
A DECENTRALIZED MULTI-AGENT PATH PLANNING APPROACH BASED ON IMITATION
LEARNING AND GLOBAL STATIC FEATURE EXTRACTION

Bohan Feng1 Youyi Bi1* Mian Li2 Liyong Lin3

1 University of Michigan –
Shanghai Jiao Tong University

Joint Institute
Shanghai Jiao Tong University

Shanghai, China

2 Global Institute of Future
Technology

Shanghai Jiao Tong University
Shanghai, China

3 Contemporary Amperex
Technology Co., Limited,

No. 2, Xingang Road,
Zhangwan Town,

Jiaocheng District, Ningde,
Fujian, China

ABSTRACT
Multi-agent path planning is a crucial problem in numerous

industrial robotic implementations, ranging from smart material

transportation, mobile patrolling to automated warehousing. In

this paper, we introduce a decentralized multi-agent path

planning approach based on imitation learning and global static

feature extraction. Our approach employs a convolutional

neural network in the information extraction layer to obtain

features from local field-of-view observations and expert-

planned paths under a global static map. The information

aggregation layer then uses a graph attention network to

combine feature information from selected neighboring agents.

The request-reply based selective communication is also applied

in the information aggregation layer to identify appropriate

neighboring agents to be included in the graph attention

network. Finally, the action output layer translates the

aggregated feature information into actions for each agent.

Additionally, we develop a strategy switching mechanism that

adaptively utilizes expert-planned paths under a global static

map to support agents to escape from local traps. The

effectiveness of our proposed approach is evaluated in simulated

grid environments with varying map sizes, obstacle densities,

and numbers of agents. Experimental results demonstrate that

our approach outperforms other decentralized path planning

methods in success rate and generalizability. Furthermore, our

approach is computationally efficient and scalable, making it

suitable for real-world applications.

Keywords: Decentralized control, Mobile robot, Multi-

agent Path Planning, Selective communication

* Corresponding author, Assistant Professor in Mechanical Engineering, Shanghai Jiao Tong University

Email: youyi.bi@sjtu.edu.cn

1. INTRODUCTION
In the era of Industry 4.0, mobile robots are playing a

significant role in transforming various aspects of modern

manufacturing, such as mobile assembly, smart material

transportation, and production line patrolling [1,2].

Consequently, the development of efficient multi-agent path

planning (MAPP) algorithms is crucial to ensure these robots to

work safely and properly [3].

The aim of MAPP is to generate collision-free paths for

multiple agents to move from their initial positions to target

positions on a given map. Traditional MAPP typically adopts a

centralized approach, in which a central planning unit generates

paths for all agents based on global information. Centralized

methods can offer optimality and completeness in their solutions,

ensuring that the best possible path is found for each agent if it

exists [4,5]. However, these methods suffer from scalability

issues as the number of robots increases, making them less

suitable for applications with large-scale robots in complex

environments [3].

Recent studies explore to develop decentralized MAPP

methods in which each agent computes its own path and make

movement decisions based on local information [6,7]. In the case

of conflicts, only the affected agents need to replan their paths.

Decentralized methods significantly reduce the computational

burden of the central planning unit, making it more scalable for

large-scale systems. Nevertheless, decentralized methods may

not always produce optimal solutions since they prioritize

generating efficient paths for individual agents with a lack of

Proceedings of the ASME 2023
International Mechanical Engineering Congress and Exposition

IMECE2023
October 29-November 2, 2023, New Orleans, Louisiana

IMECE2023-113113

1 Copyright © 2023 by ASME

considering the overall system efficiency. These methods also

face the problem of limited successful deployment in complex

scenarios as they cannot fully exploit the information from

global static environment, e.g., the result of single-agent path

planning in the global static map. This information can assist

with more comprehensive perception of local environment

features and support more efficient communication among

neighboring agents.

Therefore, in this paper we propose a novel decentralized

multi-agent path planning approach based on imitation learning

and global static feature extraction. The core idea is to utilize a

learning-based architecture integrated with global static feature

information to enhance the accuracy and practicality of

decentralized path planning without compromising its scalability

in complex environments. The effectiveness of the proposed

approach is validated in simulated grid environments with

varying map sizes, obstacle densities, and numbers of agents.

The experiment results show that our approach outperforms

other decentralized path planning methods in success rate and

generalizability. The primary contribution of this paper includes:

− A decentralized multi-agent path planning approach based

on imitation learning and global static feature extraction is

proposed.
− A graph attention network to combine feature information

from request-reply based selective communication

procedure is designed.
− A strategy switching mechanism that adaptively utilizes

expert-planned paths under a global static map to support

agents to escape from local traps is developed.
The rest of the paper is structured as follows: Section 2

presents a literature review of related work in multi-agent path

planning. Section 3 introduces the problem formulation. Section

4 shows the overall architecture of our approach and explains the

key techniques involved, including the three layers of imitation

learning and the strategy switching mechanism. Section 5

compares the performance of our approach with other state-of-

the-art algorithms in a simulated grid environment. Lastly,

Section 6 provides a summary of our study and highlights

potential directions for future research.

2. RELATED WORK
MAPP methods can be classified into centralized and

decentralized. In centralized methods, a central planning unit

calculates coordinated waypoints for all robots based on their

locations and destinations. The robots then use this information

for real-time navigation. By considering all robots sharing a

common state space, centralized methods can provide optimal

and complete path plans, but their computational demand is high

when the working environment for robots is complex. For

example, conflict-based search (CBS) and its variant Enhanced

CBS (ECBS) [4,8] can find optimal or suboptimal path solutions

in which the high-level central unit searches for a set of collision

constraints and impose these constraints on individual agents.

