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Abstract 

Magnesium (Mg) alloys have shown great prospects as both structural and biomedical materials, while poor corrosion resistance limits their 
further application. In this work, to avoid the time-consuming and laborious experiment trial, a high-throughput computational strategy based 
on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics, from both the thermodynamic 
and kinetic perspectives. The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are 
firstly identified. Then, the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated, and the corrosion exchange 
current density is further calculated by a hydrogen evolution reaction (HER) kinetic model. Several intermetallics, e.g. Y 3 Mg, Y 2 Mg and 
La 5 Mg, are identified to be promising intermetallics which might effectively hinder the cathodic HER. Furthermore, machine learning (ML) 
models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function ( W f ) and weighted first 
ionization energy (WFIE). The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean 
square error (RMSE) of 0.11 eV. This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic 
corrosion, but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy, which can be 
extended to ternary Mg alloys or other alloy systems. 
© 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
Peer review under responsibility of Chongqing University 
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. Introduction 

As the lightest engineering structural materials, magne- 
ium (Mg) alloys are considered as potential candidates in 

erospace, automotive, electronics and biomedical fields [1–
] . However, continuous efforts have been made to improve 
he corrosion resistance of Mg alloys in service [6–9] . The 
oor corrosion resistance of Mg can be attributed to: (i) the 
igh chemical activity, which provides a strong thermody- 
∗ Corresponding authors. 
E-mail addresses: hong.zhu@sjtu.edu.cn (H. Zhu), xqzeng@sjtu.edu.cn 

X. Zeng). 
1 Co-first authors, these authors contributed equally to this work. 

M

a
[

2

ttps://doi.org/10.1016/j.jma.2021.12.007 
213-9567/© 2022 Chongqing University. Publishing services provided by Elsevie
rticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-n

Please cite this article as: Y. Wang, T. Xie, Q. Tang et al., High-throughput calcu
of binary Mg alloys, Journal of Magnesium and Alloys, https:// doi.org/ 10.1016/ j
amic driving force for corrosion; and (ii) the incompact Mg 

xide/hydroxide passivation layer, which cannot effectively 

rotect the Mg matrix. As a consequence, galvanic couples 
an be easily formed due to uneven distribution of compo- 
itions, microstructure and crystal orientations in Mg alloys. 
pecifically, the intermetallic phases play an important role in 

he corrosion process and are deemed to accelerate the gal- 
anic corrosion [10–12] . The galvanic corrosion of Mg alloys 
roceeds via the anodic dissolution reaction, 

g − 2 e − → M g 

2+ (1) 

nd the cathodic hydrogen evolution reaction (HER) 
13 , 14] , 

H 2 O + 2e − → 2OH 

− + H 2 ( g ) (2) 
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Thus, the corrosion of Mg alloys can be mitigated by sup- 
ressing the anodic/cathodic reaction or reducing the ther- 
odynamic driving force of the galvanic reaction. A possi- 

le strategy to slow down the cathodic reaction and hence 
he overall corrosion is reducing the rate of HER. HER can 

roceed via either the Volmer-Tafel Eq. (3) and ( (4) ) or the 
olmer-Heyrovsky mechanism ( Eq. (3) and Eq. (5) ). The cor- 

esponding reactions are 

 

+ + e − → H 

∗ ( Volmer reaction ) (3) 

 H 

∗ → H 2 ( g ) ( Tafel reaction ) (4) 

 

∗ + H 

+ + e − → H 2 ( g ) ( Heyrovsky reaction ) (5) 

here H 

∗ indicates the adsorbed H atom on the cathode sur- 
ace. Sabatier principle has revealed that the maximum HER 

ate can be obtained when there is a moderate binding energy 

etween reactant and substrate [15] . This theory is further 
alidated by the relationship between the exchange current 
ensity of HER and the metal-hydrogen bond strength [16] . 
p to now, Sabatier principle has been widely applied in the 
eld of catalyst screening [17 , 18] . Specifically, Nørskov et al. 
roposed that the free energy for hydrogen adsorption ( �G H 

∗) 
ould be used to predict the HER rate for a material surface 
nd established the so-called volcano curve and correspond- 
ng kinetic model [19] . As for corrosion, to reduce the rate of 
athodic HER, the �G H 

∗ should locate away from the summit 
f the volcano, indicating a relatively strong or weak H 

∗ ad- 
orption suppressing the Volmer-Tafel or Volmer-Heyrovsky 

eaction [20] . 
It has been reported that the addition of alloying elements 

nto Mg usually accelerates the HER reaction and hence the 
verall corrosion rate [6 , 21] . However, some elements such 

s arsenic (As) and germanium (Ge) have been recently re- 
orted to be corrosion inhibitors for Mg alloys [22–25] . Eaves 
t al. proposed As to be effective corrosion inhibitors for 
ommercial Mg in sodium chloride electrolyte via obstructing 

ydrogen evolution [22] . Later, Birbilis et al. also observed 

imilar phenomenon that As can reduce kinetics of the HER 

pon Mg [23] . Liu et al. investigated the role of Ge in bi-
ary and ternary Mg alloys and found that Ge could suppress 
he cathodic HER [24 , 25] . Recently, first-principles calcula- 
ions have been applied to investigate the cathodic reactions 
n Mg and its alloys. Williams et al. explored thermodynamic 
arriers of HER on pure Mg and found the hydrogen recom- 
ination is the rate-determining step [26] . A continuous study 

