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Dopants play an important role in improving the piezoelectric stress coefficient (e33) of aluminum nitride

(AlN)-based piezoelectric materials. However, the existing experimental or computational approaches

cannot provide generalized design criteria or fast predictive capabilities for screening high-performance

piezoelectric materials over a wide range of composition space. To address this demand, we have

designed a general machine learning (ML) strategy to make a comprehensive prediction and exploration

of AlN-based piezoelectric materials of various concentrations and compositions. The predicted

piezoelectric strain coefficient (d33) was verified to be remarkably consistent with the experimentally

available values of Sc-, MgTi-, and MgZr-doped AlN compounds. It is worth noting that an extremely

large d33 of 202 pC N−1 was discovered in Sc0.5Al0.5N. Besides, the first ionization energy, the formation

energy of decomposition products, and the number of out-of-plane first-nearest-neighbor cation bonds

were revealed to be critical physical quantities to facilitate the prediction of the piezoelectric coefficient

based on a detailed investigation of the physical mechanism. This study demonstrates the feasibility of

the fast prediction and design of high-performance piezoelectric materials with easily accessible features.
1 Introduction

Piezoelectric materials are capable of converting mechanical
energy into electric energy and vice versa and have great
potential for use in many modern applications, such as the
health monitoring of nuclear power plants,1,2 ltering of mobile
communication frequency bands,3,4 and touch-sensitive
switches.5,6 Many of these applications require operation over
a wide temperature range. It is known that the piezoelectric
coefficient is inversely correlated with the Curie temperature;
a high Curie temperature generally corresponds to a low
piezoelectric coefficient.7 Therefore, it is urgent to nd or
design better piezoelectric materials with high Curie
temperatures.

Aluminum nitride (AlN) has attracted considerable attention
owing to its high Curie temperature of 1150 °C, high stiffness,
high sound speed, high-temperature stability, and good
compatibility with complementary metal oxide semiconductors
(CMOS), which make it a good candidate to be utilized as
a piezoelectric material in lm bulk acoustic resonators
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(FBAR).8–12 However, the intrinsic poor piezoelectric stress
coefficient (e33) leads to a limited bandwidth, which is detri-
mental in high-frequency communications. In the past decade,
the optimizations of the piezoelectric properties of AlN have
been investigated experimentally through alloying with transi-
tion metals, such as Sc,13,14 MgTi,15,16 and MgZr.17 Compared to
pure AlN, it is reported that transition metal alloying can
increase the piezoelectric coefficient by up to 4 times.13

However, the traditional trial-and-error approach with high
experimental costs makes the research and design of high-
performance piezoelectric materials difficult. In recent years,
several research groups have used rst-principles calculations
to search for high-performance AlN-based piezoelectric mate-
rials and have proposed some new alloying elements, such as Y,
Cr, Yb, CaTi, and LiV.18–22 These results broaden the existing
composition regime of AlN-based piezoelectric materials.
Another study also attracted our attention, in which Daoust
et al. found that the alloy conguration has a signicant effect
on the piezoelectric properties of ScAlN2 alloys,23 implying the
possibility to tune the piezoelectric properties by modulating
the atomic conguration. However, these ndings are more
sporadic and unsystematic. The discovery of high-performance
AlN-based piezoelectric materials from huge compositional and
congurational spaces is critical but challenging based on
traditional experimental or computational approaches.

Machine learning (ML) as a state-of-the-art method has been
used to predict many properties of materials,24–27 and its
application towards piezoelectric properties was just initiated in
recent years and needs to be accelerated in the near future.28–31
J. Mater. Chem. A
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For instance, a surrogate model was built by Yuan et al.28 to
determine the piezoelectric coefficient of BaTiO3-based mate-
rials. However, their regression results showed a large deviation
around the high piezoelectric values. Based on previous work,
He et al.29 enlarged the databases and rened the features, and
the predicted piezoelectric coefficient of BaTiO3-based mate-
rials showed good consistency with experimental values.
Moreover, Choudhary et al.30 calculated the piezoelectric coef-
cients of non-metallic materials in the JARVIS-DFT database
and found that it depends more strongly on the structural
descriptors than the chemical descriptors, although they did
not obtain a well-developed regression model. Thus, it is highly
desirable to establish accurate machine learning models that
can predict the piezoelectric properties of a rich set of AlN-based
materials with different congurations, while a clear under-
standing of the underlying design principles from the physical
aspects is also necessary.