M* and its variant [5] extend the standard A* algorithm to

generate paths for each agent and apply a sub-dimensional

expansion strategy to dynamically increase the dimensionality of

the search space in regions where agent collisions occur. The

operator decomposition (OD) and M* are combined by OD-

recursive-M* (ODrM*) [9] to keep the branching factor small

during the search, which reduces the agents that require joint

planning. Despite some progress has been made in reducing the

computational load, these centralized methods still struggle to

handle environments with numerous potential path conflicts.

In contrast to centralized methods, decentralized MAPP

methods rely less on a central unit and more on individual agents

to make independent planning decisions based on local

environment information. Optimal reciprocal collision

avoidance (ORCA) [10] is a classical decentralized method,

which assumes that each agent has complete knowledge of the

shape, position, and velocity of its neighbor agents. Using this

information, the robot computes its velocity to ensure safe

planning within its next time step. In recent years, learning-based

decentralized MAPP algorithms are receiving higher interest.

Researchers explored to use imitation learning or reinforcement

learning to train robots to move independently according to

locally sensed information [11]. PRIMAL [6] is a classical

decentralized MAPP framework based on reinforcement

learning and imitation learning, allowing robots to plan paths and

coordinate in real-time within a partially observable world. Li et

al. [7] demonstrate the potential of graph neural networks

(GNNs) in learning explicit communication policies for complex

multi-robot coordination. They also use imitation learning to

enable decentralized algorithms to approximate the performance

of centralized expert algorithms. Distributed, Heuristic and

Communication (DHC) [12] combines graph neural networks

with deep Q-learning to improve policy performance in complex

obstacle environments. Chen et al. [13] introduce a new

framework based on imitation learning and reinforcement

learning that combines transformer structures, contrastive

learning, and dual deep Q networks to achieve feasible MAPP in

dense environments without requiring inter-robot

communication.

In the field of large-scale robotic systems, the ability of

learning-based approaches to handle high-dimensional state-

space representations is of particular interest. One advantage of

learning-based decentralized planning is that each robot can

gather information from other nearby robots, enabling more

efficient coordination. However, current learning-based

algorithms have not adequately addressed the following

important questions:

− What feature information should be effectively shared

among agents? While effective communication is key to

decentralized path planning, it is not yet obvious what

information is critical to the planning and what information

should be shared among agents. Due to the complexity of

MAPP problems, the optimal strategy of coordination is

unknown and the rule-based coordination usually cannot

provide the required performance [11]. Existing learning-

based decentralized MAPP algorithms mainly rely on the

guidance of target directions for path planning, and they

often ignore the auxiliary information from global static

2 Copyright © 2023 by ASME

map in local feature extraction. By making full use of this

auxiliary information, it is expected that the success rate of

learning-based decentralized MAPP algorithms can be

further improved.

− Is the feature information of all neighboring agents equally

important? Most existing learning-based MAPP algorithms

employ broadcasting communication to all neighboring

agents. In fact, frequent communications lead to high

communication and computational burden. Researchers

have proposed several methods to alleviate this issue, such

as Attention Mechanism [14], Temporal Message Control

(TMC) [15], Individually Inferred Communication (I2C)

[16], Decision Causal Communication [17], etc. While

some of these methods can adjust information passing

among agents, they may struggle to effectively deal with

redundant or repetitive data that does not add new insights

into the decision-making process of path planning. It is still

not fully clear how the communication between neighbors

can be further optimized according to the local feature

information.
− How can local traps be effectively handled in learning-

based path planning? Although existing learning-based

algorithms have achieved good performance in many

scenarios, it is still challenging for them to achieve a 100%

success rate [13]. A typical kind of planning failure is local

trap, in which a robot oscillates around a few positions as

its outward passages are blocked by obstacles or other

robots. One possible solution to this issue is to utilize

expert-planned paths under a global static map to provide

guidance for these agents to escape from local traps.

In this paper, we expect to preliminarily address the above

issues by introducing a decentralized MAPP approach based on

imitation learning and global static feature extraction. The global

static feature information is incorporated into the local feature

extraction for agents, and guides the selection of communication

between agents within a certain range. With the support of a

strategy switching mechanism using local expert-planned path

information based on global static feature, the success rate of

learning-based MAPP can be further improved.

3. PROBLEM FORMULATION
In our MAPP research, the focus is placed on 2D grid maps

(see Fig.1), characterized by 4-neighbor connectivity. In this

setting, each entity (i.e., an agent or an obstacle) occupies a

single grid cell. The map is represented by an 𝑙𝑤 × 𝑙ℎ graph

matrix, with 0 representing a free vertex and 1 indicating an

occupation vertex. For each map, we choose the starting and

corresponding goal vertices for 𝑀 agents from the available

free positions. Each goal vertex is reachable from its starting

vertex, and there is no overlap among the 2𝑀 chosen positions.

Time is divided into discrete intervals, referred to as time steps.

At each time step 𝑡, agents can move to adjacent positions or

wait at their current vertices, resulting in an action space with a

size of five (i.e., move upward, downward, left, right or remain

stationary). The path for agent 𝑖 is defined as a series of

connected vertices (i.e., moving) or identical vertices (i.e.,

waiting). After reaching their goal vertices, agents maintain their

positions. We consider a partially observable environment,

which is more representative in real-world scenarios. Each agent

can access information only within its perceptual space. The

perceptual space of agent 𝑖 at time 𝑡, denoted by 𝑜𝑖
𝑡 , is the

sensing area of size 𝑟𝑤 × 𝑟ℎ centered at the agent’s position.

Here, 𝑟𝑤 < 𝑙𝑤 and 𝑟ℎ < 𝑙ℎ represent the width and height of

the perceptual space are smaller than that of the whole map.