y examining the thermodynamics of the water dissociation 

n dilutely alloyed Mg showed that the addition of Ge can 

ake the water dissociation reaction endothermic, and hence 
ay reduce the corrosion rate [27] . Sumer et al. and Yuwono 

t al. compared HER reaction barrier of some common binary 

g alloy systems and reported that As and Ge can suppress 
athodic kinetics [28 , 29] . In spite of these limited success 
30 , 31] , a more comprehensive study about the influence of 
ntermetallics, which is a common existing form for elements 
n Mg alloys, on HER of Mg alloys is still lacking. 
2 
High-throughput calculations have become an effective tool 
o screen promising candidates in discovery of medicines, cat- 
lysts and battery electrolytes [32–34] . Montoya et al. de- 
eloped a high-throughput workflow for the adsorption en- 
rgy calculation, such method could accelerate the discov- 
ry of new high-efficient catalysts [35] . As for corrosion, Qi 
t al. performed high-throughput calculations to search for el- 
ments in Fe impurity phases which can inhibit the cathodic 
ER of Mg alloys [20] . Although the surfaces with differ- 

nt terminations and adsorption sites can be simulated in a 
igh-throughput way [35 , 36] , these DFT-based surface cal- 
ulations are still time-consuming, especially considering a 
arge pool of intermetallic compounds. Take calculating the 
ydrogen adsorption energies of MgZn 2 as an example [30] , 
p to Miller indices (111), totally 23 surfaces with different 
erminations should be considered and average 6 distinct H 

dsorption sites on each surface should be calculated. This 
ields around 120 DFT calculations for MgZn 2 . To address 
his challenge, data-driven methods such as machine learning 

ML) could be adopted to accelerate the screening process. 
or example, Raccuglia et al. built ML model with chem- 

cal information contained in historical reactions and accu- 
ately predicted if the reaction can proceed [37] . Zahrt et al. 
rained ML model and predicted the catalysts with better per- 
ormance, which is potential to change the selection way of 
atalysts [38] . Therefore, the application of ML is prospective 
n predicting Mg alloy systems with strong corrosion resistant 
ehavior. 

In this work, a three-step screening is applied to search 

or promising binary Mg intermetallics, the presence of which 

ould have a small thermodynamic driving force and low HER 

inetic for the galvanic corrosion of Mg alloys. Potential Mg 

ntermetallic phases compounds obtained from open databases 
Materials Project [39] , OQMD [40] and AFLOW [41] ) have 
een screened based on three criteria, namely the phase sta- 
ility screening, the equilibrium potential screening and the 
ER kinetics screening. To further accelerate screening pro- 

ess, ML algorithms are applied to establish the correlation 

etween the H adsorption energy and physical/chemical prop- 
rties such as work function and weighted first ionization en- 
rgy. It is expected that this computational screening based on 

FT calculations and ML predictions can effectively guide 
he design of corrosion-resistant binary Mg alloy and inspire 
he design of other corrosion-resistant alloy systems. 

. Methods 

.1. Criteria to screen binary Mg intermetallics inhibiting 

g corrosion 

The following three criteria were applied to screen bi- 
ary Mg intermetallics which could inhibit Mg corrosion. 
irstly, the intermetallics should be thermodynamically sta- 
le or metastable to ensure the probability of experimental 
ynthesis. In this study, thermodynamic stability was evalu- 
ted by energy above the convex hull (E Hull ) [42 , 43] . Con- 
ex hull is a plot of formation energy with respect to the 
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omposition which connects phases with lowest formation en- 
rgy than other phases. Phases lying on the convex hull are 
hermodynamically stable (E Hull equals to 0) and the ones 
bove the convex hull are either metastable or unstable [44] . 
econdly, the equilibrium potential difference between inter- 
etallic phases and Mg matrix should be small to minimize 

he driving force of galvanic corrosion. Thirdly, the exchange 
urrent density calculated by the kinetic model proposed by 

ørskov should be small enough to slow down the cathodic 
ER [19 , 45] . For the third criterion, the surface energies 
f low index surfaces (Miller indices up to (111)) of inter- 
etallics were calculated and the most stable surface of each 

ntermetallic was retained. Then, the distinct H adsorption 

ites on the stable surfaces were enumerated by pymatgen 

35] codes and the lowest adsorption energy was adopted to 

alculate the exchange current density. 

.2. Frist-principles calculations 

In this work, all DFT calculations were carried out by 

tilizing projector augmented wave (PAW) [46] method im- 
lemented in the Vienna ab initio simulation package (VASP) 
47] . The exchange-correlation functional is described by gen- 
ralized gradient approximation (GGA) [48] with Perdew- 
urke-Ernzerhof (PBE) approach [49] . When operating high- 

hroughput computation, the cut-off energy of plane wave was 
et at 480 eV Considering different lattice structures of inter- 
etallics, Gamma-centered k-point grids were automatically 

enerated by pymatgen codes [36] . The convergence criteria 
f energy and force are set to 10 

