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a b s t r a c t 

Solid solutioning has long been employed to improve the performance of enegineering materials, the de- 

gree of improvement generally correlates closely with the resultant lattice parameters. It is therefore of 

great importance for materials design to describe accurately the composition-dependent lattice constants 

of the solid solutions (SSs). However, existing models could hardly reproduce the usually non-linear rela- 

tionship between the compositions and the lattice constants. Herein, we present a new model within the 

framework of virtual crystal approximation by taking into account both the size factor and the electronic 

effect. The model takes inputs as simple as the fundamental property parameters of the elementary sub- 

stances and N referential SSs for an N -component system, and can then predict the lattice constant of 

SS with any composition within the system. Systematical validation using datasets obtained from high- 

throughput first-principles calculations and available experiments confirmed the high reliability and gen- 

eral applicability of our model for various substitutional SSs. Applications and limitations of the model 

as well as outlooks were also discussed. It is expected that this model will deepen the understanding of 

the relationship between the composition and the properties of materials. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

A full utilization of materials relies on the comprehensive un- 

erstanding of the relationship among their compositions, struc- 

ures and properties. In this regard, pure substances are barely 

sed as structural and/or functional materials. Instead, appropri- 

te amount of solutes are added to enhance/tune their mechani- 

al behavior or physical properties so as to meet engineering re- 

uirements. [1] The lattice constants of the solid solutions (SSs), as 

ne of the most fundamental parameters, vary with the composi- 

ion, temperature and pressure. Meanwhile, they correlate closely 

ith the bulk properties of the SSs, such as the elastic constants, 

hermal expansion coefficients, chemical bonding, thermal conduc- 

ivity, and also with the onset of phase transition, occurrence of 

tacking faults, dislocation nucleation, etc. [ 2 , 3 ] It is therefore of

reat interest to evaluate accurately the composition dependence 

f the lattice constants for SSs. On the one hand, a quantitative 

nsight of the composition-dependent lattice constants is the ba- 

is to evaluate other physical parameters, e.g., the misfit factor for 
∗ Corresponding author. 
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S hardening [ 4 –8 ]. On the other hand, a prior knowledge of the

omposition-dependent lattice constants can facilitate the tailor- 

ng of the physical and chemical properties of multiphase mate- 

ials dominated by lattice misfits at the phase boundaries. [ 3 , 7 , 9 –

4 ] Moreover, lattice constants are at times necessary input param- 

ters for mesoscopic and/or macroscopic scale calculations. Con- 

equently, an accurate description/prediction of the composition- 

ependent lattice constants is one of the important prerequisites 

or composition design of advanced materials. 

Establishing an analytical description of the lattice constants for 

Ss in terms of the properties of the constituting elements has 

een a long-pursued objective in solid state physics and materials 

cience. [15] It is well-documented that two factors dominate the 

tructure of alloy phases, namely the atomic size factor and the 

lectronic effect. [16] While most of the existing models focus on 

he former, aiming to predict lattice constants of SSs based on the 

tomic radii or volumes [ 17 –20 ], lattice constants [ 21 , 22 ] and/or

lastic parameters such as the compressibility [ 23 –25 ], shear mod- 

lus [ 26 , 27 ], Poisson’s ratio [ 23 , 26 , 28 ], etc., of the elementary sub-

tances corresponding to the constituting elements. Among them, 

he famous Vegard’s law [21] predicts a composition-weighted av- 

rage of the lattice constants of the solute and solvent. In practice, 

owever, deviation from Vegard’s law is frequently observed. And 

https://doi.org/10.1016/j.actamat.2021.116865
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.116865&domain=pdf
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any effort s have been devoted to address this problem. For exam- 

le, the first-order elasticity model proposed by Eshelby [26] com- 

ined the atomic radius with the bulk modulus and Poisson’s ra- 

io, leading to an accurate description of the approximately linear 

omposition dependence of the lattice constant for dilute SSs. In 

ost cases, however, the dependence is nonlinear, especially in the 

oncentrated range. To this end, Lubarda and Richmond [29] de- 

eloped a second-order elasticity model, which was capable of de- 

cribing the nonlinear relationship between lattice constants and 

ompositions to some extent for merely several systems. Consid- 

ring the differences in primary crystal structures for the consti- 

uting elements, Lubarda [2] recently modified the first-order elas- 

icity model by adopting the effective atomic radii [30] , and ex- 

ended the description of the effective lattice constants to the con- 

entrated range. Nevertheless, the modified model showed a lim- 

ted success, because its inherent linear relationship failed to de- 

cribe the actual situation in most cases. 

