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ABSTRACT 
Mobile robots are being widely used in smart manufacturing, 

and efficient task assignment and path planning for these robots 

is an area of high interest. In previous studies, task assignment 

and path planning are usually solved as separate problems, 

which can result in optimal solutions in their respective fields, 

but not necessarily optimal as an integrated problem. 

Meanwhile, precedence constraints exist between sequential 

processing operations and material delivery tasks in the 

manufacturing environment. Thus, those planning methods 

developed for warehousing and logistics may not simply apply to 

the environment of smart factories. In this paper, we propose an 

integrated task and path planning approach based on Looking-

backward Search Strategy (LSS) and Regret-based Search 

Strategy (RSS). In the stage of task assignment, the real paths for 

mobile robots are identified based on the Cooperative A* (CA*) 

algorithm and the time and energy consumed by mobile robots 

and machining centers are calculated. Then a greedy strategy 

working with LSS or RSS is used to search reasonable task 

assignments in time-series, which can generate a joint optimal 

solution for both task assignment and path planning. We verify 

the validity of the proposed approach in a simulated smart 

factory and the results show that our approach can improve the 

operation efficiency of the smart factory and save the time and 

energy consumption effectively. 
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NOMENCLATURE 

𝑇 = {1, … , 𝑛} a set of 𝑛 tasks 

𝑡𝑦𝑝𝑒𝑖 the type of task 𝑖 ∈ 𝑇 

𝑠𝑝𝑖 the starting position of task 𝑖 ∈ 𝑇 

𝑔𝑝𝑖 the goal position of task 𝑖 ∈ 𝑇 

𝑠𝑡𝑖 the starting time of task 𝑖 ∈ 𝑇 

𝑔𝑡𝑖 the finishing time of task 𝑖 ∈ 𝑇 

𝑝𝑎𝑟𝑒𝑛𝑡𝑖 the parent task of task 𝑖 ∈ 𝑇 

𝑀𝑖 = {1, … , 𝑚} 
a set of 𝑚 optional machining centers 

for task 𝑖 ∈ 𝑇 

𝑅 = {1, … , 𝑎} a set of 𝑎 robots 

𝑠𝑗 the starting position of robot 𝑗 ∈ 𝑅 

𝑃 = {𝑠𝑝1, ⋯ , 𝑠𝑝𝑛 ,
𝑔𝑝1, ⋯ , 𝑔𝑝𝑛}

all possible positions that robot 𝑗  can 

arrive at 

𝑇𝐴𝑗𝑝: 𝑅 × 𝑃
the task assignment mapping table to 

describe whether robot 𝑗 need to arrive 

at position 𝑝 or not 

𝑀𝑇𝑘𝑡: 𝑀 × 𝑇𝑖𝑚𝑒
the processing mapping table to describe 

whether machining center 𝑘  is 

processing task 𝑖 at time 𝑡 or not 

𝑐𝑗
𝑡 the number of loading tasks of robot 𝑗 

at time 𝑡 

𝑙𝑜𝑐𝑗(𝑡) the location of robot 𝑗 at time 𝑡 

𝑡𝑗
the time spent by robot 𝑗 to transport all 

tasks assigned to it 
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𝑡𝑘  

the time spent and energy consumed by 

machining center 𝑘  after completing 

all tasks assigned to it 

𝑒𝑘  

the energy consumed by machining 

center 𝑘  after completing all tasks 

assigned to it 

𝑙 (𝑙 ≥ 1)  the 𝑙th layer of the task queue 

𝑃𝑃  the maximum transportation time 

𝑃𝑇  the maximum processing time 

𝑃𝐸  the total processing energy 

𝑡𝑗
𝑖  

the time when robot 𝑗  finishes 

transporting task 𝑖  

𝑡𝑐𝑢𝑟_𝑚𝑎𝑥   
the total time consumed by machining 

center 𝑘 to complete the last task that 

has been assigned up to now 

∆𝑡𝑖  the search space of inserting task 𝑖 ∈ 𝑇 

𝑇𝐶  total time and energy consumption 

  

1. INTRODUCTION 
A smart factory usually owns a series of machining centers, 

industrial robots, storage racks and mobile robots. The mobile 

robots can assist industrial robots and machining centers with 

complex manufacturing jobs by delivering raw materials and 

parts, and inspecting the status of the production lines [1]. As the 

number of robots and tasks grows, the scheduling and planning 

of these robots can be complicated. Therefore, it is necessary to 

investigate how to efficiently assign and schedule the mobile 

robots to transport the materials between machining centers and 

storage racks with the goal of minimizing the makespan (i.e., the 

time consumed in transportation and processing) and/or the 

amount of consumed energy. Moreover, the constraints of 

temporal precedence may exist between sequential 

manufacturing processes and material delivery operations (e.g., 

picking up, delivering, processing, and storing). Thus, we define 

this problem as the precedence constrained multi-agent task 

assignment and path-finding (PC-TAPF) problem [2]. 

