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Identification of Non-Markovian Environments for Spin Chains

Shibei Xue , Member, IEEE, Jun Zhang, Senior Member, IEEE, and Ian R. Petersen , Fellow, IEEE

Abstract— Correlations of an environment are crucial for the
dynamics of non-Markovian quantum systems, which may not be
known in advance. In this brief, we propose a gradient algorithm
for identifying the correlations in terms of the time-varying
damping rate functions in a time-convolution-less master equa-
tion for spin chains. By measuring time trace observables of
the system, the identification procedure can be formulated as
an optimization problem. The gradient algorithm is designed
based on a calculation of the derivative of an objective function
with respect to the damping rate functions, whose effectiveness
is shown in a comparison with a differential approach for a
two-qubit spin chain.

Index Terms— Gradient methods, optimization, quantum
mechanics, system identification.

I. INTRODUCTION

TO EXACTLY process quantum information, accurate
models, including parameters, structures, and descriptions

of dynamics, for quantum information carriers are required.
With these models, sophisticated feedback control strategies
can be designed, for example, feedback stabilization of a num-
ber state in a cavity [1], preservation of quantum coherence
and entanglement for qubit systems [2] and linear quantum
systems [3], or coherent feedback rejection of quantum colored
noise [4], [5].

However, in practice, an accurate model may not be obtain-
able since parts of the parameters, structures, or dynamics of
the quantum system may not be well understood. This would
lead to unexpected experimental results or degraded control
performance of a quantum control system. For example, in a
recent experiment on quantum dots [6], a calculation based on

Manuscript received September 3, 2018; accepted October 23, 2018. Date
of publication November 16, 2018; date of current version October 9, 2019.
Manuscript received in final form October 28, 2018. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grant 61873162, in part by the Shanghai Pujiang Program under Grant
18PJ1405500, in part by the Australian Research Council Discovery Projects
and Laureate Fellowships Funding Schemes under Project DP140101779,
Project DP180101805, and Project FL110100020, and in part by the Air Force
Office of Scientific Research under Agreement FA2386-16-1-4065. The work
of J. Zhang was supported in part by the National Natural Science Foundation
of China under Grant 61673264 and Grant 61533012 and in part by the State
Key Laboratory of Precision Spectroscopy, East China Normal University,
China. Recommended by Associate Editor J.-S. Li. (Corresponding author:
Shibei Xue.)

S. Xue is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200240, China, and also with the Key Laboratory of
System Control and Information Processing, Ministry of Education of China,
Shanghai 200240, China (e-mail: shbxue@sjtu.edu.cn).

J. Zhang is with the Joint Institute of UM-SJTU and the Key Laboratory of
System Control and Information Processing, Ministry of Education of China,
Shanghai 200240, China (e-mail: zhangjun12@sjtu.edu.cn).

I. R. Petersen is with the Research School of Engineering,
Australian National University, Canberra, ACT 2600, Australia (e-mail:
i.r.petersen@gmail.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2018.2879042

the theoretical model has a discrepancy from the experimental
data on the broadened resonator linewidth under suitable
parameters, which means that some unknown dynamics of
the system are not included in the model. Correspondingly,
it is shown that the degraded estimation performance can
be observed due to the ignorance of a noise model for a
quantum system [7]. Hence, the problem of how to determine
the unknown parameters, structures, or dynamics of a “dark”
quantum system is an essential problem in quantum control
theory, which is referred to quantum system identification.

A general identification methodology involves finding the
unknown parts of a quantum system from measurement data
(e.g., the spectrum of an output field or expectations of
observables) extracted from the system under excitation [8].
The identification method was first explored to extract the
Hamiltonian information for closed quantum systems [9]–[11].
Moreover, it is worth considering the identification prob-
lem for open quantum systems, where the quantum sys-
tem is disturbed by the quantum noises arising from an
environment. When the correlation function of the quan-
tum noise is the Dirac delta function, i.e., the correla-
tion time of the quantum noise is very short, the noise
and the relevant quantum system refer to quantum white
noise and a Markovian quantum system, respectively [12].
For Markovian quantum systems, a continuous-measurement-
based method was proposed to identify unknown parameters
in a cavity-atomic system [13] and unknown structures of a
spin network [14]. In addition, a system-realization-theory-
based method in [11] was extended to estimate unknown
parameters in the Hamiltonian of a Markovian spin network
from measurement time traces [15], whose identifiability was
discussed in [16]. In addition, an identification method for
the linear Markovian quantum systems was systematically
discussed in [17].