Meanwhile, the electronic factors, such as the electronegativ- 

ty [31] , the number of valence electrons [ 31 –33 ] and the electron

ensity [16] , were also considered. However, these models were 

ound to make satisfactory prediction only in certain systems. For 

nstance, Zhang and Li [16] recently considered the continuity re- 

uirement of electron density at the interface between different 

onstituting atoms, and calculated the lattice constants of more 

han 100 binary SSs based on the atomic radii, electron densities 

nd cohesive energies of the corresponding elemental components. 

he agreement with the experimental measurements is however 

ot that satisfactory. 

The recently developed concentrated multi-component SSs, 

igh-entropy alloys, place further challenges in developing reliable 

odels to predict the lattice constants for such complex systems. 

ost attempts are based on linear approximations, such as ex- 

ension of Vegard’s law or linear extrapolation around a reference 

omposition [14] . Recently, To-Caraballo et al. [ 34 , 35 ] evaluated the

tatistical bond lengths in high-entropy alloys based on the bond 

atrix proposed by Moreen et al. [ 56 ] and then predicted the lat-

ice constants of CrCoFeNi high-entropy alloys. Despite good agree- 

ent with the experimental data, the proposed approach is rather 

omplicated with many fitting parameters [14] , and its universality 

nd accuracy still await further verification. 

In short, describing/predicting the composition-dependent lat- 

ice constants for SSs is of both scientific and practical importance. 
ig. 1. Schematic diagram of the present model in the case of binary solid solutions. The 

olution, where the distribution of solute atoms is omitted. The right part shows the aver

ifferent values of average volumes. 

2 
et most of the existing models are reliable only in the dilute re- 

ion, and few if not none of them could describe the nonlinear 

elationship with high accuracy. To this end, a new model was pro- 

osed in this work within the framework of virtual crystal approx- 

mation (VCA) [ 36 , 37 ]. It takes the fundamental property parame- 

ers of the constituting elements and some reference SSs as inputs, 

nd is seen to be capable of predicting the non-linear composition 

ependence of lattice constants for substitutional SSs in the whole 

omposition range. Extensive validations with large amount of data 

btained from high-throughput first-principles calculations and re- 

orted experiments suggest that the model is easy to use, of high 

eliability, and applicable to a wide range of SS systems, including 

he most challenging high entropy alloys. 

. Models 

Imaging mixing solute and solvent atoms under constant tem- 

erature and pressure to form a substitutional SS with all atoms 

itting at the lattice sites, the atomic volume is expected to change, 

nduced by the internal stresses resulting from differences in the 

tomic size, modulus, and electronic structure of the constituting 

lements. Eventually, equilibrium will be established, and the lat- 

ice constant can be evaluated according to the crystal structure 

nd the average atomic volume following the VCA. The develop- 

ent of the present model for binary SSs is schematically illus- 

rated in Fig. 1 , where the spatial distribution of the solute is left 

ut. 

.1. Virtual crystal approximation and average volume 

Assuming the solute atoms distribute randomly on the lattice 

ites, the overall shape of the crystal structure would remain in- 

ariant upon the formation of SS from a statistical point of view. 