In a PC-TAPF problem, a set of tasks and a team of mobile 

robots are usually given. We first need to assign each task to a 

suitable robot [3]. Then we need to find a set of conflict-free 

paths for robots to ensure that the assigned tasks can be 

successfully completed [4]. Note that precedence constraints can 

exist between tasks in a PC-TAPF problem. For example, both 

task A and task B must be completed before task C is started, and 

the initial position of task C can only be determined once the 

target positions of task A and task B have been determined in the 

scenario of flowline manufacturing [2]. Therefore, it is not 

appropriate to simply apply the task assignment and path 

planning algorithms developed for warehousing and logistics 

into smart factories considering the precedence constraints of 

transportation tasks are different in these environments.  

Various approaches have been developed to solve PC-TAPF 

problems [5–8]. These approaches often resort to solve the task 

assignment and path planning separately. The common 

procedure is to generate all possible assignments and then find a 

feasible path for each assigned task. However, many of these 

approaches either suffer from high complexity in computation 

which leads to failed deployment in practice, or over simply 

assume the solved paths will not conflict with each other no 

matter how the tasks are assigned [9–11].  

In recent years, approaches that jointly solve task assignment 

and path planning are emerging. For instance, the CBM 

(Conflict-Based Min-Cost-Flow) and CBS-TA (Conflict-Based 

Search with Optimal Task Assignment) algorithms [12,13] can 

find makespan-optimal solutions to task assignment and path 

planning. Brown et al. [2] proposed a four-level hierarchical 

algorithm for computing makespan-optimal solutions to PC-

TAPF problems. However, many of these algorithms are limited 

by poor scalability and timeout failures can happen when the 

number of agents and tasks becomes relatively large. In addition, 

they usually only consider makespan as the single optimization 

objective. 

Other new methods have been proposed recently to solve 

TAPF centrally and adopted a sequential two-stage method 

which performs task assignment first then followed by path 

planning in an integrated way. For instance, Chen et.al. [14] 

designed an integrated method where task assignment choices 

are chosen by actual delivery costs. The actual path cost is 

considered when assigning tasks to agents for improving the 

quality of the task assignment. However, these methods do not 

consider the precedence constraints between tasks and may not 

apply to the scenario of smart factories. 

To make up for these shortcomings, we propose an integrated 

task and path planning approach for mobile robots in smart 

factory in this paper. This approach can solve task assignment 

and path planning in a joint way while considering the 

precedence constraints of tasks and conflict-free constraints of 

paths. The core idea of the approach is the Looking-backward 

Search Strategy (LSS) and Regret-based Search Strategy (RSS) 

proposed in the process of task assignment, which can help with 

reducing the total operating time and the consumed energy of 

machining centers as much as possible. Our approach 

preliminarily solves the coupling of task assignment and path 

planning with improving the operational efficiency and saving 

energy consumption of the smart factory. It can contribute to the 

practical deployment of multi-mobile robot systems in smart 

factories and promote the development of more advanced high-

efficient and energy-saving manufacturing modes. 

This paper is structured as follows. Section 2 introduces our 

integrated task and path planning approach. Section 3 presents a 

simulation experiment validating the proposed approach and 

discusses the experiment results. Section 4 provides a summary 

of our work and suggests the future research directions. 

 
2. METHODS 
 

2.1 Problem Formulation 
The PC-TAPF problem in a smart factory environment is 

defined as how to optimally assign tasks with precedence 

constraints and generate conflict-free paths for each moving 

robot. In our study, the environment is represented as a grid map 

consisting of cells with unit length, and an index incrementally 

numbered from left to right and top to down is used as the 
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position coordinate of each cell. For example, in a 5 × 10 cells 

grid, the upper left corner cell is indexed with 1, while the lower 

right corner one is with 50. Thus, in the path finding, graph-based 

search methods such as CA* [15] can be adopted. 

We use 𝑇 = {1, … , 𝑛} to represent a set of tasks in the smart 

factory in which the cargo (e.g., materials or parts) are 

transported from starting positions to designated positions. Each 

task 𝑖 ∈ 𝑇 has a given tuple with seven attributes, (𝑡𝑦𝑝𝑒𝑖 , 𝑠𝑝𝑖 ,
𝑔𝑝𝑖 , 𝑠𝑡𝑖 , 𝑔𝑡𝑖,  𝑝𝑎𝑟𝑒𝑛𝑡𝑖 , 𝑀𝑖). 𝑡𝑦𝑝𝑒𝑖  is the type of task 𝑖, and 

𝑡𝑦𝑝𝑒𝑖 = 0  represents that in task 𝑖  the cargo will be 

transported from a storage zone or machining center to another 

machining center, while 𝑡𝑦𝑝𝑒𝑖 = 1  represents that the cargo 

will be transported from a machining center to a storage zone. 

