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ABSTRACT 
Customer preferences are found to evolve over time and 
correlate with geographical locations. Studying spatiotemporal 
heterogeneity of customer preferences is crucial to engineering 
design as it provides a dynamic perspective for a thorough 
understanding of preference trend. However, existing analytical 
models for demand modeling do not take the spatiotemporal 
heterogeneity of customer preferences into consideration. To fill 
this research gap, a spatial panel modeling approach is developed 
in this study to investigate the spatiotemporal heterogeneity of 
customer preferences by introducing engineering attributes 
explicitly as model inputs in support of demand forecasting in 
engineering design. In addition, a step-by-step procedure is 
proposed to aid the implementation of the approach. To 
demonstrate this approach, a case study is conducted on small 
SUV in China’s automotive market. Our results show that small 
SUVs with lower prices, higher power, and lower fuel 
consumption tend to have a positive impact on their sales in each 
region. In understanding the spatial patterns of China’s small 
SUV market, we found that each province has a unique spatial 
specific effect influencing the small SUV demand, which 
suggests that even if changing the design attributes of a product 
to the same extent, the resulting effects on product demand might 
be different across different regions. In understanding the 
underlying social-economic factors that drive the regional 
differences, it is found that Gross Domestic Product (GDP) per 
capita, length of paved roads per capita and household 

consumption expenditure have significantly positive influence 
on small SUV sales. These results demonstrate the potential 
capability of our approach in handling spatial variations of 
customers for product design and marketing strategy 
development. The main contribution of this research is the 
development of an analytical approach integrating 
spatiotemporal heterogeneity into demand modeling to support 
engineering design.  
Keywords: spatiotemporal heterogeneity, customer preference, 
spatial panel model, demand forecasting, engineering design 

1. INTRODUCTION
Customer preference models support product design in many 
aspects [1–9] as they can quantitatively characterize the 
interrelationship between market demand, engineering design 
attributes, and customer demographics. In the past decade, 
Discrete Choice Analysis (DCA) [10] has been prevalent in 
modeling customers’ choice behaviors in engineering design 
[11–17]. To overcome DCA’s limitations in dealing with the 
dependency of alternatives and the collinearity of design 
attributes [18], recent studies explored the capability of 
leveraging complex network theory, such as the social network 
analysis [19, 20], stochastic network modeling [21, 22], 
multidimensional network analysis [18, 23], and two-stage 
bipartite network analysis [24] in modeling customer 
preferences. 
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Modeling customer preferences is inherently difficult due to the 
challenges in modeling various forms of heterogeneity in 
customer behaviors [25–27]. Different approaches have been 
used to capture the heterogeneity within the DCA framework, for 
example, by introducing the error term in utility functions 
[6,12,14] to capture systematic heterogeneity, and using random 
effect model (e.g., the mixed logit model) to capture 
heterogeneous preferences among individual customers. In 
addition to these forms of heterogeneity, customer preferences 
may also evolve over time [28, 29] and correlate with 
geographical locations [30, 31]. Human behaviors at one 
location can diffuse to adjacent locations that share similar 
socioeconomic status [32]. Nevertheless, none of the 
aforementioned approaches take the spatiotemporal 
heterogeneity of customer preferences into consideration. 

Understanding the spatiotemporal heterogeneity of customer 
preferences supports strategic decisions in product development 
(e.g. to determine the release of certain products in specific 
regions) in highly dynamic and diversified markets, such as 
China’s automotive market. Along with the rapid trend of 
urbanization, China’s automotive market has shown strong 
regional characteristics [33]. According to a McKinsey research 
[34], for example, customers in Hangzhou and Shandong care 
more about attractive external styling while their counterparts in 
Shanghai and Fujian are less concerned with exterior appearance 
and more sensitive to price. These differences exist even though 
these four regions are all located along China’s eastern coast. In 
2016, 2.2% private vehicles sold in Beijing are New Energy Cars 
(e.g. hybrid vehicles, electric plug-in vehicles, etc.), while this 
percentage in Shandong Province is only 0.4% based on a 
recognized survey representing China’s automotive market [24]. 
Chinese customers now exhibit much more differentiated 
behavior than before, and automakers must prepare to serve 
those diverse needs [33]. Therefore, without a thorough 
understanding on the spatiotemporal heterogeneity of customer 
preferences, it is challenging for designers to create targeted and 
personalized products and for companies to develop localized 
marketing strategies. 

Previous research in consumer studies and marketing on trend 
analysis of customer preferences has been mainly focused on 
demand forecasting [35–37], without explicitly considering the 
impact of engineering design attributes. In engineering design, 
researchers are able to utilize open data (e.g. online customer 
reviews and social media) to extract product features [38] and 
predict emerging product design trends [39, 40] based on data 
mining and machine learning techniques or time-series analysis 
[40]. These methods may achieve high accuracy, however, their 
interpretability is insufficient because the underlying reasons for 
the observed preference trends are unattainable from those 
methods.  

In this research, we propose to employ spatial panel models [41]  
for understanding and analyzing the spatiotemporal 

heterogeneity in product demand and the impact of geographical, 
social, and economic factors from different regions. Rooted in 
spatial econometrics and regional science [42–44], spatial panel 
models are effective for modeling the lagged effect of dependent 
variables and independent variables in both space and time [45]. 
Our contribution in this work is to extend the spatial panel 
models to the engineering design field for modeling product 
demand as a function of engineering design attributes, customer 
attributes, and regional attributes as well as spatiotemporal 
effects. This enables quantitative assessments of the spatial 
patterns of customer preferences to support design for 
customization. Current research in this paper shows the 
spatiotemporal heterogeneity of product demand at the aggregate 
level (e.g. provinces in China). Once the heterogeneity is 
identified, disaggregated consumer preference models can be 
created for individual provinces to further examine the 
differences in consumer preferences. 

