Unconventional Substitution for BiVO₄ to Enhance Photoelectrocatalytic Performance by Accelerating Polaron Hopping

Jiachen Wang, Jing Bai,* Yan Zhang, Lei Li, Changhui Zhou, Tingsheng Zhou, Jinhua Li, Hong Zhu, and Baoxue Zhou*

separation and transportation of charge carriers. Herein, we propose an unconventional substitution of V⁵⁺ sites by Ti⁴⁺ in BiVO₄ (Ti:BiVO₄) for the similar ionic radii and accelerated polaron hopping. Ti:BiVO₄ increased the photocurrent density 1.90 times up to 2.51 mA cm⁻² at 1.23 V vs RHE and increased the charge carrier density 1.81 times to 5.86×10^{18} cm⁻³. Compared with bare BiVO₄, Ti:BiVO₄ improves the bulk separation efficiency to 88.3% at 1.23 V vs RHE. The DFT calculations have illustrated that Tidoping modification could decrease the polaron hopping energy barrier, narrow the E_{g} and decrease the overpotential of the oxygen

evolution reaction (OER) concurrently. With further spin-coated FeOOH cocatalyst, the photoanode has a photocurrent density of 3.99 mA cm⁻² at 1.23 V vs RHE. The excellent PEC performance of FeOOH/Ti:BiVO₄ is attributed to the synergistic effect of the FeOOH layer and Ti doping, which could promote charge carrier separation and transfer by expediting polaron migration. **KEYWORDS:** *bismuth vanadate* (*BiVO*₄), *Ti-doped BiVO*₄, *photoelectrocatalytic, polaron hopping, density function theory* (*DFT*)

INTRODUCTION

Conversion of solar energy to a sustainable pattern by photoelectrocatalytic (PEC) technology has become one of the most fascinating strategies.^{1–3} Among various semiconductors, the scheelite bismuth vanadate (BiVO₄) is prospective for PEC water oxidation and degradation of pollutants, with good stability, nontoxicity, and proper band gap (~2.4 eV).⁴ However, pristine BiVO₄ suffers from severe photogenerated holes recombination resulting in low charge separation and transfer efficiency for the short hole-diffusion length and the low carrier mobility.⁵ To overcome the above disadvantages, researchers have reported a variety of methods for BiVO₄, such as introducing oxygen vacancies,^{6–10} constructing heterojunction,^{11–13} and element doping.^{14–19}

Among the above methods, doping BiVO₄ with ions is an efficient way to accelerate the charge transfer kinetics and increase the conductivity of photoanodes. W^{6+} - and Mo^{6+} - doped BiVO₄ could effectively increase the major carrier density and enhance PEC water splitting.^{20,21} P-doped BiVO₄ significantly promotes charge transfer kinetics with a remarkable increase of photocurrent density.²² Substituting V^{5+} could suppress bulk recombination with improved electron mobility, which is attributed to the decreased polaron hopping

energy barrier by the local polarization of the lattice.^{23,24} The conventional substitution of V^{5+} involves doping with higher valent metal ions (W^{6+} or Mo^{6+}),^{20,21} but there are few studies on the doping with lower valent metal ions, for example, Ti⁴⁺, which has been doped into BiVO₄ for photocatalysis rather than photo-electrocatalysis.^{25,26}

Here, we propose an unconventional substitution of V⁵⁺ sites by lower valent Ti⁴⁺ ions with the similar ionic radii to synthesize the Ti:BiVO₄ photoanode, which increases the photocurrent density 1.90 times up to 2.51 mA cm⁻² at 1.23 V vs RHE and increases the charge carrier density 1.81 times to 5.86×10^{18} cm⁻³, compared with bare BiVO₄. In addition, the Ti:BiVO₄ improves the bulk separation efficiency to 88.3% at 1.23 V vs RHE, much higher than that of BiVO₄ (60.1%). The DFT calculations reveal that the incorporation of Ti⁴⁺ for BiVO₄ photoanode could lower the polaron hopping activation

Received: December 27, 2022 Accepted: February 27, 2023

www.acsami.org

Figure 1. (a) Schematic illustration of FeOOH/TiBiVO₄ photoanode synthesis; (b-d) top-view SEM images of BiVO₄ and (e-g) top-view SEM images of Ti:BiVO₄.

barrier, narrow the $E_{g'}$ and decrease the overpotential of the oxygen evolution reaction (OER). With further introduction of FeOOH oxygen evolution catalysts (OECs), FeOOH/Ti:BiVO₄ has a photocurrent density of 3.99 mA cm⁻² at 1.23 V vs RHE. The improved photocurrent density of FeOOH/Ti:BiVO₄ suggests the synergistic effect of oxygen evolution catalyst and Ti doping, which could promote charge carrier transfer and accelerate polaron hopping.

