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ABSTRACT 
Understanding the impact of engineering design on product 

competitions is imperative for product designers to better 

address customer needs and develop more competitive products. 

In this paper, we propose a dynamic network analysis based 

modeling approach to analyze the evolution of product 

competitions using multi-year product survey data. We choose 

Separate Temporal Exponential Random Graph Model 

(STERGM) as the statistical inference framework because it 

considers the evolution of dynamic networks as two separate 

processes: formation and dissolution. This treatment allows 

designers to investigate why two products enter into competition 

and why a competitive relationship is preserved or dissolved 

over time.  In an open market, the sets of products in different 

years are usually inconsistent, posing challenges for 

conventional modeling methods. Consequently, we propose to 

leverage “structural zeros” in STERGM to tackle the problem of 

modeling varying nodes in dynamic networks. We use China’s 

automotive market as a case study to illustrate the 

implementation of the proposed approach and its benefits 

compared to the static network modeling approach (Exponential 

Random Graph Model, ERGM) based on results from multi-year 

data. The results show that our approach identifies the driving 

factors associated with product attributes and current market 

competition structures on competition changes in both formation 

and dissolution processes. The insights gained from this paper 

can help designers better understand how to implement and 
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interpret the dynamic network-based models in studying 

temporal changes in product competition relations. 

Keywords: engineering design, product competition, 

dynamic network analysis, ERGM, STERGM 

 

1. INTRODUCTION 
 The objective of this paper is to develop an approach based 

on dynamic network modeling to study the impact of engineering 

design and existing market competitions on the evolution of 

product competition relations using multi-year product survey 

data. Product competition occurs when customers consider 

multiple products for evaluation before making the final 

purchase decision [1]. It is of great importance for product 

designers to gain insights into product design decisions and the 

factors impacting market competitions, including the setting of 

key design attributes, the similarity or difference of design 

attributes among competing products, the design improvement 

as well as the existing market competition structures. These 

insights can help designers better address customer needs and 

develop more competitive products. They can also support 

companies’ strategic decision-making, such as branding, product 

positioning, and marketing strategies. 

Our recent studies explored the capability of utilizing 

network analysis to model product competitions [2,3]. Network-

based approaches model products as nodes and the co-

consideration (competition) relations between products as links. 

By taking the dependencies among links into consideration, 
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network-based approaches relax the independence assumptions 

of products in Discrete Choice Analysis (DCA) [4], and are 

effective in modeling complex and interdependent relations 

[5,6]. In our previous research, we developed a unidimensional 

network-based approach to study product competitions in the 

form of product co-considerations [3], and used this model to 

assess the impact of technological changes (e.g., turbo engine) 

on product competitions and customers’ co-consideration 

behaviors [1]. Later, we extended the unidimensional network-

based approach to a multidimensional network structure where 

customer social relations can be included to study their influence 

on heterogeneous customer preferences [6]. Despite the strength 

of these earlier developed network models [1–3,6–8], they are 

static models (e.g., Exponential Random Graph Model (ERGM) 

[9]) which ignore the dynamic change of product competitions 

over time. The models do not take into account the existing 

competition structure and are limited in explaining why a 

product may maintain or lose its competitiveness over time. It is 

therefore important to model the dynamic change of product 

competitions in a systematic and integrated manner. 

In a highly dynamic market environment, product 

competition changes over time [10], along with release of new 

products, withdrawal of outdated products, technological 

progress, and social changes. For example, the market share of 

U.S. brands in the Chinese auto market fell from 12.2% in 2017 

to 10.7% in 2018, possibly due to a delayed refresh of the U.S. 

lineups [11], which demonstrates the negative effect of untimely 

design improvement on product competition. The change in 

customer preferences is another potential cause of the evolution 

of product competition. Fuel-efficient cars have been more 

desirable since the 1970s’ energy crisis as customers become 

more sensitive to rising gas prices [12]. Since the early 2000s, 

higher fuel efficiency has also contributed to the increasing 

competitiveness of hybrid vehicles [13]. Therefore, a thorough 

understanding of the dynamic changes in market competition is 

of great significance in many engineering design scenarios, such 

as product feature competition (e.g., whether to upgrade design 

features of an existing car and by how much) and new product 

positioning (e.g., whether to develop a new car model to fill a 

specific market niche). 

To address this research need, we propose a dynamic 

network modeling approach to study the evolution of product 

competition relations. Specifically, we adopt Separable 

Temporal ERGM (STERGM) [14,15] as the statistical inference 

framework for dynamic network modeling.  Existing degree-

based generative dynamic network models (e.g. small world 

network [16], scale-free network [17], and the dynamic 

stochastic block model [18]) are limited in modeling the 

influence of nodal and edge characteristics (e.g. customer 

demographics and relation strength) on the change of network 

structures [19].  In contrast, STERGM [14] can study both 

growing and shrinking dynamics, i.e. how the explanatory 

factors influence the formation of new links and the dissolution 

of old links, an important feature to study the impact of product 

design decisions. Compared to Stochastic Actor-Oriented Model 

(SAOM) [20], another widely used longitudinal network model 

which treats nodes as actors who make active decisions, 

STERGM is more advantageous for our purpose because it is a 

link-oriented model that can include nodes which are not actors, 

e.g., products in our work that cannot be treated as intelligent 

decision makers [21]. 