In our work, high-throughput computations along with the
machine learning strategy are used to predict the e33 of AlN-
based alloys. The whole investigation process can be divided
into four steps. First, 260 initial data sets with 2 × 2 × 1
supercells of doped AlN were constructed based on density
functional theory calculation. Next, structural features and
chemical features were generated for the accurate prediction of
piezoelectric properties, where structural features were
employed to distinguish distinct congurations for the same
chemical formula. Third, six classical machine learning models
were built to predict e33 and the gradient boosting regression
exhibited the best performance as measured by the mean
absolute error and coefficient of determination for the test set.
Finally, the well-developed model was used to predict the e33 of
thirteen AlN-based systems in the whole databases within 2 × 2
× 2 supercells, three systems (Sc-, MgTi-, MgZr-) were further
calculated by density functional theory (DFT) and the most
stable conguration in each of them is identied and veried
with experimental results. Our studies open avenues for the fast
prediction of e33 for AlN-based piezoelectric materials and put
forward that governing the structural and chemical properties
can effectively guide the design of high-performance piezo-
electric materials.

2 Methods
2.1 First-principles calculations

First-principles calculations based on DFT were performed with
the Vienna Ab initio Simulation Package (VASP), using the
projector augmented-wave (PAW) method.32,33 The wave func-
tions were expanded in a plane-wave basis set with a kinetic
energy cutoff of 520 eV. The exchange–correlation interaction
was treated within the generalized gradient approximation
(GGA) in the Perdew–Burke–Ernzerhof (PBE) format.34 In the
DFT calculations, the G-centered k-point meshes with a grid
density of 5000 were adopted. All structures were fully relaxed
until the total energy was less than 10−6 eV and the force on
each atom was no more than 0.01 eV Å−1. All computations and
data analyses were performed using the Materials Project high-
throughput soware: Pymatgen,35 FireWorks,36 and MPWorks
J. Mater. Chem. A
(available at http://www.github.com/materialsproject). The
piezoelectric stress coefficients were calculated by using the
preset workow based on density functional perturbation
theory (DFPT), while the elastic tensors were computed by the
workow that ts the strain–stress relationship by using six
independent components of Green-Lagrange strain tensor
with four magnitudes (±0.5%, ±1%) for the original
structure.37,38

2.2 Data set for AlN-based materials

In a 2 × 2 × 1 supercell, 260 AlN-based materials with the
formula AxByAl1−x−yN were considered, where A and B include
Li+, Na+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, B3+, Ga3+, Ti4+,
Zr4+, Hf4+, Si4+, V5+, Nb5+, Ta5+ and x + y is in the range of [0, 0.5]
and the average valence state of AxBy is 3+. To reduce the
randomness of the doping element designation in the
compounds and make the subsequent regression more reliable,
for the quaternary compound, A and B correspond to doping
elements with smaller and larger ionic radii, respectively, while
for the ternary compound, there is only one doping element
denoted by A, and the B is assumed to be empty.

Structural and chemical features have been extracted for ML.
The chemical features utilized in this work were generated by
the Matminer python package,39 including ionic radius, elec-
tronegativity difference, formation energy, and some others.
Concurrently, some structural features were dened based on
the wurtzite AlN crystal structure (Fig. 2b). To distinguish
different crystal structures, conguration-related information,
such as the uniformity of the distribution of doping elements
and the number of nearest cation pairs, was extracted. In
general, the predicted performance is more accurate aer
structural optimization.40 However, structural features in this
work involve the number of bonds and atomic distribution,
rather than the exact bond lengths. To build a fast prediction
model of the piezoelectric coefficient, we extracted all features
from the established doping model without DFT geometry
optimizations. Detailed feature descriptions are given in the ESI
material.†