EXPERIMENTAL SECTION

Synthesis of BiVO₄ and Ti:BiVO₄ Films. KI (3.32 g) and 0.97 g of Bi(NO₃)₃·SH₂O were dissolved in 50 mL of deionized water with pH adjusted to ~1.7 through HNO₃ as the precursor solution. Then, 0.54 g of *p*-benzoquinone dissolved in 20 mL of absolute ethanol was added into the precursor solution to obtain the clear electrodeposition solution. The BiOI layer was electrodeposited on the fluorine-doped tin oxide (FTO) in a three-electrode cell under -0.1 V vs Ag/AgCl. The BiOI layer was covered with a dimethyl sulfoxide (DMSO) solution containing 20 mM vanadyl acetylacetonate [VO(acac)₂], and then it was placed in a muffle furnace at 450 °C for 2 h. For Ti:BiVO₄, 0.05% (volume percentage) titanium tetrachloride (TiCl₄) ethanol solution was dropped in the DMSO solution, and annealing was carried out in the same condition as BiVO₄. The BiVO₄ and Ti:BiVO₄ samples were dipped in 1 M NaOH solution for 30 min to obtain BiVO₄ and Ti:BiVO₄ films without residual V₂O₅.

Preparation of the FeOOH/Ti:BiVO₄ Photoanode. The precursor of FeOOH, containing 20 mM FeCl₃ and 40 mM NaNO₃, was dripped on the Ti:BiVO₄ films for spin-coating at 1000 rpm for 10 s. Then, the film was heated under 200 °C for 10 min to obtain the FeOOH/Ti:BiVO₄ photoanode.

Material Characterization. The crystalline structure was characterized through X-ray diffraction (XRD) with an AXS-8 Advance (Bruker, Germany). Scanning electron microscopy (SEM) was performed with a Zeiss SUPRA55-VIP. High-resolution transmission electron microscopy (HRTEM) was performed with a Talos

F200X. X-ray photoelectron spectroscopy (XPS) was performed with an AXIS Ultra DLD (Kratos, Japan). The UV–vis spectra were collected using a TU-1901 spectrophotometer. Atomic force microscopy (AFM) was performed with a Bruker Dimension ICON. Density functional theory (DFT) calculations are illustrated in the Supporting Information.

Photoelectrochemical Measurements. PEC measurements were performed using a CHI 660e electrochemical workstation in a three-electrode system with a 0.2 M Na₂SO₄ under an AM 1.5G solar power system (100 mW cm⁻²) with a 300 W Xe lamp (PLS-SXE300/ 300UV, Perfect Light). Linear sweep voltammetry (LSV) plots were examined at a scan rate of 50 mV s⁻¹. The conversion of potential vs Ag/AgCl ($E_{Ag/AgCl}$) to reversible hydrogen electrode (E_{RHE}) is according to eq 1

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.0591 \,\rm V \times pH + 0.1976$$
(1)

The incident photon-to-current efficiencies (IPCEs) were examined in a three-electrode cell at 1.23 V vs RHE, with the monochromatic wavelength from 400 to 600 nm. Electrochemical impedance spectroscopy (EIS) was characterized at the frequency from 0.1 Hz to 100 kHz. Intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) was implemented using a Zahner CIMPS-2 system.

RESULTS AND DISCUSSION

Synthesis and Characterization. The preparation procedure of the FeOOH/Ti:BiVO₄ photoanode is illustrated in Figure 1a, by electrodeposition, annealing, and spin-coating. The BiOI was electrochemically deposited on the FTO, and then a DMSO solution of $[VO(acac)_2]$ without/with TiCl₄ was dripped onto BiOI and annealed in air to fabricate BiVO₄ and Ti:BiVO₄. As seen in the top-view SEM images in Figure 1b–d, BiVO₄ films have uniformly grown in the shape of nanorods. After the doping of titanium, there were no significant morphology changes in the SEM images of

www.acsami.org

Research Article

Figure 2. (a, b) TEM images of FeOOH/Ti:BiVO4, and (c) TEM elemental mappings for Bi, V, O, Ti, and Fe.

Ti:BiVO₄ (Figure 1e–g). The FeOOH layer was spin-coated on the surface of Ti:BiVO₄ films, and the cross-sectional SEM image of FeOOH/Ti:BiVO₄ is shown in Figure S1 with element mapping. In Figure S2, the XRD patterns of BiVO₄ and Ti:BiVO₄ both have characteristic diffraction peaks indexed to the scheelite BiVO₄ (JCPDS no. 14-0688), with negligible variations.^{27,28}

To further study the structural changes by Ti doping and FeOOH spin-coating, the HRTEM images of FeOOH/ Ti:BiVO₄ are presented in Figure 2. The surface of BiVO₄ nanorods is uniformly covered with an amorphous FeOOH layer (Figure 2a). The *d*-spacing is equal to 0.311 nm related to the lattice plane ($\overline{121}$) (Figure 2b), where the thickness of the FeOOH layer is ~4 nm. The TEM images of FeOOH/BiVO₄ film and the AFM images of BiVO₄ and FeOOH/BiVO₄ are shown in Figures S3 and S4. The uniform distribution of Bi, V, O, Ti, and Fe is displayed in Figure 2c, confirming that Ti has been successfully doped in BiVO₄. The elemental mapping shows that Fe is concentrated on the top of the image, indicating the amorphous FeOOH layer coated on the surface of BiVO₄ nanorods (Figure 2a,b).