In the social network literature, STERGM has been applied 

in modeling various dynamic social relations, such as the 

evolution of social networks of politicians [22] and international 

trade networks [23]. Researchers found that both exogenous 

factors (e.g. economic characteristics of counties) and 

preexisting network structures (e.g., reciprocity for bilateral 

trade relations and triadic closure effects for trilateral trade 

relations) can influence international trade networks over time 

[23].  Thus, STERGM allows us to investigate how preexisting 

competition relations influence product competitions in addition 

to the impact of product features. In addition, as STERGM can 

be viewed as an extension to the static ERGM, connections 

between the results from STERGM and the network statistics 

from ERGM can be established. 

The main contribution of this work is the development of a 

dynamic network-based modeling approach rooted in STERGM 

for studying the evolution of product competition relations using 

customer survey data from multiple years.  The secondary 

contribution is to address the inconsistent sets of products from 

year to year in dynamic network modeling. In previous works, 

STERGM only handles the same set of nodes over time in 

modeling dynamic networks [22,23]. However, for product 

competition modeling, the sets of products in different years are 

inconsistent because new products appear in the market and 

existing products exit the market from time to time. In this 

research, we leverage the concept of “structural zeros” [24] to 

tackle the problem. Results from STERGM can be used to 

explain why two products enter into competition and why a 

competitive relationship is preserved or dissolved over time. We 

demonstrate the proposed approach using multiple-year survey 

data from China’s auto market, and show the benefits of our 

approach compared to the static ERGMs. Results from the case 

study provide automotive designers insights into what factors 

influence the competitiveness of existing vehicles and how to 

enhance competitiveness in the context of dynamic market. 

Section 2 provides the technical background of network 

analysis, the static network modeling technique (ERGM), and 

the dynamic network modeling technique (STERGM). In 

Section 3, a general approach for modeling dynamic product 

competition relations based on STERGM is introduced and 

illustrated using the data associated with China’s SUV market. 

The process of preparing the dataset, identifying modeling 

attributes, and handling inconsistent vehicle nodes in dynamic 

network modeling are explained. The results of STERGM are 

presented and compared with the results of the static network 

modeling approach (ERGM). To verify the results, model fit 

evaluation are performed at both the link level and the network 

level. Section 4 concludes with closing thoughts, the 

implications in engineering design and future research 

opportunities. 
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2. TECHNICAL BACKGROUND OF DYNAMIC 
NETWORK ANALYSIS AND MODELING 
Network analysis has been recognized as an essential 

method of analyzing and modeling complex systems in a wide 

variety of fields such as biology, computer science, social 

science, and engineering [6,25–27]. With network analysis, the 

structure of a system is visualized and simplified as a graph, 

where nodes represent entities in the system and edges/links 

represent relationships between entities. For network modeling, 

two key statistical network models, Exponential Random Graph 

Model (ERGM) and Separable Temporal Exponential Random 

Graph Model (STERGM), are introduced. 

 

2.1 Exponential Random Graph Model (ERGM) 
ERGM is a flexible statistical inference framework, which 

assumes an observed network 𝑦  as an instance of random 

networks 𝒀 given by the distribution in equation (1), 

 

 𝑃𝑟(𝒀 = 𝒚) =
𝑒𝑥𝑝(𝜽∙𝒈(𝒚))

𝜅(𝜽,𝒚)
 ,  (1) 

 

where 𝜽  is a vector of corresponding model parameters, and 

𝜅(𝜽, 𝒚) is a normalizing constant to guarantee the equation is a 

proper probability distribution. In the context of this work, 

network 𝒀  captures product competition relations, which are 

identified based on product co-considerations from the customer 

survey (see more details in Section 3.1).  𝒈(𝒚)  is a network 

statistic of interest including attributes of nodes, attributes of 

links as well as network structure attributes [6], such as the two-

star structure in a vehicles competition network, which measures 

how many vehicles compete with two other cars. Figure 1 

provides three exemplary network structures that can be included 

in the network statistics of ERGMs. Equation (1) suggests that 

the probability of observing a specific network structure is 

proportional to the exponent of a weighted combination of 

network statistics. The estimated ERGM parameters 𝜽 indicate 

the importance of the network statistics to the formation of links 

in a network. For example, a positive 𝜽 of the two-star effect in 

an ERGM for the vehicle competition network implies that those 

vehicles that share two competing vehicles are more likely to be 

competitors with each other. 

 

 
FIGURE 1: Exemplary network structures in a vehicle competition 

network. The two-star structure indicates whether a car competes with 

two other cars. The triangle structure indicates whether three cars 

compete with each other (three-way competition). The shared partner 

structure indicates whether two cars compete with many other cars. 

 

The estimated ERGM parameters 𝜽  can also be used to 

calculate the log-odds of the formation of certain links, i.e., how 

likely a link will exist between two nodes given their nodal 

attributes and the structure of the rest network as shown in Eqn. 

(2): 

 

𝐿𝑜𝑔𝑖𝑡 𝑃𝑟(𝑦𝑖𝑗 = 1|𝒚−𝑖𝑗) = 𝑙𝑜𝑔
𝑃𝑟(𝑦𝑖𝑗=1|𝒚−𝑖𝑗)

𝑃𝑟(𝑦𝑖𝑗=0|𝒚−𝑖𝑗)
 

= 𝜽 ∙ (𝒈(𝒚|𝑦𝑖𝑗 = 1) − 𝒈(𝒚|𝑦𝑖𝑗 = 0)) = 𝜽 ∙ 𝜹𝑖𝑗(𝒚), (2) 

 

where 𝑦𝑖𝑗  is the link between node 𝑖  and 𝑗 , 𝒚−𝑖𝑗  is the 

network excluding the link between node 𝑖 and 𝑗, and 𝜹𝑖𝑗(𝒚) 

is the difference of the network statistics between the network 

where the link between node 𝑖  and 𝑗  exists (i.e., 𝒈(𝒚|𝑦𝑖𝑗 =

1)) and the network where the link between node 𝑖 and 𝑗 does 

not exist (i.e., 𝒈(𝒚|𝑦𝑖𝑗 = 0) ). If we get positive log-odds for 

nodes 𝑖 and 𝑗, this indicates that having a link between them is 

more likely than not having the link and vice versa. 