During operation, the agent should avoid collisions with

obstacles or other agents. The goal of MAPP is to find a set of

paths devoid of collisions for each agent. The solution’s quality

is evaluated based on the maximal arrival time steps of all agents

at their respective goal vertices.

4. METHODS

4.1 The Overall Structure of The Proposed Approach
Figure 1 shows the overall workflow of the proposed

decentralized MAPP approach. Our approach adopts an

imitation learning architecture, consisting of three major layers:

information extraction, information aggregation and action

output. In imitation learning, by leveraging expert

demonstrations, agents can rapidly learn complex behaviors,

significantly reducing the learning time compared to trial-and-

error methods such as reinforcement learning. Moreover,

imitation learning offers transferability, allowing the learned

decentralized policy to be easily adapted in different scenarios.

As depicted in Fig.1, the local observation of agent 𝑖 is

first processed through the local observation space processing.

The agent 𝑖’s local observation is updated at each time step. The

obtained observation 𝑜𝑖
𝑡 is then fed into the information

extraction layer to get �̃�𝑖
𝑡. Subsequently, �̃�𝑖

𝑡 is passed into the

information aggregation layer, which aggregates information

through the request-reply based selective communication

procedure and graph attention network to obtain ℎ̃𝑖
𝑡(𝑘)

. Finally,

ℎ̃𝑖
𝑡(𝑘)

 is directed to the action output layer to generate the action

output 𝑎𝑖
𝑡. Additionally, in the application inference stage, we

design a strategy switching mechanism that adaptively switches

between the expert A* algorithm using the global static map and

the learning-based algorithm to help agents escape from local

traps. In the following subsections, the detailed explanations of

the major components of our approach and the strategy switching

mechanism are provided.

4.2 Local Observation Space
We consider a partially observable discrete grid world

where each agent has a finite field of view defined by an 𝑟𝑤 × 𝑟ℎ
matrix, and the global map is represented by an 𝑙𝑤 × 𝑙ℎ matrix

with random static obstacles. Beyond this field of view, the agent

cannot perceive any information. Partial observation is crucial

for real-world deployment of path planning, as it allows the

policy to be generalized to environments with arbitrary sizes and

reduces the neural network’s input dimensionality. We denote

the local observation space as 𝑜𝑖
𝑡. As illustrated in Figure 2, the

3 Copyright © 2023 by ASME

available information in the finite field of view for path planning

is divided into four distinct channels to simplify the agent’s

learning. Specifically, Channel 1 contains the agent 𝑖’s local

observation of the environment. Channel 2 represents the

position of goal 𝑣𝑖,𝑔, or its projection into the boundary of the

local observation 𝑝𝑖,𝑔
𝑡 . Channel 3 displays the intercepted path

𝑒𝑖
𝑡 calculated by agent 𝑖 using the A* algorithm under global

static map information (here other agents 𝑗 ∈ 𝑀 are not

considered). Channel 4 shows the relative positions of other

neighboring agents 𝑗 ∈ 𝑁𝑖 with respect to agent 𝑖 . By

separating the information into different channels, agents can

understand and process their local environment with higher

efficiency, leading to improved performance in path planning.

4.3 Information Extraction Layer
In the information extraction layer, a Convolutional Neural

Network (CNN) architecture is leveraged to process the

information within local observation space. The key role of CNN

is to extract features from the local observation through local

receptive fields and weight sharing strategies. This process helps

preserve and utilize the spatial structural information inherent in

the input observation. Specifically, the input observation feature

𝑜𝑖
𝑡 is processed by a CNN operating internally on agent 𝑖. Then

CNN generates a vector �̃�𝑖
𝑡 ∈ ℝ𝐻 , which contains 𝐻

observations (�̃�𝑖
𝑡 = 𝐶𝑁𝑁(𝑜𝑖

𝑡)). The observation matrix �̃�𝑡 can

be expressed as:

�̃�𝑡 = [

�̃�1,1
𝑡 �̃�1,2

𝑡 ⋯ �̃�1,𝐻
𝑡

⋮ ⋮ ⋱ ⋮
�̃�𝑀,1
𝑡 �̃�𝑀,2

𝑡 ⋯ �̃�𝑀,𝐻
𝑡

] ∈ ℝ𝑀×𝐻 (1)

The �̃�𝑖
𝑡 can be subsequently transferred to nearby agents.

The primary use of the CNN is to transform the input observation

features 𝑜𝑖
𝑡 into a higher-level feature �̃�𝑖

𝑡.

Figure 3 shows the CNN architecture for information

extraction, which is constructed by three sequentially stacking

convolutional modules according to previous research [7]. Each

of the three modules comprises Conv2-BatchNorm2d-ReLU-

MaxPool layers. This architecture allows efficient processing of

local observation information and facilitates effective

communication between agents. The generated �̃�𝑖
𝑡 will undergo

further processing through information aggregation layer as

detailed in the subsequent section.

FIGURE 3: The CNN architecture for information extraction.

4.4 Information Aggregation Layer

 ,

C
o

n
v

2

R
e
L

U

B
a
tc

h
N

o
rm

2
D

M
a
x
-P

o
o

l

In
p

u
t

C
o

n
v

2

R
e
L

U

B
a
tc

h
N

o
rm

2
D

M
a
x
-P

o
o

l

C
o

n
v

2

R
e
L

U

B
a
tc

h
N

o
rm

2
D

M
a
x
-P

o
o

l

O
u

tp
u

t

FIGURE 1: The overall workflow of the proposed decentralized MAPP approach.