X-ray photoelectron spectroscopy (XPS) was performed (Figure 3) to analyze the varieties of surface valence states. The total survey spectrum and the high-resolution XPS of Fe 2p for FeOOH/Ti:BiVO₄ are shown in Figure S5. The total survey spectrum could detect the elements of Bi, V, O, Fe, and Ti after doping and spin-coating. In Figure 3a, the high-

resolution XPS of Ti 2p for Ti:BiVO₄ has two characterized peaks at 465.14 and 458.20 eV, corresponding to Ti $2p_{1/2}$ and Ti $2p_{3/2}$, respectively.^{25,29,30} Compared with BiVO₄, Ti:BiVO₄ has a low-energy shift of Bi 4f and V 2p (Figure 3b,c), suggesting the reduced elements for the presence of oxygen vacancies (O_V) .^{6,25,31} For the O 1s spectrum in Figure 3d, there are three oxygen chemical states at ~529.45, ~532.21, and ~531.25 eV for lattice oxygen (O_L) , for chemisorbed O_2 and H₂O (O_C) , and for O_V , respectively.^{32–34} The peak area of O_V in Ti:BiVO₄ is larger than that of the original BiVO₄, attributed to the formation of oxygen vacancies. The FeOOH/ BiVO₄ was characterized by the total XPS survey spectrum and the high-resolution XPS of Fe 2p (Figure S6).

PEC Performance. The Ti:BiVO₄ has been successfully synthesized, and the ratio of Ti has been optimized in Figure S7. In Figure 4a, the Ti:BiVO₄ has the photocurrent density (J_{PEC}) of 2.51 mA cm⁻² at 1.23 V vs RHE higher than that of pristine BiVO₄ (1.32 mA cm⁻²). In addition, the Ti-doped modification could realize a high J_{PEC} of 1.08 mA cm⁻² at 0.90 V vs RHE for BiVO₄. Here, the water oxidation performance of Ti:BiVO₄ is better than those of the state-of-the-art doped BiVO₄ photoanodes at a low bias voltage (0.9 V vs RHE) and 1.23 V vs RHE without Na₂SO₃ (Table S1). With the modification of FeOOH, the J_{PEC} values of FeOOH/BiVO₄ and FeOOH/Ti:BiVO₄ are 2.90 and 3.99 mA cm⁻² at 1.23 V vs RHE (Figure 4a), respectively. The onset potential of FeOOH/Ti:BiVO₄ cathodically shifted 184 mV over Ti:Bi-

Figure 3. (a) Deconvoluted high-resolution Ti 2p XPS spectra of Ti:BiVO₄, (b) Bi 4f, (c) V 2p, and (d) O 1s XPS spectra for BiVO₄ and Ti:BiVO₄.

Figure 4. (a) LSV, (b) IPCE, (c) ABPE, and (d) Tafel plots for $BiVO_4$, $Ti:BiVO_4$, $FeOOH/BiVO_4$, and $FeOOH/Ti:BiVO_4$ under 100 mW cm⁻² irradiation in 0.2 M Na_2SO_4 solution.

VO₄, due to FeOOH serving as OECs.³⁵ In Figure S8, the FeOOH/Ti:BiVO₄ has a similar cathodical shift to FeOOH/ BiVO₄, but its photocurrent density increases 1.28 times over that of FeOOH/BiVO₄, indicating that Ti doping could effectively promote charge carrier transfer between FeOOH and BiVO₄. The chopped LSV curves of Ti:BiVO₄ and BiVO₄ with the negligible dark current are shown in Figure S9. The sharp transient spikes of $BiVO_4$ are decreased under irradiation for the Ti doping suppressing charge carrier recombination. The stability of $BiVO_4$, FeOOH/BiVO₄, and FeOOH/Ti:BiVO₄ is recorded for 2 h (Figure S10), and the FeOOH/Ti:BiVO₄ has a slower decay of photocurrent density

Figure 5. (a) Surface charge transfer efficiency, (b) bulk charge separation efficiency, (c) EIS Nyquist plots, and (d) IMPS plots for $BiVO_4$, $Ti:BiVO_4$, $FeOOH/BiVO_4$, and $FeOOH/Ti:BiVO_4$.

than that of $BiVO_4$ and $FeOOH/BiVO_4$. In addition, the production evolution of H_2 and O_2 and the Faradaic efficiencies of O_2 of about 95% are illustrated in Figure S11 for FeOOH/Ti:BiVO₄.

The IPCE curves are obtained at 1.23 V vs RHE from 400 to 600 nm as in eq 2 $\,$

$$IPCE (\%) = (1240 \times J_{mono}) / (P_{mono} \times \lambda)$$
(2)

where J_{mono} and P_{mono} are the photocurrent density and the light power density under the monochromatic light wavelength λ . In Figure 4b, the maximum IPCEs for BiVO₄, Ti:BiVO₄, FeOOH/BiVO₄, and FeOOH/Ti:BiVO₄ are 8.3, 20.4, 25.4, and 43.7% at ~400 nm.