𝑠𝑝𝑖  and 𝑔𝑝𝑖   are the starting and goal positions of task 𝑖 , 
respectively, which equals −1  when the starting or goal 

position is unknown. 𝑠𝑡𝑖 and 𝑔𝑡𝑖 are the starting and finishing 

time of task 𝑖, respectively, which equals −1 when either one 

is unknown. 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 is the parent task of task 𝑖, and it must be 

completed before starting task 𝑖 . 𝑀𝑖 = {1, … , 𝑚}  is a set of 

optional machining centers for task 𝑖  when operating task 𝑖 . 
𝑅 = {1, … , 𝑎} represents the set of robots for transporting tasks. 

𝑠𝑗  denotes the starting position for each robot 𝑗 ∈ 𝑅 . The 

starting positions of all robots are randomly assigned in the 

docking zone at the beginning. In this study, the robots are 

assumed to be able to turn around in place, thus robot heading is 

not considered in task assignment. 

In order to transport task 𝑖, robot 𝑗 should first move to the 

starting position 𝑠𝑝𝑖  of the task 𝑖 and then transport the cargo 

to the goal position 𝑔𝑝𝑖 . During this period, time is set to be 

discretized into unit time steps, and a robot can move over one 

cell in one time step. In the path finding process, two types of 

collisions need to be avoided: vertex collision and edge collision. 

The former refers to that two robots should not occupy the same 

cell at the same time, and the latter means that two robots should 

not move along adjacent cells in opposite directions at the same 

time. 

Let 𝑃 = {𝑠𝑝1, ⋯ , 𝑠𝑝𝑛 , 𝑔𝑝1 , ⋯ , 𝑔𝑝𝑛} be all possible positions 

that robot 𝑗 can arrive at. 𝑇𝐴𝑗𝑝: 𝑅 × 𝑃 → {0,0.5}, 𝑗 ∈ 𝑅, 𝑝 ∈ 𝑃 

represents the task assignment mapping table that maps the 

indices of robot 𝑗 and the loading or unloading position 𝑝 to a 

fixed value, which equals 0.5 if and only if robot 𝑗 ∈ 𝑅 has to 

reach the position 𝑝 ∈ 𝑃. 𝑇𝐴𝑗𝑠𝑝𝑖
+ 𝑇𝐴𝑗𝑔𝑝𝑖

= 1 means that task 

𝑖 is assigned to robot 𝑗. 𝑐𝑗
𝑡 denotes the number of loading tasks 

of robot 𝑗 at time 𝑡. 𝑙𝑜𝑐𝑗(𝑡) denotes the location of robot 𝑗 at 

time 𝑡. 𝑡𝑗 denotes the time spent by robot 𝑗 to transport all the 

tasks assigned to it. 𝑡𝑘  and 𝑒𝑘  denote the time spent and 

energy consumed by machining center 𝑘 after completing all 

tasks assigned to it, respectively. 

The problem formulation is given in Equations (1) – (14). In 

Equation (1), 𝑃𝑃  is the maximum time spent by all robots 

transporting all tasks, i.e., the maximum transportation time. In 

Equation (2), 𝑃𝑇 is the maximum time spent by all machining 

centers to process all tasks, i.e., the maximum processing time. 

In Equation (3), 𝑃𝐸  is the total energy consumed when 

machining centers are operating, i.e., the total processing energy. 

The overall optimization goal is to simultaneously minimize 

𝑃𝑃, 𝑃𝑇  and 𝑃𝐸  subject to the constraints in Equations (4) - 

(14).  

 

𝑃𝑃 = 𝑚𝑎𝑥
𝑗∈𝑅

𝑡𝑗                                       (1) 

 

𝑃𝑇 = 𝑚𝑎𝑥
𝑘∈𝑀

𝑡𝑘                                      (2) 

 

𝑃𝐸 = ∑ 𝑒𝑘
𝑚
𝑘=1                                      (3) 

 

subject to 

 

𝑇𝐴𝑗𝑠𝑝𝑖
+ 𝑇𝐴𝑗𝑔𝑝𝑖

∈ {0,1}, ∀𝑖 ∈ 𝑇 , ∀𝑗 ∈ 𝑅                (4) 

 

∑ 𝑇𝐴𝑗𝑠𝑝𝑖
+𝑎

𝑗=1 𝑇𝐴𝑗𝑔𝑝𝑖
∈ {0,1}, ∀𝑖 ∈ 𝑇                     (5) 

 

𝑐𝑗
𝑡 ∈ {0,1}, ∀𝑡, ∀𝑗 ∈ 𝑅                                 (6) 

 

𝑙𝑜𝑐𝑗(𝑡) ≠ 𝑙𝑜𝑐𝑗′(𝑡), ∀𝑗、𝑗′ ∈ 𝑅, 𝑗 ≠ 𝑗′, ∀𝑡                    (7) 