FIGURE 2: The available information in the finite field of view

for path planning (i.e., 4 channels). It illustrates how we process

the partial observations of each robot.

4 Copyright © 2023 by ASME

The information aggregation layer comprises two parts. The

first part is a request-reply based selective communication

procedure, which aims to reduce the communication burden by

narrowing down the communication scope of agents within a

certain range. The second part involves the implementation of a

graph attention network for feature aggregation with the selected

agents.

4.4.1 The Request-Reply Based Selective
Communication Procedure

Figure 4 shows the procedure of the request-reply based

selective communication. It involves a two-step communication

filtering process. The first step is quadrant selection based on the

feature information extracted from the global static map. Let

𝑄𝑖 = {𝑄1, 𝑄2, 𝑄3, 𝑄4} be the four quadrants of the agent 𝑖’s local

field of view. We can then determine a smaller quadrant set 𝑄𝑖
′

that contains 𝑝𝑖,𝑔
𝑡 and 𝑒𝑖

𝑡, in which 𝑝𝑖,𝑔
𝑡 is the projection of the

agent’s goal position into the boundary of the agent’s local

observation and 𝑒𝑖
𝑡 is the intercepted path information.

Agents situated in 𝑄𝑖
′ are assumed to have additional

communication value, thereby the set of neighboring agents with

necessity of communication for agent 𝑖 can be narrowed down.

Here we use 𝑁𝑖 to represent the set of neighboring agents in the

local field view of the agent 𝑖 , and 𝑁𝑖
′ as the set of agents

located in 𝑄𝑖
′. Obviously, the number of neighboring agents that

agent 𝑖 needs to communicate with becomes smaller.

The second step is the request-reply mechanism-based

selection. The request-reply mechanism depends on the

information extraction layer and the action output layer, to get

temporary actions. Agent 𝑖 gets its local observation 𝑜𝑖
𝑡 from

the environment and constructs another modified observation

𝑜𝑖,−𝑗
𝑡 (−𝑗 means without agent 𝑗 , 𝑗 ∈ 𝑁𝑖

′) by setting the

information at agent 𝑗’s position to some special value, such as

zero.

Each 𝑜𝑖,−𝑗
𝑡 is passed through the information extraction

layer to get an embedding �̃�𝑖,−𝑗
𝑡 . By skipping the information

aggregation layer, �̃�𝑖
𝑡 and �̃�𝑖,−𝑗

𝑖 are directly fed into the action

output layer to compute action-values. Actions �̃�𝑖
𝑡 and �̃�𝑖,−𝑗

𝑡

are inferred by applying argmax function over action-values. If

these two actions match with each other, we infer that the

existence of agent 𝑗 will not affect agent 𝑖’s policy, then agent

𝑖 will not request communication from agent 𝑗. Equation (2)

shows the selective communication function for agent 𝑖:

𝜌𝑖𝑗 = {
0, if �̃�𝑖

𝑡 = �̃�𝑖,−𝑗
𝑡 , 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁𝑖

′

1, otherwise
 (2)

FIGURE 4: An illustration of the request-reply based selective communication procedure. In the first step, the communication range

is narrowed down to quadrant 𝑄𝑖
′ = {𝑄1, 𝑄4} where 𝑝𝑖,𝑔

𝑡 is located and 𝑒𝑖
𝑡 passes. Then the agents located in these quadrants (i.e.,

agents 𝑙, 𝑗 and 𝑘) are assumed to have potential communication value. By inputting 𝑜𝑖
𝑡, 𝑜𝑖,−𝑙

𝑡 , 𝑜𝑖,−𝑗
𝑡 and 𝑜𝑖,−𝑘

𝑡 to information

extraction layer and action output layer, we can find the difference or similarity between output action �̃�𝑖
𝑡 and �̃�𝑖,−𝑙

𝑡 , �̃�𝑖,−𝑗
𝑡 , �̃�𝑖,−𝑘

𝑡 .

This information will be used to determine the necessity of communicating between agent 𝑖 and other agents (𝑙, 𝑗, 𝑘), completing

the second step of selective communication procedure. Finally, the GAT is used to aggregate the feature information of agents 𝑗
and 𝑘 as these two agents have passed the check of the selective communication procedure.

 1 2

 ,

 ,

 ,
 ,

5 Copyright © 2023 by ASME

Note that temporary actions �̃�𝑖
𝑡 and �̃�𝑖,−𝑗

𝑡 are only used to

decide the communication scope, not the final actions to be

executed. Then the communication scope of agent 𝑖 can be

determined by the set of agents 𝒮𝑖 as shown in Equation (3):

𝒮𝑖 = {𝑗 ∣ 𝜌𝑖𝑗 = 1, 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁𝑖
′} (3)

4.4.2 The Graph Attention Network (GAT)
After getting the neighboring agents with necessity of

communication through the selective communication procedure,

we use the graph attention network (GAT) [18] to aggregate the

feature information of these agents. The goal of the GAT is to

update the features of each agent by aggregating information

from its neighboring agents, considering both the features of the

selected neighbor agents and the edge weights obtained from the

attention mechanism.

In the GAT process, we first apply the linear transformation

to the feature vector of each agent �̃�𝑖
𝑡 (𝑖 ∈ 𝑀), using a shared

weight matrix 𝑊 ∈ ℝ𝐻′×𝐻, where 𝐻 and 𝐻′ are the input and

output feature dimensions, respectively.

ℎ𝑖
𝑡 = 𝑊(�̃�𝑖

𝑡)𝑇 (4)

The attention mechanism computes the importance of each

selected neighboring agent’s information to the current agent 𝑖.