The applied bias photon-to-current conversion efficiencies (ABPEs) were calculated (Figure 4c), where the ABPEs reached a maximum of 0.19, 0.37, 0.51, and 0.81% for BiVO₄, Ti:BiVO₄, FeOOH/BiVO₄, and FeOOH/Ti:BiVO₄. In Figure 4d, Tafel curves show that the overpotential of FeOOH/Ti:BiVO₄ (556 mA dec⁻¹) is lower than those of BiVO₄ (821 mA dec⁻¹), Ti:BiVO₄ (646 mA dec⁻¹), and FeOOH/BiVO₄ (663 mA dec⁻¹), indicating that FeOOH/Ti:BiVO₄ is more favorable to accelerate the OER, corresponding to the slopes of LSV curves.

Charge Transfer Kinetics. To gain insight into the improved PEC performance, the charge transfer mechanism was investigated (Figure 5). The J_{PEC} was obtained from eq $3^{32,36}$

$$J_{\text{PEC}} = J_{\text{abs}} \times \eta_{\text{bulk}} \times \eta_{\text{surface}} \tag{3}$$

where $J_{\rm abs}$ is the photocurrent density that all absorbed photons (100%) convert to the current density without any recombination, $\eta_{\rm surface}$ is the surface charge transfer efficiency of photoexcited holes participating in water oxidation, and $\eta_{\rm bulk}$ is the bulk charge separation efficiency of photogenerated holes and electrons separating.^{37,38} Because Na₂SO₃ acts as a scavenger, photoexcited holes are assumed to participate in water oxidation as soon as they arrive at the semiconductor/ electrolyte interface without surface recombination ($\eta_{surface} =$ 100%). Herein, $\eta_{surface}$ and η_{bulk} are calculated as in eqs 4 and 5

$$\eta_{\text{surface}} \approx J_{\text{PEC}} / J_{\text{Na}_2 \text{SO}_3}$$
(4)

$$\eta_{\text{bulk}} \approx J_{\text{Na}_2\text{SO}_3} / J_{\text{abs}} \tag{5}$$

where $J_{\text{Na}_2\text{SO}_3}$ and J_{PEC} are measured with or without Na₂SO₃. In Figure 5a, the η_{surface} are 30.7, 39.1, 58.7, and 61.6% at 1.23 V vs RHE for BiVO₄, Ti:BiVO₄, FeOOH/BiVO₄, and FeOOH/Ti:BiVO₄. In Figure 5b, the η_{bulk} values are 60.1, 88.3, 68.1, and 90.2% at 1.23 V vs RHE for BiVO₄, Ti:BiVO₄, FeOOH/BiVO₄, and FeOOH/Ti:BiVO₄. The η_{bulk} of Ti:BiVO₄ (88.3%) is much higher than that of BiVO₄ (60.1%), indicating bulk charge separation is promoted by Ti doping. According to Mott–Schottky (MS) plots in Figure S12, the charge carrier density (N_d) of Ti:BiVO₄ increases to 5.86 × 10¹⁸ cm⁻³, 1.81 times than 3.24 × 10¹⁸ cm⁻³ of BiVO₄ for Ti doping.

Electrochemical impedance spectroscopy (EIS) measurements could characterize the charge transfer kinetics. In Figure 5c, the semicircle radii of Nyquist plots are in the order BiVO₄ > Ti:BiVO₄ > FeOOH/BiVO₄ > FeOOH/Ti:BiVO₄ with the Randle equivalent circuit, reflecting the holes-to-water resistance.^{38,39} Table S2 lists the series resistances (R_s), the interfacial charge transfer resistances (R_{ct}), and the capacitance of the double layer (C_{dl}) fitted by Zsimpwin software. The R_{ct} values of BiVO₄, Ti:BiVO₄, FeOOH/BiVO₄, and FeOOH/ Ti:BiVO₄ are 1048.0, 399.5, 384.6, and 242.0 Ω , respectively.

Figure 6. (a, c) Small polaron hopping between two adjacent V sites in the $BiVO_4$ and $Ti:BiVO_4$ for cNEB simulation. (b, d) Hopping activation energy barriers of $BiVO_4$ and $Ti:BiVO_4$.

Figure 7. (a, b) Band structure of BiVO₄ and Ti:BiVO₄ and (c, d) ΔG of the OER for BiVO₄ and Ti:BiVO₄.

The lowest R_{ct} of FeOOH/Ti:BiVO₄ demonstrates the fastest interfacial charge transfer at the electrode/electrolyte interface.^{40,41} It indicates that the interfacial transfer kinetics of BiVO₄ photoanode is dramatically improved by Ti doping and FeOOH OEC.