2.3 Machine learning

The ML part of this work was done using the scikit-learn Python
library.41 Least absolute shrinkage and selection operator
(Lasso), AdaBoost regressor (AdaBoost), support vector
regressor (SVR), random forest regressor (RFR), eXtreme
gradient boosting regressor (XGBoost) and gradient boosting
regressor (GBR) algorithms were selected to predict e33 of AlN-
based materials. The best-performing model was selected by
considering its performance on the test set. Before applying
various supervised learning models, standardization of the
input data is an important function of data preprocessing. In
our case, we standardized our data to conform to the criterion of
standard normal distribution. Our original data was divided
into a training set and a test set with a ratio of (8 : 2). Hyper-
parameter searches were carried out using the GridSearchCV
algorithm and evaluated using 10-fold cross-validation error
rate estimators. The evaluation of the prediction accuracy of the
This journal is © The Royal Society of Chemistry 2023
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regression model was characterized using the coefficient of
determination (R2) and mean absolute error (MAE). R2 indicates
how well the ML model predicts the target data, whereas MAE
designates the average magnitude of the error. Each value dis-
played in this work is the average of R2/MAE, by dividing the
data set 50 times.

3 Results and discussion

Fig. 1 illustrates the owchart for predicting the piezoelectric
properties of AlN-based compounds through active learning.
First, piezoelectric data for 260 ternary and quaternary AlN-
based alloys were obtained from high-throughput DFT calcu-
lations. Considering the computation costs and the diversity of
structure conguration, only the structures with the 2 × 2 × 1
supercell were included in the initial data set. Then, the
chemical and structural features were extracted to capture the
underlying mechanism for high piezoelectric properties. Aer
establishing several regressionmodels, the best-performing one
was selected for further optimization. Finally, using the well-
established model, the e33 of thirteen AlN-based systems were
predicted in the whole databases within 2 × 2 × 2 supercells.
Unlike the typical screening processes that rst consider the
stability and then other properties, we have initially focused on
the piezoelectric properties for a wide variety of structures and
then take stability into consideration. The rst reason is that
stability screening at the beginning will lead to a lack of
conguration diversity, which is detrimental to the accuracy of
the model prediction and the availability of design criteria. The
second reason is that the experimental radio frequency
magnetron reactive co-sputtering can break the stability limit
and generate metastable phases.41,42 Therefore, we decided to
determine the most likely structure based on stability criteria
aer the development of the ML model for e33, for which the
predicted piezoelectric coefficients have been validated with the
calculated and experimental values.

The distribution of the initial data set is shown in Fig. 2. The
cation elemental symbol and the number of occurrences of each
element in the initial data set are shown in Fig. 2a. An average
valence of +3 for the cation dopants, A and B, was maintained
for the charge neutral and semiconducting behavior of the
doped AlN. Fig. 2c shows the distribution of e33, of which a large
number lies between 1.0 C m−2 to 2.5 C m−2. As shown in
Fig. 2d, the initial data set with doping concentrations (x + y) of
25% and 50% dominates.

To capture the underlying information on piezoelectric
properties, the material features were divided into two cate-
gories. The rst type of features are chemical properties, such as
ionic radius, rst ionization energy, and decomposition band
gap, and were calculated by the sum of element properties or
decomposition product properties times their corresponding
molar ratios. Some of these features were also used in previous
piezoelectric material research.29 The second type is structural
features (e.g. distribution of dopant ions, number of nearest-
neighbor cation pairs), which were rst proposed to distinguish
different congurations with the same formula. For the features
with a Pearson correlation coefficient larger than 0.9 or less
This journal is © The Royal Society of Chemistry 2023
than −0.9, we selected the one that is more related to the e33 as
the representative of the physical or chemical intuitions. The
number of features thus decreased from 30 to 24, and the
remaining features included ve chemical features and nine-
teen structural features, as summarized in Table 1. The Pearson
correlation matrix and a complete denition of features can be
found in the ESI materials.†

Next, six classical machine learning models were built to
train the piezoelectric data: (i) least absolute shrinkage and
selection operator (Lasso), (ii) AdaBoost regressor (AdaBoost),
(iii) support vector regressor (SVR), (iv) random forest regressor
(RFR), (v) eXtreme gradient boosting regressor (XGBoost), (vi)
gradient boosting regressor (GBR), as shown in Fig. 3a–f. The
training set and test set of the scatter plot for individual models
are shown with orange hollow circles and green-lled circles,
respectively. The performance of each model was evaluated by
MAE and R2, shown in Fig. 3g and h. Among them, the GBR
model performed the best, with MAE and R2 values of 0.22/0.21,
and 0.89/0.79 for the training/test set, respectively. Therefore,
GBR was used as the preferred ML model in the subsequent
exploration.