In contrast to the Dirac correlation function of quantum
white noise, correlation functions of quantum colored
noise can be more complicated due to the memory effect of
non-Markovian environments. A quantum system disturbed by
the quantum colored noise is referred to as a non-Markovian
quantum system, whose dynamics is quite different from
that of the Markovian quantum systems [12]. To control
the non-Markovian quantum systems, it is crucial to
acquire the knowledge of the correlation functions of the
non-Markovian environment beforehand. Wu et al. [8]
proposed a frequency-domain approach to the identification
of the environment spectrum for a superconducting single
qubit at an optimal point. For the quantum dot system in [6],
an augmented system model was presented to explore the
structure of the non-Markovian environment [18]. In addition,
a spectroscopic method was presented to explore the spectrum
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Fig. 1. Schematic of the spin chains in a non-Markovian environment.

of spin baths both theoretically [19] and experimentally [20],
which involves high-energy dynamical decoupling
pulses.

In this brief, we aim to extract the correlation functions of
the non-Markovian environments for spin chains. The dynam-
ics of the spin chains are described by a time-convolution-
less master equation, in which the time-varying damping
rate functions characterize the correlation functions of the
non-Markovian environment. To identify the damping rate
function, we measure the time trace for one local observable
of the spin chains that correspond to dynamical variables in a
coherence vector representation. Although this formulation for
the coherence vector is similar to that in [15], the dynamical
equation for the coherence vector is time-varying due to the
damping rate functions. Thus, the method in [15] is invalid in
our case. We alternatively formulate the identification problem
for the damping rate function as an optimization problem.
In addition, we design a gradient algorithm to iteratively
recover the damping rate functions for the non-Markovian
environment.

Our contribution in this brief is that we provide a systematic
approach to acquire the unknown damping rate functions in a
time-convolution-less master equation for the non-Markovian
quantum systems. In principle, our gradient algorithm can
achieve the damping rate function with a high fidelity, which
would help to obtain an exact model of the spin chains in an
experiment for quantum information processing. In addition,
our method only requires measuring commutative observ-
ables of the spin chains, which is easy to be applied in an
experiment, because it avoids measuring the noncommuta-
tive observables that cannot be accurately measured at the
same time according to the uncertainty principle in quantum
mechanics.

This brief is organized as follows. In Section II, we intro-
duce the time-convolution-less master equation for the
non-Markovian spin chains, whose corresponding coherence
vector representation is also introduced. The identification
problem formulation and the gradient algorithm are given in
Section III. An example for two qubits in a non-Markovian
environment is given in Section IV. Conclusions are drawn in
Section V.

II. DESCRIPTION OF NON-MARKOVIAN SPIN CHAINS

A. Time-Convolution-Less Master Equation

The non-Markovian spin chain we consider in this brief is
plotted in Fig. 1, where the nodes and the edges represent spin

components and their couplings, respectively. The components
are disturbed by quantum colored noise arising from an
unknown non-Markovian environment. Here, the time traces
of local observables are measured, and the resulting data are
to be processed for identification.

In this brief, the non-Markovian dynamics of spin chains
are described by a time-convolution-less master equation [12]

ρ̇(t) = L0ρ(t) + Lγ (t)ρ(t) (1)

of the spin chains. The superoperator

L0ρ(t) = −i [H, ρ(t)] (2)

represents the internal dynamics of the spin chains, where the
Hamiltonian of the spin chains H describes the internal energy
of the system and their couplings. The commutator [·, ·] is
calculated as [A, B] = AB − B A for two matrices A and B
with suitable dimensions. We let h̄ = 1, hereafter.