ollowing the VCA, all atoms can be assumed as entities to share 

he same shape, volume, and composition, as illustrated in the 

ight part of Fig. 1 . In this way, the average volume for each micro-

one where an atom stays, rather than those complex factors, such 

s the distribution of solutes, local lattice distortion effect [ 38 –

1 ], electron cloud shape, and/or the change of space utilization, 

hould be adopted as the central parameter, which would greatly 

implify the problem. Furthermore, since all the micro-zones are 

dentical with each other based on VCA, the bulk modulus for any 
left part shows the changes of average volumes during the process forming a solid 

age volumes based on virtual crystal approximation. Different colors correspond to 
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icro-zone would also be the same as the macroscopic one. Con- 

equently, 

 

al l oy 
avg = V 

al l oy 
tot /N, (1) 

 avg = K tot , (2) 

here V 
al l oy 
avg , V 

al l oy 
tot and N are the average atomic volume, total vol- 

me, and total number of atoms of the SS, respectively. While 

 avg and K tot are the average bulk moduli for each micro-zone and 

he overall SS, respectively. 

Within the framework of VCA, we will develop our model by 

ividing the formation process of a SS into three sequential imag- 

nary scenarios, namely mechanical mixing, internal stress equili- 

ration without electronic coupling, and further adjustment due to 

he electronic coupling , which correspond to the Completely “Hard”, 

ompletely “Elastic”, and “Hard” + “Elastic” parts in Fig. 1 a-c, re- 

pectively. 

.2. Mechanical mixing approximation 

In the simplest picture, when mixed together to form SSs, each 

tom or micro-zone could be seen as a completely “hard” parti- 

le, whose average volume remains as its corresponding value in 

he elemental state (see Fig. 1 a). In other words, no interaction be- 

ween atoms of different species is assumed, while the interaction 

etween atoms of the same species still remains the same as that 

n the elementary state. The SS can therefore be treated as a “me- 

hanical mixture” of different atoms. And its average atomic vol- 

me could then be evaluated by a composition weighted average 

f the corresponding atomic volume of each component in their 

espective elemental state, 

 V = 

∑ 

i 

V 

i 
avg c i , (3) 

here V V is the average atomic volume after the “mechanical mix- 

ng”, while V i avg is the average atomic volume of component i in its 

lemental state and c i is the content of component i in the SS. 

.3. Internal stress equilibration without electronic coupling 

In reality, atoms of different species are generally of different 

izes and moduli. When mixed together to form substitutional SSs, 

nteractions between atoms of different species are inevitable. And 

nternal stresses will be induced if all atoms remain their original 

izes (see Fig. 1 b). Assuming there is no electronic coupling be- 

ween the atoms of different species, the modulus for each micro- 

one could still be assumed to be the same as that of the ele-

ental state, while the volume of each micro-zone would change 

lastically to reduce the internal stress, until a balance is reached. 

pon equilibrium, we would have 

 

i 

σi c i = 0 , (4) 

i = K 

i 
avg 

(
V SE − V 

i 
avg 

)
/ V SE , (5) 

here σi is the average internal stress on each micro-zone of com- 

onent i ; and V SE is the average atomic volume of the SS after the

nternal stress equilibration. K 

i 
avg and V i avg are the bulk modulus 

nd the average atomic volume of component i in the elemental 

tate, respectively. In the general case, the internal stress would 

e a tensor, and one should replace the bulk moduli and volumes 

ith their corresponding tensor form. Assuming an isotropic de- 

ormation, all the parameters in Eq. (5) will be reduced to scalars, 

hich simplifies the model considerably. 
3 
.4. Further adjustment due to the electronic coupling 

Actually, electronic coupling would be expected once the atoms 

f different species are mixed together. In turn, the bulk moduli 

f the micro-zones in the SS would differ from those in the ele- 

ental state, which requires further adjustment of the local atomic 

olumes so as to arrive at a complete internal stress balance (see 

ig. 1 c). The final average atomic volume of the SS predicted ( V P )

ould be expressed by 

 P = V V + β( V SE − V V ) , (6) 

here the first term on the right-hand side is the one from the 

echanical mixing approximation. While the second term repre- 

ents the deviation from the mechanical mixing, where ( V SE – V V ) 

tands for the volume change if internal stresses are considered 

ithout taking into account the electronic coupling. The parameter 

accounts for the contribution of the electronic coupling effect to 

he volume deviation. Combining Eq. (6) with Eqs. (3 –5 ), one ob- 

ains 

 P = V V + β

∑ 

i K 

i 
avg V 

i 
avg c i ( 1 − c i ) − ∑ 

i 

∑ 

ji K 

i 
avg V 

j 
avg c i c j ∑ 

i K i c i 
. (7) 