−4 eV and 0.02 eV/ ̊A, respec-
ively. Atoms 3 Å away from the surface were fixed during 

he structural optimization. The details of convergence tests 
an be found in Appendix A Fig. A1 and A2 . To avoid the in-
eraction caused by periodic images, 15 Å vacuum layer was 
mployed along Z direction. The calculation method of the 
urface energy can be found in our previous works [30 , 31] . 
he hydrogen adsorption energy (E ads ) was calculated by 

 ads = E slab ∗H 

− E slab − 1 

2 

E H 2 (6) 

here E slab ∗H 

, E slab and E H 2 are the DFT energies of the slab 

ith one hydrogen adatom, the bare slab and the hydrogen 

olecule, respectively. The free energy for hydrogen adsorp- 
ion can be calculated by 

G H 

∗ = E ads + �E ZPE − T�S H 

(7) 

here �E ZPE and �S H 

are the difference in zero-point energy 

nd entropy between the adsorbed and the gas phase, respec- 
ively. �E ZPE − T �S H 

is calculated to be 0.19 eV for most 
f H adsorption on Mg or Mg common intermetallics. This 
alue is taken to be representative for all the binary inter- 
etallics studied here, which means �G H 

∗ = E ads + 0. 19 eV . 
etailed information can be found in Appendix A Table A2 . 

.3. Machine learning 

Support vector regression (SVR) and k nearest neighbors 
KNN) ML algorithm were adopted to predict E ads on Mg 
3 
ntermetallics surface [50 , 51] . All the input data were nor- 
alized by z-score method to decrease the influence of data 

istribution range (electronegativities vary from 1.11 to 2.0 

hereas relative molecular masses of intermetallics span from 

13 to 1458). Coefficient of determination (R 

2 ) and root mean 

quare error (RMSE) were applied to test the stability and ac- 
uracy of the model. To prevent over-fitting, the dataset was 
andomly separated into 90% training data to train the model 
nd 10% test data to evaluate the model performance. More- 
ver, 500 times random divisions of training and test dataset 
ere performed and the final performance were measured by 

he average of all results. The hyperparameters, which have 
 crucial effect on model performance, were carefully se- 
ected by grid search method and the details were listed in 

able A1 . The definitions of data normalization, R 

2 and 

MSE were also supplied in Appendix A . For ML implemen- 
ation, we used an open source Python module, Scikit-learn 

52] . 

. Results and discussion 

.1. Thermodynamic stability screening 

The designed high-throughput workflow for screening bi- 
ary Mg intermetallics which could inhibit galvanic corrosion 

s shown in Fig. 1 . At the beginning of the screening process, 
ll potential candidates are collected from three materials data 
epositories, namely Materials Project [39] , OQMD [40] and 

FLOW [41] and there are 28,511 binary Mg intermetallics 
ound in total. After removing duplicate entries and the struc- 
ures with more than 30 atoms in the unit cell [53] , 995 in-
ermetallics are retained. To filter out unstable candidates, the 
hreshold of E Hull to distinguish between stable and unsta- 
le intermetallics is taken as 50 meV/atom [54 , 55] and the 
eference energies of stable phases are employed from Mate- 
ials Project database. For the intermetallics from OQMD and 

FLOW, E Hull is recalculated using pymatgen codes to guar- 
ntee entries from different database comparable. The con- 
ergence parameters adopted in this work are consistent with 

hose of the Materials Project. After phase stability screen- 
ng based on E Hull smaller than 50 meV/atom, there are 329 

inary Mg intermetallics left among 995 candidates, and in 

rinciple, they are all possible to be experimentally synthe- 
ized. 

.2. Equilibrium potential screening 

In commercial Mg alloys, most intermetallic phases are 
eported to be nobler than Mg matrix and serve as the lo- 
al cathode during galvanic corrosion processes [57] . Sudholz 
t al. investigated the potentiodynamic polarization curves of 
inary Mg intermetallics, revealing that most intermetallics 
ossess a higher corrosion potential than pure Mg except 
g 2 Ca [10] . It is believed that a higher corrosion potential 

ifference between the Mg matrix and the intermetallics con- 
ributes to a higher corrosion tendency [58] . Hence, the equi- 
ibrium potential difference between Mg and intermetallics is 
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Fig. 1. The designed high-throughput workflow for screening binary Mg intermetallics which could inhibit galvanic corrosion. Total 28,511 binary Mg 
intermetallics are collected from Materials Project[39], OQMD[40] and AFLOW[41] database. After removing duplicate entries and the structures with more 
than 30 atoms in the unit cell, 995 binary Mg intermetallics are retained. The first screening step is phase stability screening based on the energy above 
convex hull and 329 out of 995 intermetallics are kept. The second step is the equilibrium potential screening and 50 intermetallics serving as cathode during 
the galvanic corrosion with the smallest equilibrium potential difference with respect to the Mg matrix are reserved. Lastly, the adsorption sites on most stable 
surfaces are enumerated by pymatgen codes and the most stable H adsorption energies are adopted to calculate exchange current density via the HER kinetic 
model proposed by Nørskov[19,45]. 