The electron collection time (τ_c) could reflect the electron transfer between the semiconductor and the substrate through

the IMPS plots (Figure 5d). The frequency (f_{\min}) of the imaginary minimum is to calculate τ_c as in eq 6

$$\tau_{\rm c} = 1/2\pi f_{\rm min} \tag{6}$$

The τ_c of BiVO₄, Ti:BiVO₄, FeOOH/BiVO₄, and FeOOH/ Ti:BiVO₄ are 16.53, 3.39, 4.32, and 2.12 ms, indicating Ti doping and FeOOH layer promoting the electron transfer from the substrate to FTO. The electron recombination lifetime (τ_r)

Figure 8. Schematic diagram of the band structures and band bendings for $BiVO_4$ and $Ti:BiVO_4$. (a, c) Dark equilibrium state and (b, d) illuminated state. Adapted and reprinted with permission from Ye, K.-H. et al. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. **2019**, 10 (1), 3687. Copyright 2019 Springer Nature.

of BiVO₄ and Ti:BiVO₄ is measured through the IMVS plots (Figure S13) and calculated as in eq 7

$$\tau_{\rm r} = 1/2\pi f_{\rm min} \tag{7}$$

where $f_{\rm min}$ is the frequency of the imaginary minimum. The $\tau_{\rm r}$ of Ti:BiVO₄ is 0.838 s, much higher than that of BiVO₄ (0.116 s), indicating that Ti doping could promote the charge transport of BiVO₄ to extend the lifetime of photogenerated carriers.

DFT Calculations. The optimized BiVO₄ parameters were consistent with the crystalline phase (JCPDS no. 14-0688), and a $2 \times 1 \times 2$ supercell was built to calculate the polaron hopping barrier for the BiVO₄ sample through climbing nudged elastic band (cNEB) simulation. One V site was substituted by Ti to construct the Ti:BiVO₄ model. An extra electron is added to form a small polaron with four distorted bonds of V,⁴² and the hopping path between two adjacent V sites is illustrated as a blue arrow (Figure 6a,c). In BiVO₄, the polaron hopping barrier was calculated to be 236 meV (Figure 6b). However, the hopping barrier in the same hopping path for Ti:BiVO₄ was calculated to be 193 meV, lower than that in BiVO₄ (Figure 6d). These calculations indicate that Ti doping could promote polaron migration between the two adjacent V sites.²⁴

The band structures of BiVO₄ and Ti:BiVO₄ were obtained (Figure 7a,b) with E_g values of 2.22 and 2.17 eV. Aligned with the band structures of two samples, the red line in Figure 7b is contributed by Ti doping to narrow the E_g of Ti:BiVO₄, mainly because of the hybridization of Ti and O 2p states close to the VBM. The UV–vis absorption spectra of BiVO₄ and Ti:BiVO₄ were carried out from 200 to 800 nm (Figure S14). With the Ti doping, the absorption edge of the Ti:BiVO₄ is extended from 499 to 505 nm compared to BiVO₄, consistent with the narrowed E_g . The VBM XPS spectra of BiVO₄ and Ti:BiVO₄ films were measured (Figure S15), where the valence band maximum of Ti:BiVO₄ has a negative shift in contrast to BiVO₄, corresponding to the upshift of valence bands in Figure 7b.

The Gibbs free energy changes (ΔG) of BiVO₄ and Ti:BiVO₄ are explored to reflect the energy barrier of the OER steps in Figure 7c,d. In Table S2, free energies of H₂O, H_{2} , and O_2 as gas are thermally corrected, and free energies of intermediates of BiVO₄ and Ti:BiVO₄ are corrected by zeropoint energies (ZPEs) (Tables S3 and S4). The bare BiVO₄ begins from that the ·OH group of gaseous H₂O is absorbed on the Bi site to form *OH as reaction A.14 Then, *OH transforms to *O as reaction B, and another ·OH group of gaseous H_2O is captured on *O to *OOH. Finally, O_2 is released from the *OOH as reaction D. The ΔG of BiVO₄ with four proton transfers is cumulated in Figure 7c, where the maximum ΔG is 3.33 eV for the formation of *O, corresponding to the overpotential (η) of 2.10 V.⁴³ Similar to the process of BiVO4, Ti:BiVO4 starts from the step of proton transfer from H₂O to an electrolyte, namely, absorption of the ·OH group from gaseous H₂O on Bi sites. Then, the process is taken as the reaction order of A-B-C-D with the cumulative reaction energy in Figure 7d. Here, the maximum ΔG is 2.37 eV for absorption of the \cdot OH group on Bi sites, so that η is equal to 1.14 V, which is consistent with the overpotentials from the Tafel plots.

In addition, the transient open-circuit potential (OCP) plots (Figure S16) show that the Ti:BiVO₄ has a higher photovoltage (0.38 V) than that of pristine BiVO₄ (0.25 V), suggesting a stronger thermodynamic driving force for the OER. A schematic diagram of the band structures for BiVO₄ and Ti:BiVO₄ is illustrated in Figure 8a-d. With the doping of Ti⁴⁺, the band bending at the semiconductor/electrolyte interface is strengthened (Figure 8c,d). Moreover, the cNEB simulation results suggest that the polaron hopping energy barrier was reduced by Ti doping, moving the polaron state closer to the conduction band. Under illumination, the photogenerated holes start to transfer to the interface and generated electrons transfer in reverse orientation with increasing OCP. It indicates that Ti doping could enhance light absorption, promote charge transport, strengthen band bending, and enlarge photovoltage.