The Lindblad dissipative term induced by the
non-Markovian environment is expressed as

Lγ (t)ρ(t) = 1

2

N2−1∑
j,k=1

γ j k(t)([L j , ρ(t)L†
k ] + [L jρ(t), L†

k ]).

(3)

In contrast to the constant damping rates in the Markovian
master equations, the damping rate functions γ j k(t) for char-
acterizing the correlation of the non-Markovian environment
are time-varying, which encapsules the coupling strengths
between the system and the environment and the density state
of the environment [12]. Here, we assume that γ j k(t) are
complex functions, i.e., γ j k(t) = Re(γ j k(t)) + i Im(γ j k(t)),
where Re(·) and Im(·) represent the real and imaginary parts
of a function, respectively.

In addition, the coupling operators Lk belong to a set
M = {Lk, k = 1, . . . , M = N2−1}, which are an orthonormal
basis for the Lie algebra su(N). Their commutation and
anticommutation relations can be calculated as

[L j , Lk ] = i
M∑

l=1

C jkl Ll (4)

{L j , Lk} = 2

N
δ j k I +

M∑
l=1

D jkl Ll (5)

respectively. The coefficients C jkl , D jkl ∈ R are the com-
pletely antisymmetric and symmetric structure constants of
the Lie algebra su(N), i.e., with respect to the interchange
of any pair of indices [21]. Here, the anticommutator {·, ·}
is calculated as {A, B} = AB + B A for two matrices A
and B with suitable dimensions, and δ is the Kronecker delta
function.

Note that although the variation of the density matrix in
the time-convolution-less master equation (1) only depends
on the current density matrix mathematically, the time-varying
damping rate functions enable (1) to describe a non-Markovian
behavior physically, i.e., the energy exchanges between the
system and the environment [12].
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B. Dynamical Equations in a Coherence
Vector Representation

Under the orthonormal basis in M, we can expand the
density matrix ρ(t) and the Hamiltonian H as

ρ(t) = 1

N
IN +

M∑
n=1

xn(t)Ln

H =
M∑

m=1

hm Lm (6)

respectively, where hm = tr(H Lm) ∈ R and the coefficients
xn(t) are the expectation values for the basis Ln , i.e., xn(t) =
tr(ρ(t)Ln) ∈ R. They constitute the so-called coherence vector
x(t) = [x1(t), . . . , xn(t), . . . , xM (t)]T ∈ R

M . Here, IN is an
N × N identity matrix.

By using the relations (4)–(6), the time-convolution-less
master equation (1) can be rewritten as a dynamical equation
in the coherence vector representation as

ẋ(t) = A(t)x(t) + b(t), xn(0) = tr(Lnρ(0)) (7)

where the initial value of the coherence vector x(0)
is determined by the initial density matrix ρ(0).
The elements of the matrices A(t) ∈ R

M×M and
b(t) ∈ R

M can be calculated as Anp(t) = Qnp + Rnp(t)
with Qnp = ∑M

m=1 Cmnphm , Rnp(t) = −(1/4)∑M
l, j,k=1,l≤m(2 − δ j k)Re(γ j k(t)) ×(C jlnCklp + CklnC jlp)

+(1/2)
∑M

l, j,k=1,l≤m Im(γ j k(t)) ×(Ckln D jlp −C jln Dklp), and

bn(t) = −(2/N)
∑M

j,k=1, j<k Im(γ j k(t))C jkn , respectively.
Here, the corresponding coefficients C and D are introduced
in the calculation of the commutation and anticommutation
relations (4) and (5) when transforming (1) into (7). Their
indexes correspond to the labels of the orthonormal basis
for su(N) involved in the commutation and anticommutation
relations.

Note that although (7) is in a similar form as the linear
time-invariant (LTI) dynamical equation for a Markovian
quantum system [15], it is a linear time-varying (LTV)
dynamical equation due to the time-varying damping rate
functions γ j k(t).