The attention function is denoted by 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛:ℝ𝐻′
× ℝ𝐻′

→
ℝ, and the attention coefficients 𝑒𝑖𝑗

𝑡 are computed as:

𝑒𝑖𝑗
𝑡 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑖

𝑡, ℎ𝑗
𝑡) (5)

The choice for the attention mechanism 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is a

single-layer feedforward neural network with the LeakyReLU

activation function:

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑖
𝑡 , ℎ𝑗

𝑡) = LeakyReLU(𝑎𝑇[ℎ𝑖
𝑡 ⊕ℎ𝑗

𝑡]) (6)

where 𝑎 ∈ ℝ2𝐻′
 is a trainable weight vector, .𝑇 represents

matrix transposition, and ⊕ denotes the concatenation of two

vectors. The attention coefficients are then normalized using the

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function:

𝛼𝑖𝑗
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗

𝑡) =
exp(𝑒𝑖𝑗

𝑡)

∑ exp(𝑒𝑖𝑘
𝑡)

𝑘∈𝒮(𝑖)

 (7)

Now, we can update the features of each agent by

aggregating the information from its neighbors, weighted by the

normalized attention coefficients:

ℎ̃𝑖
𝑡 = 𝜎(∑ 𝛼𝑖𝑗

𝑡 ℎ𝑗
𝑡

𝑗∈𝒮(𝑖)

) (8)

where 𝜎: R → R denotes a sigmoid activation function. To

improve the model’s capacity and stability, we use multi-head

attention, where we learn 𝐾 independent attention mechanisms:

ℎ̃𝑖
𝑡(𝑘) = 𝜎(∑ 𝛼𝑖𝑗

𝑡(𝑘)𝑊𝑘(�̃�𝑖
𝑡)𝑇

𝑗∈𝒮(𝑖)

) (9)

The final output features can be obtained by concatenating

the output of all attention heads:

ℎ̃𝑖
𝑡(𝑘) = ⨁𝑘=1

𝐾 ℎ̃𝑖
𝑡(𝑘) (10)

where ⨁ represents concatenation. Note that, in this setting, the

final returned output, ℎ̃𝑖
𝑡(𝑘)

, will consist of 𝐾 × 𝐻′ features

(rather than 𝐻′) for each node. The final feature ℎ̃𝑖
𝑡(𝑘)

 is further

translated into actions through the action output layer as

described in the following section.

4.5 Action Output Layer
The final movement decision for agent 𝑖 at time step 𝑡 is

determined by the action output layer. In this layer, we employ a

Multi-Layer Perceptron (MLP) as the decision-making

component, i.e., 𝑎𝑖
𝑡 = 𝑀𝐿𝑃(ℎ̃𝑖

𝑡(𝑘)) . The MLP, which shares

weights across all agents, receives the output from the

information aggregation layer and maps the feature information

into action vectors. A 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is applied after the

MLP layer to convert the action vector into a probability

distribution vector for five discrete actions (i.e., move up, down,

left, right, and stop). The action with the highest probability is

selected as the final output action, in which the argmax function

is used to choose the action with the highest probability. The

final generated path for the agent 𝑖 is a set of sequential actions

{𝑎𝑖
1, . . . , 𝑎𝑖

𝑡}, which represents the agent 𝑖’s trajectory from the

starting position to the goal position.

4.6 The Training Procedure of Our Approach
In our study, the agents operate in a 𝑙𝑤 × 𝑙ℎ grid world

with randomly placed static obstacles. We generate random

cases for each grid map, consisting of pairs of starting and goal

vertices for all agents. Duplicate or invalid cases are eliminated,

and the remaining cases are stored in a pool of training sets,

which are randomized during training. For each case, we first use

the expert algorithm ECBS to compute the solution. At the

beginning of training, we have the expert actions {𝐸∗} for all

agents and the corresponding local feature observation {𝑂t},

collected in the training set 𝒯 = {({𝐸∗}, {𝑂t})}. The predicted

action trajectories obtained from the imitation learning network

are denoted as �̂�. We use the cross-entropy loss function ℒ(. , .)
to train the network:

6 Copyright © 2023 by ASME

ℒ(�̂�, 𝐸∗) = −∑ ∑ 𝐸𝑖
∗(𝑜𝑖

𝑡)log �̂�𝑖(𝑜𝑖
𝑡)𝑀

𝑖=1
𝑇
𝑡=1 (11)

where 𝑇 is the total number of time steps.

During the training process, the collision shielding safety

mechanism [7] is utilized to ensure the agent learns collision-free

paths. In the event of vertex or edge collisions, the affected

agent’s action is replaced with an idle action. At that moment,

the agent remains idle until it times out, which is considered as a

failure case. As deadlocks between agents can occur, using the

collision shielding safety mechanism may result in planning

failures where some agents remain idle throughout the rest

planning process. For every 𝐶 epochs, we select 𝑛 random

cases from the training set and check these cases. For the failed

cases, we use the expert algorithm ECBS to continue planning

and obtain successful solutions. The successful cases are then

added back to the training set. Additionally, for the successfully

planned cases in 𝑛 random cases, we check whether the

planned paths deviate significantly from the expert-planed paths.

If the deviation ratio exceeds a threshold value 𝑟𝑑, these cases

will be added back to the training set for re-training. This

treatment can support the planned paths from our approach to

approximate the expert-planned paths as much as possible.