ne sees from Eq. (7) that the deviation from the mechanical mix- 

ng originates mainly from two factors, namely the size effect ( V, 

 ) and the electronic one ( β). Besides, both the interaction be- 

ween atoms of the same type, e.g. 
∑ 

i K 

i 
avg V 

i 
avg c i ( 1 − c i ) , and that

etween the different types, e.g. 
∑ 

i 

∑ 

j � = i ( K 

i 
avg V 

j 
avg c i c j ) , contribute 

o the deviation. Alternatively, Eq. (6) or Eq. (7) can also be ex- 

ressed as 

 P = ( 1 − β) V V + βV SE , (8) 

here (1- β) V V and βV SE can be considered as the average atomic 

olumes contributed by the interaction between atoms of the same 

pecies (mechanical mixing approximation) and that of different 

pecies (internal stress equilibration). 

.5. Determination of the parameter β

One sees from Eqs. (6 –8 ) that to describe the average atomic 

olume of the SS within the framework of the VCA, all the param- 

ters except for β can be obtained from the elemental state of the 

onstituting elements. Consequently, determination of β is crucial 

o predict the average atomic volume and in turn the lattice con- 

tant of the SS with the current model. As β reflects the effect 

f electron coupling between the different elements, its value will 

herefore depend on the electron density of the SS. The latter how- 

ver scales with the composition of the system. In turn, β depends 

n the concentrations of the constituting elements as well. Assum- 

ng a linear dependence, we will have 

= 

∑ 

i 
βi c i , (9) 

here βi scales the electronic coupling effects between component 

 and the other components on the average volume of the micro- 

one for component i . It can be considered as a constant for ele- 

ent i in the solid solution, while its value depends on the con- 

tituting elements of the solid solution although regardless of the 

oncentrations. 

In this way, the necessary fitting parameters for an N - 

omponent SS are therefore the β i ’s. To determine these β i ’s, the 

attice constants of at least N referential SSs for an N -component 

ystem as well as the bulk moduli and volumes of the end compo- 

ents are therefore needed. Once these β i ’s are determined, the 

attice constant for the SS in the whole composition range can 

e deduced according to Eq. (6) or Eq. (8) . Moreover, combining 

qs. (7) and (9) , one sees that the composition dependence of lat- 

ice constants of SSs is inherently neither linear nor quadratic with 
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Fig. 2. Composition-dependent lattice constants of Au-Ag solid solutions (a) and the linear fitting for parameter β determined as a function of composition for the current 

model. Experimental data are from Refs. [ 51 –53 ], while the data measured by Pearson [ 52 ] were not used in the fitting. 
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he current model. While a linear dependence will be overwhelm- 

ng in the dilute range, and deviation from the linearity in nature 

ould be reasonably elucidated within the present model. 

. Methods 

High-throughput calculations were carried out by using the 

TOMATE codes as the driver to automate the workflows [42] . 

he equilibrium lattice constants and bulk moduli were computed 

y adopting the preset workflow that computes and then fits the 

nergy-volume relation of the SS models to the Birch-Murnaghan 

quation of state [43] . The SS models were generated by following 

he recipes of Monte-Carlo special quasi-random structure (MC- 

QS) [44] within the ATAT codes [45] . 

All first-principle calculations were performed by using the 

ASP codes [ 46 , 47 ] based on density functional theory, where 

he ion-electron interactions were described by the projector aug- 

ented wave method [48] and the GGA-PBE exchange correlation 

unctionals [49] were employed. A plane wave cutoff energy of 

20 eV was adopted. The integration in the Brillouin zone was 

erformed on a �-centered k -mesh with a grid density of 70 0 0, 

here the partial occupations of the bands were set following the 

rst-order Methfessel-Paxton method [50] with a smearing width 

f 0.05 eV. The energy tolerance for the electronic relaxations was 

0 −7 eV per atom, and the Hellmann-Feynman force tolerance for 

he ion relaxations was set to be 0.01 eV/ ̊A. A 2 × 2 × 2 super-

ell containing 32 atoms and a 3 × 3 × 3 supercell containing 54 

toms were adopted to model the FCC and BCC/HCP based SSs, re- 

pectively. 

