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A B S T R A C T   

Magnesium (Mg) alloys can potentially be widely applied in transportation, aerospace and biomedical fields due 
to the light weight and biocompatibility. However, they are usually subjected to serious galvanic corrosions due 
to high chemical activity. In this work, active learning is employed to discover the intermetallic compounds 
which can suppress the corrosion cathodic reaction of Mg alloys. The hydrogen adsorption energy, which is a 
descriptor for the rate of the cathodic hydrogen evolution reaction (HER), is predicted by machine learning 
models using the geometric and chemical features of the H adatom’s Voronoi neighbors. After five active learning 
iterations, the prediction error of the H adsorption energy for the strong/weak adsorption configuration is 0.196 
eV (MAE) with the training set size less than 1% unknown data set. Furthermore, we find that the surfaces with 
strong H adsorption transfer more electrons to H adatoms than the weak H adsorption surfaces. Finally, the 
ability of the binary Mg intermetallics to inhibit the HER is ranked according to their surface stabilities and 
predicted H adsorption energies. This work suggests the binary Mg intermetallics that could greatly suppress the 
corrosion cathodic reaction through active learning and density functional theory (DFT) simulations, which is 
expected to accelerate the design of corrosion-resistant Mg alloys.   

1. Introduction 

The design of metal alloys with high strength, low weight and long 
service life is the crucial component in achieving carbon neutral [1]. 
Magnesium (Mg) alloys, as the lightest structural metals, are becoming 
more widely applied in automotive industry, medical applications and 
battery anodes [2–4]. The key to unlock the full potential of Mg is to 
control the fast corrosion rate due to its high reactivity [5]. Corrosion, 
which is the destructive attack of materials during their reaction with 
the environment, usually occurs through the operation of coupled 
electrochemical half-cell reactions [6]. For Mg alloys, the typical 
cathodic reaction is hydrogen evolution reaction (HER), which happens 
on intermetallics or noble impurities [7]. It should be noted that oxygen 
reduction reaction (ORR) has also gained attention in recent years. For 
example, Wang et al. [8] used spatially resolved localized techniques to 
explore the contribution of oxygen reduction reaction to Mg corrosion. 
Silva et al. measured both the oxygen concentration and local current 

density on the proximate surface of Mg simultaneously [9] and found a 
correlation between the consumption of dissolved oxygen and cathodic 
activity. Wang et al. [10] observed a difference in polarization curve for 
the AZ31 under aerated and nonaerated conditions in various NaCl 
concentrations. However, except in high-purity Mg, the ORR is believed 
to contribute minimally to the cathodic corrosion reaction of most Mg 
alloys [8,11–13]. 

Some prior attempts to improve the corrosion resistance of Mg alloys 
include alloying, surface coating and dissolution modulators [14–19]. 
Among these attempts, alloying could improve corrosion performance 
and mechanical properties simultaneously by refining the microstruc-
ture or introducing the proper intermetallics [20]. Birbilis et al. [21,22] 
reported that the cathodic kinetics of Mg alloys could be significantly 
reduced by the addition of Arsenic (As) and Germanium (Ge). They 
attributed this phenomenon to the fact that noble intermetallic com-
pounds, such as Mg2Ge, may serve as the ‘sluggish’ sites for HER. A 
deeper understanding of the cathodic corrosion reaction on Mg 
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intermetallics is still missing but of urgent need, which can guide the 
design of corrosion-resistant Mg alloys. 

