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Topological resonances in a Möbius ring resonator
Yao Chen1, Jiankun Hou1, Guolin Zhao2, Xianfeng Chen 2 & Wenjie Wan 1✉

A Möbius strip, fascinating for its unique topological property of being a one-side non-

orientable surface, has inspired mathematicians, physicists, engineers, and artists for many

centuries. In a coherent system, coherent waves on the nonorientable surfaces reveal rich

topological dynamics due to the interplay of coherence and topology. Here we experimentally

observe topological resonances in a Möbius ring resonator formed in a twisted optical fiber

loop. The twisted polarization-maintaining fiber ring encourages the hybridization of two

polarization states, giving rise to the crucial Berry phase. This geometrical phase leads to the

frequency shifts of fiber resonant modes with a non-trivial fractional mode number. More-

over, the resonant modes are topological, only resonating with certain polarized modes with

circular chirality. These topological features introduce geometrical factors into coherent wave

resonances, paving the way for topological information processing for quantum information,

and coherent wave dynamics.
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Möbius strips, featured with their peculiar property of
being “nonorientable” surfaces with only one “side”,
have fascinated mathematicians, physicists, chemists,

engineers, artists, architects, and many others ever since their
discovery in 1858. It helps to spur the development of an entire
field of topology, which preserves the genus, i.e., the number of
holes, in an object even under the deformation. A Möbius strip’s
unique topological property of being a nonorientable surface has
evolved from a mathematical concept to a recent topological
design of materials1, molecules2, nanostructures3, and electronic
and microwave devices4 across multiple disciplines. Particularly,
this one-sided topology enables the topological twist of the band
structure in topological insulators;5 A crystalline ribbon of
material can be coaxed into a novel Möbius nanocrystal6, and the
synthesis of the molecular Möbius strip plays an important role in
medicine and drugs2.

Coherent wave dynamics around a Möbius loop are particu-
larly important to the fields of quantum physics, optics, acoustic,
and condensed matter. The Möbius topology combined with the
coherence, i.e., resonances, can lead to non-trivial wave
evolution7. During this adiabatic process over the course of a
cycle, the coherent wave acquires an additional topological phase,
namely the Berry phase (also termed the geometric phase,
Pancharatnam-Berry phase)8,9. Berry phase has been extensively
investigated when the waves evolve along the parameter space in
polarization states10, spin–orbital coupling11, and helical
systems12. Earlier works have demonstrated the appearance of
Berry phases in coiled fibers13. Combined with a Möbius loop, it
has been shown experimentally the spin–orbit coupling of pho-
tons in the Möbius nano/micro rings;14,15 Möbius ring resonators
exhibit Fermion–Boson rotational symmetry4, and the recent
work shows a Möbius strip microlaser can be implemented as a
platform for the investigation of non-Euclidean optics16. The
most important impact of such a geometric phase on the reso-
nances is theoretically predicted to be topological in a Möbius
loop, shifting the resonance frequencies and polarization states7.
For example, half-integer modes are theoretically predicted
between the traditional well-known whispering-gallery modes
which are based on integer constructive modes4,17. Particularly,
these topological resonances in a Möbius resonator are critical for
manipulating topology-based signal processing18, but few
experimental realizations have been implemented up to this work.

In this work, we experimentally demonstrate a Möbius ring
resonator based on a twisted polarization-maintaining (PM) fiber
ring, where the angle twisting allows the coupling between the
two polarization modes along the fast and slow axes inside the

PM fiber ring. This hybridization of polarized modes gives a rise
to the additional geometrical phase, i.e. Berry phase, during the
propagation in the ring resonator. Effectively, this additional
Berry phase introduces extra frequency shifts to the resonances,
making their mode numbers fractional as opposed to the integer
ones in the traditional ring resonators. Furthermore, enhanced
mode splitting and mode flipping are also observed at a higher
twisting angle. Also, these resonant modes are topological, only
resonating with certain polarized modes with circular chirality.
These results should be general and universal among other
coherent systems involving Möbius-like evolution, the critical
geometrical phase can facilitate extra coherent control of topo-
logical properties, paving the way for practical applications in
topological signal processing and quantum information.