On the other hand, to extract information of γ j k(t), one can
measure expectation values of S observables

y(t) = [〈O1(t)〉, 〈O2(t)〉, . . . , 〈OS(t)〉]T (8)

where Oi (t) are local observables and the symbol 〈·〉 =
tr[·ρ(t)] represents the expectation of an observable. In addi-
tion, we can collect the data of y(t) as the output of the
non-Markovian spin chains. In addition, these observables can
be expanded under the orthonormal basis in M as Oi =∑M

n=1 o(i)
n Ln with o(i)

n = tr(Oi Ln), and thus, the output (8)
can be reexpressed as

y(t) = cx(t) (9)

where o(i)
n is the i th row and nth column element of the matrix

c ∈ R
S×M .

Note that the measured operators in y(t) should be commu-
tative since the uncertainty principle in quantum mechanics

requires that the two noncommutative operators cannot be
measured accurately at the same time. Hence, in general,
the number of the measured observables S should be less than
that of the orthonormal basis in M, i.e., S < M .

It should be noted that the measurement of expectations
of observables is applicable to the non-Markovian quantum
systems. For example, in a superconducting non-Markovian
single-qubit system, the measurement of average charge num-
bers is equivalent to measuring the z-component of the coher-
ence vector for the single qubit. The procedure is to measure
the same observable many times and then take the average of
the results [8].

C. Reduced Dynamical Equation

Equation (7) describes the full dynamics of the
non-Markovian spin chains. However, it is possible that not
all the components in x(t) are relevant to the observables (8),
i.e., the matrix A(t) would have a block-diagonalizable
structure and a proper subblock corresponds to the
observables. We can use a filtration procedure in [22] to find
the accessible set which is related to the observables [15].

Thus, a reduced coherence vector x̃(t) corresponding to
the observables (8) can be defined, and it obeys a reduced
dynamical equation

˙̃x(t) = Ã(t)x̃(t) + b̃(t)

y(t) = c̃x̃(t) (10)

where Ã(t), b̃(t), and c̃ with suitable dimensions are the
submatrices of A(t), b(t), and c.

III. GRADIENT ALGORITHM FOR IDENTIFYING

THE DAMPING RATE FUNCTION

A. Optimization Formulation for the Identification
of the Damping Rate Function

The identification problem considered in this brief can
be stated as follows. Considering the non-Markovian spin
chains governed by the dynamical equation of the coherence
vector (7), where all the information of the environment are
encoded in the unknown damping rate functions, the envi-
ronment identification problem is to identify the time-varying
damping rate functions from the data of the time traces of the
observables ŷ(t) (9).

Note that due to the interactions between the spin chains
and the environment, in general, there is no decoherence-free
subspace for a common non-Markovian system without control
pulses, i.e., decoherence channels affect all the components in
the coherence vector. Thus, the damping rate functions will be
imprinted in the observables. Hence, the identification problem
for the damping rate function should be solvable. In addition,
since the time-varying damping rate functions γ j k(t) result in
a LTV system (7), the identification method for the Markovian
quantum systems in [15] cannot be applied in our case.

Generally, it is difficult to identify analytically a
time-varying function in a dynamical system. Alternatively,
we can numerically solve this problem by designing an algo-
rithm. We consider that the system (7) evolves in a total time T
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during which the observables are measured K times at equal
time intervals �t , i.e., �t = (T/K ). Thus, a set of real
measurement results ŷ = [ŷ(0), ŷ(1), . . . , ŷ(K − 1)] can be
obtained.

In addition, the time-varying damping rate functions γ j k(t)
are discretized, and we assume that γ j k(t) in each time interval
are constants γ j k(κ), κ = 0, 1, 2, . . . , (K − 2). Thus, in each
time interval, we can consider the LTV system equation (7)
as a LTI system and write the dynamical equation in a
continuous-time form as

ẋ(τ ) = A(γ j k(τ ))x(τ ) + b(Im(γ j k(τ ))) (11)

y(τ ) = cx(τ ), τ ∈ [κ�t, (κ + 1)�t] (12)

where (11) can be solved as

x(κ + 1) = eA(γ jk(κ))�tx(κ)

+
∫ (κ+1)�t

κ�t
eA(γ jk(κ))((κ+1)�t−τ )b(Im(γ j k(κ)))dτ.