Since it is difficult to observe the reactions that happen on surfaces 
and interfaces from the atomic scale by experimental approaches, den-
sity functional theory (DFT) simulations can be used as a powerful tool 
to investigate the corrosion mechanisms. Based on Sabatier principle 
[23], the high reaction rate for cathodic HER can be achieved when 
interactions between H adatom and substrate are of moderate strength, 
while too weak or too strong H-surface binding will suppress the HER so 
as to reduce the overall corrosion rate of Mg alloys. Meanwhile, from a 
computational point of view, the binding strength between the H ada-
tom and metal surface could be described by the adsorption energy of H 
(Eads), which is a good descriptor for the kinetics of cathodic HER. To the 
best of our knowledge, most of the current theoretical studies related to 
Mg corrosion focus on HER occurring on the most stable surfaces of Mg 
matrix, Fe impurity phase or some specific intermetallic compounds 
[24–26]. Qi et al. [27] utilized DFT computations to calculate Eads on Fe 
impurities in Mg alloys to search for the alloying elements which can 
effectively impede the cathodic HER on Fe surfaces. Similar studies were 
also performed to investigate the influence of alloying elements on the 
cathodic reaction which happened on the most stable surface of Mg 
matrix [24,28]. However, intermetallics are common existing forms in 
metals and play a crucial role in the corrosion performance of metal 
alloys. Up to now, systematic study of corrosion cathodic reaction ki-
netics on the intermetallics is still lacking. Moreover, the cathodic re-
actions on the most stable surface may not be enough to represent the 
overall performance, especially when a few surface terminations have 
similar surface energies. Chen et al. investigated the Mg anodic and 
cathodic corrosion reaction separately and they found that different 
low-index facets show different reaction rates [29,30]. Therefore, it is 
necessary to consider HER on the possible surface terminations as well 
as over various active sites. Complex surface configurations and 
different exposed faces of one Mg intermetallics could increase the 
computational cost by even two orders of magnitude compared with 
pure Mg. Thus, to filter the intermetallics with very positive or negative 
Eads to inhibit corrosion cathodic reaction in the vast searching space, it 
is crucial to develop strategies to accelerate the screening process. 

Machine learning (ML) techniques could substantially facilitate the 
DFT computations [31,32] and active learning [33], also known as the 
optimal design of experiments, could further decrease the computa-
tional cost. The basic idea of active learning is that a surrogate model is 
trained from a given data set first, and then the model is applied to pick 
which data should be obtained in the next operation. After the experi-
ment or computation, the obtained data is added to the original data set 
and then the surrogate model is updated. The process is repeated iter-
atively so that the predictive performance of the surrogate model is 
improved continuously. This method has been successfully applied in 
the development of new catalysts and high entropy alloys with desired 
properties [34,35]. As for prediction models, Ulissi et al. [36,37] utilized 
an artificial neural network (ANN) to accurately predict the adsorption 
energy of specific molecules on bimetallic catalysts, yielding a mean 
absolute error (MAE) of 0.2 eV from an analysis of approximately 43,000 
data entries. Unfortunately, many models currently in use are based on 
electronic structure information, such as d-band center or Bader charge 
transfer, requiring additional DFT calculations to prepare the ML input 
features. Therefore, ML models that use easily available input features 
with high prediction accuracy for Eads are strongly desirable to achieve 
an efficient search over the broad candidate space [38,39]. 

In this work, we applied the idea of active learning to develop a 
framework that can accelerate the discovery of corrosion-resistant bi-
nary intermetallic compounds for Mg alloys. A total of 275 Mg binary 
intermetallics are considered and around 100,000 different H adsorp-
tion configurations are screened based on the adsorption energy of H 
(Eads), which is a descriptor of cathodic HER kinetics for corrosion. 
Eleven classical ML models are trained based on our previously devel-
oped datasets [40] and the best-performing model is used for the further 

“computation-prediction” loop. The input features of the ML model used 
in this work are composed of geometric features and chemical features 
of the H adsorption configuration, which are extracted via Voronoi 
analysis and do not need additional DFT computations. Finally, we 
calculated the surface energies of these intermetallics and ranked the 
ability to hinder the HER of all binary Mg intermetallics based on 
weighted H adsorption energy to guide future experiments. The features 
of intermetallic surfaces leading to a weak or strong H binding were also 
analyzed. It is expected that this framework combining DFT computa-
tion and active learning strategy effectively accelerates the discovery of 
corrosion-resistant binary Mg alloys and inspires the design of other 
corrosion-resistant metal alloy systems. 

