Atomistic Imaging of Competition between Surface Diffusion and Phase Transition during the Intermetallic Formation of Faceted Particles

Fan Li, Yuan Zong, Yanling Ma, Mingxu Wang, Wen Shang, Peng Tao, Chengyi Song, Tao Deng, Hong Zhu,* and Jianbo Wu*

ABSTRACT: To explore the ordering mechanism of facet alloy nanocrystals with randomly distributed atoms, we investigate kinetic and thermodynamic behaviors of the ordering phase transition from face-centered cubic Pt₃Co nanocrystals to L₁₂-Pt₃Co intermetallic nanocrystals. It is observed that the ordering occurs from the surface and then gradually into the interior in a layer-by-layer mode, involving the competition between two kinds of phase transition modes: long-range surface diffusion-induced phase transition (SDIPT) and short-range reconstruction-induced body phase transition (RIBPT). The density functional theory calculations demonstrate that the surface status acts as a pivotal part in the thermodynamics and kinetics of the nanoscale ordering transition. With the development of the controllable heating process, both SDIPT and RIBPT modes can be manipulated as well as the morphology of the final product. This in situ work lays the foundations for potentially realizing shape-controlled intermetallic nanostructures by utilizing the thermal annealing method and makes preparations for the rational design of the surface and near-surface atomic configurations at the atomic scale.

KEYWORDS: in situ atomic STEM images, nanometallurgy, surface diffusion, phase transition of intermetallics, shape-controlled intermetallic nanostructures

Nanoscale metallurgy, involving the liquidation, surface segregation, phase transition, and diffusion, is attracting more and more attention, because it is generally applied in the rational design and preparation of metallic-based nanocatalysts,¹⁻³ which are widely used in various electrochemical applications including oxygen reduction reaction (ORR),¹⁻¹⁷ oxygen evolution reaction,¹⁸ hydrogen oxidation reaction,¹⁹ and hydrogen evolution reaction.²⁰ The aforementioned metallurgical behaviors have been extensively discussed for bulk materials in the past hundred years. However, when applying those classic theories into the nanoscale, we found most of them could not be applicable. For example, the melting point is largely reduced at the nanoscale.²¹ In addition, the surface segregation, phase transition, and diffusion behaviors of nanoparticles (NPs) are very different from those of bulk materials.²¹,²² All these changes make the nanometallurgy not easy to understand via utilizing the existing classic theory. Also, the related detailed theoretical and experimental studies are mostly under development, especially those on the eutectic point and phase transition temperature in the equilibrium phase diagrams of NPs.²³⁻²⁶

Interestingly, the surface optimization of nanocatalysts and well-defined stoichiometric intermetallics are presently attracting considerable research attention because of their special and excellent performance.²³,²⁷⁻³⁷ The ORR activity of Pt₃Ni icosahedral NPs stretching 20 tetrahedrons is 9 times higher

Received: December 23, 2020
Accepted: February 16, 2021
Published: February 19, 2021
than the commercial Pt/C catalyst.35,36 It was reported the ordered intermetallic phase had improved the durability and activity of electrocatalysts compared with random alloys.7,8,10,12,13 If the optimized facet intermetallic NPs can be prepared, then both of high electrocatalytic activity and good durability will be achieved. Indeed, the formation of intermetallics is achieved through thermal annealing above the eutectic point, which has been considered as one of the promising strategies. However, synthesizing facet- and shape-controlled intermetallic nanocrystals with elemental ordering is really a challenging issue because the formation of intermetallics at the elevated temperature required a certain level of atom migration, which also leads to a side effect of surface changes.38 Chi \textit{et al.} have reported that the disorder-to-order phase transformation occurred at 600 °C for the Pt$_3$Co spherical NPs, which was lower than that reported for bulk Pt$_3$Co (\textgapprox 750 °C)39,40 because of a higher elemental internal migration rate,38 although the surface changes have not been studied yet. Their \textit{in situ} studies of the intermetallics’ formation focused on spherical NPs, which are almost isotropic on the surface with negligible surface diffusion during annealing. Andreazza \textit{et al.} have reviewed the size effects and surface segregation during phase transition on the bulk materials and NPs of the CoPt system on the basis of theoretical studies, even if they did not pay attention to the facet effect.41 Considering the faceted particles (cube, octahedron, and icosahedron) with the anisotropic surface, the thermal annealing process was often accompanied by the change of morphology and shape because of surface atom diffusion.2,7 Thus, the thermal annealing techniques to obtain shape-controlled bimetallic intermetallic NPs had received limited achievement so far.7 The key challenge for the synthesis of the desired geometry aiming for the optimized performance is how the surface could be maintained during the thermal annealing process. Therefore, the insight on ordering behavior about faceted particles accompanying the surface diffusion during annealing is critical to developing the surface preserved annealing process.