To further test the generalization of GBR models trained in
AlN-based compounds with the 2 × 2 × 1 supercell, the piezo-
electric coefficients of 30 new data sets with the 2 × 2 × 2
supercell, which is usually considered to be the smallest
supercell that can simulate the actual disordered systems, were
calculated based on the DFT calculations and compared with
the GBR model predicted piezoelectric coefficient (see Fig. 4a).
Although the e33 of the test set is distributed on both sides of y=
x, it has a large dispersion as compared to the result in the 2× 2
× 1 supercell. The corresponding MAE is 0.59 C m−2 (Fig. 4c),
which indicates that it is not appropriate for predicting the 2 ×

2 × 2 supercell directly with the model only trained on the 2× 2
× 1 supercell. Such a deviation might mainly come from the
change in structural features. For example, in the 2 × 2 × 1
supercell, the distance between cations is only up to the out-of-
plane second-nearest-neighbor, the higher-order nearest-
neighbor cation pairs exist in larger supercells. To alleviate the
limitations caused by the low-dimensional structural features,
we calculated 100 new structure data sets with the 2 × 2 × 2
supercell, which include a variety of doping systems and have
a wide range of piezoelectric values. We successively added i (i=
0–100 with an interval of 10) data from the new data set into the
initial 2 × 2 × 1 data set as a training set. To avoid contingency,
we extracted i data 20 times and averaged the obtainedMAE (see
Fig. 4b and c). Aer adding 100 new data sets, the average MAE
reached a stable value of about 0.27 C m−2, which is close to the
value in small supercells and the accuracy met our require-
ments. The parity plot in Fig. 4b shows good consistency
between the DFT-calculated e33 and ML-predicted e33. The
application of this model in larger supercells is shown in
Fig. S3.†

To gain physical insights from our model, the SHapley
Additive exPlanation (SHAP) values derived from the optimized
GBR model are shown in Fig. 5a, which were used to quantify
the feature contributions. The features are ranked based on
overall importance, and importance is dened as the mean
J. Mater. Chem. A
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Fig. 1 The flowchart for predicting e33 for the target materials by combining DFT simulations and machine learning.
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absolute SHAP value of all the points in the data set. In partic-
ular, a positive SHAP value indicates a forward contribution to
the target, while a negative value represents an adverse contri-
bution. A higher absolute value of SHAP indicates a stronger
correlation. The colors in Fig. 5a denote the value of the feature
Fig. 2 Distribution of initial 260 AlN-based compounds. (a) The doped
structure of the wurtzite phase. Distribution of (c) the calculated piezoe
data set.

J. Mater. Chem. A
variable, where red means a relatively large feature value and
blue means a small value.44 Here, we only displayed 15 features
according to the feature importance. Notably, FIE is the most
important feature among them. This is reasonable because the
larger the FIE, the harder it is for atoms to lose electrons,
cations in the periodic table (colored in light orange). (b) The crystal
lectric coefficient e33 and (d) doping concentration (x + y) in the initial

This journal is © The Royal Society of Chemistry 2023
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resulting in weaker bonding with N atoms. According to our
previous studies,45 weaker bonding will help to improve the
piezoelectric coefficient of AlN. The next important feature is
FED, which shows a negative correlation with the piezoelectric
coefficient. We dene FED as the average formation energy of
the most stable decomposed products of AlN-based
compounds. In previous work, Tholander et al.21 investigated
the piezoelectric properties of ternary and quaternary wurtzite
nitride alloys and concluded that the larger energy difference
between the tetrahedral phase and the layered hexagonal pha-
ses of the parent A0.5B0.5N alloy will lead to a strong piezoelec-
tric response. In our work, to decrease the computational cost,
FED was used instead. Looking over the decomposed products,
the majority of their structures are quite different from that of
AlN (space group: P63/mmc). Thus, the lower the FED, the
greater energy difference of AxByAl1−x−yN will be between their
parent stable phase and wurtzite phase, which will benet the
piezoelectric coefficient. To directly show the correlation
between features and the piezoelectric coefficient, another
symbolic regression algorithm, gplearn, was adopted to estab-
lish a basic mathematical expression that can accurately
describe the relationship between the genetic programming
(GP) processed features and the target values. During process-
ing, the symbolic transformer can be used to reduce the feature
dimension by automatically generating new combined features
in chemical features and structural features, respectively.46