(13)

Here, we have written the initial coherence vector in the
current and the next time intervals in an abbreviate form as
x(κ) and x(κ + 1), respectively.

For a given set of γ j k(κ), κ = 0, 1, 2, . . . , (K − 2),
an output vector y = [y(0), y(1), . . . , y(K − 1)] can be
generated by using (12) and (13). A guessed set of γ j k(κ), κ =
0, 1, 2, . . . , (K − 2) may not be identical to the real damping
rate function. Hence, the generated output y will be different
from the real data ŷ. Thus, we define an objective function

J = 1

2

K−1∑
κ=0

(y(κ) − ŷ(κ))2 (14)

to evaluate the distance between the two vectors y and ŷ.
Therefore, the identification problem for the damping rate

functions γ j k(t) can be converted into an optimization problem
as follows.

For real measurement results ŷ, the optimization problem is
to find a set of γ j k(κ), κ = 0, 1, 2, . . . , (K − 2), such that the
objective function (14) is minimized, that is

min
γ jk(κ)

J

s. t. (7), (9). (15)

B. Gradient Algorithm for the Identification Problem

To design a gradient algorithm for the optimization prob-
lem (15), it is crucial to obtain the gradient of the objective
J with respect to γ j k(κ) in each time interval. By using the
chain rule, the gradient can be calculated as

d J

dγ j k(κ)
= d J

dy
· dy

dx
· dx

dγ j k(κ)

=
K−1∑
κ ′=0

(y(κ ′) − ŷ(κ ′)) · c
dx(κ ′)

dγ j k(κ)
(16)

where

dx(κ ′)
dγ j k(κ)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 κ ′ < κ + 1
dx(κ + 1)

dγ j k(κ)
κ ′ = κ + 1

κ ′−1∏
κ ′′=κ+1

eA(γ jk(κ
′′))�t dx(κ + 1)

dγ j k(κ)
κ ′ > κ + 1.

(17)

In the following, we will calculate the derivative of x with
respect to the real and imaginary parts of γ j k(κ), respec-
tively. By using a standard formula for derivative of a matrix
exponential [23]

d

dx
e(A+x B)t |x=0 = eAt

∫ t

0
eAτ Be−Aτ dτ (18)

with matrices A and B of suitable dimensions, we have

deA(γ jk(κ))�t

dRe(γ j k(κ))
= �teA(γ jk(κ))�t ẼR

deA(γ jk(κ))�t

dIm(γ j k(κ))
= �teA(γ jk(κ))�t ẼI (19)

where ẼR = ∫ (κ+1)�t
κ�t eA(γ jk(κ))τ ERe−A(γ jk(κ))τ dτ and ẼI =∫ (κ+1)�t

κ�t eA(γ jk(κ))τ EIe−A(γ jk(κ))τ dτ . When the time interval
�t is small enough, such that �t � ||A||−1, we have

ẼR = ER, ẼI = EI (20)

where the elements of ER and EI can be expressed as
ERnp = −(1/4)(2 − δ j k)

∑M
l=1(C jlnCklp + Ckln C jlp) and

EI np = (1/2)
∑M

l=1(Ckln D jlp − C jln Dklp ).
Thus, the derivative of x(κ +1) with respect to the real and

imaginary parts of γ j k(κ) can be calculated as

dx(κ + 1)

dRe(γ j k(κ))

= �teA(γ jk(κ))�tERx(κ)

+
∫ (κ+1)�t

κ�t
((κ + 1)�t − τ )eA(γ jk(κ))((κ+1)�t−τ )

× ERb(Imγ j k(κ))dτ (21)
dx(κ + 1)

dIm(γ j k(κ))

= �teA(γ jk(κ))�tEIx(κ)

+
∫ (κ+1)�t

κ�t
((κ + 1)�t − τ )eA(γ jk(κ))((κ+1)�t−τ )

× EIb(Imγ j k(κ))dτ

+
∫ (κ+1)�t

κ�t
eA(γ jk(κ))((κ+1)�t−τ )Fdτ (22)

where the nth row element of the column vector F is − 2
N C jkn .