The structure of the remaining paper is arranged as follows. 
Section 2 reviews the existing techniques of spatiotemporal data 
modeling, especially the spatial panel models. In Section 3, a 
step-by-step procedure for understanding spatiotemporal 
heterogeneity of customer preferences is introduced. The 
procedure is demonstrated using the China’s automotive market 
as an example, covering dataset preparation, key attributes 
identification, and results from multiple forms of spatial panel 
models. Section 4 discusses the implications of results. Section 
5 is the closure of the paper. 
 
2. SPATIOTEMPORAL DATA AND SPATIAL PANEL 
MODELS 
2.1. Spatial interaction effects and static spatial panel 
model 
Spatiotemporal data is the data to which labels were added 
showing where and when the data was collected [46]. Depending 
on whether the spatial data is continuous or discrete, 
spatiotemporal models can be classified into two main 
categories: point-referenced models and lattice/panel models. 
Point-referenced models are appropriate in modeling data in 
which locations are points with coordinates (e.g. longitude-
latitude), such as the daily ozone concentration observed at 28 
monitoring sites in the state of New York from July to August in 
2006 [47]. The lattice/panel models, as known as spatial panel 
models, are used for modeling repeated observations on the same 
set of regions over time, such as the public capital productivity 
in 48 US states observed over 17 years [48]. In these types of 
models, a spatial weights matrix 𝑊𝑊 is often used to describe the 
spatial adjacency structure of the geographical units. 

The theoretical foundation of spatial panel models originates 
from three basic spatial interaction effects [45]. Suppose 𝑦𝑦 and 
𝑥𝑥 represent the dependent and independent variables observed 
in a spatial unit, respectively, endogenous interaction effects 
measure how the value of the dependent variable for one spatial 
unit is jointly determined with that of neighboring units (𝑦𝑦 of 
unit A ↔ 𝑦𝑦 of unit B). Exogenous interaction effects measure 
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how the dependent variable of a particular unit depends on 
independent explanatory variables of other units (𝑦𝑦 of unit A ← 
𝑥𝑥  of unit B). Interaction effects among the error terms 
measure how the unobserved factors in neighboring spatial units 
influence each other (error term 𝑢𝑢 of unit A ↔ error term 𝑢𝑢 of 
unit B). A comprehensive spatial dependence model can be 
represented in Eqns. (1) and (2): 
 𝒀𝒀 = 𝜆𝜆𝑾𝑾𝒀𝒀 + 𝑿𝑿𝑿𝑿 + 𝑾𝑾𝑿𝑿𝑾𝑾 + 𝒖𝒖        (1) 
 𝒖𝒖 = 𝜌𝜌𝑾𝑾𝒖𝒖 + 𝜺𝜺         (2) 
where 𝒀𝒀  is an 𝑁𝑁 × 1  vector (𝑦𝑦1,𝑦𝑦2 , … , 𝑦𝑦𝑁𝑁 ) consisting of one 
observation on the dependent variable for every space units in 
the sample, 𝑁𝑁  is the number of space units, and 𝑾𝑾  is a 
nonnegative 𝑁𝑁 × 𝑁𝑁  spatial weights matrix. 𝑾𝑾𝒀𝒀  is the 
endogenous interaction effect among the dependent variable 𝑦𝑦, 
𝑾𝑾𝑿𝑿 is the exogenous interaction effects among the independent 
variables 𝑥𝑥 , and 𝑾𝑾𝒖𝒖  is the interaction effects among the 
disturbance term of different units. 𝑿𝑿  is an 𝑁𝑁 × 𝐾𝐾  matrix of 
exogenous explanatory variables, 𝒖𝒖 is error term, and 𝑿𝑿,𝑾𝑾 are 
associated 𝐾𝐾 × 1  vectors with unknown parameters to be 
estimated. 𝜆𝜆 is the spatial autoregressive coefficient, 𝜌𝜌 is the 
spatial autocorrelation coefficient, and 𝜺𝜺 = (𝜀𝜀1,  … ,  𝜀𝜀𝑁𝑁)𝑇𝑇 is a 
vector of disturbance terms, where 𝜀𝜀𝑖𝑖   is independent and 
identically distributed following standard Normal distribution, 
(0,  𝜎𝜎2).  

A typical spatial weights matrix 𝑾𝑾  is a adjacency matrix of 
regions whose diagonal elements are set as 0 and for each 
observation (row) those regions (columns) that belong to its 
neighborhood are set as 1 (see Fig. 1). Two regions are neighbors 
if they share a side.  

When modeling spatial panel data, i.e. data containing time 
series observations of a number of geographical units [45], the 
above spatial dependence model can be extended by adding the 
time index ( 𝑡𝑡 ). See the Eqns. (3) and (4) in Fig. 2, which 
illustrates the role of each term in the static spatial panel model. 
Note here two additional effects need to be considered: spatial 
specific effects 𝝁𝝁, control for all time-invariant variables (e.g. 
norms and values regarding labor, crime and religion in a region) 
and time-period specific effects 𝝃𝝃 , control for all space-
invariant variables (e.g. one year marked by economic recession, 
the other by a boom; changes in legislation or government 

policy). Spatial specific effects can be treated as fixed effects or 
random effects. When the spatial regression analysis are 
constrained with specific geographical units such as the 48 
contiguous states in the United States, usually a fixed effects 
model is a better choice [42]. 