2. Methods 

2.1. Computational methods 

In this work, all DFT calculations were performed by the projector 
augmented wave (PAW) [41] method implemented in the Vienna Ab 
Initio Simulation Package (VASP) [42]. The exchange-correlation 
functional was described by generalized gradient approximation 
(GGA) [43] with Perdew-Burke-Ernzerhof approach [44]. When oper-
ating high-throughput computation, the cut-off energy of plane wave 
was set at 480 eV. The convergence criterion of energy was set to 10− 5 

eV/atom. Considering different lattice structures of intermetallics, 
Gamma-centered k-point grids were automatically generated by 
pymatgen [45]. To avoid the interaction caused by periodic mirror im-
ages, a 15 Å vacuum layer was employed along the Z direction and the 

surface area of slabs was constructed to be larger than 50 Å
2
. 275 Mg 

binary intermetallics with energy above hull less than 50 meV are 
collected from Material project and around 100,000 different H 
adsorption configurations are generated on the low index surfaces of 
these intermetallics. The adsorption energy of H (Eads) is calculated by 

Eads = Eslab∗H − Eslab −
1
2
EH2 (1)  

where Eslab*H, Eslab and EH2 are the DFT energies of the slab model with 
one hydrogen adatom, the bare slab model and one hydrogen molecule, 
respectively. The optimal or fastest reaction rate of cathodic HER can be 
achieved when the adsorption free energy of hydrogen atom (denoted as 
ΔGH∗ ) equals to zero [46]. The ΔGH∗ can be calculated by 

ΔGH∗ = Eads + ΔEZPE − TΔSH (2)  

where ΔEZPE and ΔSH are the difference in zero-point energy and en-
tropy between the adsorbed and the gas phase, respectively. ΔEZPE −

TΔSH is calculated to be 0.19 eV for most of H adsorption on Mg or Mg 
common intermetallics [47]. Thus, when hydrogen adsorption energy 
equals to − 0.19 eV, the rate of the cathodic corrosion reaction is 
maximized. The aim of this study is to identify intermetallics with either 
significantly positive or negative hydrogen adsorption energies. 

2.2. Machine learning models 

Several classical ML models, including linear regression (LR), least 
absolute shrinkage and selection operator (LASSO), ridge regression 
(RR), Gaussian processing regression (GPR), support vector regression 
(SVR), kernel ridge regression (KRR), k-nearest neighbor regression 
(KNN), gradient boosting regression tree (GBRT), random forest 
regression (RFR) and Extreme Gradient Boosting (XGBoost) are 
employed in this work. The whole dataset of Eads developed from prior 
work [40] was divided into 80% (543) training set and 20% (137) test 
set. The hyperparameters are carefully selected by grid search with 
five-fold cross validation. The details about the range of the main 
hyperparameters can be found in Table S1. The accuracy of the models is 
evaluated by the mean absolute error (MAE). As for the ML 
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implementation, we use the open-source Python module, Scikit-learn 
[48]. 

2.3. General design strategy 

The iterative feedback loop coupling active learning and DFT 
computation was applied to predict Mg intermetallic compounds with 
slow HER, as schematically shown in Fig. 1. The design process is 
implemented as follows: The features containing geometric and chemi-
cal features related to Eads are extracted from the initial adsorption 
configuration in our database based on Voronoi analysis [49]. Then, an 
ML surrogate model is trained to map the input features and 
DFT-calculated Eads. Subsequently, the possible H adsorption configu-
ration on unexplored Mg binary intermetallic surfaces is enumerated by 
pymatgen [50] and the above-obtained ML model is applied to predict 
Eads without any ab initio level computation. Finally, for those adsorp-
tion configurations with predicted low or high Eads, the DFT calculations 
are performed and newly obtained Eads are added to the data set to 
iteratively improve the performance of ML model. 

