝑎𝑖
𝑡 = 𝑀𝐿𝑃(ℎ̃𝑖

𝑡(𝑘)) . The MLP, which shares

weights across all agents, receives the output from the 

information aggregation layer and maps the feature information 

into action vectors. A 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is applied after the 

MLP layer to convert the action vector into a probability 

distribution vector for five discrete actions (i.e., move up, down, 

left, right, and stop). The action with the highest probability is 

selected as the final output action, in which the argmax function 

is used to choose the action with the highest probability. The 

final generated path for the agent 𝑖 is a set of sequential actions 

{𝑎𝑖
1, . . . , 𝑎𝑖

𝑡}, which represents the agent 𝑖’s trajectory from the

starting position to the goal position. 

4.6 The Training Procedure of Our Approach 
In our study, the agents operate in a 𝑙𝑤 × 𝑙ℎ  grid world

with randomly placed static obstacles. We generate random 

cases for each grid map, consisting of pairs of starting and goal 

vertices for all agents. Duplicate or invalid cases are eliminated, 

and the remaining cases are stored in a pool of training sets, 

which are randomized during training. For each case, we first use 

the expert algorithm ECBS to compute the solution. At the 

beginning of training, we have the expert actions {𝐸∗} for all 

agents and the corresponding local feature observation {𝑂t}, 

collected in the training set 𝒯 = {({𝐸∗}, {𝑂t})}. The predicted

action trajectories obtained from the imitation learning network 

are denoted as �̂�. We use the cross-entropy loss function ℒ(. , . ) 
to train the network: 

6 Copyright © 2023 by ASME



ℒ(�̂�, 𝐸∗) = −∑ ∑ 𝐸𝑖
∗(𝑜𝑖

𝑡)log �̂�𝑖(𝑜𝑖
𝑡)𝑀

𝑖=1
𝑇
𝑡=1  (11) 

where 𝑇 is the total number of time steps. 

During the training process, the collision shielding safety 

mechanism [7] is utilized to ensure the agent learns collision-free 

paths. In the event of vertex or edge collisions, the affected 

agent’s action is replaced with an idle action. At that moment, 

the agent remains idle until it times out, which is considered as a 

failure case. As deadlocks between agents can occur, using the 

collision shielding safety mechanism may result in planning 

failures where some agents remain idle throughout the rest 

planning process. For every 𝐶  epochs, we select 𝑛  random 

cases from the training set and check these cases. For the failed 

cases, we use the expert algorithm ECBS to continue planning 

and obtain successful solutions. The successful cases are then 

added back to the training set. Additionally, for the successfully 

planned cases in 𝑛  random cases, we check whether the 

planned paths deviate significantly from the expert-planed paths. 

If the deviation ratio exceeds a threshold value 𝑟𝑑, these cases

will be added back to the training set for re-training. This 

treatment can support the planned paths from our approach to 

approximate the expert-planned paths as much as possible. 

4.7 The Strategy Switching Mechanism 
As mentioned earlier, when deploying the trained models in 

simulated environments, the success rate for agents to reach their 

goals seldom achieves 100%. This limitation can be attributed to 

the trained model’s struggling with handling complex 

environments such as local traps. Local traps are areas where 

agents become stuck or fail to find viable paths due to restricted 

local conditions, such as dead ends or areas with a high density 

of obstacles. To mitigate this issue and increase the success rate, 

we develop a strategy switching mechanism that can adaptively 

switch between the expert A* algorithm using the global static 

map and the learning-based algorithm when encountering local 

traps. As depicted in Figure 5, the mechanism operates as follows: 

(1) Detection of local traps: We first design a local trap 

detector that monitors the agents’ states and identifies the 

trapping situations. This detection is based on the number of 

repeated visits to a particular grid cell. We create a visit counter 

matrix 𝐶  with the same dimensions as the grid-based 

environment, initialized with zeros. Each element in this matrix 

corresponds to a grid cell and stores the number of times that the 

agent has visited to that cell. Then the visit counter matrix will 

be updated for each time step 𝑡. At each step 𝑡, the current grid 

cell’s visit count in the matrix will be checked. If the visit count 

exceeds the threshold 𝛿, it is considered as a local trap.  