2.2. Spatial Auto Regressive Model (SAR) and Spatial 
Error Model (SEM) 
In practice, simplified spatial panel models are used since the full 
model is hard to explain and its parameters are difficult to 
estimate. For example, in spatial lag model, also known as the 
Spatial Auto Regressive Model (SAR), only the endogenous 
interaction effect among the dependent variable is considered 
(𝑾𝑾,𝜌𝜌 = 0). See Eqn. (5).  
 𝒀𝒀𝒕𝒕 = 𝜆𝜆𝑾𝑾𝒀𝒀𝒕𝒕 + 𝑿𝑿𝒕𝒕𝑿𝑿 + 𝝁𝝁 + 𝝃𝝃 + 𝜺𝜺𝒕𝒕           (5) 
While in Spatial Error Model (SEM), only the interaction effect 
between error terms is considered (𝑾𝑾, 𝜆𝜆 = 0). See Eqns. (6) and 
(7). 
 𝒀𝒀𝒕𝒕 = 𝑿𝑿𝒕𝒕𝑿𝑿 + 𝝁𝝁 + 𝝃𝝃 + 𝒖𝒖𝒕𝒕              (6) 
 𝒖𝒖𝒕𝒕 = 𝜌𝜌𝑾𝑾𝒖𝒖𝒕𝒕 + 𝜺𝜺𝒕𝒕               (7) 
When none of the spatial dependence and space/time specific 
effects is considered (i.e. 𝑾𝑾, 𝜆𝜆,𝜌𝜌,𝝁𝝁, 𝝃𝝃 = 0), a spatial panel model 
simply becomes a linear regression model: 
                   𝒀𝒀𝑡𝑡 = 𝑿𝑿𝑡𝑡𝑿𝑿 + 𝜺𝜺𝑡𝑡                 (8) 
Eqns. (9) and (10) are used to make predictions on spatial panel 
data for fixed effects SAR model and SEM model, respectively, 
according to Baltagi et al. [49] and Elhorst’s work [50], where 
𝑇𝑇 + 𝐶𝐶  is a future time period, �̂�𝜆  is the estimated spatial auto 
regression coefficient, �̂�𝛽𝐺𝐺𝐺𝐺𝐺𝐺 is the estimated coefficients using 
Generalized Method of Moments (GMM), �̂�𝜇  is the estimated 
spatial specific effect. 
            𝑦𝑦�𝑇𝑇+𝐶𝐶 = �𝐼𝐼𝑁𝑁 − �̂�𝜆𝑊𝑊�−1(𝑋𝑋𝑇𝑇+𝐶𝐶�̂�𝛽𝐺𝐺𝐺𝐺𝐺𝐺 + �̂�𝜇)     (9) 
 𝑦𝑦�𝑇𝑇+𝐶𝐶 = 𝑋𝑋𝑇𝑇+𝐶𝐶�̂�𝛽𝐺𝐺𝐺𝐺𝐺𝐺 + �̂�𝜇            (10) 
2.3. Dynamic spatial panel model 
The models represented in Eqns. (3) and (4) are static spatial 
panel models as they just pool time-series cross-sectional data 
[45]. As an extension to static spatial panel models, dynamic 
spatial panel models (see Eqn. (11)) are able to deal with serial 

   
Figure 1. A typical spatial weights matrix. Note that A and 
E do not share a side, thus their corresponding cell in the 
matrix is set to zero. 
 

  

 
Figure 2. The role of each term in the static spatial panel 
model. 
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dependence between the observations on each spatial unit over 
time and independent variables lagged in space and/or time: 
 𝒀𝒀𝑡𝑡 = 𝜏𝜏𝒀𝒀𝑡𝑡−1 + 𝛿𝛿𝑾𝑾𝒀𝒀𝑡𝑡 + 𝜂𝜂𝑾𝑾𝒀𝒀𝑡𝑡−1 + 𝑿𝑿𝑡𝑡𝑿𝑿 + 𝜺𝜺𝑡𝑡    (11) 
where 𝒀𝒀𝑡𝑡−1 is a dependent variable lagged in time, 𝑾𝑾𝒀𝒀𝑡𝑡 is a 
dependent variable lagged in space, 𝑾𝑾𝒀𝒀𝑡𝑡−1  is a dependent 
variable lagged in both space and time. Note that Eqn. (11) is a 
simplified version of the full dynamic spatial panel model. A full 
model will include the independent variables lagged in time 
𝑿𝑿𝑡𝑡−1, lagged in space 𝑾𝑾𝑿𝑿𝑡𝑡, and lagged in both space and time 
𝑾𝑾𝑿𝑿𝑡𝑡−1 . Elhorst stressed that the full model suffers from 
identification problems and is not useful for empirical research 
[45]. 

In summary, spatial panel models can characterize how a 
dependent variable is impacted by dependent or independent 
variables within different spatial units (e.g. data of adjacent 
regions) and/or time periods (e.g. data of previous years). They 
can complement existing techniques on demand modeling by 
explicitly considering spatiotemporal heterogeneity. In this 
research, we investigate the use of the spatial lag model (SAR) 
in Eqn. (5) and spatial error model (SEM) in Eqns. (6-7) to 
understand the spatial dependence of customer preferences 
between different regions. 
 
3. EXTENDING SPATIAL PANEL MODELS FOR 
MODELING HETEROGENEITY OF CUSTOMER 
PREFERENCES 
3.1. A step-by-step procedure for understanding 
spatiotemporal heterogeneity of customer 
preferences 
Figure 3 illustrates a step-by-step procedure for understanding 
spatiotemporal heterogeneity of aggregate customer preferences 

in engineering design. In the rest of this subsection, a detailed 
description of each step is given. 