By combining (16), (17), (21), and (22), we obtain the
gradient of the objective J with respect to γ j k. Therefore,
if we update γ j k as

Re(γ j k) → Re(γ j k) − εR · d J

dRe(γ j k)

Im(γ j k) → Im(γ j k) − εI · d J

dIm(γ j k)
(23)
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with small step sizes εR and εI , we can minimize the
objective J . With the relation (23), our gradient algo-
rithm for the identification problem can be summarized as
follows.

Step 1: Choose and measure a set of observables ŷ(t),
initialize the state of the system x(0), the output y(0),
and the step sizes εR and εI , and guess the initial values
of {γ j k(κ)}.
Step 2: Calculate x(1) to x(K −1) and y(1) to y(K −1)
with their initial values x(0) and y(0).
Step 3: Compute the gradient of the objective J with
respect to γ j k(κ).
Step 4: Update γ j k(κ) by using the relation (23).
Step 5: When a termination condition is satisfied, stop
the algorithm; otherwise, go to the step 2 and start a
new iteration.

Note that this algorithm searches optimal solutions accord-
ing to the gradient, and hence, it may stop at a local mini-
mum point. Moreover, the final performance of the algorithm
depends on the initial guessed solution {γ j k(κ)}. When the
initial guessed solution is closer to the optimal one, the algo-
rithm will converge faster. The step size may also affect the
performance of the algorithm. A small step size would result
in a slow convergence process, and a large one would lead
to an algorithm that saturates in the vicinity of a minimum.
An adaptive step size can avoid the above problems. In addi-
tion, a proper termination condition can be the completion of
a given number of iterations or the attainment of an accuracy
of the objective J .

IV. PHYSICAL EXAMPLE

In the example, we consider two coupled qubits immersed
in an unknown common environment, where the dissipative
processes for the two qubits can be considered to be the
same. Its non-Markovian dynamics can be described by a time-
convolution-less master equation [12] as

ρ̇q(t) = −i [Hq, ρq (t)] + γ (t)

2

2∑
l=1

([
σ−

l ρq(t), σ+
l

]

+ [
σ−

l , ρq (t)σ+
l

])
(24)

where ρq (t) is the density operator for the two qubits and
the ladder operators are defined as σ+ = 1

2 (σ x + iσ y) and
σ− = 1

2 (σ x − iσ y) with the Pauli matrices

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i
i 0

]
, σ z =

[
1 0
0 −1

]
. (25)

Here, the label l is used to index the qubits. The two qubits
are assumed to be coupled in an XY interaction form, and
thus, the Hamiltonian of the two qubits is written as

Hq =
2∑

α=1

ωα

2
σ z

α + g

2

(
σ x

1 σ x
2 + σ

y
1 σ

y
2

)
(26)

where g is the coupling strength between two qubits and
ωα is the angular frequency for the αth qubit. In this time-
convolution-less master equation (24), all the properties of the
unknown environment are combined in the damping rate func-
tion γ (t), which are the same with respect to each dissipative

Fig. 2. Evolution of the identified damping rate function at specific iterations.

channel for the two qubits. Thus, the identification task is to
recover the unknown damping rate function γ (t). To simulate
a real damping rate function induced by the non-Markovian
environment, we assume that the real damping rate
function is

γ̂ (t) = 2hλsinh(dt/2)

dcosh(dt/2) + λsinh(dt/2)
(27)

which results from a non-Markovian environment with a
Lorentzian spectrum [12]. The values of the parameters h,
λ, and d will be given in the following paragraph. This real
damping rate function (27) is utilized to generate the real
measurement results ŷ(t).