 

2.1 Separable Temporal Exponential Random Graph Model 

(STERGM) 
As an extension of ERGM, STERGM is established to 

model dynamic networks. As an example shown in Fig. 2, 

STERGM treats the evolution of the network at time 𝑡 (𝒀𝑡) to 

the network at time 𝑡 + 1 (𝒀𝑡+1) as two separate processes: 1) 

link formation in which new links are created following 

𝑃𝑟(𝒀+ = 𝒚+|𝒀𝑡; 𝜽+), and 2) link dissolution in which old links 

disappear following 𝑃𝑟(𝒀− = 𝒚−|𝒀𝑡; 𝜽−). The network at time 

𝑡 + 1 is constructed by applying the changes in 𝒀+ and 𝒀− to 

𝒀𝑡  following 𝒀𝑡+1 = 𝒀− ∪ (𝒀+ − 𝒀𝑡) . Here 𝒚  represents a 

realization of network, 𝜽+ and 𝜽− denote the parameters of the 

formation model (𝒀+) and dissolution model (𝒀−), respectively. 

 

 
FIGURE 2: Evolution dynamics of product competition network 

 

For each discrete time step, the process of formation and 

dissolution are independent conditional on network at time 𝑡.  

This means, 

 

𝑃𝑟(𝒀𝑡+1 = 𝒚𝑡+1|𝒀𝑡 = 𝒚𝑡; 𝜽) = 𝑃𝑟(𝒀+ = 𝒚+|𝒀𝑡 =
𝒚𝑡; 𝜽+) ∙ 𝑃𝑟(𝒀− = 𝒚−|𝒀𝑡 = 𝒚𝑡; 𝜽−),  (3) 
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Associating STERGM with ERGM, the probability distribution 

of formation model and dissolution model are expressed as 

 

𝑃𝑟(𝒀+ = 𝒚+|𝒀𝑡 = 𝒚𝑡; 𝜽+) =
𝑒𝑥𝑝(𝜽+∙𝒈(𝒚𝑡+1,𝒚𝑡))

𝜅(𝜽+,𝒚𝑡)
, and (4) 

𝑃𝑟(𝒀− = 𝒚−|𝒀𝑡 = 𝒚𝑡; 𝜽−) =
𝑒𝑥𝑝(𝜽−∙𝒈(𝒚𝑡+1,𝒚𝑡))

𝜅(𝜽−,𝒚𝑡)
. (5) 

 

The normalizing denominator 𝜅(𝜽+, 𝒚𝑡)  and 𝜅(𝜽−, 𝒚𝑡) 

are the sum of network statistics of all possible formation and 

dissolution networks, respectively. Here these formation and 

dissolution networks only include possible variations to 𝑌𝑡 

(additions and subtractions, respectively). In contrast, the 

normalizing denominator of ERGM includes all networks from 

an empty network to a complete network (i.e. a network in which 

all nodes are linked with each other.). 

Like ERGM, STERGM can include both exogenous (e.g., 

vehicle attributes) and endogenous (network structure) effects in 

network modeling. This enables the prediction of products’ 

future competition relations considering the market’s present 

competition structure and the impact of design change. In 

addition, not only can STERGM identify the design features 

contributing to the formation of competition between two 

products, it can also identify the features influencing the 

dissolution of competitions. For example, when assessing the 

influence of certain SUV attributes on vehicles’ competitiveness 

given the current market structure, if the estimated effect of 

third-row seat feature is positive and statistically significant in 

the formation model, it implies that improving the design to 

include third-row seats would make the SUV more likely to be 

co-considered against its competitors. In the dissolution model, 

if the estimated parameter of fuel consumption is negative and 

statistically significant, it means that better fuel economy in the 

SUV would make its competing relationships more likely to 

persist. Note that the dissolution model examines link 

preservation rather than dissolution. 

 

3. UTILIZING STERGM TO MODEL EVOLUATION OF 
PRODUCT COMPETITIONS 

3.1 Overview of the dynamic network analysis 
approach 

Figure 3 illustrates the procedure of utilizing STERGM for 

understanding the evolution of product competitions in market. 

The detailed description of each of the three steps is provided as 

follows. 

Step 1-Network construction and descriptive analysis. 

Product competition relationship is identified in this work based 

on the survey data of co-considerations, i.e., the products in the 

same consideration set before a customer makes the final choice.  

In the formed network, whether the competition relationship 

exists is determined by the lift criterion [7].  The calculation of 

lift and the criterion for link formation are illustrated in Eqn. (6), 

 

𝐿𝑖𝑓𝑡(𝑖, 𝑗) =
𝑃𝑟(𝑖,𝑗)

𝑃𝑟(𝑖)∙𝑃𝑟(𝑗)
, 𝑦𝑖𝑗 = {

1, 𝑖𝑓 𝑙𝑖𝑓𝑡(𝑖, 𝑗) ≥ 1
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (6) 

 

 

FIGURE 3: Overview of proposed approach 

 

where 𝑃𝑟(𝑖, 𝑗) is the probability of products 𝑖 and 𝑗 being co-

considered by customers, 𝑃𝑟(𝑖) is the probability of individual 

product 𝑖  being co-considered with other products, and 𝑦𝑖𝑗 is  

the competition link between product 𝑖 and product 𝑗. The lift 

value measures the likelihood of competition between two 

products given their respective frequencies of considerations and  

indicates the dependence of the two products being considered. 