Step 1: data collection and preparation. Data sources for 
understanding spatiotemporal heterogeneity of customer 
preferences can be open data and closed data. Open data refers 
to data that can be freely used, re-used, and redistributed by 
anyone [51], including patents, scientific publications, product 
forums, social media networks, design repository databases, etc. 
Closed data limits the replicability of the research process and 
results, including surveys, experimental data, crowdsourced 
data, etc. For either source, it is important to prepare a clean 
dataset with clear space and time tags. Descriptive statistics and 
visualization techniques can provide an intuitive impression of 
the dataset, especially its spatial patterns. In our study, both open 
data and closed data are leveraged (see Sec. 3.2 for details). 

Step 2: spatial dependence tests. Spatial dependence is the most 
fundamental assumption for spatial panel models. If no spatial 
dependence exists among the data collected, it is not necessary 
to build spatial panel models. Common spatial dependence tests 
include Lagrange multiplier (LM) Tests [52] and the Hausman 
Test [53], which can be used to examine the spatial dependence 
and provide clues for model specification (e.g. choice between a 
random effects model and a fixed effects model, SAR or SEM). 

Step 3: model specification. After passing the spatial dependence 
tests, the modeling parameters and model types need to be 
specified. Response variables (𝒀𝒀) could be the demand (sales) or 
subjective rating of a specific product (e.g. VW Jetta), product 
segment (e.g. small SUV) or product feature (e.g. turbo-charged 
engine). Spatial weights matrix (𝑾𝑾) as defined in Fig. 1 is used 
to describe the distance between spatial units. This distance can 
be measured by geographical proximity or demographic 
similarity, representing the geographical, social or economic 
relations between different regions. Explanatory variables (𝑿𝑿 ) 
can include customer demographics (e.g. age, income. etc.), 
regional characteristics (e.g. GDP, population, etc.), and product 
attributes. Common methods for selecting explanatory variables 
include multi-collinearity analysis, stepwise logistic regression 
and principal component analysis. These methods can help 
determine the most influential explanatory variables. Besides the 
SAR and SEM models mentioned in Sec. 2, there are some other 
spatial panel models, such as the Spatial Durbin Model, Spatial 
Autoregressive Confused (SAC) model and Spatial Lag of X 
(SLX) model. One can refer to [54] for a detailed description 
about the characteristics of these models and how to choose from 
them. In this study, we investigate the use of SAR and SEM 
models for modeling the heterogeneity of customer preference 
across different regions because they are the most fundamental 
models to characterize the spatial dependence between different 
regions. 

Step 4: model interpretation and improvement. After specifying 
the model parameters and types, the associated coefficients can 
be estimated using methods such as maximum likelihood and 
generalized moments [55]. These coefficients need to be checked 

   
Figure 3. A step-by-step procedure for understanding 
spatiotemporal heterogeneity of aggregate customer 
preferences in engineering design 
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to see if they are consistent with the real space-time patterns of 
customer preferences. The model specifications may need to be 
adjusted iteratively until the models with good interpretability 
are obtained. 
The ultimate application of this approach is to extract insights 
from spatiotemporal data — how customer preferences change 
with space and time. These insights can be used to support 
demand forecasting for engineering design and creating new or 
improving existing design, product features, or product segments 
for differentiated customer groups. 
3.2. Dataset of China’s automotive Market 
To demonstrate the proposed approach, we conduct a case study 
employing the data from a recognized, reputable survey 
representing China’s automotive market [24]. This survey data 
consists of about 30,000 to 50,000 new car buyers’ responses and 
purchase history covering about 400 different vehicle models in 
China’s market from 2012 to 2016. Respondents were asked to 
list the cars they purchased with their residential information and 
purchase time recorded. The vehicle’s attributes, such as engine 
power and fuel consumption, are reported by customers in the 
survey and verified by the data company. 

Our focus in this study is on the small SUV segment, as the 
demand for small SUVs has been rising rapidly and increasingly 
affluent Chinese buyers opt for more spacious vehicles [56]. 
According to the survey data, 14.8% of the respondents 
purchased a small or mini SUV in 2012 and this percentage 
increased to 21.6% in 2016. The survey data was collected every 
four months in each year (called one wave), thus we have three-
wave data for each year and 15-wave data for five years. We only 
considered 27 provinces in mainland China in our modeling, as 
these provinces have complete sales data of small SUV for 15 
waves. We also collected open data about the regional statistics 
(demography and socioeconomics) of these provinces from the 
National Bureau of Statistics of China [57]. 

3.3. Descriptive analysis of the key variables 
Based on our previous research of customer preference in vehicle 
consideration and choice [24], we identified three vehicle 
attributes — price, power, and fuel consumption, one customer 
attribute — monthly household income, and chose three regional 
attributes that have been broadly studied in automotive market 
research [58,59]— GDP per capita, household consumption 
expenditure and length of paved roads per capita to capture the 
engineering, demographic and regional effects on small SUV 
sales. Note the vehicle attributes and customer attributes are 
taken from the survey [24], while the regional attributes are 
obtained from [57]. Table 1 provides the descriptive statistics of 
these attributes at the province level. It can be seen that the mean 
sales of small SUVs, GDP per capita, household consumption 
expenditure and length of paved roads per capita of each 
province in 2016 is larger than those in 2012, while the mean 
price, power, fuel consumption, and household income in 2016 
is smaller than those in 2012. These results may imply that small 
SUVs are increasingly popular as they are becoming more 
affordable. To meet these customers’ needs, car manufacturers 

may tend to build smaller SUVs with lower prices, power, and 
fuel consumption. 