CONCLUSIONS

In this study, we propose an unconventional substitution of the sites V^{5+} via Ti⁴⁺ in BiVO₄, for the similar ionic radii and accelerated polaron hopping. The synthesized Ti:BiVO₄ increases the charge carrier density 1.81 times to 5.86×10^{18} cm⁻³ and increases the photocurrent density 1.90 times up to 2.51 mA cm⁻², with the bulk separation efficiency of 88.3% at 1.23 V vs RHE. The DFT calculations have illustrated that the Ti-doping modification could promote polaron hopping, narrow the E_{g} and decrease the overpotential concurrently. With further spin-coated FeOOH cocatalyst, the photoanode has a photocurrent density of 3.99 mA cm⁻² at 1.23 V vs RHE. The improved PEC performance of FeOOH/Ti:BiVO₄ is attributed to the synergistic effect of FeOOH OEC and Ti-doping modification.

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.2c23169.

DFT method, XRD, XPS, TEM, AFM, photocurrent density, long-term stability, IMVS, UV-vis, VBM XPS, and OCP (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Jing Bai School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China; orcid.org/ 0000-0001-6957-190X; Email: bai_jing@sjtu.edu.cn
- Baoxue Zhou School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China; orcid.org/0000-0001-9691-3119; Email: zhoubaoxue@sjtu.edu.cn

Authors

- Jiachen Wang School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Yan Zhang School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Lei Li School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China; orcid.org/0000-0003-4909-5904
- Changhui Zhou School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- **Tingsheng Zhou** School of Environmental Science and Engineering, Key Laboratory of Thin Film and

Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China

- Jinhua Li School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Hong Zhu University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Ocid.org/0000-0001-7919-5661

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.2c23169

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the National Key Research and Development Program of China (2018YFE0122300), National Nature Science Foundation of China (Nos. 22076121 and 22206213), and SJTU-AEMD and SJTU Center for High Performance Computing for support.

REFERENCES

(1) Park, Y.; McDonald, K. J.; Choi, K. S. Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation. *Chem. Soc. Rev.* **2013**, *42*, 2321–2337.

(2) Chi, J.; Jiang, Z.; Yan, J.; Larimi, A.; Wang, Z.; Wang, L.; Shangguan, W. Recent Advancements in Bismuth Vanadate Photoanodes for Photoelectrochemical Water Splitting. *Mater. Today Chem.* **2022**, *26*, 101060–101100.

(3) Pan, J. B.; Shen, S.; Chen, L.; Au, C. T.; Yin, S. F. Core-Shell Photoanodes for Photoelectrochemical Water Oxidation. *Adv. Funct. Mater.* **2021**, *31*, No. 2104269.

(4) Luo, W.; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zou, Z. Solar Hydrogen Generation from Seawater with a Modified $BiVO_4$ Photoanode. *Energy Environ. Sci.* **2011**, *4*, 4046–4051.

(5) Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The Origin of Slow Carrier Transport in $BiVO_4$ Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. J. Phys. Chem. Lett. **2013**, 4, 2752–2757.

(6) Zhang, Y.; Bai, J.; Wang, J.; Chen, S.; Zhu, H.; Li, J.; Li, L.; Zhou, T.; Zhou, B. In-Situ and Synchronous Generation of Oxygen Vacancies and FeO_x OECs on BiVO₄ for Ultrafast Electron Transfer and Excellent Photoelectrochemical Performance. *Chem. Eng. J.* **2020**, 401, No. 126134.

(7) Yin, X.; Li, J.; Du, L.; Zhan, F.; Kawashima, K.; Li, W.; Qiu, W.; Liu, Y.; Yang, X.; Wang, K.; Ning, Y.; Mullins, C. B. Boosting Photoelectrochemical Performance of $BiVO_4$ through Photoassisted Self-Reduction. ACS Appl. Energy Mater. **2020**, *3*, 4403–4410.

(8) Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L.; Au, C. T.; Jiang, L. L.; Yin, S. F. Activity and Stability Boosting of an Oxygen-Vacancy-Rich BiVO₄ Photoanode by Nife-MOFs Thin Layer for Water Oxidation. *Angew. Chem., Int. Ed.* **2021**, *60*, 1433–1440.

(9) Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO₄ Photoanodes for Efficient Water Oxidation. *Angew. Chem., Int. Ed.* **2018**, 57, 2248–2252.

(10) Zhou, T.; Wang, J.; Zhang, Y.; Zhou, C.; Bai, J.; Li, J.; Zhou, B. Oxygen Vacancy-Abundant Carbon Quantum Dots as Superfast Hole Transport Channel for Vastly Improving Surface Charge Transfer Efficiency of $BiVO_4$ Photoanode. *Chem. Eng. J.* **2022**, 431, No. 133414.

(12) Eisenberg, D.; Ahn, H. S.; Bard, A. J. Enhanced Photoelectrochemical Water Oxidation on Bismuth Vanadate by Electrodeposition of Amorphous Titanium Dioxide. J. Am. Chem. Soc. 2014, 136, 14011–14014.

(13) Wang, J.; Zhou, T.; Zhang, Y.; Li, L.; Zhou, C.; Bai, J.; Li, J.; Zhu, H.; Zhou, B. Type-II Heterojunction $CdIn_2S_4/BiVO_4$ Coupling with CQDs to Improve PEC Water Splitting Performance Synergistically. *ACS Appl. Mater. Interfaces* **2022**, *14*, 45392–45402.