If the lift between product 𝑖 and product 𝑗 is equal to or greater 

than a threshold, e.g., 1 in our case study, then the competition 

link between these two product nodes exists. After the lift 

calculation, a unidimensional and undirected competition 

network can be constructed. Figure 4 provides an illustrative 

vehicle competition network, in which the numbers represent the 

lift values. A larger lift value between two vehicles indicates that 

they are more frequently co-considered by customers, i.e., there 

is a stronger competition relationship between them. Descriptive 

analysis and visualization of the obtained network can provide 

an intuitive understanding on the nodal attributes and network 

structures. 

 

 
FIGURE 4: An illustrative vehicle competition network 

 

Step 2-Dynamic network modeling. After generating the 

product competition networks in different time periods, we can 
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construct the formation and dissolution networks between each 

pair of two consecutive networks (see Figure 2), and use 

STERGM to investigate the evolution of network structures. To 

address the challenge of changing network nodes at different 

time periods due to the addition of new products or exit of 

existing products, we propose a structural zeros based method. 

Given a unidimensional network consisting of 𝑁  nodes, this 

network can be presented by a 𝑁 × 𝑁  matrix with entries of 

binary indicator (i.e., 0 or 1). Structural zeros are a set of 

predefined zero inputs in the matrix to restrict the relations 

among some nodes in the network (i.e., these nodes have no 

links). Several applications of structural zeros can be found in 

network modeling. For example, Fu et al. [8] used structural 

zeros to restrain customers to purchase products outside their 

consideration sets in a bipartite network based approach for 

modeling customer preferences over two stages (consideration 

and purchase). Snijders et al. [20] used structural zeros to deal 

with the missing data in friendship networks. In this paper, we 

employ this concept to handle the issue of varying nodes from 

one time period to another in dynamic network modeling. 

Figure 5 shows how this method works by using three 

networks, represented by adjacent matrices, in time 𝑡 − 1 , 𝑡 

and 𝑡 + 1  (i.e., 𝒀𝑡−1, 𝒀𝑡 , 𝒀𝑡+1 ) as an example. The formation 

network between 𝒀𝑡−1  and 𝒀𝑡  is noted as 𝒀𝑡−1
+  , and the 

formation network between 𝒀𝑡 and 𝒀𝑡+1 is noted as 𝒀𝑡
+. The 

structural zero method contains the following steps: 

(a) Combine all possible formation networks (𝒀𝑡−1
+ , 𝒀𝑡

+ in this 

example) in one matrix. If we need to model four-year 

networks, there will be three formation networks, i.e. three 

blue regions in Fig. 5 (a). Since STERGM only supports 

consistent sets of nodes in principle, here the matrices of 

𝒀𝑡−1
+  and 𝒀𝑡

+  include the union set of nodes from 

𝒀𝑡−1, 𝒀𝑡 , 𝒀𝑡+1 , which means the sizes of these two sub-

matrices are the same as shown in the blue regions in Fig. 

5(a). Apparently, the whole matrix is symmetric with zero 

diagonal cells (self-competitions are not considered). 

(b) Fill zeros to specific blue regions of Fig. 5 (a) to ensure 

those new nodes appearing in the other years have no links. 

For example, the red region 𝒀′
𝑡−1
+

 in Fig. 5 (b) only 

includes the vehicles appearing in 𝒀𝑡−1 , and 𝒀′
𝑡
+

 only 

includes the vehicles appearing in 𝒀𝑡.  

(c) To ensure that the model captures the changing effect for 

both preserved and created nodes, the new nodes in the 

second year of a two-year formation network which are not 

considered in the red zone in Fig. 5 (b) will be included in 

the yellow zone in Fig. 5 (c). For example, the difference 

between the yellow region 𝒀′′
𝑡−1
+

 in Fig. 5 (c) and the red 

region 𝒀′
𝑡−1
+

 in Fig. 5 (b) is the new nodes appearing in 

𝒀𝑡. 

When finished, the matrix in Fig. 5 (c) will replace the 

original matrix in Fig. 5 (a) in fitting the formation models of 

STERGMs. Here we focus on the formation process for 

illustrative purpose, and the dissolution process follows the same 

procedures except that the dissolution networks are used. 

Step 3-Interpretation and verification. Since STERGM is an 

extension of ERGM with separated effects on formed links and 

dissolved links, STERGM can be estimated by methods 

commonly used in ERGM for fitting such as maximum 

likelihood and generalized moments [28]. The estimation results 

should be verified based on both model fitting and model 

interpretability. Extracted insights from how product 

competitions change over time can be used to support product 

upgrade and new product development strategies in engineering 

design. 

 

3.2 Dataset for a Case Study on China’s Crossover 
SUV Market 

To demonstrate the proposed approach, we carried out a case 

study leveraging the data from a recognized new car buyer 

survey from 2013 to 2015 in China’s auto market [8]. The dataset 

in each year consists of 50,000-70,000 new car buyers’ 

responses including approximately 400 unique vehicle models. 