3. Results and discussions 

3.1. Initial dataset analysis and feature construction 

In our previous study, 680 Eads on the low index surfaces (Miller 
index up to (111)) of 50 binary Mg intermetallics with high stability and 
low thermodynamic driving force for galvanic corrosion (or small 
equilibrium potential difference with respect to Mg matrix) have been 
calculated [40], whose distribution is shown in Fig. 2a. The majority of 
the H adsorption energy is located near the optimal hydrogen adsorption 
energy for fastest HER (~− 0.19 eV) [30,40], indicating most of these 
intermetallics will accelerate the cathodic reaction of galvanic corro-
sion, as discussed in details in methodology part. However, some in-
termetallics with very slow HER kinetics but relatively larger 
equilibrium potential differences with respective to pure Mg have been 
overlooked from our prior strict screening, such as Mg2Ge. In this work, 
our aim is to screen the intermetallics with extreme negative or positive 
Eads to suppress the cathodic HER and hence the overall corrosion re-
action. Generally speaking, it is hard to train robust ML models with 
sparse data away from the optimal hydrogen adsorption energy for 
fastest HER (~− 0.19 eV). Therefore, the idea of active learning is 
applied and data towards very negative or positive Eads are continuously 
enriched during active learning. Fig. 2b displays the element distribu-
tion of 275 Mg binary intermetallics with energy above hull less than 50 

meV considered in this work. Compared with our previous 
high-throughput screening work [40], both the number of intermetallics 
and the distribution of elements have increased significantly. Mg-Li, 
Mg-Al and Mg-Y binary alloy systems contain more intermetallics than 
other alloy systems. 

Feature generation is a crucial step for developing robust ML models. 
Some criteria are considered in constructing the adsorption 
configuration-related features: (a) the features should be capable of 
distinguishing different adsorption sites on the same surface; (b) they 
must be computationally inexpensive or already available from the 
database to decrease prediction cost; (c) most importantly, physical 
intuitive and domain knowledge are needed to ensure the features are 
highly related with the H adsorption energy. It is expected that the 
surface atoms near the adsorbate contribute the most to the bonding 
process. Thus, as shown in Fig. 2c, we first extract the local adsorption 
environment of H adatom from a slab model based on Voronoi analysis 
as implemented in Pymatgen. Then, two types of features are generated 
according to H adatom Voronoi neighbors. The first category is 
geometry-related features, including Voronoi coordination number of H 
(CN), the minimum distance between H and surface atom (MD), and so 
on. The second category describes the elemental properties near the 
adsorption site. In order to distinguish the contribution of neighbors 
with different distances from adsorbed H, the weighted chemical fea-
tures χ are calculated by 

χ =
∑N

i=1
ωiχi (3)  

where χi is a elemental property of ith neighbor, N is the total coordi-
nation number of H, ωi is the normalized weight of the solid angle 
subtended from the Voronoi polyhedron [51]. Based on the above ideas, 
a total of 27 features are originally generated. After considering the 
correlation of features via Pearson correlation coefficient (PCC), 2 fea-
tures are excluded due to the high linear relationship with other fea-
tures. The PCC map among all features is supplied in Supporting 
Information (SI) Figs. S1 and S2 and the details of the features and their 
abbreviations are supplied in Table S2. 

3.2. Model selection and active learning iterative loop 

Fig. 3a shows the accuracy of eleven ML models for the prediction of 
H adsorption energy, Eads. The errors on the test set are comparable but 
slightly higher than that on the validation set, indicating these models 
are well trained. It is obvious that linear regression methods, such as 

Fig. 1. A schematic diagram of active learning 
design framework to accelerate the discovery of 
corrosion-resistant binary Mg alloys. (a) The 
original dataset was collected from our previ-
ously developed dataset [40]. (b) Adsorption 
features, including geometric and chemical 
features related to Eads, were extracted from the 
initial adsorption configuration based on Vor-
onoi polyhedron. (c) ML surrogate models were 
trained based on input features. (d) Adsorption 
configurations of unexplored Mg binary in-
termetallics were generated by pymatgen. (e) 
ML models were applied to predict Eads and 
promising candidates with high or low Eads 
were picked. (f) According to prediction, new 
DFT calculations were performed and the ob-
tained Eads were added to the dataset.   
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linear regression and LASSO, are significantly worse than other 
methods. In contrast, the ensemble models, including RFR and XGBoost, 
outperform other algorithms with the MAE around 0.15 eV since they 
use a group of base learners trained by different methods or parameters 
to produce a final prediction. In this paper, XGBoost is chosen to make 
predictions in the following sections since it performs best among all ML 
models on the training set. It should be mentioned that the geometric 
features and chemical features used in this work are extracted from the 
initial adsorption configurations without any atomic level relaxations. 
The accuracy of the ML models is expected to improve if the optimized 
adsorption configurations are employed. However, the reliance on 
structural relaxation would go against the goal of using easily obtainable 
features to predict Eads. 