Table 1. Descriptive statistics of the key variables (province-
level) between 2012 and 2016 

 Mean (SD) Min Max 

2012 
Sales (units) 102.9 (85.3) 9 351 
Price (10,000 RMB) 23.6 (1.2) 20.6 26.6 
Power (BHP) 165 (5.8) 152.2 180.5 
Fuel consumption 
(liter/100 km) 11.1 (0.5) 10.3 12.5 

Household income  
(1,000 RMB) 15.7 (4.2) 9.2 26.8 

GDP per capita 
(10,000 RMB) 4.3 (1.9) 1.9 9.1 

Household Expend. 
(1000 RMB) 14.3 (6.7) 5.3 36.9 

Length of paved roads 
per capita (km/10, 000 
residents) 

2.4 (1.1) 0.7 4.6 

2016 
Sales (units) 421.8 (350.2) 15 1119 
Price (10,000 RMB) 15.2 (1.5) 12.9 18.1 
Power (BHP) 150.4 (4.2) 141.9 158.9 
Fuel consumption 
(liter/100 km) 9.1 (0.6) 8.4 10.8 

Household income  
(1,000 RMB) 13.7 (3.9) 8.0 23.3 

GDP per capita 
(10,000 RMB) 5.7 (2.6) 2.8 11.8 

Household Expend. 
(1000 RMB) 21.3 (9.8) 9.7 49.6 

Length of paved roads 
per capita (km/10, 000 
residents) 

2.8 (1.1) 1.1 5.6 

Note: Standard deviations are in parenthesis, and BHP stands for 
Brake Horsepower.  
Figure 4 presents the spatial distribution of a few selected 
variables in 2016. These graphs provide an intuitive impression 
of the relationship between the sales of small SUVs and some 
explanatory variables. For example, the sales of small SUVs 
seems to positively correlate with income and household 
consumption expenditure, and negatively correlate with price. 
We expect to obtain consistent results but in a quantitative way 
from the spatial panel models.    
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3.4. Spatial dependence tests 
Spatial dependence tests can examine the existence of spatial 
effects and provide clues for model specifications. Table 2 
presents the results of two tests: 𝐿𝐿𝑀𝑀𝐻𝐻 and Hausman Test with 
their respective null hypotheses (𝐻𝐻0 ). Detailed procedures for 
running these tests can be found in [52]. As the p-values shown 
in Table 2, the null hypotheses of both tests could be rejected at 
the 5% significance level. The result of the 𝐿𝐿𝑀𝑀𝐻𝐻 test suggests 
that at least one of the spatial autoregressive coefficient (𝜆𝜆) and 
the variance of spatial specific effects (𝜎𝜎𝜇𝜇2) is not zero. This result 
implies the existence of the spatial effect of the dependent 
variable — small SUV sales in China. The result of Hausman 
Test implies that the assumption of random effects is not 
supported by the data, and fixed effects models may perform 
better than random effects models. 
  

Table 2. Results of spatial dependence tests 

Test 𝑯𝑯𝟎𝟎 statistic p-value 

𝐿𝐿𝑀𝑀𝐻𝐻 

Spatial autoregressive 
coefficient (𝜆𝜆) and variance 
of spatial specific effects 
(𝜎𝜎𝜇𝜇2) are both zero 

783.84 <0.001 

Hausman 
Test 

Random effects assumption 
is supported by the data 44.83 <0.001 

3.5. Results and interpretations of static spatial panel 
models 
3.5.1. Model specifications 
After passing the spatial dependence tests, we build 
representative static spatial panel models to quantify the impacts 
of the identified explanatory variables associated with spatial 

 
Figure 4. The spatial distribution of certain model variables in 2016: a) sale of small SUVs, b) price, c) monthly household 
income, d) household consumption expenditure. White areas represent missing data. 
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specific effects and time-period specific effects on the sales of 
small SUVs. The modeling parameters are chosen as follows: 
• Response variable (𝒀𝒀): small SUV sales in 27 provinces of 

China in each wave from 2012 to 2016. The number of the 
surveyed respondents is highly correlated with the number 
of new vehicle registrations over multiple years in each 
province of China (𝑟𝑟 = 0.931), thus we assume the survey 
data can represent the actual sales numbers. 

• Spatial weights matrix (𝑾𝑾): binary geographical adjacency 
matrix adjusted with per capita disposable income of each 
province. This adjustment is based on the assumption that 
wealthier regions produce larger spatial influence on their 
neighbor regions. Eqn. (12) represents the calculation of this 
adjusted spatial weights matrix: 

𝑊𝑊 = 𝑤𝑤 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑦𝑦1���
𝑦𝑦�

,
𝑦𝑦2���
𝑦𝑦�

, … ,
𝑦𝑦𝑛𝑛���
𝑦𝑦�
�, 

       𝑦𝑦�𝑖𝑖 = 1
𝑡𝑡𝑇𝑇−𝑡𝑡1+1

∑ 𝑦𝑦𝑖𝑖𝑡𝑡
𝑡𝑡𝑇𝑇
𝑡𝑡1 , 𝑦𝑦� = 1

𝑡𝑡𝑇𝑇−𝑡𝑡1+1
∑ ∑ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑡𝑡𝑇𝑇
𝑡𝑡1

𝑛𝑛
𝑖𝑖=1    (12) 

  where 𝑤𝑤 is the geographical adjacency matrix, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() is 
a diagonal matrix with all non-diagonal elements set to zero, 
𝑦𝑦𝑖𝑖𝑡𝑡  is the per capita disposable income of province 𝑑𝑑  in 
time 𝑡𝑡. 𝑦𝑦�𝑖𝑖 is the average per capita disposable income of 
province 𝑑𝑑 from 𝑡𝑡1 to 𝑡𝑡𝑇𝑇 (𝑇𝑇 time periods totally), and 𝑦𝑦� 
is the average per capita disposable income of all provinces 
from 𝑡𝑡1  to 𝑡𝑡𝑇𝑇 . For the ease of interpretation, 𝑊𝑊  is 
normalized such that the elements of each row sum to unity 
[45]. Note that this binary adjacency matrix is the most 
frequently used form of spatial weights matrix, and the 
economic interactions between non-adjacent regions are not 
considered here. This assumption may not be always true in 
practice, and other forms of spatial weights matrix reflecting 

the socioeconomic or cultural interactions between both 
adjacent and non-adjacent regions can be employed in future 
research. 