 

{𝑙𝑜𝑐𝑗(𝑡), 𝑙𝑜𝑐𝑗(𝑡 + 1)} ≠ {𝑙𝑜𝑐𝑗′(𝑡 + 1), 𝑙𝑜𝑐𝑗′(𝑡)}                                             

∀𝑗、𝑗′ ∈ 𝑅, 𝑗 ≠ 𝑗′, ∀𝑡                                  (8) 

 

𝑔𝑝𝑖 = −1, ∀𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟1 ∩ 𝑇 𝑠. 𝑡.  𝑡𝑦𝑝𝑒𝑖 = 0              (9) 

 

𝑔𝑝𝑖 ≥ 0, ∀𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟1 ∩ 𝑇  𝑠. 𝑡.  𝑡𝑦𝑝𝑒𝑖 = 1              (10) 

 

𝑠𝑝𝑖 ≥ 0, 𝑠𝑡𝑖 = 0, 𝑔𝑡𝑖 = −1, 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 = 𝜙                   

∀𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 = 1                                 (11) 

 

𝑠𝑝𝑤 ≥ 0, 𝑠𝑝𝑤′ = −1                                   

∃𝑤, 𝑤′ ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 ≥ 2, 𝑤 ∈ 𝑇, 𝑤 ≠ 𝑤′, ∀𝑡𝑦𝑝𝑒𝑝𝑎𝑟𝑒𝑛𝑡
𝑤′ = 0 

(12) 

 

𝑠𝑡𝑤 = −1, ∀𝑤 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 ≥ 2, 𝑤 ∈ 𝑇                  (13) 

 

𝑝𝑎𝑟𝑒𝑛𝑡𝑤 = 𝑖, ∃𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙−1, ∀𝑤 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 ≥ 2, 𝑤 ∈ 𝑇   (14) 

 

Equation (4) indicates that the loading and unloading process of 

a task is done by the same robot; (5) means that a task can only 

be transported by exactly one robot; (6) implies that each robot 

is capable of transporting at most one task at a time, i.e., a robot 

cannot transport multiple tasks simultaneously; (7) implies there 

is no vertex collisions between robots; (8) implies there is no 

edge collision between robots. Equations (9) – (14) describe the 

constraints of certain task attributes when considering the 

precedence of tasks, and the details are described below. 

Figure 1 shows a task queue organized in three layers 

consisting of eight tasks with precedence constraints. We use 

𝑙 (𝑙 ≥ 1) to describe the 𝑙th layer of the task queue, and each 

layer is a set of tasks in which tasks in the same layer do not need 

to follow specific sequences, while tasks in two consecutive 

layers need to be carried out one after another. For example, task 

𝑡2 must be carried out after 𝑡1 is completed, while task 𝑡1 and 
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𝑡4 can be started at the same time if their needed resources (e.g., 

robots) are available. Obviously, tasks in layer1 (base layer, 𝑙 =
1) do not own any parent tasks, while tasks in other layers (𝑙 ≥
2) should have parents. 

 
FIGURE 1: A TASK QUEUE ORGANIZED IN THREE 

LAYERS CONSISTING OF EIGHT TASKS. 

 

Equations (9) and (10) indicate that the goal position is 

unknown for task 𝑖 when 𝑡𝑦𝑝𝑒𝑖 = 0 and is known for task 𝑖 
when 𝑡𝑦𝑝𝑒𝑖 = 1. Equation (11) indicates that for all tasks in the 

base layer (𝑙 = 1), their starting positions should be known, their 

starting time are set to 0, their finishing time are unknown 

initially, which can only be calculated when these tasks are 

assigned, and all tasks in the base layer are pioneers without 

parent tasks. 

Tasks in layer  𝑙 ( 𝑙 ≥ 2 ) need to be assigned after the 

completion of their corresponding parent tasks in layer 𝑙 − 1. 

This means that the attributes of tasks in layer 𝑙 are not exactly 

the same as those in layer 𝑙 − 1  due to the precedence 

constraints. Equation (12) describes that the starting positions of 

some tasks are known, while others are unknown. In the latter 

case, the starting position of the current task depends on the goal 

position of its corresponding parent task. That is, the starting 

position of this current task will be known only after its parent 

task 𝑖  with 𝑡𝑦𝑝𝑒𝑖 = 0  is assigned. Likewise, Equation (13) 

requires that task can be started only after its corresponding 

parent task is completed. Equation (14) represents a task in layer 

𝑙 (𝑙 ≥ 2)  has one parent task when the jobs have not been 

completed at the layer 𝑙 − 1. 

 

2.2 Integrated Task and Path Planning 

 
FIGURE 2: THE OVERALL FRAMEWORK OF INTEGRATED 

TASK AND PATH PLANNING APPROACH.  
 