Here, we reveal the surface diffusion behaviors in the dynamics of Pt$_3$Co intermetallic formation from a Pt$_3$Co alloy cube during the annealing process \textit{via in situ} scanning transmission electron microscopy (STEM). By tracking the dynamic ordering transitions at the atomic scale, the different triggers and behaviors of phase transition on (100) and (110) and element diffusion behavior around corners and edges have been studied during different annealing processes. This work will make it easier to achieve regulation of morphology and elemental ordering during various annealing processes for optimization of the intermetallics.

RESULTS AND DISCUSSION

The presynthesized Pt$_3$Co cubes (Figure S1) were dispersed on a carbon film thermal E-chips with 9 μm holes. The \textit{in situ} annealing experiments were carried out in a JEOL JEM-ARM200F Cs corrected STEM. Figure 1A clearly shows that the initial Pt$_3$Co NP has a cubic shape with an edge length of \textgapprox 18 nm, projected along the zone axis of [001]. The corresponding fast Fourier transform (FFT) pattern in the...
The Pt\textsubscript{3}Co NP exhibits a homogeneous random elemental distribution (see Figure S2) at room temperature (RT) with a composition of 75.78:24.22 for Pt:Co (EDS; see Figure S3). In the slow heating process, the Pt\textsubscript{3}Co cubic NP was preannealed at 300 °C, at which the Pt\textsubscript{3}Co NPs could diffuse adequately but not occur at the phase transition.24 After proceeding for 60 min, the cubic structure was slightly changed with the rounded corner (see Figure S4A) due to the surface diffusion of low-coordination (CN) atoms. However, the FFT in Figure S4A only with the original facet index {200} and {220} still illustrates a pure FCC structure, indicating that the phase transition did not occur at 300 °C. When we increased the temperature to 400 and 500 °C, the corresponding FFT of the FCC structure in Figure S4B,C revealed that the phase transition had not been triggered yet, while the cubic structure became round. This phenomenon supports the previously reported results of both ex situ and in situ experiments.38 When we increased the temperature to 600 °C, a more dramatic diffusion from the corner to the {100} terrace leads to the formation of a rounder structure. Meanwhile, some additional diffraction points appear in the FFT on the surface region of the Pt\textsubscript{3}Co NP (Figure 1B), which are assigned as the {100} and {110} points of the L\textsubscript{12}-Pt\textsubscript{3}Co intermetallic nanocrystals.7,43–45 Obviously, the L\textsubscript{12} transition started on the surface at 600 °C. To distinguish whether the body region covered by two layers of {100} surfaces has a fully ordered structure, we do the simulated high-angle annular dark-field (HAADF)-STEM (S-STEM) utilizing quantitative STEM (QSTEM) simulations. Combined with the S-STEM images (Figure 1 and Figure S5), we can roughly estimate the thickness of the intermetallic compounds that coexist with disordered FCC Pt\textsubscript{3}Co nanocrystals in their body region. We observed that these representative ordered diffractions points including {100} and {110} only appear in the surface region but not the body region (Figure 1B). In addition, the STEM image in the body region in Figure 1B displayed a uniform brightness, which indicated the fully ordered structure had not been formed in the body region. The thickness of intermetallic compounds increases gradually layer-by-layer from the surface during the annealing at 600 °C for 30 min on the basis of the corresponding inner FFT and S-STEM images (Figure 1C and Figure S5). Finally, the fully ordered L\textsubscript{12}-Pt\textsubscript{3}Co intermetallic spherical NPs (Figure 1D and Figure S6) were achieved after annealing at 600 °C for more than 60 min. The observed additional {100} and {110} diffraction in both the surface and body regions (Figure 1D). The ordered L\textsubscript{12}-Pt\textsubscript{3}Co intermetallic nanocrystals after annealing exhibits a slight change in the elemental composition (Figures S6 and S7) compared to disordered FCC Pt\textsubscript{3}Co nanocrystals (Figures S2 and S3), where the ratio of Pt:Co changed to 3.05:1 compared with the initial ratio of 3.13:1.