After selecting XGBoost model, the original dataset is used to train 
the model and the Eads of ~ 100,000 unexplored H adsorption config-
urations are initially predicted. Only the most negative predicted Eads of 
each surface is selected to represent the corrosion properties of this 

surface because some initial H adsorption sites generated by pymatgen 
may be unreasonable and cause extremely positive Eads. During the 
active learning loops, a system is designed to select iteratively and 
adaptively which adsorption configurations should be annotated in the 
next loop instead of asking an expert. The design criterion for this system 
is picking around 5% new data, namely 40 configurations with 
extremely negative or positive adsorption energy to perform DFT cal-
culations in each iteration. In addition, to avoid the model only rec-
ommending the intermetallics that are already in the training set, in 
each iteration the system only picked the adsorption configurations 
which have not been calculated before and the maximum number of the 
adsorption configurations for the same intermetallics to be simulated in 
VASP is not more than 2. Then, the DFT calculated adsorption energies 
and adsorption configurations are added to the training dataset. In this 
way, the Eads data located at relative negative or positive regions are 
enriched and prediction accuracy for the two regions will also gradually 
increase. Fig. 3b displays the MAE for each iteration. With more data 

Fig. 2. (a) The statistical distribution of the DFT calculated Eads from the initial dataset. (b) The number of intermetallics containing element X. The white boxes 
indicate that no stable or semi-stable intermetallics are found in Material Project database. The darker color of an alloy system represents a greater number of stable 
or semi-stable intermetallics than other alloy systems. (c) Method to extract the geometric features and chemical features from H adsorption configuration. Take 
YMg3 as an example, the local adsorption environment, namely H adatom and its surrounding Voronoi neighbors, is firstly extracted by Voronoi analysis. Then, 
geometric features of the local adsorption environment are calculated based on the geometry of Voronoi polyhedron. Chemical features of the local adsorption 
environment are calculated by the weighted sum of the elemental feature of each Voronoi neighbor. The weights are obtained from the solid angle of the Vor-
onoi polyhedron. 
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added to the original dataset, the prediction error and variance of the 
XGBoost model continuously decrease. It can be observed from Fig. 3b 
that XGBoost model tends to converge after loop 4 with a slightly higher 
prediction error than the training set. At iteration 5, the average MAE of 
XGBoost is at 0.196 eV. After weighting the model prediction accuracy 
against the computational cost, we decided to stop the iteration at loop 
5. The error of our model for Eads prediction is comparable to the errors 
of other machine learning or deep learning methods currently available 
[37,52–54]. Although utilizing more data and employing intricate deep 
learning techniques may lead to a partial reduction in the prediction 
error of H adsorption energy, our method stands out due to its 
remarkable efficiency and practicality, as it requires significantly less 
data and does not involve any surface relaxation or H adsorption cal-
culations. This advantage enables its widespread applicability across 
various domains. 

3.3. Feature importance analysis 

XGBoost not only can predict the adsorption energy of H for an initial 
adsorption configuration, but also provide some information about the 
importance of the input features. Fig. 4a shows the Gini importance [55] 
of the features ranked by their influence on the Eads. It should be noted 
that the utilized features in this work are the weighted average 
elemental properties of Voronoi neighbors and the geometric charac-
teristics of adsorption configurations. For example, the work function 
(WF) in Fig. 4a indicates the weighted average work function of all 
Voronoi neighbors and the weights are from the solid angle of the 
Voronoi polyhedron. The features based on Voronoi analysis can well 
distinguish different adsorption sites on the same surface and help to 
uncover the comprehensive effect of the surface geometry and chemistry 
on H adsorption. It can be concluded that the weighted work function 
(WF) of Voronoi neighbors for H adatom is the most influential feature 

Fig. 3. (a) The average performance of ML models with 25 input features. The dataset is randomly divided into 80% training set and 20% test set. (b) The average 
MAE of 40 new predicted Eads (including 20 strong adsorption cases and 20 weak adsorption cases for each iteration) for 5 active learning iterations. 