• Explanatory variables (𝑿𝑿 ): three vehicle attributes, one 
customer attribute and three regional attributes as presented 
in Sec. 3.3. 

3.5.2. Estimated spatial parameters and coefficients of 
explanatory variables 
Table 3 presents a summary of the estimated coefficients of four 
different spatial panel models and one linear regression model as 
a benchmark. The response variable and explanatory variables 
are transformed to natural logarithms when estimating these 
models. The difference between the random effects model and 
the fixed effect model depends on whether the spatial specific 
effects (𝜇𝜇) are treated as random effects or fixed effects in the 
estimation process as describe in Sec. 2. In SAR models (Eqn.5), 
the dependence of the response variables in different regions is 
estimated and denoted by the spatial autoregressive coefficient 
(𝜆𝜆 ). In SEM models (Eqns. 6-7), the dependence of the error 
terms in different regions is estimated instead, and denoted by 
the spatial autocorrelation coefficient (𝜌𝜌). In both SAR and SEM 
models, in addition to the results shown in Table 3, spatial 
specific effects (𝝁𝝁) and time-period specific effects (𝝃𝝃) are also 
estimated (see details in Sec. 3.5.3). Linear regression model is 
the simplest model with no spatial dependence nor space/time 
specific effects considered. The 𝑅𝑅2of these models suggest that 
fixed effects models perform better than random effects models. 
This result is consistent with the implication of model 
performance obtained from the spatial dependence test in Sec. 
3.4. In addition, the 𝑅𝑅2 of the linear regression model is low, 
which suggests that the spatial and temporal effects (e.g. 𝜆𝜆,𝜌𝜌) 
not included in the linear model, are indeed important. When 

  Table 3. Estimated coefficients of five different models. Refer to Eqn. (5) for the SAR model and Eqns. (6-7) for the SEM 
model. 

  Linear Model Random Effects Models Fixed Effects Models 

   SAR SEM SAR SEM 

Spatial Parameters 
𝜆𝜆  0.17**  0.14*  
𝜌𝜌   0.07  0.05 

Product Attributes 
Price (𝛽𝛽1) -2.37*** -0.85** -1.04*** -0.53. -0.62* 

Power (𝛽𝛽2) -0.64 0.95 1.13. 0.77 0.87 

Fuel Consump. (𝛽𝛽3) -0.05 -1.45** -1.64** -1.09* -1.17* 
Customer Attribute House. Income (𝛽𝛽4) 1.06*** 0.22. 0.23. 0.17 0.19 

 
Length_Roads (𝛽𝛽5) -0.29* 0.46 0.38 1.78*** 1.81*** 

House Expend. (𝛽𝛽6) 0.75* 0.92* 1.29** 0.73 1.07* 

GDP per capita (𝛽𝛽7) 0.64* 0.52 0.47 1.06* 1.09* 

Goodness of Fit 𝑅𝑅2 0.53 -0.02 0.39 0.84 0.84 
Note: 𝜆𝜆, Spatial autoregressive coefficient; 𝜌𝜌, Spatial autocorrelation coefficient 
      . p<.10; * p < .05; ** p < .01; *** p < 0.001 
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using the first 14-wave data to train the model and the last wave 
data to test the model, the Root Mean Squared Errors (RSME) of 
fixed effects SAR model and SEM model are 0.47 and 0.48 
respectively, while the RSME of linear regression model is 4.69. 
Thus, spatial panel models are more accurate than linear 
regression models in explaining the response variable, as they 
include the impact of the attributes of products, customers and 
regions, as well as the associated spatial interactions. 

The positive spatial autoregressive coefficient (𝜆𝜆 = 0.14, 𝑝𝑝 <
.01) obtained from the fixed effects SAR model (see Eqn. (5)) 
suggests that a region with higher small SUV sales is likely 
adjacent to several regions with high small SUV sales. This result 
makes sense that neighbors influence each other. The spatial 
autocorrelation coefficients (𝜌𝜌 = 0.05, 𝑝𝑝 > .05) estimated from 
the fixed effect SEM model (see Eqns. (6-7)) implies that 
unobservable factors (e.g. other explanatory variables not 
included in our models) have insignificant influence with those 
in adjacent regions.  