Fig. 5b illustrates the two-dimensional projection of the piezo-
electric coefficient as a function of the chemical features and
structural features. The expressions obtained from chemical
and structural features are as follows:

Chemical factor : � 0:28ðFED� FIEÞ þ 2:02� BGD

FEDþ 3:17
þ 1:22;

(1)

Structural factor :
N1st

o ðA�AÞ�
N4th

o ðA�AÞ�Az þ 3:48
þ N1st

o ðB� BÞ
Bxy þ 3:48

þ 0:23
�
N1st

o ðB� BÞ�þ 1:86; (2)
Table 1 Chemical and structural features adopted in this work

Types Feature abbreviation

Chemical features FED

BGD

FIE
Nd
TF

Structural features Njth
i=oðA � AÞ;

Njth
i=oðB� BÞ;

Njth
i=oðAB� ABÞ

Axy, Az, Bxy, Bz

This journal is © The Royal Society of Chemistry 2023
Consistent with the trend of feature importance in the SHAP
plot, FIE, and FED are positively correlated and inversely
correlated with the piezoelectric coefficient, respectively.
N1st

o ðA � AÞ; and N1st
o ðB� BÞ; play a key role as structural

features in enhancing the piezoelectric coefficient.
Fig. 5c and d display two typically different dopant distri-

butions, namely out-of-plane rst-nearest-neighbor bond
(1NNo) and in-plane rst-nearest-neighbor bond (1NNi). The
1NNo bond shown in Fig. 5c is in the beveled edge of a tetra-
hedron and has a smaller angle to the c-axis as compared to the
horizontal direction. In the tetrahedron containing 1NNo, two
doped cations are on the upper and lower sides of the central
nitrogen atom, respectively. In contrast, the 1NNi bond is
almost in the same plane and perpendicular to the c-axis. In the
tetrahedron of Fig. 5d, the two doping cations that comprise the
1NNi bond are above the central nitrogen atom. N1st

o ðA � AÞ;
ðN1st

o ðB� BÞÞ measures the number of 1NNo, while N1st
i ðA � AÞ

ðN1st
i ðB� BÞÞ measures the number of 1NNi. In the crystal

structure of Fig. 5c, N1st
o ðA � AÞ ðN1st

o ðB� BÞÞ is equal to 2. A
tetrahedron was used as an example for illustration. In this
case, the upward force generated by three transversal bonds
(two Al–N bonds and a dopant-N bond) will compensate for the
downward force generated by the longitudinal bond (a dopant-
N bond) on the nitrogen atom to a certain extent, leading to an
almost equilibrium force (F1 z F2) on the nitrogen atom along
the c-direction. If the bonding strength between the doping
element and nitrogen is weak, as the quantity of N1st

o ðA � AÞ
ðN1st

o ðB� BÞÞ increases, the bonding energy around the
nitrogen decays continuously and positively affects the increase
in the piezoelectric coefficient, which has been demonstrated in
our former studies.45 However, as in Fig. 5d, if doped cation
pairs are in the horizontal direction (here, it is 1), there will be
a great discrepancy in the forces on both sides of the nitrogen
along the c-direction, resulting in F1 � F2 or F1 [ F2. At this
point, a further increase of N1st

i ðA � AÞ ðN1st
i ðB� BÞÞ will have

little effect on the piezoelectric response. TF, obtained by the
division of the average radius of the cation by the radius of the
anion, is negatively correlated with the piezoelectric coefficient.
We used the graphical diagram in Fig. 5e to explain this
Description

The average formation energy of decomposition
products (e.g. AlN, ScN, Be3N2.)
The average band gap of decomposition
products
The average rst ionization energy of cations
The average number of d orbital electron
Tetrahedral factor, the average value of the
cation radius divided by the anion radius
The number of in-plane/out-of-plane jth
(jth=1st, 2nd, 3rd, 4th) nearest-neighbor A–A,
B–B, A–B bonds