Figure 2 shows the overall framework of the proposed approach. 

The two thick black arrows indicate the input and output of our 

approach. The blue dashed box represents the energy planning 

and path planning for the selected task, from which we can get 

the time consumed by a certain robot for transportation and the 

time and energy consumed by a certain machining center for 

processing task. The orange dashed box represents the weighted 

sum of the time and energy consumption. The tasks are first 

organized into a queue by layers according to their precedence 

constraints as shown in Fig. 1. Then tasks are selected from the 

built task queue in increasing order of precedence layers, i.e., 

tasks from base layer are extracted first. For each selected task 

𝑖, energy planning is first performed by traversing all possible 

machining centers that are capable of processing task 𝑖. For each 

possible machining center 𝑘 , its position is set as the goal 

position of task 𝑖 . The energy consumed by the machining 

center 𝑘 and the machining time can be obtained from initial 

settings. Then the CA* [15] is used to generate a reasonable path 

for robot 𝑗 ensuring that no collision occurs with other planned 

paths. 

The priority order for path planning is determined by the task 

assignment sequence. The time consumption and the energy 

consumption for task processing and transportation are taken as 

the total consumption and stored in the Assignment Heap 𝐻 in 

increasing order (i.e., the assignment with least total 

consumption is at the top of the heap). Assignment Heap 𝐻 

contains all potential assignments of task 𝑖  to each available 

robot and machining center when 𝑡𝑦𝑝𝑒𝑖 = 0 . The greedy 

algorithm is then used to select the optimal task assignment from 

the Assignment Heap 𝐻 and the loop cycle keeps continuing 

until all tasks are successfully assigned. In order to reduce the 

unnecessary waiting time for machining centers in task 

assignment, we propose the Looking-backward Search Strategy 

(LSS) and Regret-based Search Strategy (RSS), which are 

explained in the following subsections. 

 

2.2.1 Looking-backward Search Strategy (LSS)  

Traditionally, a task will be assigned to a machining center at 

the time point right after the last task assigned to this machining 

center. This treatment can lead to a waste of time and energy 

consumption due to unnecessary waiting time since the time 

periods before the last assigned task might be free for inserting 

the current task. Thus, we propose the Looking-backward Search 

Strategy (LSS) to reduce the operating time. The basic idea is to 

search the available time period (i.e., looking backward) before 

the last assigned task and try to identify whether the current task 

can fit in the identified time period.  

Algorithm 1 shows the pseudo-code for updating processing 

sequence via LSS. Let 𝑀𝑇𝑘𝑡: 𝑀 × 𝑇𝑖𝑚𝑒 → {0, 𝑖}, 𝑘 ∈ 𝑀, 𝑡 ∈
𝑇𝑖𝑚𝑒, 𝑖 ∈ 𝑇  represents the processing mapping table, which 

equals 𝑖 if and only if the machining center 𝑘 is processing 

task 𝑖 at time 𝑡. 𝑀𝑇𝑘𝑡 = 0 implies that machining center 𝑘 

is idle at time 𝑡. Let 𝑡𝑗
𝑖 denote the time when robot 𝑗 finishes 

transporting task 𝑖  to the machining center 𝑘 , and 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥 

represent the current total time consumed by machining center 
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𝑘 to complete the last task that has been assigned up to now. 

Equation (15) describes ∆𝑡𝑖, the search space of inserting task 𝑖 
(i.e., the feasible time periods), when the looking-backward 

search is performed. 

 

∆𝑡𝑖 = (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥)                           (15) 

 

Algorithm 1 Update Processing Sequence via LSS     

Input: current task 𝑖, robot 𝑗, machining center 𝑘 

Output: processing mapping table 𝑀𝑇𝑘𝑡  

1： Initialize 𝑐𝑜𝑢𝑛𝑡 = 0 

2： for all 𝑡 ∈ (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) do 

3：    if 𝑀𝑇𝑘𝑡 == 0 then 

4：   𝑐𝑜𝑢𝑛𝑡 + + 

5： if 𝑐𝑜𝑢𝑛𝑡 == 𝑡𝑘
𝑖  then 

6： for all 𝑡′ ∈ (𝑡, 𝑡 + 𝑡𝑘
𝑖 − 1) do 

7：            𝑀𝑇𝑘𝑡′ = 𝑖  

8： end for 

9：       end if 

10： end if 

11： if 𝑀𝑇𝑘𝑡! = 0 then 

12： 𝑐𝑜𝑢𝑛𝑡 = 0  

13： end if 

14： end for 

 

Specifically, a counter function 𝑐𝑜𝑢𝑛𝑡 is to keep track of the 

time periods when the machining center 𝑘  is idle. Here the 

greedy search strategy is used, which means that once we find 

the first feasible time period 𝑖𝑛𝑠𝑒𝑟𝑡, the search will stop and the 

identified period will be the time period for machining center 𝑘 

to process task 𝑖.  