Fig. 4. (a) The feature importance obtained from XGBoost based on Gini importance. (b) Feature importance obtained by SHAP (Shapley Additive Explanations).  
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to predict Eads with the Gini importance of 0.26. Peng et al. [56] also 
found that the work function of the surface is a good parameter to 
predict adsorption energy on transition metals, but their model cannot 
distinguish the various adsorption sites for the same surface, which are 
associated with different Eads. The second and third most important 
features are weighted average group number (GN) and electronegativity 
(EN) of the Voronoi neighbors for H adatom. In fact, group number and 
electronegativity are correlated with each other and they are all posi-
tively related to the work function. These three chemical properties can 
evaluate the ability to bind electrons for an atom so as to influence the 
bonding strength with H. 

To understand the mapping relationship between the input features 
and H adsorption energy, Shapley Additive Explanations (SHAP) [57] is 
applied to interpret the predictions of the ML models. Compared with 
the importance obtained from XGBoost, SHAP can give a more visual 
impression of how the features influence Eads. The color of the single 
point in SHAP plot indicates the feature’s value and the features are also 
ranked by their importance. As shown in Fig. 4b, weighted average work 
function of H Voronoi neighbors is also considered as the most important 
feature in forecasting the Eads. With the increase of the weighted work 
function for H Voronoi neighbors (data points color from blue to red), 
the H adsorption energy will also increase, indicating that the H 
adsorption becomes less stable. Interestingly, from a material science 
point of view, similar conclusion can also be drawn. Work function, as 
the minimum energy required to transport an electron at Fermi level to 
field-free region external to the surface [58], is a crucial physical 
parameter to determine the stability of the materials. In this regard, the 
surfaces with larger work function are usually conjugated with high 
stability. Moreover, higher stability will transfer fewer electrons to 
hydrogen atom and therefore the bonding with H atom will be weaker, 
leading to higher Eads. Similar trends can be observed on weighted 
average group number (GN) and electronegativity (EN) of the H Voronoi 
neighbors. Higher values of these two features correspond to higher Eads. 

3.4. Bader charge analysis 

To further understand the varied binding strengths of H with 
different intermetallic surfaces, the electronic structure analysis of some 
representative surfaces has been performed. Here, two strong adsorption 
surfaces (Ho5Mg and YMg) and two weak adsorption surfaces (MgSn3 
and MgTl) are picked to perform Bader charge and density of states 
(DOS) analyses. The positive and negative signs in the left panel of Fig. 5 

represent the atom’s valence state after H adsorption. It is obvious that 
the electrons transferred to the H adatoms on the strong adsorption 
surface (0.71e− ~ 0.83e− ) are greater than those on the weak adsorption 
surface (0.37e− ~ 0.39e− ). We notice that the Voronoi neighbors of the 
strong adsorption surfaces (more negative Eads) are usually with small 
electronegativity, which means the electrons on the surfaces are more 
likely to be free electrons and participate in the bonding process with H 
adatoms. In contrast, the Voronoi neighbors of the weak adsorption 
surfaces (more positive Eads) possess a large electronegativity, in 
competition with adsorbed H in terms of getting electrons. The DOS of H 
in Fig. S3 further indicates that the DOS of H adatom on strong 
adsorption surface is sharp and much lower than the Fermi level, indi-
cating there is a strong bonding between H adatom and surface. How-
ever, the DOS of adsorbed H on weak adsorption surface is flat and near 
the Fermi level. To further understand the relationship between charge 
transferred to H adatom and weighted average properties of Voronoi 
neighbors such as electronegativity as well as work function, which are 
the most important factors obtained from feature importance analysis. 
The right panels of Fig. 5 display the properties of the strong and weak 
adsorption surface by radar charts. The values are normalized between 
0 and 1 and detailed values are supplied in Table S3. It is obvious that 
the H adatom Voronoi neighbors with greater weighted average elec-
tronegativity and work function contribute to less charge transferring to 
H adatoms, consistent with our finding in Section 3.3. This result sug-
gests that ML can provide insight into chemical and physical principles 
governing the adsorption process. In addition, compared with directly 
using the chemical properties of the second element in Mg alloys as 
machine learning input, the features extracted by Voronoi analysis can 
effectively distinguish different adsorption sites on the same surface. 