Respondents were asked to list the models they considered in 

purchasing a new car. Customer demographics and vehicle 

attributes, such as income, city of residence, education of 

customer and price, power, and fuel consumption of vehicle, are 

reported in the survey and verified by the data company. In this 

case study, we focus on vehicle competitions among crossover 

SUVs. A crossover SUV, such as an Audi Q7, BMW X6, or Ford 

Edge, is a vehicle with the body and space of an SUV, but the 

backbone of a sedan. Crossover SUVs inherit the advantages of 

spacious interiors from vans, the off-road performance of SUVs 

and the light-weight and fuel economy of sedans. Our interest is 

in demonstrating why two car models enter in a competitive 

relationship and why the competition ceases. There are roughly 

100 car models from 2013 to 2015 considered in our study 

  
 (a)  (b) 

 
(c) 

Figure 5: Structural zeros used in STERGM for dynamic network 

with varying nodes 
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(including both crossover SUVs and other conventional or SUV 

vehicles co-considered with crossover SUVs) and 600 pairs of 

competitions in each year. 

 

3.3 Descriptive analysis 
Once we obtain the customers’ consideration sets from the 

survey data, the lift value for all competitions between vehicles 

can be calculated. We constructed three vehicle competition 

networks corresponding to each year (i.e., 2013-2015). Figure 6 

illustratively shows partial competition networks in 2014 and 

2015 with 10 vehicle models. The node size is proportional to its 

degree and the nodes with green color represent selected vehicle 

models for log-odds calculation in Section 3.5 (this is to verify 

the STERGM modeling results at link levels). The blue line 

indicates newly formed competitions in 2015 while the grey lines 

indicate the dissolved ones. The lift value marked on each link 

shows the strength of certain competitions. The higher the lift 

value, the stronger the association is between two vehicles. For 

example, in Figure 6, Audi FAW Q5 (Q5) competes with three 

cars - Toyota GAIG Highlander (Highlander), Dongfeng Yulong 

Luxgen Grand 7 (Luxgen Grand 7), and BMW X6 (X6). For a 

customer considering the Q5, in 2014 the Highlander is the most 

likely co-considered car whereas in 2015 the closest competitor 

changes to X6.  

Table 1 provides the descriptive statistics of vehicle 

attributes from 2013 to 2015 including pairs of competing 

vehicles versus all possible pairs of competing vehicles in our 

models. The major difference is that not all pairs of vehicles in 

“all possible pairs of competing vehicles” are direct competitors 

to each other (e.g., car A and car B are not competitors, but they 

both compete with car C). The results of pairs of competing 

vehicles indicate the average value of all co-considered vehicle 

pairs’ attributes. Besides, statistics for all possible pairs of 

competing vehicles include both mean value and standard 

deviation (presented in brackets). Based on our previous research 

in choice modeling and product competitions [2,6,28], three 

categories of vehicle attributes are considered in this study: 1) 

regular vehicle attributes such as the price, power and fuel 

consumption of vehicles; 2) vehicle attribute difference such as 

the price difference between two competed vehicles which 

allows us to investigate whether vehicles with similar or different 

attributes are more likely to compete with each other; and 3) 

SUV-relevant attributes such as seat position. In total, nine 

vehicle attributes are considered including price, power, fuel 

consumption (FC), turbo, make origin, all-wheel drive (AWD), 

seat position, legroom, and third row. Among them, price and 

power are preprocessed using log2 transformation to handle their 

non-normal distributions. Turbo, AWD, and third row are binary 

variables describing whether a car is equipped with/without that 

property. Seat position and legroom are customer satisfaction 

ratings using a Likert scale from 1 (dissatisfy strongly) to 4 

(satisfy strongly). It can be seen that the mean value of price, 

power, fuel consumption, vehicle attributes difference, and third 

row is lower in competing vehicles than that in all possible pairs 

of competing vehicles. Some vehicle attributes changed from 

2013 to 2015; for example, the mean value of power for all 

vehicles increased from 7.25 to 7.35 and fuel consumption 

decreased from 10.13 to 9.96. 

 
(a) 2014 

 
(b) 2015 

Figure 6: An example of partial vehicle competition networks evolving 

from 2014 (a) to 2015 (b). Black lines indicate preserved competitions, 

grey lines indicate dissolved competitions, and blue lines represents new 

competitions. 
 

3.4 Results of Dynamic Network Modeling 
The R package “tergm” is used to fit the STERGM models 

[29]. As shown in Table 2, the explanatory variables in our 

dynamic network models correspond to two types of variables: 

endogenous variables (i.e., network structures) and exogenous 

variables consisting of the main effects and homophily effects of 

vehicle attributes. The main effect measures the impact of the 

existence or value of a vehicle attribute on the competition link 

probability, whereas the homophily effect measures the impact 

of the similarity or difference of the attributes of two vehicles on 

their competition link probability [2]. In this study, we consider  
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Table 1. Descriptive analysis of competing vehicle pairs versus all 

possible pairs of competing vehicles 

 

 Pairs of competing 

vehicles 

All possible pairs of 

competing vehicles 

 2013 2014 2015 2013 2014 2015 

Regular vehicle attributes 
Price 

(log2) 

16.95 

(0.94) 

17.37 

(1.22) 

17.04 

(0.99) 

17.43 

(1.22) 

17.55 

(1.37) 

17.52 

(1.32) 

Power 

(log2) 

7.03 

(0.42) 

7.20 

(0.52) 

7.18 

(0.41) 

7.25 

(0.56) 

7.28 

(0.58) 

7.35 

(0.55) 

FC (L per 

100 km) 

9.24 

(1.79) 

9.82 

(2.07) 

9.36 

(1.73) 

10.13 

(2.3) 

10.07 

(2.17) 

9.96 

(2.09) 

Turbo 
0.14 

(0.28) 

0.28 

(0.39) 

0.37 

(0.37) 