 
FIGURE 3: AN ILLUSTRATION ABOUT THE LOOKING-

BACKWARD SEARCH STRATEGY. 

 

Figure 3 shows an example case of updating the task 

assignment based on LSS. The blue boxes represent the time 

periods occupied by assigned tasks (e.g., tasks 𝑎, 𝑏 ∈ 𝑇) and 

they cannot be inserted with new tasks. The orange box 

represents the insertion time period using traditional selection 

method, while the green box represents the first feasible insertion 

time period following LSS. The search space of the insertion 

time is (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥). Obviously, the new insertion strategy can 

reduce the idle time for the machining center and the total time 

and energy consumption can be saved.  

 

2.2.2 Regret-based Search Strategy (RSS) 
Note that LSS will stop searching after finding the first 

feasible time period for current task 𝑖. This greedy strategy may 

prevent the next task 𝑖′ from inserting backward to machining 

center 𝑘 because the identified time period to process task 𝑖 
may partially interfere with the time period to process next task 

𝑖′ . To address this issue, we propose a Regret-based Search 

Strategy (RSS). The basic idea is that when we perform the task 

insertion of current task 𝑖, the algorithm leaves enough space for 

inserting the next task 𝑖′, i.e., think one more step. 

 

Algorithm 2 Update Processing Sequence via RSS 

Input: current task 𝑖, next task 𝑖′, robot 𝑗, 
machining center 𝑘 

Output: processing mapping table 𝑀𝑇𝑘𝑡  

1： Initialize 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 = 𝜙 

2： for all 𝑡 ∈ (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) do 

3： 
𝑖𝑛𝑠𝑒𝑟𝑡𝑠 ←Find all feasible time periods of 

task 𝑖 
4： end for 

5： //regret 

6： 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡 ← Filter time periods 

7： if 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡 = 𝜙 then 

8： 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 ← max(𝑖𝑛𝑠𝑒𝑟𝑡𝑠)                 

9： end if 

10： if 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡! = 𝜙 then 

11： 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 ← min(𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡)  

12： end if 

13： //insert 

14： 
for all 𝑡 ∈ (𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 , 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 +

𝑡𝑘
𝑖 − 1) do 

15： 𝑀𝑇𝑘𝑡 = 𝑖  

16： end for 

 

Algorithm 2 shows the pseudo-code for updating task 

assignment sequence via RSS. The search space is the same as 

Equation (16). The core ideas are as follows. 

(1) We define an array 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 = {𝑖𝑛𝑠𝑒𝑟𝑡𝑠0, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1, … } 

to save all feasible time periods that allow the insertion of task 
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𝑖. Note that the time period 𝑖𝑛𝑠𝑒𝑟𝑡 mentioned in Fig.3 is the 

same as 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 when the size of 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 is 1. 

(2) Then the insertion of the next task 𝑖′  is considered by 

filtering out the time periods that allow the insertion of task 𝑖, 
which can be accessed by the index 𝑟𝑒𝑔𝑟𝑒𝑡. 

(3) Finally, the final time period 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙  of task 𝑖 is 

determinized depending on which of the two cases shown in Fig. 

4 applies. The details of the two cases are provided as follows. 

Figures 4 (a) and 4 (b) depict the cases when the identified 

time periods for insertion of task 𝑖  allow and not allow the 

insertion of next task 𝑖′, respectively. The blue boxes represent 

the time periods occupied by assigned tasks (e.g., tasks 𝑎, 𝑏, 𝑐 ∈
𝑇 ), i.e., they cannot be inserted with new tasks. The orange box 

represents the time of the next task 𝑖′ processed on machining 

center 𝑘, while the green boxes represent all feasible insertion 

time periods following RSS. The search space of the insertion 

time for current task 𝑖  and the next task 𝑖′  is (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) 

and (𝑡
𝑗′
𝑖′ , 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥), respectively. 

In Fig. 4 (a), when we find time periods that allow the insertion 

of both task 𝑖 and 𝑖′ (i.e., 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1 and 𝑖𝑛𝑠𝑒𝑟𝑡𝑠2), then we 

let machining center 𝑘 process task 𝑖 as soon as possible to 

free this machining resource (i.e., the final selected time period 

for task 𝑖 is 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1).  

In Fig. 4 (b), obviously the time of the next task 𝑖′ needed 

(i.e., the orange box) is larger than any of the identified time 

periods that allow the insertion of task 𝑖 , i.e., 

{𝑖𝑛𝑠𝑒𝑟𝑡𝑠0, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠2}. In this case, we choose to insert 

task 𝑖 as far from 𝑡𝑗
𝑖  as possible, because if the next task 𝑖′ 

takes a shorter transportation time, then the search space of task 

𝑖′ will expand to ∆𝑡𝑖′ = (𝑡𝑗′
𝑖′

, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) . The newly expanded 

search space (i.e., the left-side dashed green box) and the original 

search space 𝑖𝑛𝑠𝑒𝑟𝑡𝑠0  are likely to form as a larger space 

allowing the insertion of the next task 𝑖′, which will greatly save 

the time consumption. 