When examining the estimated coefficients (𝑿𝑿) of explanatory 
variables in the fixed effects SEM model, we find that at an 
aggregated market level small SUVs with a lower price (β1 =
−0.62, p < .05) and lower fuel consumption (𝛽𝛽3 = −1.17, 𝑝𝑝 <
.05) tend to have a positive impact on sales. The effects of power 
( 𝛽𝛽2 = 0.87, 𝑝𝑝 > .05 ) and monthly household income of 
customers (𝛽𝛽4 = 0.19, 𝑝𝑝 > .05) are not significant. Among the 
three regional attributes, length of paved roads per capita (𝛽𝛽5 =
1.81,𝑝𝑝 < 0.001 ), household consumption expenditure (𝛽𝛽6 =
1.07,𝑝𝑝 < 0.05 ) and GDP per capita (𝛽𝛽7 = 1.09, 𝑝𝑝 < 0.05 ) all 
have significant positive influences on the sales of small SUVs. 
The estimated coefficients of price and household consumption 
expenditure in spatial panel models are consistent with the 
visualized distribution of these two attributes shown in Fig. 4. In 
addition, the estimated coefficients in the fixed effects SAR 
model are similar to those in the fixed effects SEM model. Since 
the 𝑅𝑅2  of the linear regression model is low, the estimated 
coefficient of length of paved roads (𝛽𝛽5) is not trust-worthy. 
3.5.3. Estimated spatial specific effects and time-
period specific effects   
Spatial specific effect controls for all time-invariant variables 
contributing to the response variable, which reflects the inherent 
characteristics of one region. Figure 5 presents the estimated 
spatial specific effects obtained from the fixed effects SEM 
model (see Table 4 for the values). As shown in Figure 5, the red 
regions exhibit negative spatial specific effects. This suggests 
that these regions have some inner drivers that negatively 
influence their small SUV sales. This may be due to relatively 
lower-level of socioeconomic development in these provinces 
(Xinjiang (𝜇𝜇 = −1.62) and Ningxia (𝜇𝜇 = −2.09)). By contrast, 
economically developed areas such as Beijing (𝜇𝜇 = 0.53) and 
Shanghai (𝜇𝜇 = 1.24) have positive spatial specific effects (blue 
regions), which suggest that these cities have certain inner 
drivers that positively influence their respective small SUV 
sales. In addition, the results imply that when changing the 
attributes of a vehicle to the same extent, the influence on vehicle 

sales is different from region to region. For example, when 
decreasing the average price (𝑥𝑥 ) of small SUVs by the same 
amount, the growth rate of sales (𝑦𝑦) in Shanghai (with larger 𝜇𝜇) 
may be higher than in Shandong (with smaller 𝜇𝜇) as shown in 
Eqn. (6). Assume the average price of small SUV decreased by 
20,000 RMB in 2016 (wave 3), the sales of small SUV would 
increase 4% in Shanghai and 3% in Shandong when using the 
prediction formula in Eqn. (10). This is consistent with the 
McKinsey research observation [34] that Shanghai customers are 
more sensitive to price than Shandong customers. Traditional 
pricing strategy may not be that effective in the regions with 
negative space specific effects, and car companies may try to 
offer more customized vehicles to attract customers with 
different tastes in these regions. 

Table 4. Estimated spatial specific effects (𝝁𝝁)  

Province (𝑑𝑑) 𝜇𝜇𝑖𝑖  Province (𝑑𝑑) 𝜇𝜇𝑖𝑖  

Anhui -0.55 Jilin -0.12 
Beijing 0.53 Liaoning -0.08 
Chongqing 0.40 Inner Mongolia -1.40 
Fujian -0.09 Ningxia -2.09 
Gansu -0.59 Shandong 0.17 
Guangdong 0.95 Shanghai 1.24 
Guangxi -0.34 Shaanxi 0.94 
Hebei 0.92 Shanxi -0.18 
Heilongjiang -0.80 Sichuan 1.31 
Henan 1.49 Tianjin -0.96 
Hubei -0.20 Xinjiang -1.62 
Hunan 0.48 Yunnan 0.64 
Jiangsu 0.11 Zhejiang 0.41 
Jiangxi -0.58   

Time-period specific effects control for all space-invariant 
variables contributing to the response variable (i.e., the sales), 
which reflect the regional characteristic of one time-period. 
Table 5 presents the estimated time-period specific effects 
obtained from the fixed effects SEM model (see Eqns. (6-7)). It 
is observed that most time-period specific effects (𝝃𝝃) are negative 
before 2015, and remain all positive afterwards. This result 

 
Figure 5. Spatial specific effects obtained from the fixed 
effects SEM model (gray color represents missing of data). 
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suggests that maybe certain nation-wide factors greatly 
stimulated the sales of small SUVs in China starting in 2015. 
One possible reason is that since 2015 many domestic car 
producers began to offer small SUVs with lower prices 
compared to foreign brands, which stimulated sales to broader 
populations. Another potential contributing factor is China has 
reduced the vehicle purchase tax from 10% to 5 % for small 
passenger cars (engine displacement ≤ 1.6 liters) in 2015 [60].  
Social influence might have played a role. 

Table 5. Estimated time-period specific effects (𝝃𝝃) 

Time-period (𝑡𝑡) 𝜉𝜉𝑡𝑡 Time-period (𝑡𝑡) 𝜉𝜉𝑡𝑡 

2012-1 -0.49 2014-3 -0.03 
2012-2 -0.41 2015-1 0.24 
2012-3 -0.93 2015-2 0.36 
2013-1 -0.48 2015-3 0.18 
2013-2 -0.19 2016-1 0.69 
2013-3 -0.09 2016-2 0.58 
2014-1 0.02 2016-3 0.62 
2014-2 -0.07   