Uniformity of the distribution of doped cations
along xyz and z directions (A, B represent
different cation elements)

J. Mater. Chem. A
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Fig. 3 Regression results of the machine learning algorithms in predicting the piezoelectric coefficient. Parity plots comparing the predicted e33
using (a) Lasso, (b) AdaBoost (c) SVR, (d) RFR, (e) XGBoost, and (f) GBR ML models, and that obtained from the 2 × 2 × 1 supercell database (from
DFT calculations). The gray dashed lines indicate the y= x function. Comparison of (g) averageMAE and (h) average R2 for 50 random divisions of
training, validation and test datasets among six models.

Journal of Materials Chemistry A Paper

Pu
bl

is
he

d 
on

 1
3 

Ju
ne

 2
02

3.
 D

ow
nl

oa
de

d 
by

 S
ha

ng
ha

i J
ia

ot
on

g 
U

ni
ve

rs
ity

 o
n 

6/
28

/2
02

3 
1:

04
:1

6 
PM

. 
View Article Online
mechanism. According to the denition of TF, the larger the
radius of the doped cation, the larger the TF. When doped with
a cation with the same valence state as Al but a larger radius
(larger TF), the nitrogen ion on the top of the dopant will be
pushed upward, which will lead to an upward shi of the
negative charge center. At the same time, three Al ions adjacent
to the doping cation will also be pushed up due to the size effect
of the doping cation, causing the positive charge center to move
up. However, this upward shi compared to N is weak in the c-
direction since Al is obliquely above and further away from the
Fig. 4 Generalization of the GBRmodel. Parity plots comparing DFT-calc
360 training data, respectively, 30 new structures with the 2 × 2 × 2 supe
of the test set when 0–100 data sets with the 2 × 2 × 2 supercell was a

J. Mater. Chem. A
doping cation. As a consequence, the distance between the
positive and negative charge centers is shortened, leading to
a decrease in polarization (P2 < P1) and thus a decrease in the
piezoelectric coefficient.

We used the well-established GBR model for the quick
prediction of e33 in the database of AlN-based materials and the
results are displayed in Fig. 6a. The database was constructed
using thirteen AlN-based systems with 2 × 2 × 2 supercells,
each system containing two doping concentrations (25%, 50%).
Aer the removal of equivalent structures and existing
ulated e33 against ML-predicted e33 viaGBRmodels with (a) 260 and (b)
rcell as the test set are not included in the training dataset. (c) The MAE
dded to the training dataset.

This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Analysis of features. (a) SHAP plot summarizing the first 15 features for 390 points in the data set in order of increasing importance. (b) The
two-dimensional scatter plot used to describe the relationship between the structural and chemical contributions and e33. The color and size of
the circle represent the value of the piezoelectric coefficient. Schematic diagram of the effect of the structural features (c) N1st

o ðA� AÞ
ðN1st

o ðB� BÞÞ , (d) N1st
i ðA� AÞ ðN1st

i ðB� BÞÞ , and (e) chemical feature TF on the piezoelectric coefficient. 1NNo and 1NNi in (a) and (b) represent the
out-of-plane first-nearest-neighbor bond and in-plane first-nearest-neighbor bond, respectively.

Fig. 6 Prediction and verification of the piezoelectric coefficient in the 2 × 2 × 2 supercell. (a) Distribution of the piezoelectric values of the 13
systems in the 2 × 2 × 2 supercell. (b) A comparison of piezoelectric properties in experiments, calculations, and predictions values.
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structures in the training set, there were still about three
thousand structures in each quaternary system and one
hundred in each ternary system, resulting in more than 20 000
structures in the whole database. Fig. 6a shows the distribution
of the predicted e33 for the specic chemical formula
This journal is © The Royal Society of Chemistry 2023
considered. In line with our expectations, the distribution of e33
is wider for high doping concentrations, while relatively narrow
for low doping concentrations. The main reason is that the
conguration corresponding to high concentration is far
greater than that of low concentration, leading to a large
J. Mater. Chem. A
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possibility of an e33 value. Furthermore, we found that the e33
uctuated slightly for the B-doped AlN system, implying that the
inuence of conguration on the BxAl1−xN system is weak,
which might arise from the strong B–N bond. In contrast, for
Li0.25V0.25Al0.5N (LiV-0.5) and Li0.25Nb0.25Al0.5N (LiNb-0.5)
systems, the e33 distribution was pretty wide, which indicates
a strong congurational dependence.