(14) Pan, Q.; Yang, K.; Wang, G.; Li, D.; Sun, J.; Yang, B.; Zou, Z.; Hu, W.; Wen, K.; Yang, H. BiVO₄ Nanocrystals with Controllable Oxygen Vacancies Induced by Zn-doping Coupled with Graphene Quantum Dots for Enhanced Photoelectrochemical Water Splitting. *Chem. Eng. J.* **2019**, 372, 399–407.

(15) Yang, X.; Fernandez-Carrion, A. J.; Wang, J.; Porcher, F.; Fayon, F.; Allix, M.; Kuang, X. Cooperative Mechanisms of Oxygen Vacancy Stabilization and Migration in the Isolated Tetrahedral Anion Scheelite Structure. *Nat. Commun.* **2018**, *9*, No. 4484.

(16) Kim, J. K.; Shi, X.; Jeong, M. J.; Park, J.; Han, H. S.; Kim, S. H.; Guo, Y.; Heinz, T. F.; Fan, S.; Lee, C. L.; Park, J. H.; Zheng, X. Enhancing Mo:BiVO₄ Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer. *Adv. Energy Mater.* **2018**, *8*, No. 1701765.

(17) Zhong, X.; He, H.; Yang, M.; Ke, G.; Zhao, Z.; Dong, F.; Wang, B.; Chen, Y.; Shi, X.; Zhou, Y. In³⁺-Doped BiVO₄ Photoanodes with Passivated Surface States for Photoelectrochemical Water Oxidation. *J. Mater. Chem. A* **2018**, *6*, 10456–10465.

(18) Gutkowski, R.; Peeters, D.; Schuhmann, W. Improved Photoelectrochemical Performance of Electrodeposited Metal-Doped BiVO₄ on Pt-Nanoparticle Modified FTO Surfaces. *J. Mater. Chem. A* **2016**, *4*, 7875–7882.

(19) Ye, K. H.; Li, H.; Huang, D.; Xiao, S.; Qiu, W.; Li, M.; Hu, Y.; Mai, W.; Ji, H.; Yang, S. Enhancing Photoelectrochemical Water Splitting by Combining Work Function Tuning and Heterojunction Engineering. *Nat. Commun.* **2019**, *10*, No. 3687.

(20) Abdi, F. F.; Han, L.; Smets, A. H.; Zeman, M.; Dam, B.; van de Krol, R. Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadate-Silicon Tandem Photoelectrode. *Nat. Commun.* **2013**, *4*, No. 2195.

(21) Zhang, L.; Lin, C. Y.; Valev, V. K.; Reisner, E.; Steiner, U.; Baumberg, J. J. Plasmonic Enhancement in BiVO₄ Photonic Crystals for Efficient Water Splitting. *Small* **2014**, *10*, 3970–3978.

(22) Jo, W. J.; Jang, J. W.; Kong, K. J.; Kang, H. J.; Kim, J. Y.; Jun, H.; Parmar, K. P.; Lee, J. S. Phosphate Doping into Monoclinic BiVO₄ for Enhanced Photoelectrochemical Water Oxidation Activity. *Angew. Chem., Int. Ed.* **2012**, *51*, 3147–3151.

(23) Wu, H.; Zhang, L.; Du, A.; Irani, R.; van de Krol, R.; Abdi, F. F.; Ng, Y. H. Low-Bias Photoelectrochemical Water Splitting Via Mediating Trap States and Small Polaron Hopping. *Nat. Commun.* **2022**, *13*, No. 6231.

(24) Zhang, W.; Wu, F.; Li, J.; Yan, D.; Tao, J.; Ping, Y.; Liu, M. Unconventional Relation between Charge Transport and Photocurrent Via Boosting Small Polaron Hopping for Photoelectrochemical Water Splitting. *ACS Energy Lett.* **2018**, *3*, 2232–2239.

(25) Peng, B.; Shi, Y.; Zhang, X.; Lv, P. Top-Down Fabrication of Ti Doped BiVO₄ Nanosheets for Efficient Water Oxidation under Visible Light. *Catal. Sci. Technol.* **2021**, *11*, 7898–7904.

(26) Khanh Huyen, N. T.; Pham, T.-D.; Dieu Cam, N. T.; Van Quan, P.; Van Noi, N.; Hanh, N. T.; Thanh Tung, M. H.; Dao, V.-D. Fabrication of Titanium Doped $BiVO_4$ as a Novel Visible Light Driven Photocatalyst for Degradation of Residual Tetracycline Pollutant. *Ceram. Int.* **2021**, *47*, 34253–34259.

(27) Luo, H.; Liu, C.; Xu, Y.; Zhang, C.; Wang, W.; Chen, Z. An Ultra-Thin NiOOH Layer Loading on BiVO₄ Photoanode for Highly

www.acsami.org

Efficient Photoelectrochemical Water Oxidation. Int. J. Hydrogen Energy 2019, 44, 30160-30170.