Fig. 2. Calculated equilibrium potential of 50 thermodynamically stable binary Mg intermetallics evaluated by energy above convex hull. The red dashed line 
represents the equilibrium potential of pure Mg in neutral solution and at room temperature. All screened intermetallics possess higher equilibrium potential 
of Mg matrix, which are deemed to serve as cathode during the galvanic corrosion. The inset shows the screened elements in the periodic table as well as 
the number of screened intermetallic compounds for a given binary alloy systems. 
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pplied to evaluate the thermodynamic driving force of gal- 
anic corrosion in this work. The dissolution reactions of Mg 

nd intermetallics are assumed to happen in neutral solution, 
nd at the room temperature with all ionic concentration of 
0 

−6 mol/L. Fig. 2 shows the 50 out of 329 Mg intermetallics 
ith the smallest equilibrium potential difference with re- 
4 
pect to the Mg matrix. The results indicate that most of 
ntermetallics containing rate-earth (RE) elements show lower 
orrosion tendency. It is noteworthy that as previous studies 
eported, some elements which could “poison” cathodic HER, 
.g. As and Ge [23 , 24] , were not retained after the thermo- 
ynamic screening. We checked the equilibrium potential of 
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Fig. 3. Comprehensive screening results containing phase stability, equilibrium potential difference and calculated exchange current density. The color of dots 
represents the stability of intermetallics quantified by E Hull . The purple and yellow color corresponds to stable (E hull = 0 meV) and semi stable (E hull = 50 meV) 
intermetallics, respectively. The HER exchange current densities of Mg intermetallics are calculated by the HER kinetic model proposed by Nørskov[19,45]. 

Fig. 4. H adsorption energies distribution of (a) sum of Miller indices squares and (b)crystal structure. The abbreviations BCC&Ort in (b) represents Body 
centered Cubic and Orthogonal structure, MC&TC represents Monoclinic and Tetragonal structure, Hex represents Hexagonal structure and FCC represents 
Face centered Cubic structure. 
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e H 
ome “poisonous” Mg intermetallics, e.g. Mg 3 As 2 , MgAs 4 
nd Mg 2 Ge, and found that all of them serve as local cath- 
de during galvanic corrosion with rather high potential dif- 
erences with respect to Mg matrix, and thus were excluded. 
 more comprehensive study including corrosion properties 
f all intermetallics will be conducted in future to capture 
hose intermetallics with very low kinetic but relatively large 
hermodynamic driving force for galvanic corrosions. The de- 
ails of equilibrium potential calculation could be found in our 
revious work [30] and the calculated equilibrium potential 
esults of 329 Mg binary intermetallics are listed in Table A3 . 

.3. HER kinetics screening 

In actual applied environment, Mg usually serves as an- 
de accompanied by the hydrogen evolution on nobler re- 
ion, i.e. intermetallic phase, as the main cathodic reaction. 
5 
herefore, apart from the equilibrium potential difference, the 
eaction rate of cathodic HER is another important screening 

riterion for corrosion-resistant Mg alloy. To study the HER 

inetics on the intermetallic surface, the most stable surface 
ermination was identified for each intermetallic compound. 
ll the low-index surfaces (Miller indices up to (111)) of 50 

elected Mg intermetallics with different terminations were 
onsidered and 1060 surface energies were obtained accord- 
ngly. For most Mg intermetallics, the most stable surface is 
ound to be (100) or (111) surface. Subsequently, 519 ad- 
orption sites on the most stable surface of Mg intermetallics 
ere enumerated by the pymatgen codes and the most sta- 
le adsorption configurations were obtained based on high- 
hroughput simulations. The DFT-calculated surface energies 
nd E ads could be found in Table A3 . 

Based on the HER kinetic model proposed by Nørskov 

t al., the calculated �G 

∗ are further used to calculate the 
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Fig. 5. Pearson correlation coefficient (PCC) correlation map of 18 features. The blue and red colors represent positive and negative correlations, respectively. 
Darker color and bigger circles indicate stronger correlation. Two features highly correlated with each other (|p| > 0.9) are shown in green squares. 
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xchange current density, which could be an indicator for 
ER rate on different intermetallics [19] . The comprehen- 

ive screening results containing phase stability, equilibrium 

otential difference and calculated exchange current density 

re shown in Fig. 3 . The color of dots represents the sta- 
ility of intermetallics quantified by E Hull , X-axis represents 
he exchange current density calculated by the HER kinetic 
odel, and Y-axis represents the equilibrium potential dif- 

erence between intermetallics and Mg matrix. In principle, 
maller equilibrium potential difference (thermodynamic driv- 
ng force control) and lower exchange current density of HER 

kinetics control) will contribute to weaker galvanic corrosion. 
herefore, the promising candidates lie in the lower left cor- 
er of Fig. 3 , such as several Mg-Y and Mg-La intermetallics 
ncluding Y 3 Mg, Y 2 Mg and La 5 Mg. 

Several studies have reported the corrosion properties of 
g-rare earth (RE) alloys. Liu et al. demonstrated the corro- 

ion resistance of Mg alloys would be improved by Lutetium 

Lu) rare earth element, which formed Lu 5 Mg 24 intermetallic 
hases [59] . To valid this kinetic model, we collected the po- 
arization curves of intermetallics presented in common Mg 

lloy systems [10] . The exchange current density i 0 of Mg 

ntermetallics are obtained by extrapolating the linear region 

f Tafel plots to the reversible potential of the HER at pH = 7.
ig. A5 shows the calculated exchange current density of Mg 

ntermetallics in this work is linearly correlated with the ex- 
erimental exchange current density obtained from polariza- 
ion curves, indicating this kinetic model can be a guide to 
d

6 
stimate the corrosion cathodic reaction rate for Mg and Mg 

ntermetallics. 