 

 
(a)                                              (b)  

FIGURE 4: (A) A CASE WHEN THE IDENTIFIED TIME PERIODS FOR INSERTION OF TASK 𝑖 ALLOW THE INSERTION 

OF NEXT TASK 𝑖 ′. (B) A CASE WHEN THE IDENTIFIED TIME PERIODS FOR INSERTION OF TASK 𝑖 DO NOT ALLOW 

THE INSERTION OF NEXT TASK 𝑖 ′. 
 

3. EXPERIMENT AND DISCUSSION 
 
3.1 Experiment settings 

Figure 5 (a) shows the sketch of a simulated smart factory 

including four workshops placed with machining centers (dark 

green), corridors (white), docking zones for mobile robots (light 

blue), and storage zones (dark gray). Comparing to warehousing 

and logistics where mobile robots undertake similar 

transportation tasks, the mobile robots equipped for each 

workshop in a smart factory can be different since the workshops 

usually serve at different stages in the whole manufacturing 

process. Thus, it is more often to see a group of robots work 

within a workshop rather than across various workshops, which 

can reduce the complexity of control and maintain balanced 

loadings for these robots. Based on this consideration, we divide 

the whole robot team into sub-teams each responsible for a 

specific workshop and select one of these workshops as the 

experiment environment in this study. Figure 5 (b) presents a 

workshop of the smart factory represented with a grid map 

(13×18 cells). The storage zones are specified as raw material 

areas (𝐴1, 𝐴2), semi-finished product areas (𝐵1, 𝐵2), and finished 

product areas (𝐶1, 𝐶2). The mobile robots can perform loading or 

unloading tasks in the light green cells. The working scenario in 

this workshop is provided as follows. 

After receiving the starting signal, a mobile robot leaves from 

the docking area, goes to the raw material area to load and 

transports a task to a machining center. Then, the machining 

center starts to process it. After that, this robot will be assigned 

to transport other tasks. When the machining center finishes the 
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assigned task, the output (e.g., processed parts) will then be 

picked up by one of the available robots and transported to 

another machining center or a shelf in the storage zone. After 

completing all tasks assigned to it, the robot will stop at the 

docking area to avoid collisions with other robots that are still in 

working status. This process will iterate until all tasks are 

completed. 

We examined the performance of our approach in this 

environment and working scenario with different number of 

robots and tasks. Moreover, we developed a simulation platform 

based on MATLAB. This platform can visualize the machining 

centers, storage zones and docking zones in a workshop of smart 

factory, and mark out the starting positions and goal positions of 

all the transportation tasks. It can also dynamically display the 

moving paths of the robot team, which supports verifying the 

feasibility of the proposed approach (e.g., we can observe 

whether two robots conflict with each other in performing tasks). 

Usually, the quantity of transportation tasks to complete per 

work shift in a workshop of smart factory is limited by the 

processing capability of the machining centers. Therefore, we 

tested 200 to 1000 tasks in this experiment. The initial positions 

of some mobile robots and the starting and goal positions of 

some tasks are randomly assigned, while others are unknown 

considering the precedence constraints of tasks. The weighted 

sum method is used to convert the multiple objective functions 

into a single objective function. We use 𝑤𝑡  to represent the 

weight of transportation time and processing time, and 𝑤𝑒  to 

represent the weight of energy consumed by machining centers. 

The assignment of weights is related to the decision maker's 

preference for these objectives.

       
(a)                                                  (b) 

FIGURE 5: (A) SKETCH OF THE SMART FACTORY; (B) SKETCH OF A WORKSHOP IN THE SMART FACTORY. 

 
3.2 Experiment results 

We validate the feasibility of our proposed approach by 

comparing the total time and energy consumption following 

three strategies as shown in Figure 6. Here the total time and 

energy consumption (𝑇𝐶 ) are normalized following Equation 

(16): 

 

 normalized 𝑇𝐶 =  
𝑐−𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛
                    (16) 

 

where 𝑐 is the time and energy consumed for transportation and 

processing, 𝑐𝑚𝑎𝑥  and 𝑐𝑚𝑖𝑛  are the maximum/minimum sum 

of time or energy consumed for transporting and processing. 

Here the baseline strategy means a task will be assigned to a 

machining center at the time point right after the last task 

assigned to this machining center. The results in Fig. 6 show that 

the total time and energy consumption grows with the number of 

tasks, and the proposed Regret-based Search Strategy (RSS) 

performs better than the Looking-backward Search Strategy 

(LSS), and both RSS and LSS outperform the baseline strategy 

for a varying number of robots and tasks. 