Results
Theory model for Möbius ring resonator. The Möbius ring
resonator consists of a typical polarization-maintaining fiber ring
geometry19, but with a twisting angle at the splice point as shown
in Fig. 1. In this manner, two linear polarization modes along the
slow and fast axes can couple to each other at the splice point
depending on the twisting angle. At a 0° twisting angle, this ring
resonator represents the traditional PM fiber ring resonator with
two degenerated modes each along the slow and fast axes,
respectively19. While 90° twisting angle may ideally totally con-
vert the slow mode into the fast one right at the splice point, and
vice versa20,21. Intuitively, the optical waves have to travel twice of
resonator length to complete one resonance cycle, similar to the
Möbius-strip ant’s problem. However, the polarization state of
the wave evolves through a closed adiabatic journey in this sce-
nario, this gives a rise to the well-known Berry phase in addition
to the usual dynamical phase8,9. As a result, this additional
topological phase leads to the shift of the resonance modes7,
which usually are formed based on constructive resonance
interference conditions. Originally, the resonance modes in the
traditional resonators without the twist are characterized by
integer azimuthal mode numbers m, in contrast, such Berry phase
in the Möbius ring resonator can turn the mode number into a
fractional one, for example, a half-integer m is predicted in a
dielectric Möbius strip cavity4,7.

Quantitatively, we consider a fiber ring resonator of cavity
length L and the twisting angle θ at the splice point, such that the
effective fiber loop torsion can be defined as τ ¼ θ=L. With the
help of Jones’ formula22, the polarized field vector along PM
fiber’s fast and slow axes Eðz; tÞ ¼ ðEF ; ESÞT evolves inside the

Fig. 1 a Möbius ring resonator of twisted polarization-maintaining (PM) fiber loop. A fiber-coupled PM fiber ring resonator with 90° polarization axis
rotation at the splice, such that the modes in the fast and slow axis couple with each other, effectively forming the Möbius ring resonator. The eigenmodes
in the fast axis (blue) will, after one round trip, be in the slow axis (red).
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Möbius ring resonator according to:23
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where H is the Hamiltonian of the Möbius ring resonator system.
We define β ¼ ðβF þ βSÞ=2 and Δβ ¼ βF � βS, βF and βS are the
propagation constants of the fast and slow axis respectively
(see Supplementary Note 1). It is convenient to remove the time
dependence and the absolute phase by alternatively expressing the
field vector as Eðz; tÞ ¼ AðzÞ exp½iðβL� ωtÞ�, the amplitude AðzÞ
can be expressed in the new Hamiltonian H’ as:
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The above equation is a Schrodinger-like equation, which can

be solved by the adiabatic theorem24 if the torsion term varies
slowly along the twisting fiber. Under this adiabatic approxima-
tion, the corresponding eigenstates with two additional phase
factors can be solved as:

A± ðzÞ ¼
±Ωþ 1

2Δβ cosð2τzÞ
�iτ þ 1

2Δβ sinð2τzÞ

" #
� expð± iΩLÞ � expðiγ± ðLÞÞ

ð3Þ
which represent the two elliptically polarized modes in our

Möbius ring resonator. Here ±Ω ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔβÞ2=4þ τ2

q
are the

two eigenvalues of H0. There are two phases in the solution:
φ± ¼ ±ΩL is the dynamic phase and γ± ðLÞ is the geometrical
Berry phase acquired during the adiabatic evolution. γ± ðLÞ can be
calculated in the parameter space in an integrated form:8
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where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω2 þ Ω � Δβ cosð2τzÞ

p
is the normalization factor,

and ANorm is the normalization of the eigenvector A. Obviously,
the twisting of the torsion τ term can modify both the dynamical
phase and the geometrical one. In a traditional ring resonator
without the twist, the resonance modes are purely determined by
the dynamical phase, such that the integer azimuthal mode
number m0 can be found as 2πm0

± ¼ φ± þ βL, which only
depends on the two propagation constants of the fast and slow
axes, i.e. βF and βS.