.4. Feature engineering 

Correlation analysis is applied to further investigate 
he factors that influence E ads of the Mg intermetallics. 
ig. 4 shows the statistical distribution plots between E ads 

nd some structural information, e.g. sum of squares of Miller 
ndices and the crystal structure. Fig. 4 a indicates that the ad- 
orption of H tends to be unstable with the increasing of the 
um of squares of Miller indices, which could be intuitively 

xplained by bond-order conservation theory [60 , 61] . It is ex- 
ected that low-index surfaces are less coordinated than high- 
ndex surfaces, and thus the associated interaction between 

urface atoms and adsorbates is stronger. In other words, the 
ewer dangling bonds a surface atom has, the less it will bind 

dsorbates. Additionally, as shown in Fig. 4 b, the orthogonal 
attices including BCC and FCC structures are more likely 

o possess the most negative or positive E ads , which may be 
he promising crystal structures of intermetallics suppressing 

ER kinetics. 
As aforementioned, E ads plays an important role in the ca- 

hodic reaction of galvanic corrosion. To further accelerate 
he screening process and save computational cost, 18 pri- 

ary features which may be correlated with H adsorption 

ere adopted to predict E ads . These features can be roughly 

ivided into two categories. The first type of features needs 
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Fig. 6. Average RMSE of 500 times random divisions of training and test dataset for (a) KNN and (d) SVR model with �-dimensional features ( � ranges 
from 1 to 5). Error bars indicate the maximum and minimum Error in 500 repetitions of training. The cross-validation R 

2 of best performance model containing 
�-dimensional features for (b) KNN and (e) SVR models. Parity plots comparing DFT-computed E ads against ML-predicted E ads via (c) KNN and (f) SVR 

models, as well as 5 new intermetallics not included in the training dataset. 

Table 1 
DFT calculated and elemental features adopted in this work. 

DFT calculated features Elemental features 

�H f Formation enthalpy (eV/atom) EN Electronegativity 
E g Band gap (eV) EA Electron affinity (eV) 
γ Surface energy (J/m 

2 ) FIE First ionization energy (eV) 
E H 

ull E above hull (eV/atom) AR Atomic radius ( ̊A) 
W f Work function without H adatom (eV) AIR Average ionic radius ( ̊A) 
d d-band center without H adatom (eV) RAM Relative molecular mass 
S m 

Sum of squares of Miller indices WEN Weighted electronegativity 
E e Equilibrium potential WEA Weighted electron affinity (eV) 
B H 

Bader charge transfer to H adatom WFIE Weighted first ionization energy (eV) 
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o

FT calculation, such as surface work function ( W f ) and d - 
and center ( d ). The second type of features are elemen- 
al properties, such as the electronegativity (EN) of X for 

g-X intermetallics. Moreover, the intermetallic electronic 
roperties are also represented by Weighted electronegativ- 
ty (WEN), Weighted electron affinity (WEA) and Weighted 

rst ionization energy (WFIE), which are calculated by sum 

f pure elemental properties times corresponding elemental 
olar ratio. These features were selected as we think they 

re correlated with the surface bonding to some extent. For 
nstance, W f and γ are related to surface stability [62 , 63] , 
 -band center has been proven particularly useful in under- 
tanding bond formation between adsorbates and transition 

etal substrates [64] . The features and their corresponding 

bbreviations are summarized in Table 1 . 
Feature selection plays a crucial role for training model 

ith excellent performance [65] , and each feature should 

e independent to represent the certain physical or chemi- 
al properties. Additionally, the feature with too much noise 
7 
ata should also be excluded to maintain the predictive ca- 
acity of the model. Following the data processing principles, 
he E g and E H ull , which include some zero values, are firstly 

emoved. The correlations of pairwise features evaluated via 
earson correlation coefficient (PCC) are shown in Fig. 5 . 
or the two features with the |p| larger than 0.9, we only 

eep one in our feature set. Based on the above consideration, 
he number of features is decreased from 18 to 14. We aim 

t predicting E ads with simple features and low computational 
ost. Hence, all possible subsets of � dimensional features ( �
anges from 1 to 5) were exhaustively enumerated to identify 

he feature subset giving rise to minimal prediction error. 

.5. Machine learning models training and generalization 

As shown in Fig. 6 , SVR and KNN algorithms are em- 
loyed to build regression models to predict E ads on bi- 
ary Mg intermetallic surfaces. The cross-validation RMSE 

f KNN and SVR models based on different dimensional fea- 
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ures are illustrated in Fig. 6 a and d. Two ML algorithms pos- 
ess comparable prediction capacity for E ads with the average 
MSE of 0.13 eV when utilizing two features. According to 

ig. 6 b and e, with the increasing of utilized features, the 
nitial increase in accuracy demonstrates more features would 

mprove the prediction capacity of the model, while further 
ncreasing the number of features will decrease the prediction 

ccuracy due to possible over-fitting. The best performance of 
he KNN and SVR models are given by 2 and 4 features, re- 
pectively. Interestingly, the best two features of KNN and 