4.7 The Strategy Switching Mechanism
As mentioned earlier, when deploying the trained models in

simulated environments, the success rate for agents to reach their

goals seldom achieves 100%. This limitation can be attributed to

the trained model’s struggling with handling complex

environments such as local traps. Local traps are areas where

agents become stuck or fail to find viable paths due to restricted

local conditions, such as dead ends or areas with a high density

of obstacles. To mitigate this issue and increase the success rate,

we develop a strategy switching mechanism that can adaptively

switch between the expert A* algorithm using the global static

map and the learning-based algorithm when encountering local

traps. As depicted in Figure 5, the mechanism operates as follows:

(1) Detection of local traps: We first design a local trap

detector that monitors the agents’ states and identifies the

trapping situations. This detection is based on the number of

repeated visits to a particular grid cell. We create a visit counter

matrix 𝐶 with the same dimensions as the grid-based

environment, initialized with zeros. Each element in this matrix

corresponds to a grid cell and stores the number of times that the

agent has visited to that cell. Then the visit counter matrix will

be updated for each time step 𝑡. At each step 𝑡, the current grid

cell’s visit count in the matrix will be checked. If the visit count

exceeds the threshold 𝛿, it is considered as a local trap.

(2) Switching to expert guidance: Once a local trap is

detected, the path planning strategy switches to use expert-

planed path guidance (see the purple cells in Fig. 5) generated

from A* algorithm for a predetermined number of steps 𝜂, until

the agent reaches the boundary of its local observation space.

(3) Switching back to learning-based algorithm: If the agent

has successfully completed the predetermined number of steps

and reaches the boundary of its local observation space, the path

planning strategy reverts to the learning-based path planning

algorithm. This enables the agent to continue exploring the

environment and dynamically adjust its path based on the current

state (see the green cells in Fig. 5).

FIGURE 5: An illustration of the strategy switching mechanism. We only show the visit counter matrix 𝐶 in the local field of

view of agent 𝑖 (see the red dot). As depicted by the yellow marker, if the visit count exceeds the threshold value 𝛿, the system

identifies the agent 𝑖 as being in a local trap. In such case, the agent switches to the expert algorithm for path planning to get out

of the trap.

0

0 0 0 0 0 0 0

1 1 1

0 0 0
0 0 0

0 0 0 0 0

000 0

0 0

0

0

1 1

1

0

0

00

0

0

0 0 0 0 0 0 0

1 1 1

0 0 0
0 0 0

0 0 0 0 0

000 0

0 0

0

0

1 1

4

0

0

30

0

7 Copyright © 2023 by ASME

5. EXPERIMENT SETTINGS AND RESULTS
In this section, we first introduce the settings of the model

parameters and experiment environment. Then the performance

evaluation metrics and different MAPP methods to be compared

are introduced. Finally, the experimental results are analyzed and

discussed.

5.1 Model Parameters and Environment Settings
In the information extraction layer, a convolutional kernel

size of 3 with a stride of 1 and no padding is used. The number

of shared features 𝐻 before the aggregation layer is set to 64. In

the information aggregation layer, we use one layer of the graph

attention network with a 𝐾 value of 4 for multi-head attention

mechanism. During the network training process, we randomly

select 𝑛 = 200 cases from the training set every 𝐶 = 5

epochs to check for failed cases and cases that deviate

significantly from expert-planned paths. The Adam optimizer

with a momentum of 0.9 is used. A dynamic learning rate is used

with a starting value of 10−4, which is decreased by 50% at 200

epochs and 400 epochs, respectively. For the application

inference phase, we set the visit count threshold value 𝛿 to 4.
According to the environment settings in previous research

[7,14], we initialized 500 different maps of size 𝑙𝑤 × 𝑙ℎ =
20 × 20, with 70% of them being used for training, 15% for

validation, and 15% for testing. Furthermore, each map contains

40 randomly placed obstacles. It’s also worth mentioning that

each map generates 60 cases, with each case consisting of 𝑀 =
10 agents. The local field of view is set as 𝑟𝑤 × 𝑟ℎ = 7 × 7. In

order to fairly compare the performance of our approach with

other existing methods and to assess the generalization

capabilities, we generate 1000 test cases based on each

predefined map as shown in Table 1. The robot density of

predefined map is calculated by 𝜌𝑟 = 𝑀 (𝑙𝑤 ∗ 𝑙ℎ⁄) . The

generalization capability of the algorithm is evaluated on maps

with robot density same as the training set, as well as on maps

with varying robot density.

TABLE 1: Predefined maps in the test cases. 𝑙𝑤 × 𝑙ℎ is the size

of a map, and 𝑀 is the number of robots on the map. In each

map, the obstacle density (i.e., the ratio between the number of

obstacles and total cells on a map) is set to 0.1.

Maps in Category 1

(same robot density)

Maps in Category 2

(varying robot densities)

𝑙𝑤 × 𝑙ℎ 𝑀 𝑙𝑤 × 𝑙ℎ 𝑀

20x20 10 50x50 10

28x28 20 50x50 20

35x35 30 50x50 30

40x40 40 50x50 40

45x45 50 50x50 50

65x65 100 50x50 60

5.2 Performance Evaluation Metrics

In the experiments, we evaluate the performance of the

proposed approach with three metrics, namely success rate,

flowtime variation, and communication frequency.

(1) Success rate. It measures the ability of the algorithm to

complete MAPP within a given time steps. It is defined as 𝑠𝑟 =
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑛𝑡𝑜𝑡𝑎𝑙⁄ , the proportion of successful cases 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠
over the number of total tested cases 𝑛𝑡𝑜𝑡𝑎𝑙. A higher success

rate indicates that the algorithm is more successful in achieving

planning completion in a timely manner.

(2) Flowtime variation. It quantifies the deviation of the

planning completion time between learning-based methods and

expert algorithms. It is described as 𝑓𝑣 = (�̂�𝑝 − 𝐸𝑝
∗) 𝐸𝑝

∗⁄ . 𝐸𝑝 is

defined as the planning completion time taken for all agents to

reach their respective goals. A lower value of 𝑓𝑣 indicates

greater resemblance to expert algorithms and superior

performance.