. Results 

To validate the proposed model, several typical systems were 

xamined and the results were shown in Figs. 2 –5 , while more ex- 

mples were compiled in the Supplementary file. 

.1. Application in binary solid solutions 

As the first example, the Au-Ag system which forms a contin- 

ous SS was examined. Firstly, the experimentally determined lat- 

ice constants ( a i ) [ 51 , 52 ] and bulk moduli ( K 

i 
a v g ) [53] were em-

loyed to calculate the V SE according to Eq. (5) and then to deter- 

ine the parameter β in Eqs. (6 –8 ), so as to confirm the validity of

he assumption introduced in Eq. (9) . Fig. 2 b shows the derived β
or FCC Au-based SSs as a function of Ag concentration, where one 
4 
nds that indeed a linear correlation between β and c is observed. 

ncorporating the linearly fitted βAu and βAg back into Eqs. (9) and 

7) , one can “predict” the lattice constant of the Au-Ag SS at any 

omposition. Fig. 2 a compares the predicted lattice constants to 

he experimentally determined ones [ 51 , 52 ], where one sees a per-

ect agreement (R 

2 = 1.00, RMSE = 0.00). Instead, the Vegard’s law 

an hardly reproduce the experimentally revealed composition- 

ependent lattice constants. The Lubarda’s model [2] works better 

han the Vegard’s law, although it also fails to predict the non- 

inear composition dependence of lattice constants in the concen- 

rated range. The perfect agreement between the predictions from 

he current model and the experimental data suggests the validity 

f the current model. In particular, the linearity of β~c revealed 

n Fig. 2 b demonstrates that the unknown parameter β could be 

asily determined if the lattice constants of N distinct referential 

Ss are available for an N -component system. It should be noted 

hat the linearity of β~c observed in Au-Ag is not unique, instead, 

t is rather universal. For simplicity, figures evidencing the linear 

ependence of β against c for all systems considered in this work 

ere shown in the Supplementary file. It should be noted that the 

resent model is essentially an isothermal one, i.e., it describes the 

omposition dependent lattice parameters at a prescribed temper- 

ture. For other temperatures, one should plug the corresponding 

oduli and lattice parameters under the desired condition into the 

resent model and then make the predictions. 

One might doubt that the success of the proposed model in the 

u-Ag system could be a coincidence. To rule it out, some typical 

inary SSs with different crystal structures were examined, e.g. FCC 

i-Al with limited solubility and Ni-Ir continuous SSs, BCC Mo- 

ased and HCP Zr-based SSs with limited solubility (see Fig. 3 ). 

ore cases can be found in the Supplementary file. Fig. 3 com- 

ares the respective lattice constants derived with the proposed 

odel to the data from first-principles calculations or experimen- 

al measurements. One sees that in all cases, the current model 

an describe accurately the nonlinear composition dependence of 

he lattice constants/average atomic volumes for substitutional SSs, 

egardless of the underlying crystal structure or the equilibrium 

olubility limit. It should be noted that for HCP-based SSs, the 

hape of the lattice, i.e., the c/a ratio, generally also varies with 

he addition of the solute, which however cannot be derived by 

he current model. Nonetheless, the composition-dependent av- 

rage atomic volume can be accurately reproduced, as shown in 

ig. 3 d. Incidentally, one also sees from Fig. 3 a that the mea- 

ured data reported by different researchers differ from each other 

onsiderably, indicating the relatively large errors in experimental 
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Fig. 3. Composition dependence of the lattice constants or average volumes for binary solid solutions. Measured data (Exp.) [ 54 –57 ] for limited Ni-Al solid solutions (a), 

calculated data based on DFT in this study (Cal.) for continuous Ni-Ir solid solutions (b), limited Mo-based solid solutions (c), and limited Zr-based solid solutions (d) are 

shown. The data measured by Bøttiger [ 55 ] were adopted to get the β i ’s for the Ni-Al system. R 2 ≈ 1.00, RMSE ≈ 0.00 for all the curves. 
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easurements; for consistency, most examples shown here adopt 

he lattice constants calculated from first principles calculations. 