3.5. Searching promising binary Mg intermetallics to inhibit galvanic 
corrosion 

After predicting the Eads on different binary Mg intermetallic surfaces 
via XGBoost, it is necessary to evaluate the overall ability to hinder Mg 
corrosion cathodic reaction based on the thermodynamic stability of 
exposure surfaces. Some surfaces which can strongly impede the HER, 
however, may not be thermodynamically stable, which can cause the 
discrepancy between computational results and experimental observa-
tions. The exposure surfaces of 275 intermetallics are cleaved mainly 
symmetrically up to maximum Miller index of (111) using the python 
package pymatgen [45]. The surface energies are then calculated under 

Fig. 5. Bader charge analysis and surface properties of (a) strong and (b) weak H adsorption surfaces. The left subfigs. are the schematic draw of density states of 
adsorbed H. The EN-X and WF-X on the right panel are the electronegativity and work function of the second element in binary Mg intermetallics. EN and WF are the 
weighted average electronegativity and work function of H adatom Voronoi neighbors. All the properties are normalized between 0 and 1. The details of the surface 
properties and normalized interval are supplied in Table S3. 
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the Mg rich condition and the detailed method can be found in our 
previous studies [59,60]. For those binary intermetallics which cannot 
have symmetric exposure surfaces, we calculated the average surface 
energy. Finally, we obtained 5524 surface energies in total, and these 
data are of great significance in analyzing the surface stability as well as 
the corrosion property of binary Mg alloys. By taking Mg2Ge as an 
example, Fig. 6a–c illustrate how to calculate Ewads for a certain inter-
metallic phase. Fig. 6a and 6b show the unit cell of Mg2Ge and the Wulff 
shape of Mg2Ge constructed by the low-index surface energy. The box 
plot in Fig. 6c displays the distribution of the most stable predicted H 
adsorption energy among various exposure surfaces of Mg2Ge. The 
weighted H adsorption energy Ewads, denoted as the black star, is 
calculated by 

Ewads =
∑N

i=1
xiEads (4)  

where N is the number of the exposure surfaces in Wulff shape, xi is the 
normalized surface area fraction of ith surface, Eads is the most stable 
predicted H adsorption energy of the ith surface. Since Ewads considers 
the adsorption properties of different surfaces for an intermetallic 
compound, it is believed to be a better indicator to evaluate the ability to 

suppress the cathodic reaction. 
Fig. 6d and 6e display the ranking of Mg intermetallics based on the 

weighted adsorption energy (denoted as the black star), which repre-
sents their ability to suppress the corrosion cathodic reaction for the 
strong and weak H adsorption. To validate the calculations, we con-
ducted a comparison between the cathodic exchange current density 
extrapolated from experimental polarization curves and the ones 
determined from our simulations according to a kinetic model proposed 
by Nørskov [46]. A strong linear relationship was observed between the 
extrapolated and calculated exchange current density, indicating our 
computational data offer significant guidance for experimental work. 
The specific details can be found in Fig. S4. From the results depicted in 
Fig. 6d, the intermetallics with strong H adsorption ability are mainly 
concentrated in lanthanide (La) systems. Previously, the reason why rare 
earth elements can improve the corrosion performance of Mg alloys is 
mainly attributed to refining the microstructure and the formation of 
dense oxide film [5,61]. In this paper, we believe that some in-
termetallics of Mg-La binary system can also effectively inhibit HER and 
thus reduce the corrosion rate of Mg alloys. In addition, it can be 
observed from Fig. 6d that the elements for the strong H adsorption 
intermetallics are usually with relatively small electronegativity, e.g. Y 
(1.22), Dy (1.22) and La (1.10), compared with H (2.20). The large 