VR algorithms are both W f and WFIE, indicating they are 
ighly correlated with E ads . The details about best � dimen- 
ional features are shown in Fig. A1 . Starting from the best 
wo-feature subset, adopting additional features slightly im- 
roves the prediction capacity of models, but increases the 
omplexity of the model at the same time. Consequently, the 
est two features for two ML algorithms, i.e. W f and WFIE, 
ere chosen for building ML models without sacrificing much 

ccuracy and generalizability. 
The above results indicate our ML models perform well 

n training data. To further test the generalization of models, 
 ads of the 5 new intermetallic compounds, LaMg, HoMg, 
g 2 Cu, NdMg 2 and Mg 3 Ag, which possess close equilib- 

ium potential with respect to Mg matrix, were calculated 

ased on DFT simulations (see Table A4 for the results, along 

ith corresponding work function and weighted first ioniza- 
ion energy). The comparison of the E ads from DFT calcula- 
ions and ML predictions are shown in Fig. 6 c and f, with 

verage RMSE of 0.11 and 0.23 eV, respectively. Actually, 
 f and WFIE represent the energies needed to remove elec- 

rons from metal or neutral atoms in gas phase, which can 

e essentially understood as the ability of intermetallics to 

ind electrons. The E ads , as well as HER kinetics, is largely 

epended on the binding strength between H atom and in- 
ermetallic surface. Previous studies also employed the W f or 
IE as features to successfully predict adsorption energies of 
mall molecules [66 , 67] . Takigawa et al. utilized extra tree 
egression algorithm and 12 features to predict H adsorption 

nergy on doped Cu with the average testing RMSE of 0.17 

V [68] . As shown in Fig. 6 c and f, the prediction error of
hese new compounds is comparable to that of the original 
est dataset, demonstrating our ML model is robust to pre- 
ict H adsorption energy on new cases and thus instructive 
or screening the corrosion-resistant binary magnesium alloys 
ith intermetallics. 

. Conclusion 

By means of first-principles calculations, a three-step high- 
hroughput screening, namely stability screening, equilibrium 

otential screening and HER kinetics screening, was per- 
ormed to search for promising corrosion-resistant binary Mg 

lloys with intermetallics. We found that most Mg-RE bi- 
ary intermetallics possess close equilibrium potential with 

g matrix, which will serve as a weak cathode. Specifically, 
everal intermetallics, e.g. Y 3 Mg, Y 2 Mg and La 5 Mg, can hin- 
er the galvanic corrosion reaction due to the relatively small 
8 
hermodynamic driving force and low HER kinetics. More- 
ver, ML models have been applied to predict the hydrogen 

dsorption energy of Mg intermetallics, which can accelerate 
he high-throughput screening process. The robustness and 

eneralization of ML models was tested on new binary Mg 

ntermetallics. This work by combining DFT, thermodynamics 
nd kinetics analysis and ML not only predicts some promis- 
ng binary Mg intermetallics which can hinder the galvanic 
orrosion, but also provide a high-throughput screening strat- 
gy for corrosion-resistant metal alloy design, which could be 
nstructive for future experiments. 
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ppendix A. Data Normalization 

 

′ 
i = 

x i − μx 

σx 

here x ′ i and x i are normalized and primary feature vector. μx 

nd σ x are mean value and standard deviation of the feature 
ector. 

ormula of R2 and RMSE 

Coefficient of determination: 

 

2 = 1 −
∑ n 

i=1 

(
y true − y pre 

)2 

∑ n 
i=1 ( y true − ȳ true ) 

2 
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Fig. A1. Convergence curves of MgSc slab model with respect to cutoff energy. 

Fig. A2. Convergence curves of MgSc slab model with respect to convergence criteria of energy, convergence criteria of force and the distance threshold to 
fix atoms. 

R

c
v

Root-mean-squared error: 

MSE = 

√ √ √ √ 

1 

n 

n ∑ 

i=1 

(
y true − y pre 

)2 
9 
Where n, y true , y pre are the number of samples, DFT- 
alculated H adsorption energy, predicted H adsorption energy 

ia machine learning, respectively. 



Y. Wang, T. Xie, Q. Tang et al. Journal of Magnesium and Alloys xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: JMAA [m5+; February 4, 2022;2:52 ] 

Fig. A3. Volcano plot fitted by exchange current density of Mg and Mg 
intermetallics at pH = 7, 0.1 mol/L Nacl. 

C

s
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d
s
t
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Fig. A5. Comparison between experimental i 0 for some common binary Mg 
intermetallics at pH = 7 and the i 0 calculated by the kinetic model, whose 
rate constant is fitted by experimental i 0 of some pure metals at pH = 0. 

w
t
n
c
t
s

10 − 3 , 10 − 2, 10 − 1 , 1 } 

F
e

onvergence test 

In high-throughput calculations, the calculation parameters 
hould be carefully selected to balance the computational ac- 
uracy and efficiency and a convergence tests have been con- 
ucted. Here we take MgSc intermetallic with cubic crystal 
ystem as an example to shown the results of convergence 
est. (Pearson symbol of MgSc is cP2 and its space group is 
m ̄3 m) 

According to the VASP manual, the cut-off energy of plane 
ave should be set as around 1.3 