(2) Switching to expert guidance: Once a local trap is 

detected, the path planning strategy switches to use expert-

planed path guidance (see the purple cells in Fig. 5) generated 

from A* algorithm for a predetermined number of steps 𝜂, until 

the agent reaches the boundary of its local observation space. 

(3) Switching back to learning-based algorithm: If the agent 

has successfully completed the predetermined number of steps 

and reaches the boundary of its local observation space, the path 

planning strategy reverts to the learning-based path planning 

algorithm. This enables the agent to continue exploring the 

environment and dynamically adjust its path based on the current 

state (see the green cells in Fig. 5).  

FIGURE 5: An illustration of the strategy switching mechanism. We only show the visit counter matrix 𝐶 in the local field of 

view of agent 𝑖 (see the red dot). As depicted by the yellow marker, if the visit count exceeds the threshold value 𝛿, the system 

identifies the agent 𝑖 as being in a local trap. In such case, the agent switches to the expert algorithm for path planning to get out 

of the trap. 
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5. EXPERIMENT SETTINGS AND RESULTS
In this section, we first introduce the settings of the model

parameters and experiment environment. Then the performance 

evaluation metrics and different MAPP methods to be compared 

are introduced. Finally, the experimental results are analyzed and 

discussed. 

5.1 Model Parameters and Environment Settings 
In the information extraction layer, a convolutional kernel 

size of 3 with a stride of 1 and no padding is used. The number 

of shared features 𝐻 before the aggregation layer is set to 64. In 

the information aggregation layer, we use one layer of the graph 

attention network with a 𝐾 value of 4 for multi-head attention 

mechanism. During the network training process, we randomly 

select 𝑛 = 200  cases from the training set every 𝐶 = 5 

epochs to check for failed cases and cases that deviate 

significantly from expert-planned paths. The Adam optimizer 

with a momentum of 0.9 is used. A dynamic learning rate is used 

with a starting value of 10−4, which is decreased by 50% at 200 

epochs and 400 epochs, respectively. For the application 

inference phase, we set the visit count threshold value 𝛿 to 4. 
According to the environment settings in previous research 

[7,14], we initialized 500 different maps of size 𝑙𝑤 × 𝑙ℎ =
20 × 20, with 70% of them being used for training, 15% for 

validation, and 15% for testing. Furthermore, each map contains 

40 randomly placed obstacles. It’s also worth mentioning that 

each map generates 60 cases, with each case consisting of 𝑀 =
10 agents. The local field of view is set as 𝑟𝑤 × 𝑟ℎ = 7 × 7. In

order to fairly compare the performance of our approach with 

other existing methods and to assess the generalization 

capabilities, we generate 1000 test cases based on each 

predefined map as shown in Table 1. The robot density of 

predefined map is calculated by  𝜌𝑟 = 𝑀 (𝑙𝑤 ∗ 𝑙ℎ⁄ ) . The

generalization capability of the algorithm is evaluated on maps 

with robot density same as the training set, as well as on maps 

with varying robot density. 

TABLE 1: Predefined maps in the test cases. 𝑙𝑤 × 𝑙ℎ is the size

of a map, and 𝑀 is the number of robots on the map. In each 

map, the obstacle density (i.e., the ratio between the number of 

obstacles and total cells on a map) is set to 0.1.  

Maps in Category 1 

(same robot density) 

Maps in Category 2 

(varying robot densities) 

𝑙𝑤 × 𝑙ℎ 𝑀 𝑙𝑤 × 𝑙ℎ 𝑀 

20x20 10 50x50 10 

28x28 20 50x50 20 

35x35 30 50x50 30 

40x40 40 50x50 40 

45x45 50 50x50 50 

65x65 100 50x50 60 

5.2 Performance Evaluation Metrics 

In the experiments, we evaluate the performance of the 

proposed approach with three metrics, namely success rate, 

flowtime variation, and communication frequency. 