(3) Communication frequency 𝑐𝑓 . It characterizes the

frequency of feature interaction in the information aggregation

layer, reflecting the cost associated with communication. The

lower 𝑐𝑓 observed under the same success rate and flowtime

variation indicates higher communication efficiency and better

performance of the algorithm.

5.3 Compared Methods
We evaluate and compare the performance of our proposed

approach GAT-GS (GS means global static feature extraction

and selective communication) with several ablation methods

including:

(1) GAT-S: without global static feature extraction.

(2) GAT-G: without selective communication. The central

agent aggregates features from all agents within its field of view

(FOV).

(3) GAT-GS-noS: without the strategy switching

mechanism.

Additionally, we compare our methods with the state-of-the

art imitation learning-based MAPP methods, GNN [7] and

MAGAT-B [14]. To ensure a fair comparison, we set the

planning time limit to three times that of the expert algorithm,

and consider a case as failed if it cannot find the solution within

the time limit. Figure 6 shows two examples of the simulated

grid maps.

FIGURE 6: Two examples of the simulated grid maps. (a)

20 × 20 map size, 10 agents; (b) 65 × 65 map size, 100

agents.

5.4 Experiment Results
5.4.1 Success Rate and Flowtime Variation

(a) (b)

8 Copyright © 2023 by ASME

Figure 7(a) shows that our proposed approach GAT-GS

outperforms other methods in success rate. It has a consistently

high success rate of approximately 95% in the maps with same

robot density, which is the highest among all methods.

Moreover, GAT-GS also shows the best performance in

flowtime variation, with values consistently below 0.065 as

shown in Figure 7(c). Even in the map with the highest robot

density, GAT-GS achieves a success rate of over 93% (see

Figure 7(b)), with a flowtime variation maintained around 0.1,

which is the best performance among all methods. These results

indicate the significant advantages of GAT-GS over other

imitative learning-based algorithms such as GNN and MAGAT-

B, particularly in terms of success rate.

Furthermore, the ablation experiments provide valuable

insights into the performance of our approach. A comparison

between GAT-GS and GAT-S shows that the inclusion of global

static features in GAT-GS resulted in a significant improvement

in the success rate, suggesting that incorporating additional

reference information for local observation can contribute to

higher success rate. A comparison among GAT-G and GAT-GS

reveals that focusing on specific valuable neighboring agents

rather than all agents in the field of view for feature aggregation

can achieve better results, particularly in maps with high density

of robots. This observation will be discussed in detail in the next

subsection. Furthermore, our strategy switching mechanism

shows promising results in improving the success rate,

particularly in maps with low robot density. This indicates that

the developed strategy switching mechanism has the potential to

address the local trap problem to some extent.

5.4.2 Communication Frequency
Table 2 shows the communication frequency of two

methods in maps with varying robot densities. We can see that

the proposed GAT-GS approach can reduce communication

frequency by an average of 70% compared to GAT-G These

findings emphasize the importance of actively selecting

appropriate agents for communication in decentralized multi-

agent path planning. Lowering communication frequency can

potentially reduce the chances of communication errors, packet

loss, or interference, especially in real-world scenarios where

wireless communications can be unpredictable. This makes

GAT-GS a potentially more reliable method in challenging

communication environments.

The results in Table 2 are consistent with the results in

Figure 7. The proposed approach GAT-GS using the request-

reply based selective communication procedure achieves the best

results, while the GAT-G (the central agent communicates with

all surrounding agents) has the worst performance. The findings

from Figure 7 and Table 2 also indicate that increasing the

frequency of communication interactions with surrounding

agents does not necessarily result in improved performance of

path planning.

(a) (b)

(c) (d)
FIGURE 7: The success rate and flowtime variation of different methods against different maps. (a) and (c) show the results in

maps with same robot density, while (b) and (d) show the results in maps with varying robot densities.

9 Copyright © 2023 by ASME

TABLE 2: Communication frequency of two methods in maps

with varying robot densities. 𝑙𝑤 × 𝑙ℎ is the size of a map, and

𝑀 is the number of robots in the map.

𝑙𝑤 × 𝑙ℎ = 50 × 50

𝑀 GAT-GS GAT-G

20 1155.3 4860.9

30 2224.6 8139.3

40 3835.9 12141.1

50 5742.2 16624.6

60 8217.4 21723.4

100 18397.1 45834.7

5.4.3 Discussion
The purpose of our experiments is to evaluate the effect of

introducing the global static feature extraction, the request-reply

based selective communication, and the strategy switching

mechanism in improving the performance of MAPP in different

maps. Our findings show that these treatments indeed improve

the algorithm performance to a certain extent. Additionally, our

proposed approach exhibits similar performance to expert

algorithms in terms of flowtime variation.

One limitation of our approach is the additional

computational load when computing the A* expert algorithm

under a global static map, especially when dealing with a large

number of agents. However, since the planning process only

considers the static map and the robot’s own location

information, the computational burden remains manageable and

can be distributed across multiple robots. Furthermore, the paths

calculated from the A* expert algorithm serve as a guide for later

selective communication procedure, which can reduce the

communication load between agents greatly. This is especially

important in high-density or highly dynamic environments,

where robot-to-robot communication may be subject to

interference or connection loss, resulting in failed path planning.

6. CONCLUSION
In this paper, we present a decentralized MAPP approach

based on imitation learning and global static feature extraction.

Our approach incorporates global static feature information to

augment the available information sources during decentralized

path planning. We also design a request-reply based selective

communication procedure that allows agents to proactively

choose relevant and impactful neighbors for communication.