∗ENMAX. In our calcula- 
ion system, element Ce possess the largest ENMAX of 300 

V As a consequence, setting the cutoff energy at 480 eV is 
arge enough to get a satisfying result. As shown in Fig. A1 , 
ig. A4. Comprehensive screening results containing phase stability, equilibrium 

xchange current density is calculated by the kinetic model, whose rate constant 

10 
hen the cut off energy increases up to 500 eV, the compu- 
ation time increase dramatically while the slab energy have 
o significant change. Likewise, we also test the convergence 
riteria of energy, convergence criteria of force and the dis- 
ance threshold to fix atoms. The convergence test results are 
hown as Fig. A2 . 

c ∈ 

{
10 

−3 , 10 

−2 , 10 

−1 , 1 , 10 

1 , 10 

2 , 10 

3 , 10 

4 , 10 

5 , 10 

6 , 10 

7 , 10 

8 
}

gamma ∈ { 10 − 8 , 10 − 7 , 10 − 6 , 10 − 5 , 10 − 4, 10 − 3 , 
potential difference and calculated exchange current density. The calculated 
is fitted by Mg and Mg intermetallics at pH = 7, 0.1 mol/L Nacl solution. 
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Table A1 
List of support vector regression (SVR) Hyperparameters and average Coefficient of determination (R 

2 ) after 500 different random divisions of training (90%) 
and test (10%) sets. Other less sensitive hyperparameters are selected as default value in scikit-learn. 

Algorithm � Features Hyperparameter R 

2 
train R 

2 
test RMSE MAE 

KNN 1 W f K = 4 0.592 −0.040 0.239 0.169 
2 W f , WFIE K = 2 0.927 0.667 0.128 0.097 
3 W f , WEN, RAM K = 5 0.851 0.615 0.146 0.112 
4 W f , d, WEN, RAM K = 3 0.891 0.605 0.144 0.108 
5 W f , E e , EA, WFIE, RAM K = 4 0.850 0.583 0.153 0.121 

SVR 1 W f C = 1, Gamma = 1 0.400 −0.121 0.256 0.195 
2 W f , WFIE C = 10, Gamma = 1 0.941 0.677 0.133 0.102 
3 W f , WFIE, RAM C = 10, Gamma = 1 0.969 0.656 0.137 0.107 
4 W f , WFIE, RAM, E e C = 1, Gamma = 1 0.949 0.635 0.149 0.116 
5 W f , WFIE, RAM, E e , WEN C = 10, Gamma = 1 0.991 0.608 0.153 0.119 

Table A2 
�E ZPE and T �S H of HER for some common Mg intermetallics. In the unit of eV. 

System Slab size �E ZPE T �S H 

(298 K ) �E ZPE − T �S H 

Mg 1 × 1 −0.001 −0.188 0.187 
Mg 2 × 2 0.000 −0.189 0.190 
Mg 3 × 3 0.004 −0.189 0.194 
Mg 2 Ca 1 × 1 0.001 −0.188 0.189 
Mg 24 Y 5 1 × 1 0.003 −0.188 0.191 
Mg 3 Nd 1 × 1 −0.046 −0.181 0.135 
Mg 2 Si 1 × 1 −0.011 −0.187 0.175 
Mg 12 Ce 1 × 1 0.007 −0.190 0.197 
Mg 17 Al 12 1 × 1 0.010 −0.184 0.193 
MgZn 2 1 × 1 −0.021 −0.195 0.174 

Table A3 
Calculated data of 50 stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix. γ is the surface energy 
of intermetallics (mJ/m 

2 ), E ads is adsorption energy of hydrogen atom, �G H 

∗ is the free energy of the adsorbed state, E Hull is the energy above hull 
of intermetallics at 0 K, E e is the equilibrium potential of intermetallics, i 0 _ pred is HER exchange current density on intermetallics fitted by volcano 
curve. A more detailed data including binary Mg intermetallic dissolution reaction and ML input features can be found at https:// github.com/ ywwang0/ 
High- throughput- screens- corrosion- resistant- binary- magnesium- alloy. 

Intermetallic Spacegroup Miller index γ E ads �G H 

∗ E Hull E e i calc 
0 

Y3Mg Imm2 001 882.704 −1.135 −0.945 0.047 −2.517 −17.480 
Y2Mg Cmcm 010 828.986 −0.924 −0.734 0.000 −2.492 −13.881 
La5Mg Cm 010 787.801 −0.915 −0.725 0.019 −2.479 −13.728 
La3Mg I4/mmm 111 298.084 −0.794 −0.604 0.034 −2.480 −11.651 
Nd3Mg Imm2 001 669.121 −0.727 −0.537 0.037 −2.455 −10.508 
Pr2Mg I4/mmm 111 781.326 −0.706 −0.516 0.025 −2.466 −10.150 
Tb5Mg24 I ̄4 3m 100 695.382 −0.694 −0.504 0.026 −2.480 −9.947 
Pr3Mg Imm2 001 662.794 −0.682 −0.492 0.036 −2.481 −9.729 
Y5Mg Cm 001 893.781 −0.656 −0.466 0.035 −2.517 −9.283 
Lu5Mg24 I ̄4 3m 100 664.992 −0.641 −0.451 0.018 −2.472 −9.039 
Ho5Mg24 I ̄4 3m 100 691.399 −0.618 −0.428 0.020 −2.500 −8.631 
Y5Mg24 I ̄4 3m 100 777.576 −0.598 −0.408 0.014 −2.506 −8.301 
Er5Mg24 I ̄4 3m 100 770.225 −0.586 −0.396 0.009 −2.495 −8.084 
Dy5Mg24 I ̄4 3m 100 758.899 −0.573 −0.383 0.017 −2.490 −7.871 
YMg Pm3m 100 763.132 −0.570 −0.380 0.000 −2.479 −7.813 
Y4Mg25 R ̄3 m 110 713.127 −0.563 −0.373 0.028 −2.517 −7.700 
Tm5Mg24 I ̄4 3m 100 767.048 −0.562 −0.372 0.003 −2.491 −7.681 
La2Mg C2/m 10 ̄1 727.809 −0.549 −0.359 0.017 −2.470 −7.448 