.2. Applications in ternary and quasi-binary solid solutions 

To showcase the application of the current model in ternary 

ystems, we take the FCC Ni-Ir-Al system as an example, assum- 

ng a continuous SS in the whole composition range. Due to the 

hortage of experimental data, the lattice constants for the Ni-Ir- 

l SSs at a series of compositions were computed by first prin- 

iples high-throughput calculations and then fitted to the current 

odel. Fig. 4 a shows the contour map of the lattice constants pre- 

icted from the model, and Fig. 4 b compares the calculated and 

redicted values. The values of βNi , β Ir and βAl were obtained by 

inear fitting of β~c , where the corresponding β ’s were derived us- 

ng the eight referential Ni-Ir-Al ternary SSs (see Supplementary 

le). One sees from Fig. 4 b that the proposed model works well for

he ternary system as well, the agreement between the calculated 

attice constants and the predicted ones by our model are much 

etter than that by the Vegard’s law, confirming the reliability and 

ersatility of the current model. 

Ternary systems with a fixed concentration for one compo- 

ent or with a fixed stoichiometric ratio between two compo- 

ents could be seen as quasi-binary ones, and one can also use 

he current model to derive their composition-dependent lattice 

onstants. Fig. 4 c-f show some hypothetical ternary SSs that can 

e treated as quasi-binary ones. One finds again that the current 

odel works as well for such systems. One of the benefits of 

uch treatment is that it enables one to evaluate the composition- 
5 
ependent lattice constants for SSs containing elements such as 

, O, and/or S, whose elemental ground states differ considerably 

rom the SS and in turn their bulk moduli and/or lattice constants 

or the elemental states are difficult to acquire. Nonetheless, com- 

aring Fig. 4 c with Fig. 4 d, one sees that the non-linearity in the

omposition dependence of the lattice constants becomes less ob- 

ious with the increasing number of components for quasi-binary 

Ss, which should originate from the averaging effect of the inter- 

ctions among different types of atoms. 

.3. Application to concentrated multi-component solid solutions 

For multi-component SSs, especially for the concentrated ones, 

.g. high-entropy alloys, it has been a great challenge to de- 

cribe their composition-dependent lattice constants. The cur- 

ent model is capable of making reliable predictions for them 

s well. In this regard, the CoCrFeNi high-entropy alloys whose 

attice constants have been reported experimentally [14] were 

dopted to further demonstrate the reliability and universality 

f our model. The available experimental results were fitted to 

he current model, and the parameter β were found to be 

= 3.7643 c Co + 10.0556 c Cr + 8.7098 c Fe - 8.6460 c Ni (R 

2 = 0.94,

MSE = 0.23). One sees from Fig. 5 that the current model accu- 

ately reproduces the experimental data (R 

2 = 0.97, RMSE = 0.00), 

hich is superior over the predictions by Wang et al [14] based 

n a linear fitting from a reference composition (R 

2 = 0.86, 

MSE = 0.00). The Vegard’s law, however, fails to yield reliable 

redictions for the lattice constants of CoCrFeNi high-entropy al- 

oys (R 

2 = -3.36, RMSE = 0.01). 
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Fig. 4. Composition dependence of lattice constants for ternary and quasi-binary solid solutions. (a) and (b) are the whole composition map for lattice constants of Ni-Ir-Al 

solid solutions and the corresponding fitting data used for the map, respectively; (c-f) are predictions for quasi-binary solid solutions[ 58 , 59 ]. 
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. Discussions 

.1. Error analysis 

According to Eqs. (6 –9 ), the credibility of the current model re- 

ies largely on the accuracy of the parameter β i , which is deter- 

ined by fitting to available data of the referential SSs. In general, 

attice constants of at least N referential SSs are needed to deter- 

ine these β i ’s for an N -component system. The accuracy of the 

ata for the referential SSs is therefore rather critical. One sees 

rom Fig. 2 and Supplementary file that the β~c correlation usu- 

lly fluctuates. And a relatively small error in the lattice constants 

f the referential SSs would translate into a large one for the linear 

tting of β~c , especially in the concentrated range. It is therefore 
6 
xpected that accurate inputs from the referential SSs in the non- 

ilute range are essential for reliable predictions. More input data 

ith high accuracy would certainly be helpful to improve the reli- 

bility of the predictions made based on our model. 