Additionally, we develop a strategy switching mechanism that

adaptively utilizes expert-planned paths under a global static

map to assist agents in escaping from local traps. The

effectiveness of our proposed approach is evaluated through

extensive simulations in grid environments with varying map

sizes and numbers of agents. The experimental results

demonstrate that our approach achieves a high success rate in

path planning while significantly reducing the communication

load. Our approach can be particularly advantageous in scenarios

with low communication bandwidth or unstable communication

quality. Overall, this study offers a promising solution for

decentralized MAPP, and we expect that our work will inspire

the development of more advanced methods in this area.

For future research directions, we recommend further

investigation into improving the generalizability and robustness

of our approach in more complex and dynamic environments, as

well as exploring potential extensions of our approach to real-

world implementations. Meanwhile, we intend to design various

network architectures to further improve the performance of our

approach. Additionally, the combination of our approach with

other machine learning techniques, such as reinforcement

learning or meta-learning, could also be an interesting direction

for future work.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the financial

support from National Key R&D Program of China

(2022YFB4702400).

REFERENCES
[1] De Ryck, M., Versteyhe, M., and Debrouwere, F., 2020,

“Automated Guided Vehicle Systems, State-of-the-Art

Control Algorithms and Techniques,” J Manuf Syst, 5 ,

pp. 152–173.
[2] Jafari, N., Azarian, M., and Yu, H., 2022, “Moving from

Industry 4.0 to Industry 5.0: What Are the Implications

for Smart Logistics?,” Logistics, 6(2), p. 26.

[3] Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,

Walker, T., Li, J., Atzmon, D., Cohen, L., Kumar, T. K.,

Barták, R., and Boyarski, E., 2021, “Multi-Agent

Pathfinding: Definitions, Variants, and Benchmarks,”

Proceedings of the International Symposium on

Combinatorial Search, 0(1), pp. 151–158.

[4] Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.,

2015, “Conflict-Based Search for Optimal Multi-Agent

Pathfinding,” Artif Intell, 9, pp. 40–66.

[5] Wagner, G., and Choset, H., 2011, “M*: A Complete

Multirobot Path Planning Algorithm with Performance

Bounds,” 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems, IEEE, pp. 3260–3267.

[6] Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. K.

S., Koenig, S., and Choset, H., 2019, “PRIMAL:

Pathfinding via Reinforcement and Imitation Multi-

Agent Learning,” IEEE Robot Autom Lett, (3), pp.

2378–2385.

[7] Li, Q., Gama, F., Ribeiro, A., and Prorok, A., 2020,

“Graph Neural Networks for Decentralized Multi-Robot

Path Planning,” 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

IEEE, pp. 11785–11792.

[8] Barer, M., Sharon, G., Stern, R., and Felner, A., 2021,

“Suboptimal Variants of the Conflict-Based Search

Algorithm for the Multi-Agent Pathfinding Problem,”

Proceedings of the International Symposium on

Combinatorial Search, 5(1), pp. 19–27.

10 Copyright © 2023 by ASME

[9] Ferner, C., Wagner, G., and Choset, H., 2013, “ODrM*

Optimal Multirobot Path Planning in Low Dimensional

Search Spaces,” 2013 IEEE International Conference on

Robotics and Automation, IEEE, pp. 3854–3859.

[10] van den Berg, J., Guy, S. J., Lin, M., and Manocha, D.,

2011, “Reciprocal N-Body Collision Avoidance,” In

Robotics Research: The 14th International Symposium

ISRR, pp. 3–19.

[11] Prorok, A., Blumenkamp, J., Li, Q., Kortvelesy, R., Liu,

Z., and Stump, E., 2022, “The Holy Grail of Multi-Robot

Planning: Learning to Generate Online-Scalable

Solutions from Offline-Optimal Experts,” Proceedings

of the 21st International Conference on Autonomous

Agents and Multiagent Systems, pp. 1804–1808.

[12] Ma, Z., Luo, Y., and Ma, H., 2021, “Distributed Heuristic

Multi-Agent Path Finding with Communication,” 2021

IEEE International Conference on Robotics and

Automation (ICRA), IEEE, pp. 8699–8705.

[13] Chen, L., Wang, Y., Miao, Z., Mo, Y., Feng, M., Zhou,

Z., and Wang, H., 2023, “Transformer-Based Imitative

Reinforcement Learning for Multi-Robot Path

Planning,” IEEE Trans Industr Inform.

[14] Li, Q., Lin, W., Liu, Z., and Prorok, A., 2021, “Message-

Aware Graph Attention Networks for Large-Scale Multi-

Robot Path Planning,” IEEE Robot Autom Lett, 6(3), pp.

5533–5540.

[15] Zhang, S. Q., Lin, J., and Zhang, Q., 2020, “Succinct and

Robust Multi-Agent Communication with Temporal

Message Control,” Proceedings of the 34th International

Conference on Neural Information Processing Systems,

Curran Associates Inc., Red Hook, NY, USA.

[16] Ding, Z., Huang, T., and Lu, Z., 2020, “Learning

Individually Inferred Communication for Multi-Agent

Cooperation,” Proceedings of the 34th International

Conference on Neural Information Processing Systems,

Curran Associates Inc., Red Hook, NY, USA.

[17] Ma, Z., Luo, Y., and Pan, J., 2022, “Learning Selective

Communication for Multi-Agent Path Finding,” IEEE

Robot Autom Lett, 7(2), pp. 1455–1462.

[18] Veličković, P., Cucurull, G., Casanova, A., Romero, A.,

Liò, P., and Bengio, Y., 2017, “Graph Attention

Networks.”

11 Copyright © 2023 by ASME