( continued on next page ) 
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Table A3 ( continued ) 

Intermetallic Spacegroup Miller index γ E ads �G H 

∗ E Hull E e i calc 
0 

Ce3Mg Imm2 100 785.818 −0.539 −0.349 0.036 −2.488 −7.287 
LaMg2 Fd ̄3 m 110 761.728 −0.530 −0.340 0.011 −2.458 −7.136 
PrMg2 Fd ̄3 m 110 762.613 −0.519 −0.329 0.016 −2.462 −6.942 
LaMg5 P ̄6 2m 100 366.701 −0.502 −0.312 0.040 −2.520 −6.647 
Ho3Mg P4/mmm 001 618.510 −0.485 −0.295 0.022 −2.454 −6.369 
ErMg2 P63/mmc 001 829.678 −0.417 −0.227 0.001 −2.466 −5.202 
HoMg2 P63/mmc 001 818.807 −0.371 −0.181 0.004 −2.470 −4.403 
YMg2 P63/mmc 001 808.704 −0.368 −0.178 0.006 −2.489 −4.361 
ErMg5 P ̄6 2m 001 567.089 −0.361 −0.171 0.034 −2.515 −4.229 
DyMg2 P63/mmc 001 807.098 −0.344 −0.154 0.008 −2.458 −3.944 
TmMg2 P63/mmc 001 844.994 −0.331 −0.141 0.001 −2.458 −3.717 
SmMg5 P ̄6 2m 001 467.775 −0.307 −0.117 0.045 −2.506 −3.310 
AgMg4 C2/m 011 507.141 −0.285 −0.095 0.029 −2.534 −2.944 
YMg5 C2/m 100 715.173 −0.277 −0.087 0.045 −2.521 −2.805 
LaMg12 I4/mmm 101 683.089 −0.226 −0.036 0.009 −2.508 −1.930 
CeMg5 P ̄6 2m 001 661.133 −0.215 −0.025 0.000 −2.509 −1.730 
NdMg12 I4/mmm 101 683.901 −0.200 −0.010 0.025 −2.512 −1.474 
Ce5Mg Cm 001 785.393 −0.195 −0.005 0.030 −2.481 −1.396 
GdMg3 Fm ̄3 m 111 716.459 −0.168 0.022 0.000 −2.455 −1.698 
PrMg12 I4/mmm 101 720.599 −0.143 0.047 0.011 −2.509 −2.134 
CeMg3 Fm ̄3 m 101 706.403 −0.090 0.100 0.000 −2.498 −3.041 
La2Mg17 P63/mmc 110 738.027 −0.076 0.114 0.000 −2.493 −3.276 
HgMg5 Cm 111 699.734 −0.029 0.161 0.042 −2.487 −4.087 
CuMg3 P4/mmm 001 352.454 0.034 0.224 0.044 −2.529 −5.169 
AgMg5 P ̄6 2m 001 570.434 0.056 0.246 0.036 −2.490 −5.545 
LaMg3 I4/mmm 101 772.018 0.102 0.292 0.000 −2.454 −6.334 
PrMg3 Fm ̄3 m 111 753.694 0.166 0.356 0.000 −2.458 −7.433 
YMg3 Fm ̄3 m 111 738.801 0.190 0.380 0.000 −2.491 −7.845 
DyMg3 Fm ̄3 m 111 724.925 0.203 0.393 0.000 −2.466 −8.065 
TmMg3 Fm ̄3 m 111 760.979 0.204 0.394 0.000 −2.471 −8.081 
HoMg3 Fm ̄3 m 111 731.543 0.204 0.394 0.000 −2.478 −8.084 
ErMg3 Fm ̄3 m 111 729.930 0.211 0.401 0.000 −2.477 −8.199 

Table A4 
The data of 5 new binary Mg intermetallics. Eads represents the adsorption energy of H. KNN and SVR represent the predicted adsorption energy of H via 
k-Nearest Neighbors and support vector regression algorithm. WF represents Work function (eV). WFIE represent the weighted first ionization energy (eV). 

Intermetallic Source Space group Eads KNN SVR WF WFIE 

LaMg mp-1104 Pm ̄3 m −0.59 −0.82 −1.09 3.47 6.61 
Mg2Cu mp-2481 Fddd −0.33 −0.28 −0.35 3.47 7.67 
Mg3Ag mp-864,952 P6 3 /mmc −0.13 −0.11 −0.05 3.73 7.63 
HoMg mp-1199 Pm ̄3 m −0.62 −0.64 −0.63 3.60 6.83 
NdMg2 mp-2389 Fd ̄3 m −0.36 −0.37 −0.41 3.77 6.94 
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