Fig. 6. The screened binary Mg intermetallics that can hinder the cathodic HER, Mg2Ge is used as an example to illustrate how to measure the ability of an 
intermetallic compound to inhibit the cathodic corrosion reaction of Mg alloys. (a) The unit cell of Mg2Ge where the orange atom is Mg and purple atom is Ge. (b) The 
constructed Wulff shape of Mg2Ge crystal. The surface energy is in the unit of J/m2. The percentage represents the proportion of each crystal plane. (c) XGBoost 
predicted adsorption energy range of an intermetallic with different surfaces and different adsorption sites. The intermetallics are ranked by weighted adsorption 
energy (Ewads), shown as black stars, which is calculated by the weighted average of the most negative ML predicted Eads on each surface and the corresponding 
surface ratio. (d) Top 50 intermetallics with strong H adsorption. (e) Top 50 intermetallics with weak H adsorption. 
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difference in the ability of bonding electrons leads to more electrons 
accumulating around the H during the adsorption process. Similarly, we 
can conclude that most of the second elements in weak H adsorption 
intermetallics have high electronegativity. The electronegativities of 
elements in the top three weak adsorption intermetallics are Tl (1.80), Bi 
(1.90) and Ge (2.01). Birbilis et al. considered that Mg2Ge could effec-
tively hinder the HER by observing the cathodic part of polarization 
curves for pure Mg and Mg-Mg2Ge alloy systems [22]. In our study, the 
Mg2Ge is also recommended as the intermetallics with weak H adsorp-
tion ability based on the ranking of the weighted average H adsorption 
energy in our results. 

As we have discussed above, the weighted H adsorption energy 
(Ewads) can be applied to describe the kinetics of corrosion cathodic 
reactions on Mg intermetallic compounds. Potentially, for an energeti-
cally favored surface termination, such a screening process could be 
further simplified, where the weighted electronegativity or work func-
tion of the H adatom Voronoi neighbors can be directly applied to 
evaluate whether there will be a sluggish HER, which may be applied to 
the design of other metal alloy systems, e.g. ternary Mg alloys with more 
complex intermetallic compounds or even other metal alloy systems. 
Further work regarding the effects of alloying elements on the corrosion 
anodic reaction for Mg alloys is also in need to comprehensively inves-
tigate the influence of doping elements on the total corrosion reaction of 
the Mg alloys. 

4. Conclusion 

The present work was conducted to discover the corrosion-resistant 
binary Mg alloys with intermetallic compounds showing sluggish HER 
by means of density functional theory computation and active learning. 
Active learning has been shown to significantly reduce the number of 
training samples while maintaining the prediction accuracy (MAE of 
0.196 eV) of the H adsorption energy with easily captured features. In 
order to understand the reasons for the different adsorption capacities of 
hydrogen atoms on the different surfaces, several representative sur-
faces are picked to perform Bader charge and density of states (DOS) 
analysis. These results indicate that the electrons transferred to the H 
atoms on the strong adsorption surface are greater than those on the 
weak adsorption surface. Finally, the ability to impede HER of in-
termetallics is ranked based on surface stability and predicted H 
adsorption energy, which provides insights for further experiments. Mg 
intermetallics like Y3Mg and MgTl3 and Mg2Ge etc. are considered 
promising candidates to decrease the corrosion cathodic reaction rate. 
This study not only realizes the exploration of large-scale unknown 
space with a small amount of training data through the idea of active 
learning, but also provides promising intermetallics which can inhibit 
the galvanic corrosion of Mg alloys from the perspective of cathodic 
reaction, which could drive for corrosion-resistant Mg alloy design. 
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