In contrast, in a Möbius ring resonator, the torsion term brings
in an additional Berry phase, as a result, the new azimuthal mode
number m becomes:

2πm± ¼ φ± þ βLþ γ± ðLÞ ð5Þ

m± ¼ m0
± þ γ±

2π
ð6Þ

The azimuthal mode number now turns into a fractional one
depending on the Berry phase term. Previously, half-integer
azimuthal modes were studied in a single-strip dielectric Möbius
cavity, where the three-dimensional surface of the strip can
support both the transverse magnetic (TM) and transverse
electric (TE) polarization modes7, in a similar manner of slow
and fast modes in the current work. In both cases, the twisted

segments depending on splicing angle give a rise to the
geometrical dynamics resulting in the current fractional modes.

Topological resonances in a Möbius ring resonator. Experi-
mentally, Fig. 2 shows the transmission resonance spectra of a
normal ring resonator without the twist and the Möbius ring
resonator with a 90° twist. Here the initial input signal is launched
through a segment of normal optical fiber without PM, with a
help of a fiber polarization controller, the signal input polariza-
tion state can be manipulated in order to couple into both
degenerated modes (see “Methods” section). As shown in Fig. 2a,
the transmission spectrum of the normal ring resonator reveals
two consecutive modes along both slow and fast axes. The indi-
vidual slow and fast modes remain close to each other due to the
fact that Δβ ¼ βF � βS is small, ~0.1% (see Supplementary
Note 4). And both modes share a similar free spectral range (FSR)
of ~60MHz as well. In contrast, the Möbius ring resonator clearly
exhibits a distinct resonance spectrum for the slow and fast
modes in Fig. 2b: the slow and fast modes shift oppositely to the
two spectrum sides as compared to the normal ring resonator
case. Now the “slow” modes (blue) now seem to be separated
from the “fast” ones (red) for ~30MHz, both modes still maintain
the original FSRs. In fact, these resonances are hybrid modes
coupled with both modes along the slow and fast axes19–21.
Consider the Möbius ring case when τL ¼ 90

�
in Eq. 3, the

eigenstates read A± ¼ ±Ω� Δβ=2
�iτ

� �
� τ

± 1
i

� �
, assuming

small Δβ. These two modes correspond to two circularly polarized
eigenmodes, i.e. left and right, at the coupling point. Experi-
mentally, we can choose the input signal’s polarization states to
be solely left or right circular polarization by a polarization
controller. As a result, the transmission spectra become distin-
guishably separated for the left and right circular polarized inputs
as shown in Fig. 2c, d. These topological modes still maintain the
same FSRs as in Fig. 2a, b, but shift the resonances in the spectra
due to the combination of the extra dynamical phases and the
Berry phase in Eq. 5.

To gain more physical insights into these topological modes and
understand the effect of Berry phases, we have studied the frequency
spacing Δω ¼ 2πcðmþ �m�Þ=L (see Supplementary Note 1)
between the two classes of modes with mode number m± in
Eq. (6) when varying the twisting angle at the splice point as shown
in Fig. 3a. In this manner, the experimental measurement of the
frequency spacing instead of individual modes can reduce some
common external noises/perturbations like prior works22,23. As
shown in Fig. 2, this twisting process indeed induces some frequency
shift of the modes as compared to the non-twisted case. However,
it is hard to distinguish the Berry phase part from the dynamical
one, moreover, there are some external perturbations like tempera-
ture, and fiber strain, which causes the shift of the whole resonance
spectrum, this prevents us from directly comparing the twisted cases
to the non-twisted one. Instead, the frequency spacing between the
“+” and “-” modes only depends on the intrinsic properties, i.e. β
and Δβ, not external ones, enabling temperature-independent
rotation sensing in prior works19,21. This method helps to reveal
the nature of the Berry phase in the current work.