The detailed structure and morphology progression of a random FCC alloy Pt\textsubscript{3}Co nanocube to an ordered L\textsubscript{12} phase Pt\textsubscript{3}Co spherical NPs has been characterized clearly during in situ annealing. With the evolution of the surface geometry, we also investigated the accompanying dynamics of phase transition at the atomic resolution. After the alignment of the series of sequential STEM (Figure S8), we discovered that the phase transition with facet change involved two types of processes: (1) one via surface diffusion of the atoms from corner to {100} terrace (surface diffusion-induced phase transition (SDIPT) mode) and (2) the other is due to the internal reconstruction from disordered FCC nanocrystals to ordered L\textsubscript{12} intermetallic nanocrystals (reconstruction-induced body phase transition (RIBPT) mode). The SDIPT mainly occurs in the surface layer, involving a long-range diffusion derived by the chemical potential gradient on the surface. For the RIBPT, these atoms can reconstruct inside the crystal within a short range. The obvious characteristic is that RIBPT does not change the NPs’ shape, but it occurs at a higher temperature. We observed that the phase transition on the {100} surface was the combination of those two modes (Figure S8), and the interaction between SDIPT and RIBPT ultimately controls the dynamics of structural and shaped changes. We have differentiated these two modes through the alignment line (see the details in the caption of Figure S8). In the beginning, the growth rate of intermetallics from SDIPT (1.6 layers/min) is faster than the RIBPT (1.2 layers/min) at stage I (Figure 2). At stage II when the SDIPT is eliminated due to the disappearance of diffusion from the corner in the truncated octahedron, the growth rate of the intermetallics from RIBPT (0.2 layers/min) is almost equal to the SDIPT (0.2 layers/min) (Figure 2 and Table S1). Then the growth rate of intermetallics from RIBPT (2.0 layers/min) is far greater than that of SDIPT at stage III, which has stopped growing due to lack of diffusion atoms (Figure 2 and Table S1). This growth rate for the intermetallics from RIBPT at stage III is rapid because the reconstruction becomes easier after leaping over the barrier of nucleation at stage II.36–48 Above all, we could conclude three growth stages on {100} as SDIPT-dominated stage (stage I), SDIPT and RIBPT competitive stage (stage II), and RIBPT-dominated stage (stage III) (Figure 2).