0.19 

(0.33) 

0.28 

(0.39) 

0.39 

(0.40) 

Origin 

(US) 

172  

(14%) 

239  

(16%) 

138  

(15%) 

23 

(20%) 

21  

(15%) 

18 

(15%) 

Origin 

(EU) 

188  

(15%) 

366  

(25%) 

111  

(12%) 

20 

(17%) 

36  

(26%) 

27 

(23%) 

Origin (JP) 
183  

(15%) 

167  

(11%) 

107  

(12%) 

19  

(17%) 

17 

(12%) 

18  

(15%) 

Origin 

(KR) 

275 

(22%) 

128 

 (9%) 

59  

(7%) 

17  

(15%) 

14  

(10%) 

10  

(8%) 

Origin 

(CN) 

438  

(35%) 

566  

(39%) 

485  

(54%) 

36  

(31%) 

51 

(37%) 

46  

(39%) 

Vehicle attribute difference 
Price 

difference 

0.47 

(0.39) 

0.49 

(0.43) 

0.44 

(0.36) 

1.40 

(1.01) 

1.57 

(1.13) 

1.52 

(1.09) 

Power 

difference 

0.25 

(0.21) 

0.25 

(0.22) 

0.27 

(0.21) 

0.64 

(0.47) 

0.67 

(0.49) 

0.63 

(0.46) 

FC 

differences 

1.08 

(0.94) 

1.08 

(0.94) 

1.04 

(0.86) 

2.61 

(1.95) 

2.48 

(1.80) 

2.42 

(1.71) 

SUV-relevant attributes 

AWD 
0.14 

(0.29) 

0.26 

(0.36) 

0.22 

(0.30) 

0.23 

(0.36) 

0.26 

(0.37) 

0.24 

(0.36) 

Seat 

position 

3.08 

(0.11) 

3.08 

(0.11) 

3.08 

(0.14) 

3.09 

(0.13) 

3.07 

(0.13) 

3.09 

(0.19) 

Legroom 
3.20 

(0.09) 

3.17 

(0.10) 

3.14 

(0.10) 

3.21 

(0.14) 

3.16 

(0.13) 

3.13 

(0.16) 

Third row 
0.10 

(0.29) 

0.14 

(0.35) 

0.12 

(0.33) 

0.16 

(0.36) 

0.16 

(0.37) 

0.20 

(0.40) 

 

two network structure effects: Geometrically Weighted 

Edgewise Shared Partner (GWESP), which measures the closure 

effect of the network (see the shared partner structure in Fig. 1), 

and Geometrically Weighted Degree (GWD), which measures 

the centralization effect of the network (i.e., the evenness of 

degree distribution).  In a vehicle competition network, a 

positive coefficient of GWESP means it is very likely for two 

cars to compete with each other if they share the same set of 

competitors. A positive coefficient of GWD means most cars 

have similar numbers of competitors. 

Three STERGM models (A, B, C) are created with different 

model specifications. In Model A, we only consider regular 

vehicle attributes and homophily effects, and results are used as 

the baseline for comparison. Model B includes both regular 

vehicle attributes, homophily effects, and network effects. In 

Model C, we consider all endogenous and exogenous effects as 

well as SUV-relevant attributes. The 17% decrease of AIC value 

from Model A to Model B in Table 2 indicates model 

improvement due to the introduction of network structure 

effects.  On the other hand, introducing SUV-relevant attributes 

in Model C leads to slightly worse model fit compared to Model 

B, and SUV-relevant attributes are not significant in both 

formation and dissolution models. 

When examining the results from the STERGM formation 

model, the coefficients of all three network structure effects are 

found to be significant. The positive sign of “closure effect” 

indicates that competitions are more likely to form over time if 

two vehicles share the same set of competitors. The negative sign 

of “centralization effect” denotes that new competitions are more 

likely to form between vehicles that have been in competition 

with many other car models already. Among the regular vehicle 

attributes, we observe an estimated coefficient equal to -0.34 and 

-0.35 for vehicle brands from Japan and Korea, respectively. The 

negative signs indicate that, compared to domestic vehicles, 

vehicles from Japan and Korea are less likely to form new 

competitions from 2013 to 2015. Although the main effects of 

price, power, FC, and turbo show no significance in the 

formation model, the homophily effects are significant here. The 

negative coefficient of price difference indicates that vehicles 

tend to form new competitions with those having similar prices. 

In contrast, two vehicles with a higher difference in power and 

FC are more likely to create a new competition between them as 

time goes by. 

When examining the results from the link dissolution model, 

it is important to note that the estimations measure the 

persistence of completion, not the disappearance of competition. 

As shown in Table 2, the estimates of closure effect and 

centralization effect significantly influence the preservation of 

existing competitions for Japanese and Korean brands. This 

interpretation is somewhat similar to the results in the formation 

model. For example, the estimate of closure effect being 0.41 

indicates that competitions are more likely to persist over time if 

two vehicles share the same set of competitors. 