The direct analytical results of the Berry phase calculated from
Eq. (4) are shown in Fig. 3b with a twisting angle from 0°−360°.
There are two main features: (1) The deepest dip can be found
around 125° angle. (2) the non-zero Berry phase is present at
360°, leading to an additional frequency separation between the
“+” and “-“ modes. In the real experiment, it is accessible to
obtain each mode’s resonance frequency, i.e. ωþ,ω� and their
difference Δω. However, the main component in this frequency
splitting is the dynamic one (See Supplementary Note 1), while
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Fig. 3 Observation of Berry phase-induced mode splitting. a The twist angle denoted by θ is varied to observe the transmission spectrum. b Theoretically
calculated Berry phase (without the dynamical one) at a different twisting angle, the referencing dashed line marks the zero-phase level. c The
experimental observation of the mode spacing of fast and slow axes at various twist angles and the frequency spacing between the two modes is visualized
in the inset. d Theoretically results of the mode spacing by including both the dynamical and Berry phase.

Fig. 2 Transmission spectra of a polarization-maintaining (PM) fiber ring resonator. a At 0° twisting angle, with a linear polarization input, the PM fiber
ring resonator has two eigenmodes characterized by azimuthal mode number n and m in the fast and slow axes, respectively, with a little separation due to
the birefringence. b at 90° twisting angle, with a linear polarization input, the two eigenmodes are shifted due to the additional dynamic and geometric
phases related to the twisting. At 90° twisting angle, the transmission spectrum of left circular polarized light (c) and right circular polarized light (d).
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the Berry phase’s contribution is much less. But the two main
features brought in by the Berry phase do manifest themselves in
the overall spectrum calculated from Eq. 5 in Fig. 3d. Here the
frequency spacing does dip around 125° angle and does not
return to zero (0° case) at 360° angle. These phenomena have also
been observed experimentally in Fig. 3c, where the frequency
spacing between the “+” and “-“ modes are recorded during the
twisting angle variation from 0° to 360°.

Without the twist at 0°, the “+” and “-“ modes are initially
close to each other in Fig. 4a. When increasing the twisting angle
from 0°, the two classes of modes, i.e ± modes, begin to separate
oppositely in the spectrum due to the polarization hybridization
between the fast and slow axes of PM fiber19–21. And the mþ and
m� þ 1 modes (red and blue curves in Fig. 4a, respectively) are
approaching each other. At 180°, these two resonance modes
meet up, however, there is no mode crossing between the two.
Above 180°, as the twisting angle increases, the mþ and m� þ 1
modes begin to separate (see Supplementary Note 2), while the
mþ and m� modes tend to remerge again until 360°. Note that, by
comparing the frequency spacing Δω at 0° (Fig. 4a) and 360°
(Fig. 4g), Δω has broadened from 5.4 MHz to 10.7 MHz. This
extra frequency spacing clearly depicts the nonvanishing Berry
phase occurred at 360° as shown in Fig. 3. Moreover, this
nonvanishing Berry phase induced frequency spacing can be also
extended to a higher twisting angle (see Supplementary Note 3).

Ideally, such a Berry phase can also participate in the polarization
hybridization between two modes with different order numbers.

Without the twist, two polarized modes, possibly with different
mode numbers m and n, along the fast and slow axes are of
different free-spectral range as shown in Fig. 4a–c. As a result, they
firstly depict a frequency splitting ~ 5.4MHz around 1550.2607 nm,
but this separation is narrowing down to ~ 3.8MHz around
1550.6989 nm, finally, they cross in the spectrum, i.e. with a spacing
~ −2.7MHz. However, all the scenarios exhibit a similar evolution
trend when varying the twisting angle in Fig. 4d, e: first, these
modes are splitting apart until experiencing avoided mode crossing
at 180°, then they remerge again till 360° as described above.
Surprisingly, in Fig. 4f, this leads to an intriguing flipping of the two
modes at 360° (Fig. 4i) as compared to their 0° case (Fig. 4c). In
contrast, the other two cases in Fig. 4a, g and Fig. 4b, h only show a
broadened mode splitting. But all three dynamics point to the same
topological origin.