 
4. DISCUSSION 
A major contribution of this research is the development of an 
analytical approach integrating spatiotemporal heterogeneity 
into the modeling of customer preferences. Although spatial 
effects are widely investigated in marketing studies, these studies 
do not support engineering design directly (e.g. by including 
design attributes in the model). Our holistic approach enables the 
assessment of various driving factors in the small SUV market, 
such as engineering design attributes, customer demographics, 
and space and time effects. Static spatial panel models are 
effective at modeling spatial interaction effects, including 
endogenous/exogenous interaction effects and interaction effects 
among the unobservable factors (error terms). Dynamic spatial 
panel models further consider the time-lag effect of both 
dependent and independent variables, which are able to model 
sophisticated space-time interaction effects comprehensively. 
The proposed procedure for understanding spatiotemporal 
heterogeneity of customer preferences provides guidance for 
systematically implementing the modeling work. 
We utilize China’s automotive market as an example to show the 
modeling process, including data collection and descriptive 
analysis, spatial dependence tests, and model specifications. At 
the beginning of this process, it is important to collect reliable 
and comprehensive data on regional characteristics (e.g., GDP, 
population, etc.). Not only can these data be employed as 
explanatory variables, but they will also assist with creating 
spatial weights matrix, which reflects the geographic, social, 
economic, demographic, and cultural interactions among spatial 
units, separately or synthetically. Descriptive analysis on one 
hand helps check the validity and consistency of the collected 
data. On the other hand, it provides us with a preliminary 
understanding about the spatial patterns of the collected data. In 
our case study, in those regions with lower small SUV sales, the 

average price tends to be higher than those with higher sales. 
Based on this observation, we expect to see a negative effect of 
vehicle price on the sale of small SUVs, which is later confirmed 
in the spatial panel models. Descriptive analysis can also 
examine whether results obtained from spatial panel models are 
trustworthy. 
The motivation of integrating spatiotemporal heterogeneity into 
customer preference modeling originates from the hypothesis 
that customer behaviors are not spatially independent. LM Tests 
and Hausman Test can assess the existence of spatial dependency 
and guide the construction of spatial panel models, including 
choosing between the random effects model and fixed effects 
model. In our case study, the implications of the spatial 
dependence tests are consistent with the 𝑅𝑅2 values obtained in 
different spatial panel models built afterwards. 
Our study shows that spatial panel models are able to quantify 
the influence of product attributes, customer demographics, and 
regional characteristics on aggregate customer choices (in our 
case study, the sales or demands of small SUVs). Among all 
explanatory variables, GDP capita and the length of paved roads 
per capita seems to have the most significant positive influence 
on the sales of small SUV sales. This result indicates that strong 
economic growth and solid infrastructure in one region are 
usually associated with higher demand for emerging product 
segments in China’s market. Although the linear regression 
model provides similar results on selected explanatory variables, 
one critical advantage of spatial panel models is that they can 
model and profoundly reveal the spatial dependence between 
dependent/independent variables in various regions. This 
advantage allows us to capture how certain customer preferences 
diffuse spatially. As shown in Figure 5, although Beijing and 
Tianjin are both economically developed regions in China, their 
spatial specific effects are completely different. Social, cultural, 
and government policy factors need to be taken into account to 
explain these differences in spatial influence. Furthermore, 
spatial panel models enable the assessment of the time-period 
specific effects, which reveals the influence of space-invariant 
factors on the temporal change of customer preferences. 
Apart from the methodological contribution to customer 
preference modeling, the knowledge and insights gained from 
our work also have implications to engineering design and 
industry practice. These insights allow vehicle manufacturers to 
develop customized products and marketing strategies for 
different regions to improve the market share in a specific region. 
For example, we find fuel consumption has significantly 
negative influence on the sales of small SUVs while the 
influence of power is insignificant, thus car companies may pay 
more attention to fuel economy in the development and 
marketing of small SUVs, especially in the regions with higher 
GDP growth rates as more sales are expected in these regions. 
The product development team can make region-specific 
adjustments to the design attributes when offering products in the 
regions with different spatial characteristics, as the same changes 
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to the design attributes may have weaker influence in those 
regions with negative spatial specific effects. 
 
5. CONCLUSION 
An approach based on the spatial panel model for modeling 
spatiotemporal heterogeneity of customer preferences is 
developed in this paper. A step-by-step procedure for 
implementing this approach is proposed, including a descriptive 
analysis of space-time data, spatial dependence tests, 
specification of model parameters, and interpretation of the 
modeling results. Our approach models the influence of 
explanatory variables (attributes of products, customers, and 
regions) and associated spatial and temporal effects on 
aggregated customer preferences, i.e., demand or sales in this 
paper. Using China’s small SUV market as an example, we find 
a spatial dependence effect wherein one region with higher small 
SUV sales is likely adjacent to several regions with high sales. 
Each province may have a unique spatial effect influencing its 
sales of small SUVs, which suggests that when changing the 
design attributes of a product to the same extent, the impact on 
product demand in each region is different. In understanding the 
impact of design attributes, we find that price and fuel 
consumption have negative effects on the sales of small SUVs 
based on the aggregated data over multiple years and multiple 
regions. Among the underlying social-economic factors, GDP 
per capita, household consumption expenditure and length of 
paved roads per capita have positive effects on small SUV sales. 
In addition, we find that beginning in 2015, some nation-wide 
factors greatly stimulated the sale of small SUVs in China. These 
results demonstrate the potential use of our approach in 
supporting product design and strategic decision-making 
considering the spatiotemporal variations of customers. We also 
show how descriptive analysis and spatial dependence tests help 
specify the modeling parameters and verify the modeling results.  
At this exploratory stage, only static spatial panel models are 
studied. We plan to build dynamic spatial panel models and 
eventually show the application of dynamic models in predicting 
customer preferences in both space and time dimensions. Our 
approach’s capability of predicting demand or market share 
across different spatial regions can directly assist with the 
specification of design parameters for localized product 
development. Another limitation of this work is that we only 
model the spatiotemporal heterogeneity of customer preferences 
at an aggregate level (demand in this case). Once the regional 
difference is identified through the method shown in this 
research, disaggregated consumer preference models can be 
created for individual provinces using methods like discrete 
choice analysis or network modeling to further examine the 
heterogeneity in consumer preferences.  
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