 
Table 2. Results of the STERGM fitting for dynamic competition 

networks from 2013 to 2015 

 

 Formation Dissolution 

Model A B C A B C 

Network effects 
Closure  1.15*** 1.15***  0.41** 0.41** 

Centrali

zation 
 

-

2.79*** 

-

2.79*** 
 

-

1.03*** 

-

1.06*** 

Edges 3.80* -3.59** -3.55* -2.91 -4.55 -3.18 

Main attributes effects 

Price 0.03 0.01 0 -0.24 0.07 0 

Power 
-

0.79*** 
-0.15 -0.17 0.86 0.17 0.3 

FC 0.15*** 0.03 0.05* -0.19 -0.09 -0.13 

Turbo -0.08 0.06 0.07 -0.22 -0.16 -0.19 

Origin 

(US) 
0.29*** 0 -0.01 0.18 0.05 0.12 

Origin 

(EU) 
0.42*** 0.07 0.07 0.59* 0.19 0.29 

Origin 

(JP) 

-

0.39*** 

-

0.34*** 

-

0.34*** 
-0.53 -0.48* -0.37 
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Origin 

(KR) 
-0.26** 

-

0.35*** 

-

0.33*** 
-0.39 -0.43** -0.35* 

AWD   -0.04   0.12 

Seat 

position 
  0.01   0.69 

Legroo

m 
  0.02   -0.75 

Third 

row 
  -0.10   0.04 

Homophily effects 

Price 

diff. 

-

0.33*** 

-

0.22*** 

-

0.22*** 
-0.14 -0.06 -0.11 

Power 

diff. 
0.54*** 0.41** 0.42** 0.37 0.41 0.43 

FC diff. 0.09** 0.07* 0.06* 0.03 0.05 0.07 

AIC 9340 7740 7747 841 787 792 

***p<0.001, **p<0.01, *p<0.05. 
1 Model A-only consider regular attributes and homophily effects 
2 Model B-consider regular attributes, homophily effects and network effects 
3 Model C-consider all attributes 

 

To better understand the differences between STERGM and 

ERGM, we compare the results of the two models in Table 3.  It 

is noted that the statistical significance of the attributes in ERGM 

is different from one year to another, and in many cases, it is 

different from the significance obtained from STERGM.  These 

differences can be explained by the fact that ERGM is a static 

network modeling approach based on single year data, assuming 

there is no pre-existing network relations (i.e., no competition at 

all), whereas STERGM is a dynamic network modeling 

approach focused on detecting the changing pattern that best 

describes the formation and dissolution of competitions 

conditional on the pre-existing competitions. 

The differences in model coefficients in ERGM over time 

(2013-2015 as shown in Table 3) imply the change of customer 

preferences from one year to another and the impact of pre-

existing competition structure. For instance, the ERGM results 

for fuel consumption are insignificant in 2013 but significant in 

both 2014 and 2015 with a coefficient equal to 0.07 and 0.10, 

respectively. On the other hand, a significant estimate (0.5) for 

fuel consumption in the STERGM formation model indicates 

that based on the modeling results using three-year data, fuel 

consumption has a positive influence on forming new 

competitions. It is also found that SUV specific attributes such 

as AWD are shown to be significant in each year’s statistic 

ERGM modeling, but are insignificant in influencing the 

forming of new competitions over time compared to other main 

attributes. 

 

3.5 Results verification 
To further verify the results in Section 3.4, the link-level 

verification and the goodness-of-fit analysis at the network level 

are performed. 

 

3.5.1 Link-level verification 

Link-level verification compares the log-odds of those 

hypothetical links (i.e., those links do not exist in observed 

networks and are solely for testing purposes) to the log-odds of  

Table 3. Comparing results of ERGM versus STERGM for 

competition networks from 2013 to 2015 

 

Coefficie

nts 

ERGM STERGM 

2013 2014 2015 
Formati

on 

Dissolut

ion 
Network effects 
Closure 0.77*** 0.99*** 0.87*** 1.15*** 0.41** 

Centraliza

tion 
-0.51 0.24 -0.86* -2.79*** -1.06*** 

Edges 7.11* -2.42 2.6 -3.55* -3.18 

Main attributes effects 
Price -0.30* -0.15 -0.22 0 0 

Power -0.09 -0.17 -0.06 -0.17 0.3 

FC 0.03 0.07* 0.10* 0.05* -0.13 

Turbo -0.17 0.08 0.07 0.07 -0.19 

Origin 

(US) 
0.12 0.13 -0.14 -0.01 0.12 

Origin 

(EU) 
0.54*** 0.31** 0.13 0.07 0.29 

Origin 

(JP) 
0.54*** 0.21 -0.08 -0.34*** -0.37 

Origin 

(KR) 
0.49*** -0.1 -0.19 -0.33*** -0.35* 

AWD 0.56*** 0.35*** 0.38*** -0.04 0.12 

Seat 

position 
-0.02 0.58* -0.09 0.01 0.69 

Legroom 0.22 0.35 0.33 0.02 -0.75 

Third row -0.24* -0.16* -0.35*** -0.10 0.04 

Homophily effects 
Price diff. -1.41*** -1.16*** -1.59*** -0.22*** -0.11 

Power 

diff. 
-0.56* -0.42 0.32 0.42** 0.43 

FC diff. -0.10 -0.21*** -0.22*** 0.06* 0.07 

AIC 2993 3776 2317 7747 792 

 

the real links in observed networks. In general, newly formed 

competitions in observed networks (i.e., real links) are supposed 

to have higher log-odds than those hypothetical links. The 

vehicles represented by green nodes in Fig. 6 are selected for the 

link-level verification. Table 4 provides the value of significant 

variables in Model C for these vehicles. 