(28) Feng, J.; Bian, J.; Bai, L.; Xi, S.; Wang, Y.; Chen, C.; Jing, L. Efficient Wide-Spectrum Photocatalytic Overall Water Splitting over Ultrathin Molecular Nickel Phthalocyanine/BiVO₄ Z-Scheme Heterojunctions without Noble Metals. *Appl. Catal., B* 2021, 295, No. 120260.

(29) Zhou, T.; Li, L.; Li, J.; Wang, J.; Bai, J.; Xia, L.; Xu, Q.; Zhou, B. Electrochemically Reduced TiO_2 Photoanode Coupled with Oxygen Vacancy-Rich Carbon Quantum Dots for Synergistically Improving Photoelectrochemical Performance. *Chem. Eng. J.* **2021**, 425, No. 131770.

(30) Pan, J.-B.; Liu, X.; Wang, B.-H.; Chen, Y.-A.; Tan, H.-Y.; Ouyang, J.; Zhou, W.; Shen, S.; Chen, L.; Au, C.-T.; Yin, S.-F. Conductive MOFs Coating on Hematite Photoanode for Activity Boost Via Surface State Regulation. *Appl. Catal., B* **2022**, *315*, No. 121526.

(31) Bao, S.; Wang, Z.; Zhang, J.; Tian, B. Facet-Heterojunction-Based Z-Scheme BiVO₄ {010} Microplates Decorated with AgBr-Ag Nanoparticles for the Photocatalytic Inactivation of Bacteria and the Decomposition of Organic Contaminants. *ACS Appl. Nano Mater.* **2020**, *3*, 8604–8617.

(32) Zhou, T.; Chen, S.; Li, L.; Wang, J.; Zhang, Y.; Li, J.; Bai, J.; Xia, L.; Xu, Q.; Rahim, M.; Zhou, B. Carbon Quantum Dots Modified Anatase/Rutile TiO_2 Photoanode with Dramatically Enhanced Photoelectrochemical Performance. *Appl. Catal., B* **2020**, *269*, No. 118776.

(33) Hu, J.; Zhang, S.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. Novel Highly Active Anatase/Rutile TiO₂ Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. *ACS Sustainable Chem. Eng.* **2018**, *6*, 10823–10832.

(34) Wang, J.; Zhou, T.; Zhang, Y.; Chen, S.; Bai, J.; Li, J.; Zhu, H.; Zhou, B. The Design of High Performance Photoanode of CQDs/ TiO_2/WO_3 Based on DFT Alignment of Lattice Parameter and Energy Band, and Charge Distribution. *J. Colloid Interface Sci.* **2021**, 600, 828–837.

(35) Cai, L.; Zhao, J.; Li, H.; Park, J.; Cho, I. S.; Han, H. S.; Zheng, X. One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. *ACS Energy Lett.* **2016**, *1*, 624–632.

(36) Kim, T. W.; Choi, K.-S. Nanoporous BiVO₄ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. *Science* **2014**, 343, 990–994.

(37) Kim, J. H.; Lee, J. S. Elaborately Modified BiVO₄ Photoanodes for Solar Water Splitting. *Adv. Mater.* **2019**, *31*, No. 1806938.

(38) Yang, G.; Li, Y.; Pang, H.; Chang, K.; Ye, J. Ultrathin Cobalt– Manganese Nanosheets: An Efficient Platform for Enhanced Photoelectrochemical Water Oxidation with Electron-Donating Effect. *Adv. Funct. Mater.* **2019**, *29*, No. 1904622.

(39) Ye, K.-H.; Wang, Z.; Gu, J.; Xiao, S.; Yuan, Y.; Zhu, Y.; Zhang, Y.; Mai, W.; Yang, S. Carbon Quantum Dots as a Visible Light Sensitizer to Significantly Increase the Solar Water Splitting Performance of Bismuth Vanadate Photoanodes. *Energy Environ. Sci.* **2017**, *10*, 772–779.

(40) Upul Wijayantha, K. G.; Saremi Yarahmadi, S.; Peter, L. M. Kinetics of Oxygen Evolution at alpha-Fe₂O₃ Photoanodes: A Study by Photoelectrochemical Impedance Spectroscopy. *Phys. Chem. Chem. Phys.* **2011**, *13*, 5264–5270.

(41) Valdés, A.; Qu, Z.; Kroes, G.; Rossmeisl, J.; Nørskov, J. K. Oxidation and Photo-Oxidation of Water on TiO_2 Surface. J. Phys. Chem. C 2008, 112, 9872–9879.

(42) Lee, D.; Baltazar, V. U.; Smart, T. J.; Ping, Y.; Choi, K. S. Electrochemical Oxidation of Metal-Catechol Complexes as a New Synthesis Route to the High-Quality Ternary Photoelectrodes: A Case Study of Fe_2TiO_5 Photoanodes. ACS Appl. Mater. Interfaces **2020**, 12, 29275–29284.

(43) Wang, Z.; Mao, X.; Chen, P.; Xiao, M.; Monny, S. A.; Wang, S.; Konarova, M.; Du, A.; Wang, L. Understanding the Roles of Oxygen

www.acsami.org

Vacancies in Hematite-Based Photoelectrochemical Processes. Angew. Chem., Int. Ed. 2019, 58, 1030–1034.