Among the thirteen systems, Sc-, MgTi-, and MgZr- doped
AlN alloys have been synthesized experimentally. To compare
our predicted piezoelectric coefficient with the available exper-
imental values, we rst predicted and ranked the formation
energy of structures in the system using the MegNet neural
network algorithm,47 then selected the most stable one to make
further DFT calculations. The piezoelectric strain coefficient
(d33) was calculated by the formula

dij ¼
X6

k¼1

eik
�
C�1�

kj
; (3)

where dij, eij, and Cij are piezoelectric strain tensors, piezoelec-
tric stress tensors, and elastic tensors, respectively. As shown in
Fig. 6b, our predicted e33 of six structures are similar to the DFT
calculated results. Furthermore, the calculated d33 for
Sc0.25Al0.75N and Mg0.125Zr0.125Al0.75N are almost the same as
the experimental values, while the calculated Mg0.125Ti0.125-
Al0.75N is slightly larger than that of the experiment. More
surprisingly, the calculated d33 of Sc0.5Al0.5N is 202 (pC/N),
which is nearly seven times the results of Akiyama et al.13

(Sc0.43Al0.67N); this gives experimenters more condence to
achieve the high piezoelectric coefficient, though it should be
noted that high concentration substitution may be challenging
due to the limited solubility and may require special synthesis
approaches.43,48

The success of the ML model in predicting the piezoelectric
coefficient provides an opportunity to reduce time-consuming
DFPT calculations by utilizing easily available chemical
features and structural features. The strong correlation between
chemical features (such as FIE and FED) and the piezoelectric
coefficient suggests the great inuence of doping elements. In
addition, the uctuation of the piezoelectric coefficient under
the determined chemical formula implies congurational
dependence. Hence, structural and chemical properties are
both important for enhancing the piezoelectric performance,
such as strong rst ionization energy and a large number of out-
of-plane rst-nearest-neighbor cation pairs, which can be
considered as criteria for the design of high-performance AlN-
based piezoelectric materials. Furthermore, we believe that
this method of training machine learning models is also
applicable to other piezoelectric material systems. There are two
reasons for this. First, the chemical features are only related to
the chemical formula, which is generic for other systems.
Second, the structural features are obtained without lattice
optimization and are derived from the distribution of doping
elements under the lattice parameters of the parent material,
which make it easy to generalize. However, building a model
that is applicable to a mixture of different systems needs further
study in the future.
J. Mater. Chem. A
4 Conclusion

We have employed a high-throughput calculation combined
with machine learning techniques to predict and design AlN-
based piezoelectric properties. To capture the materials' infor-
mation, structural features and chemical features were applied
for the accurate prediction of piezoelectric properties. Aer the
feature-importance analysis, we found that structural and
chemical features play a synergistic role in the prediction of e33,
especially FID, FED, and N1st

o ðA � AÞ ðN1st
o ðB� BÞÞ. Based on the

best-performing model, we predicted the piezoelectric distri-
bution of thirteen AlN-based systems within the 2 × 2 × 2
supercell, and a wide distribution of e33 can be observed in
various systems. Additionally, we selected three systems for
detailed validation, and the predicted e33 of six structures were
similar to the DFT calculated results. Furthermore, the calcu-
lated d33 for Sc0.25Al0.75N and Mg0.125Zr0.125Al0.75N were almost
the same as the experimental values, while the calculated d33 of
Sc0.5Al0.5N was about seven times larger than the largest value in
the experiment, which implies more space for experimentalists
to achieve the higher piezoelectric coefficient by optimizing
their fabrication process. The prediction effect will be further
optimized by including more data in the future. Our studies not
only establish a fast prediction tool for AlN-based piezoelectric
materials with easily accessible features, they also provide
insight into the underlying design concept of high-performance
piezoelectric materials, which could be instructive for future
experiments.
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