By comparing (a) vs. (b) and (c) vs. (d) in Fig. 6, we can 

observe that when the baseline strategy is adopted, increasing the 

number of robots will not significantly reduce the total 

consumption. For example, when using the baseline strategy and 

𝑛 = 1000, the normalized 𝑇𝐶  in (a) and (b) is 0.921 and 

0.909, respectively. However, the total consumption decreases 

markedly if the LSS or RSS is used. For example, when using 

LSS and 𝑛 = 1000 , the normalized 𝑇𝐶  in (a) and (b) is 

0.816 and 0.751, respectively. One possible explanation is that 

when the processing time and energy consumption of machining 

centers are not considered (e.g., in warehousing and logistics 

scenarios), more robots will support faster completion of tasks. 

However, when the processing time and energy consumption of 

machining centers are considered (e.g., in a smart factory 

environment), even if the number of robots is increased and the 

tasks can be transported to machining centers faster, it still takes 

a certain amount of time for machining centers to process these 

tasks, which leads to the queuing of tasks and waiting of robots, 

and the total time consumption will not be significantly reduced. 

However, the LSS or RSS can reorganize the processing 

sequence of tasks in real time, which can alleviate the queuing 

issue and reduce the waiting time for robots. Thus, the decrease 

of 𝑇𝐶 will be more obvious when LSS or RSS is adopted. 

In addition, by comparing (a) vs. (c) and (b) vs. (d) in Fig. 6, 

we can observe the influence of different weights of time and 

energy on the final performance. For example, if using RSS, 

when robots =  5 , 𝑤𝑡 = 0.6 ,  𝑤𝑒 = 0.4 , 𝑛 = 1000 , the 

normalized 𝑇𝐶 = 0.743, while when robots =  5, 𝑤𝑡 = 0.4, 
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𝑤𝑒 = 0.6, 𝑛 = 1000, the normalized 𝑇𝐶 = 0.881. This result 

indicates that the advantage of RSS is more pronounced when 

the weight of time (𝑤𝑡) is larger. A possible explanation is that 

the search of the machining sequence is performed only after 

each determination of which machining center is assigned, i.e., 

the energy consumption does not vary with the insertion position 

since we only consider the time consumed by the machining 

center without considering the energy consumption during its 

idle time. 

Figure 7(a) indicates that the number of search iterations 

increases along with the increasing number of tasks. The number 

of search iterations using RSS is greater than that using LSS, 

which can lead to slightly longer computing time as shown in 

Figure 7(b). We also check the generated paths of each robot in 

a simulation environment developed with MATLAB as shown in 

Fig. 8, and no conflicting paths are found. 

 
(a)                                                   (b) 

  
(c)                                                   (d) 

FIGURE 6: NORMALIZED TOTAL CONSUMPTION (𝑇𝐶) VERSUS NUMBER OF TASKS WITH DIFFERENT NUMBER OF 

ROBOTS AND WEIGHTS. 
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FIGURE 7: (A) THE NUMBER OF SEARCHING 

ITERATIONS VERSUS NUMBER OF TASKS. 

 

 
FIGURE 7: (B) RUNTIME VERSUS NUMBER OF TASKS. 

 

 

FIGURE 8: SIMULATION ENVIRONMENT DEVELOPED 

IN MATLAB TO VERIFY THE FEASIBILITY OF 

GENERATED PATHS FOR MOBILE ROBOTS. 
 

4. CONCLUSION 
In this paper, we present an integrated task and path planning 

approach for mobile robots in smart factory. The basic idea is 

that in the stage of task assignment, the real paths for mobile 

robots are identified and the time and energy consumed by 

mobile robots and machining centers are calculated. Then a 

greedy strategy working with the Looking-backward Search 

strategy or Regret-based Search Strategy is used to obtain task 

assignments in time-series that achieve the proposed objectives, 

which enables a joint optimal solution for both task assignment 

and path planning. The real time consumed on the planned paths 

is used as the basis to adjust and improve the selection of mobile 

robots and task assignments, and the precedence constraints 

between sequential manufacturing tasks are considered 

simultaneously. 

We compare the performance of different searching strategies 

in a simulated factory environment. The results show that the 

proposed LSS and RSS are better than the traditional strategy 

when the number of tasks or robots increases, especially when 

the number of tasks is large. In addition, when the weight of time 

consumed increases, the advantage of our approach becomes 

more noticeable. The proposed approach generally will not take 

long computing time, and it can help reduce the idle time of 

machining centers and make full use of these resources to 

improve the overall operational efficiency of smart factory. 

One limitation of this paper is that the size of the studied 

workshop is relatively small. We will examine the reliability and 

computational efficiency of the proposed approach in a large-

scale factory environment where the planning and scheduling of 

transportation tasks for mobile robots can be more difficult. The 

complex relationship between manufacturing time and 

consumed energy will also be considered in future work. 
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