Conclusions
In summary, we experimentally demonstrate a Möbius ring
resonator with topological resonances, in which their associated
mode numbers are fractional, resulting from the additional Berry
phases during the coherent evolution along two polarization axes
in the Möbius ring. There are a few possible impacts on the
optics, quantum physics, and coherent wave systems: the
observed topological transport of circularly polarized light may
enable uni-directional chiral transmitters/absorbers, i.e. only
allowing one particular polarized wave to transmit in one direc-
tion while blocking/absorbing the others, meanwhile, this action

Fig. 4 Berry phase enhanced mode separations. a–c frequency spacing of two classes of resonance modes (red for + mode, blue for – mode) at 0°
twisting angle. d–f The frequency spacing of two resonance modes and their consecutive ones during the variation of twisting angle. g–i Frequency spacing
of two classes of resonance modes at 360° twisting angle. The pump wavelength is (a, d, g): 1550.2607 nm, (b, e, h): 1550.6989 nm, and (c, f, i):
1551.0745 nm. a, b The initial spacing (0°) is narrowed when the pump wavelength is increased and (g, h) the final spacing (360°) is both broadened due
to the non-zero Berry phase. A flipping of the resonances is observed by comparing (c) 0° and (i) 360° cases also due to the additional Berry phase.
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will be reversed for the other polarized waves in the other
transmission direction. Secondly, the additional Berry phase can
be actively controlled through the twisting angle, hence, it may
open an avenue for coherently controlling the frequency spacing
between two classes of modes with different polarization. This is
crucial for some fiber-based sensing applications21, e.g. gyro-
scope, temperature, and strain sensing, where the actual two-
mode frequency spacing can be better immune from external
perturbations, greatly enhancing the sensitivity. At last, we believe
these results are universal across multidiscipline in microwaves,
acoustics, mechanics, and matter waves, hence it provides
opportunities for practical applications of coherent control in
information processing and wave dynamics.

Methods
Experimental system. Experimentally, we use polarization maintaining fiber to
change the polarization states on the Poincare sphere. The fast and slow axes of the
PM fiber both work with a refractive index difference of ~0.1%. The experimental
setup is illustrated in Fig. 5, we connect the two ports of the PM fiber coupler to
form a ring loop with a tunable flange and the twist angle between the fast axis of
the two ports can be changed conveniently.

In a general case, when the fast axes of port2 and port3 are aligned, there are
two eigenmodes in the resonator, one is propagating in the fast axis and the other is
in the slow axis, the two modes are close in frequency in the transmission
spectrum. When the two fast axes are misaligned, the two modes begin to separate
from each other in frequency. In the experiment, the angle is changed by 360° and
the frequency difference is recorded at the corresponding angle.

Polarization state control. A special case exists at the angle 90°, where the fast axis
is just connected to the slow axis. In this case, the polarization will be converted to
its orthogonal state after one circle evolution and will be converted back to its
original state during the next circle evolution to meet the resonance condition. The
polarization state evolution behavior is similar to the Möbius strip. The eigenstates
in this case are left/right circular polarized states. Experimentally, we input cir-
cularly polarized light and observe the Möbius ring resonator transmission.

The circularly polarized light can be produced with the setup in Fig. 6, where
the PBS will split the polarized light into different arms. One arm is wrapped
around cylindrical PZT tightly. The stress induced by the PZT will be controlled by
the voltage to change the phase in this propagating arm.

Data availability
The data that support the findings of this study are available from the authors on
reasonable request.

Fig. 5 Experimental setup to observe the topological resonance. The port2 and port3 are connected with a tunable flange to form a polarization-
maintaining (PM) ring resonator, the transmission signal is collected with a detector and the transmission spectrum is observed on the oscilloscope (OSC).

Fig. 6 Experimental setup to produce circularly polarized light. The whole setup is composed of polarization-maintaining (PM) fiber. The input laser is
splitted by fiber polarization beam splitter (PBS). The Piezoelectric ceramics (PZT) will change the radius with an applied electric field to induce stress in
the upper arm, so the phase can be modulated.
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