Furthermore, it is noteworthy that there is no overfitting prob- 

em within the present model. Exactly N fitting parameters are 

eeded for SSs of N -components. And nearly all the linear fits to 

etermine β i ’s were found to have relatively large values of R 

2 and 

uite small RMSEs (see Supplementary File), confirming the linear 

ssumption adopted in Eq. (9) is reasonable. It can also be seen in 

he Supplementary file that, on the premise of accurate input data, 

he choice of the dataset used for the fitting of β i ’s has little influ- 

nce on the accuracy of the predictions. While errors in the pre- 

icted lattice constants and the determined β ’s mainly come from 
i 
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Fig. 5. Application in quaternary CoCrFeNi high-entropy alloys. The measured data 

are from Ref. [ 14 ]. 
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hose of the input from the referential SSs. For the latter, however, 

rrors in experiment can have many sources, such as the material 

urity, measurement error, and temperature variation, while the 

rrors in the first-principles calculated data mainly come from the 

nite supercell adopted to model SSs, especially for the multicom- 

onent and/or concentrated systems. As error in the raw data is 

nevitable and merely four data points are available for most sys- 

em in this study, all data points available were therefore used to 

t the β i ’s to ensure high accuracy. 

.2. Interpretation of β and the corresponding volumes 

The parameter β is defined to account for the electronic cou- 

ling effect on the average atomic volumes. To further understand 

ts physical essence, as well as to clarify the relative contribu- 

ions to the final average atomic volume, data obtained from high- 

hroughput first-principles calculations under 0 K and 0 Pa were 

nalyzed. As revealed by the data shown in the Supplementary 

le, the values of β can be classified into three categories, each 

ategory corresponds to two possible relative relationships among 

 P , V SE , and V V . The origin can be understood in terms of the

ramework of the current model. Upon the mixing of different ele- 

ents to form SSs, the valence electrons would redistribute, which 

ill change the local electron density and bulk modulus for each 

icro-zone. As a result, further adjustment of the average atomic 

olume will occur to balance the internal stresses. The value of β
haracterizes quantitatively the contribution of the electronic fac- 

or to the adjustment of the average atomic volume (defined as 

V 1 = V P –V SE ), mainly through changing the bulk moduli of the 

icro-zones. Accordingly, the total change in the average atomic 

olume and the contribution from the size factor could be charac- 

erized by �V = V P – V V and �V 2 = V SE – V V , respectively. That

s, �V = �V 1 + �V 2 . In turn, for each category of β , there will be

wo possible relative relationships among V P , V SE , and V V that cor- 

espond to �V < 0 for volume contraction and �V > 0 for volume 

ilation, respectively. 

β ∈ (0, 1), V V > V P > V SE or V V < V P < V SE . From Eq. (8) ,

ne would expect that the value of β should lie within (0, 1). This 

owever corresponds to the case when the electronic coupling be- 

ween different species in the SS is relatively weak. Under such 

ircumstances, the electronic effect would counteract partially that 

f the size effect, i.e., we would have | �V 1 | < | �V 2 | and �V 1 • �V 2 

 0. That is to say, the size factor dominates the volume change. 

he final average atomic volume would lie between V and V . 
V SE 

7 
uch situations were observed in the Al-end of the Al-Mg SSs ( V V 

 V P > V SE ) and the Ni-end of Ni-Pt SSs ( V V < V P < V SE ). Further-

ore, it can be suspected that for β = 0 ( V P = V V , e.g., Ni-end of

i-Ag SSs), the electron coupling effect is rather weak and can be 

eglected ( �V 1 = 0), while for β = 1 ( V P = V SE , e.g., Cu-end of

u-Nb SSs) the electronic coupling effect just cancels that by the 

ize factor ( �V 1 = - �V 2 ). 