 
Table 3. The value of vehicle attributes for selected vehicles 

 

Model name Price Power FC 
Make 

origin 

Buick SGM Excelle GT 16.78 6.85 8.67 American 

Buick SGM Lacrosse 17.89 7.60 11.07 American 

BYD S6 16.71 7.16 10.09 Chinese 

Dongfeng Yulong luxury 

grand 7 
17.84 7.46 12.56 Chinese 

Toyota GAIG Highlander 18.08 7.56 12.31 Japanese 

 

By inserting the estimated coefficients obtained from Table 

2 into Eqn. (2), the log-odds of a link forming conditional on the 

rest of network can be calculated: 
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𝐿𝑜𝑔𝑖𝑡 𝑃𝑟(𝑌𝑖𝑗
+ = 1) = 𝜽 ∙ 𝜹𝑖𝑗

+ (𝑦) = −3.55 × 𝛿𝐸𝑑𝑔𝑒𝑠 + 0.05 ×

𝛿𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠𝑢𝑚𝑝 − 0.34 × 𝛿𝑂𝑟𝑖𝑔𝑖𝑛(𝐽𝑃) − 0.33 × 𝛿𝑂𝑟𝑖𝑔𝑖𝑛(𝐾𝑅) −

0.22 × 𝛿𝑃𝑟𝑖𝑐𝑒 𝑑𝑖𝑓𝑓. + 0.42 × 𝛿𝑃𝑜𝑤𝑒𝑟 𝑑𝑖𝑓𝑓. + 0.06 × 𝛿𝐹𝐶 𝑑𝑖𝑓𝑓. +

1.15 × 𝛿𝐺𝑊𝐸𝑆𝑃 − 2.79 × 𝛿𝐺𝑊𝐷 ,  (7) 

 

Plugging the attribute values from Table 4 into Eqn. (7), we 

calculate the log-odds of real links compared with a hypothetical 

link to verify the accuracy of our model; results are illustrated in 

Figure 7, using the same set of vehicles shown in Figure 6. It is 

observed that the real links (e.g., the competition link between 

Highlander and Buick SGM Lacrosse) reach higher log-odds 

than the hypothetical links (e.g., the dash link between 

Highlander and Buick SGM Excelle GT) in 2015. This indicates 

that the STERGM results successfully capture the influence of 

exogenous effect (e.g., fuel consumption, price difference, power 

difference, fuel consumption difference, and make origin), and 

endogenous effect (e.g., centralization and closure effect) on the 

formation of vehicle competitions shown in Figure 6. 

 

 
Figure 7: The log-odds results of two formed links and a hypothetical 

link in the competition network from 2014 to 2015 

 

3.5.2 Network level verification 

The goodness-of-fit analysis at the network level verifies the 

model through comparing the simulated networks from the 

estimated models with observed networks in terms of the 

distributions of certain endogenous structure effects such as the 

degree of nodes and GWESP as well as exogenous statistics. We 

use competition network in 2014 as the target data for STERGM 

simulations. Figure 8 provides the results of 100 simulations for 

competition network in 2014 with STERGM (using competition 

network in 2013 as the preexisting network) for examining the 

explanatory variables. The vertical axis in each plot represents 

the logit (log-odds) of the relative frequency, the solid line 

represents the statistics for the observed network, the boxplots 

indicate the median and interquartile range of the simulated 

networks, and the light-grey lines represent the range in which 

95% of simulated observations fall. We can see most observed 

value lies in the 95% range of simulated observations which 

indicates that STERGM performs relatively well in both the 

formation model and the dissolution model. 

 

4. CONCLUSION 
The major contribution of this study is the development of a 

dynamic network analysis approach to modeling the evolution of 

product competition relations. Even though a network-based 

approach was previously adopted in modeling vehicle 

competitions to overcome the limitations of DCA [30,31], this is 

the first attempt to systematically analyze and model product 

competitions based on longitudinal market data and network 

analysis. Different from our previous study on multi-year 

analysis using cross-sectional network data, this research 

provides insights into the factors (such as product attributes, 

homophily effects, and network structure effects) that drive 

changes in product competitions. 

Our proposed STERGM approach models the impact of 

endogenous variables as well as exogenous variables on the 

formation and dissolution of product competitions separately. A 

three-year customer survey from China’s auto market was 

utilized and three crossover SUV-oriented competition networks 

were constructed to illustrate the implementation process of 

dynamic network modeling. By utilizing the “structural zero” 

method we addressed the challenge of longitudinal network 
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Figure 8: Goodness-of-fit plots of STERGM using competition 

network in 2014 as the target data. (a) Formation model. (b) 

Dissolution model. 
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modeling with varying sets of nodes from year to year. We 

observe an obvious improvement of model fit after the network 

structure effects are introduced into the dynamic model. The 

results from STERGM formation model indicate that two 

unrelated vehicles tend to form a competition relation if they are 

not Japanese or Korean brands, have lower price difference, 

higher fuel consumption, higher power difference, higher fuel 

consumption difference, compete with more other cars, or have 

more shared competitors. The dissolution model results indicate 

that competing vehicles may lose their competition in the future 

if they are Korean vehicles, compete with fewer other cars, or 

have fewer shared competitors. Our goodness-of-fit analysis at 

the both link level and the network level further verifies the 

model accuracy. 

Our work also illustrates the difference between the static 

ERGM and the dynamic STERGM.  In summary, ERGM is a 

static network modeling approach assuming there is no pre-

existing network relations (i.e., no pre-existing competition at 

all), whereas STERGM is a dynamic network modeling 

approach focused on detecting the changing pattern that best 

describes the formation and dissolution of competitions 

conditional on the pre-existing competitions. 

Our future work will focus on examining the use of 

STERGM for prediction, given the current competition structure 

and product design change. For example, we may use the 

STERGM results obtained in this work to predict the competition 

network in 2016 based on the competition network in 2015.   

By studying the impact of improving existing products and 

releasing new products on future product competitions, this 

dynamic network modeling approach can support engineering 

design decisions and companies’ strategic decision-making. 
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