Furthermore, we measure the observable σ z
1 for the first

qubit that induces the accessible set {σ z
1 , σ z

2 , σ x
1 σ x

2 , σ x
1 σ

y
2 ,

σ
y
1 σ x

2 , σ
y
1 σ

y
2 }. Due to the interactions between the two qubits,

the accessible set also includes the operators for the second
qubit. Hence, the reduced dynamical equation for the state
vector x̃(t) = [〈σ z

1 〉, 〈σ z
2 〉, 〈σ x

1 σ x
2 〉, 〈σ x

1 σ
y
2 〉, 〈σ y

1 σ x
2 〉, 〈σ y

1 σ
y
2 〉]T

is in the form of (10) with matrices

Ã(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−γ (t) 0 0 −g g 0
0 −γ (t) 0 g −g 0
0 0 −γ (t) −ω2 −ω1 0
g −g ω2 −γ (t) 0 −ω1

−g g ω1 0 −γ (t) −ω2
0 0 0 ω1 ω2 −γ (t)

⎤
⎥⎥⎥⎥⎥⎥⎦

b̃(t) = [ −γ (t) −γ (t) 0 0 0 0
]T

.

In addition, the parameters of the system are chosen as
follows. The angular frequencies of the two qubits are the
same, i.e., ω1 = ω2 = 1.5 GHz. The coupling strength
between the two qubits is g = 1 GHz. To simulate the real
γ (t), the parameters in (27) are chosen as h = 0.05 GHz,
d = 0.05 GHz, and λ = 0.1 GHz. The gradient algorithm
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Fig. 3. Reduction of the objective function J .

Fig. 4. Comparison between the identified and real damping rate functions.

starts with a guessed damping rate function

γ0(t) = 0.04 cos(0.01t) + 0.0348 (28)

which is plotted as a red line at the first iteration
in Fig. 2(a).

Both the step size in each iteration and the termination
condition can affect the performance of the gradient algo-
rithm. We choose the step size for updating the damping
rate function as ε = 0.002. Because a large step size
would result in oscillations in the final stage for searching
the minimum J , and a small one would lead to a slow
convergence process. On the other hand, we choose to iterate
the algorithm for 20 000 times as the terminal condition. Suf-
ficient iteration times allow the algorithm to obtain a minimal
objective J .

With these parameters, the evolution of the damping rate
function from the initial guess to the identified one is
given in Fig. 2. Initially, the gradient algorithm can signifi-
cantly update the identified damping rate function, as shown
in Fig. 2(a). After 10 iterations, the convergence rate of the
identification process slows down, as shown in Fig. 2(b). This
phenomenon also reflects in the reduction of the objective
function J in Fig. 3. With 20 000 iterations, the objec-
tive function is down to about 10−5, and we terminate the
algorithm.

The final identified damping rate function is plotted as the
red dashed line in Fig. 4. Compared with the real damping
rate function represented as the blue solid line, our algorithm
can identify the damping rate function well except at the
final stage. This is because the measurement results at a
final time interval contain limited information of the damping
rate function, and thus, the resulting gradient provides very

small updates. We also make a comparison between our
method and a differential approach in [24], whose identified
result is plotted as the dashed dotted line in Fig. 4. Under
the identical measurement result, our method obtains a better
result than that by using the differential approach. This is
because all the corresponding measured results are utilized
to identify the unknown damping rate function in a sample
time interval by using our method. However, the differential
approach only uses the measurement results at the current and
next times to estimate the damping rate function at the current
time. Its identification result can be improved if we measure
the observable densely.

V. CONCLUSION

In this brief, we have designed a gradient algorithm for
identifying the damping rate function in the time-convolution-
less master equation for the non-Markovian spin chains.
We have formulated the identification problem as an opti-
mization problem that can be solved iteratively by calculating
the gradient of the objective with respect to the damping rate
function in each time interval. The numerical example on a
non-Markovian two-qubit system demonstrates the efficacy of
our gradient algorithm. Compared with a differential approach,
our method can identify the damping rate function with a high
fidelity.
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