β > 1, V V > V SE > V P or V V < V SE < V P . When the electronic

oupling effect is relatively strong, the electron coupling would en- 

ance the volume change caused by the size factor: | �V 1 | ≥ | �V 2 |

nd �V 1 • �V 2 > 0. As a result, the final average atomic volume 

ould either contract considerably, e.g., for Al-Re SSs ( V V > V SE > 

 P ), or expand significantly, e.g., for Al-end of Al-Zn SSs ( V V < V SE 

 V P ). 

β < 0, V P < V V < V SE or V P > V V > V SE . When the electronic

oupling effect is strong enough to dominate the volume change 

hile it counteracts the size effect, the value of β would be neg- 

tive. The volume change caused by the size factor can only coun- 

eracts partially that by the electronic coupling (| �V 1 | > | �V 2 | and

V 1 • �V 2 < 0). This was observed in, e.g., Al-end of Al-Cd SSs ( V P 

 V V > V SE ) and Al-Ta SSs ( V P < V V < V SE ). 

. Conclusions 

To summarize, a simple yet reliable and general model was 

roposed based on VCA to accurately describe the composition- 

ependent lattice constants of substitutional SSs, which was seen 

o be generally successful in reproducing the nonlinear composi- 

ion dependence of lattice constants for binary and ternary SSs, 

ven high entropy alloys. 

Comparing to existing models, the current model has mainly 

hree advantages. Firstly, it is inherently nonlinear, and would 

herefore be highly reliable in describing the nonlinear compo- 

ition dependence for the lattice constants of substitutional SSs. 

econdly, it is generally applicable to all substitutional SSs. Appli- 

ations in metallic and non-metallic systems with different crys- 

alline structures of different equilibrium solubility limits are seen 

o be successful. Although the temperature and pressure depen- 

ence are not explicitly incorporated in the model, they could eas- 

ly be considered by adopting the input parameters ( K and V ) un- 

er the desired temperature and pressure. Thirdly, it is relatively 

imple and convenient, as only N fitting parameters are required 

or an N -component system. And the method is also easy to im- 

lement, making it rather promising for future studies. 

Nonetheless, limitations of the current model are also appar- 

nt. Firstly, the determination of β i ’s requires the lattice constants 

f at least N referential SSs for an N -component system, which 

re generally unavailable. Nonetheless, the ever growing computa- 

ional power and constantly improving of scientific computing al- 

orithms however make it possible to overcome such difficulties. 

econdly, the model assumes an isotropic variation of the lattice 

onstants upon the formation of SSs, while anisotropic variations 

re frequently observed for systems like HCP ones. In such cases, 

he predicted average atomic volume is expected to be reliable. 

esides, the model cannot be used to describe the composition- 

ependent lattice constants for interstitial SSs, which could how- 

ver be treated with existing models within the dilute limit. 

Accordingly, further improvement of this model will focus 

n two aspects. On the one hand, more high-throughput first- 

rinciples calculations will be carried out to produce large amount 

f standard data, from which the related β i for each system can be 

educed. Combined with data mining and machine learning tech- 

iques, the relationship between β i and the intrinsic properties 

f the constituting elements would be revealed. In this way, one 

ight be able to derive β i directly from the related parameters of 

he constituting elements rather than from linear fitting, and the 
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urrent model could then be employed to predict the lattice con- 

tants of SSs readily. On the other hand, the model can be further 

xtended to account for the anisotropic behavior of the crystal lat- 

ice, e.g., by replacing the bulk modulus with the elastic constants. 

nd then the composition dependent lattice constants for systems 

ith internal freedoms could also be described. Furthermore, by 

xtending the ideas in this study, models that describe the compo- 

ition dependent bulk moduli and/or elastic constants of the solid 

olutions could also be developed based on the mean field approx- 

mation. It is expected that this study as well as further study can 

eepen the understanding of the relationship between the compo- 

ition and properties of materials. 
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