(1) Success rate. It measures the ability of the algorithm to 

complete MAPP within a given time steps. It is defined as 𝑠𝑟 =
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑛𝑡𝑜𝑡𝑎𝑙⁄ , the proportion of successful cases 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠
over the number of total tested cases 𝑛𝑡𝑜𝑡𝑎𝑙. A higher success

rate indicates that the algorithm is more successful in achieving 

planning completion in a timely manner. 

(2) Flowtime variation. It quantifies the deviation of the 

planning completion time between learning-based methods and 

expert algorithms. It is described as 𝑓𝑣 = (�̂�𝑝 − 𝐸𝑝
∗) 𝐸𝑝

∗⁄ . 𝐸𝑝 is

defined as the planning completion time taken for all agents to 

reach their respective goals. A lower value of 𝑓𝑣  indicates

greater resemblance to expert algorithms and superior 

performance. 

(3) Communication frequency 𝑐𝑓 . It characterizes the

frequency of feature interaction in the information aggregation 

layer, reflecting the cost associated with communication. The 

lower 𝑐𝑓 observed under the same success rate and flowtime

variation indicates higher communication efficiency and better 

performance of the algorithm. 

5.3 Compared Methods 
We evaluate and compare the performance of our proposed 

approach GAT-GS (GS means global static feature extraction 

and selective communication) with several ablation methods 

including: 

(1) GAT-S: without global static feature extraction. 

(2) GAT-G: without selective communication. The central 

agent aggregates features from all agents within its field of view 

(FOV). 

(3) GAT-GS-noS: without the strategy switching 

mechanism. 

Additionally, we compare our methods with the state-of-the 

art imitation learning-based MAPP methods, GNN [7] and 

MAGAT-B [14]. To ensure a fair comparison, we set the 

planning time limit to three times that of the expert algorithm, 

and consider a case as failed if it cannot find the solution within 

the time limit. Figure 6 shows two examples of the simulated 

grid maps.  

FIGURE 6: Two examples of the simulated grid maps. (a) 

20 × 20  map size, 10 agents; (b) 65 × 65  map size, 100 

agents. 

5.4 Experiment Results 
5.4.1 Success Rate and Flowtime Variation 

(a) (b)
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Figure 7(a) shows that our proposed approach GAT-GS 

outperforms other methods in success rate. It has a consistently 

high success rate of approximately 95% in the maps with same 

robot density, which is the highest among all methods. 

Moreover, GAT-GS also shows the best performance in 

flowtime variation, with values consistently below 0.065 as 

shown in Figure 7(c). Even in the map with the highest robot 

density, GAT-GS achieves a success rate of over 93% (see 

Figure 7(b)), with a flowtime variation maintained around 0.1, 

which is the best performance among all methods. These results 

indicate the significant advantages of GAT-GS over other 

imitative learning-based algorithms such as GNN and MAGAT-

B, particularly in terms of success rate. 

Furthermore, the ablation experiments provide valuable 

insights into the performance of our approach. A comparison 

between GAT-GS and GAT-S shows that the inclusion of global 

static features in GAT-GS resulted in a significant improvement 

in the success rate, suggesting that incorporating additional 

reference information for local observation can contribute to 

higher success rate. A comparison among GAT-G and GAT-GS 

reveals that focusing on specific valuable neighboring agents 

rather than all agents in the field of view for feature aggregation 

can achieve better results, particularly in maps with high density 

of robots. This observation will be discussed in detail in the next 

subsection. Furthermore, our strategy switching mechanism 

shows promising results in improving the success rate, 

particularly in maps with low robot density. This indicates that 

the developed strategy switching mechanism has the potential to 

address the local trap problem to some extent.  

5.4.2 Communication Frequency 
Table 2 shows the communication frequency of two 

methods in maps with varying robot densities. We can see that 

the proposed GAT-GS approach can reduce communication 

frequency by an average of 70% compared to GAT-G These 

findings emphasize the importance of actively selecting 

appropriate agents for communication in decentralized multi-

agent path planning. Lowering communication frequency can 

potentially reduce the chances of communication errors, packet 

loss, or interference, especially in real-world scenarios where 

wireless communications can be unpredictable. This makes 

GAT-GS a potentially more reliable method in challenging 

communication environments. 

The results in Table 2 are consistent with the results in 

Figure 7. The proposed approach GAT-GS using the request-

reply based selective communication procedure achieves the best 

results, while the GAT-G (the central agent communicates with 

all surrounding agents) has the worst performance. The findings 

from Figure 7 and Table 2 also indicate that increasing the 

frequency of communication interactions with surrounding 

agents does not necessarily result in improved performance of 

path planning. 

(a) (b)

(c) (d)
FIGURE 7: The success rate and flowtime variation of different methods against different maps. (a) and (c) show the results in 

maps with same robot density, while (b) and (d) show the results in maps with varying robot densities. 
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TABLE 2: Communication frequency of two methods in maps 

with varying robot densities. 𝑙𝑤 × 𝑙ℎ is the size of a map, and

𝑀 is the number of robots in the map. 

𝑙𝑤 × 𝑙ℎ = 50 × 50 

𝑀 GAT-GS GAT-G 

20 1155.3 4860.9 

30 2224.6 8139.3 

40 3835.9 12141.1 

50 5742.2 16624.6 

60 8217.4 21723.4 

100 18397.1 45834.7 

5.4.3 Discussion 
The purpose of our experiments is to evaluate the effect of 

introducing the global static feature extraction, the request-reply 

based selective communication, and the strategy switching 

mechanism in improving the performance of MAPP in different 

maps. Our findings show that these treatments indeed improve 

the algorithm performance to a certain extent. Additionally, our 

proposed approach exhibits similar performance to expert 

algorithms in terms of flowtime variation. 

One limitation of our approach is the additional 

computational load when computing the A* expert algorithm 

under a global static map, especially when dealing with a large 

number of agents. However, since the planning process only 

considers the static map and the robot’s own location 

information, the computational burden remains manageable and 

can be distributed across multiple robots. Furthermore, the paths 

calculated from the A* expert algorithm serve as a guide for later 

selective communication procedure, which can reduce the 

communication load between agents greatly. This is especially 

important in high-density or highly dynamic environments, 

where robot-to-robot communication may be subject to 

interference or connection loss, resulting in failed path planning. 

6. CONCLUSION
In this paper, we present a decentralized MAPP approach

based on imitation learning and global static feature extraction. 

Our approach incorporates global static feature information to 

augment the available information sources during decentralized 

path planning. We also design a request-reply based selective 

communication procedure that allows agents to proactively 

choose relevant and impactful neighbors for communication. 

Additionally, we develop a strategy switching mechanism that 

adaptively utilizes expert-planned paths under a global static 

map to assist agents in escaping from local traps. The 

effectiveness of our proposed approach is evaluated through 

extensive simulations in grid environments with varying map 

sizes and numbers of agents. The experimental results 

demonstrate that our approach achieves a high success rate in 

path planning while significantly reducing the communication 

load. Our approach can be particularly advantageous in scenarios 

with low communication bandwidth or unstable communication 

quality. Overall, this study offers a promising solution for 

decentralized MAPP, and we expect that our work will inspire 

the development of more advanced methods in this area. 

For future research directions, we recommend further 

investigation into improving the generalizability and robustness 

of our approach in more complex and dynamic environments, as 

well as exploring potential extensions of our approach to real-

world implementations. Meanwhile, we intend to design various 

network architectures to further improve the performance of our 

approach. Additionally, the combination of our approach with 

other machine learning techniques, such as reinforcement 

learning or meta-learning, could also be an interesting direction 

for future work. 
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