On the {110} surface, the triggering of the phase transition is later behind that on {100} because the corner atoms with low CN prefer to diffuse away instead of self-reconstruction. Most interestingly, the RIBPT along the {110} direction grew rapidly once started with a growth rate of 4.7 layers/min (Figure 2 and
Table S1) at stage II, which is faster than the maximum growth rate along \(\langle 100 \rangle\) (2.8 layers/min, stage I) (Figure 2 and Table S1). This rapid growth rate can be explained by the disappearance of corner atoms leaves a big density of vacancies and defects. In general, it was reported that surface defects and vacancies would accelerate the ordering and diffusion process because the loose surface full of defects would accelerate the atom-transport process with a lower formation energy of defect and jumping barrier.\(^{2,10,49,50}\) Therefore, reconstruction along the \{110\} surface becomes easier once it begins.\(^{2,49,50}\) After vigorous growth, the growth rate of intermetallics from the RIBPT along \(\langle 110 \rangle\) direction at stage III (0.6 layers/min) becomes lower as it grows deeper with fewer vacancies and defects; however, it is still faster than the simultaneous growth rate of \(\langle 100 \rangle\) (0.4 layers/min) (Figure 2 and Table S1). This difference in the growth rates is due to the different portions of the interstitial space on the different facets. The minimum ratio of interstitial space on the surface of Pt\(_3\)Co \{100\} (18.27% on layer B) is smaller than that of Pt\(_3\)Co \{110\} (47.74% on layer A), which makes atoms diffusion through the \{110\} surface easier than \{100\} (Figure S9).\(^{51,52}\) Based on the atomic imaging of phase transition, we could define three growth stages on \{110\} as the low CN atoms losing stage (stage I), the defect promotion rapid growth stage (stage II), and the RIBPT-dominated slow growth stage (stage III) (Figure 2).

As we demonstrated, the diffusion promoted via the low-temperature aging could largely influence the behavior of phase transition. We further investigate the phase transition mechanism at the direct high-temperature annealing process (DHTAP) (Figure 3) by annealing the Pt\(_3\)Co nanocube under 700 °C directly (with a heating rate of 30 °C/min). It is interesting that without the low-temperature pretreatment at 300 °C, direct heating to 600 °C would not lead to the ordering transition (Figure S10). The surface ordering transition under DHTAP could be triggered at 700 °C, which is still lower than the phase transition temperature of bulk materials (\(~750 °C\)).\(^{40}\) After alignment (Figure S11) and
the enlarged quantitative analysis (Figures S12–S19 and Figure 3), we observed that the ordered phase starts to form from the outermost layer of the (100) surface instead of the (110) surface at 700 °C after 5 min (Figure 3A,E), while there is no ordered phase appearing on the (110) surface until 10 min (Figure 3E,F). The big difference between the DHTAP and the low-temperature diffusion annealing process (LTDAP) is that the growth rate of intermetallics from SDIPT is slower than that of RIBPT without sufficient diffusion time at the initial stage of DHTAP and the cubic structure changed less during DHTAP compared with the spherical structure after LTDAP. According to the aligned HAADF-STEM images in the first 10 min (Figure 3A,B and Figure S10), we can observe that the surface ordered structures from RIBPT grow deeper on (100), but no SDIPT happened in that process because the atoms at the corner did not spread over the (100) terrace and the shape of the NP maintained relatively unchanged during the rapid heating process. With time over 15 min, the partially disordered atomic layers appear on the (100) terrace (Figure 3C), demonstrating that the corner atom diffused onto the (100) surface. Figure 3C also presents that these newly extra atoms, which diffused from the corner gradually, tend to form an ordered layer on the (100) surface. When the annealing time reached 20 min, all the atomic layers on the (100) and (110) surface become fully ordered (Figure 3D), and we observed a truncated cubic NP with sharper corners (Figure S11D). Indeed, the outmost four atomic layers on (100) are attributed to the surface diffusion, and the other is due to the reconstruction. We could also conclude the three growth stages of the surface ordering transition under DHTAP as the RIBPT-dominated stage (stage I, Figure 3A,E to Figure 3B,F), the SDIPT starting stage (stage II, Figure 3B,F to Figure 3C,G), and the SDIPT-RIBPT synergetic growth stage (stage III, Figure 3C,G to Figure 3D,H).

Above all, the main difference between LTDAP and DHTAP is the diffusion speed and phase transition rate. Under LTDAP, the L1₂-Pt₃Co intermetallic structure forms at the surface at a relatively low temperature (600 °C) and then grows from the surface into the body, and eventually the fully ordered L1₂-Pt₃Co intermetallic spherical nanocrystals form (Figure 4). We exhibited that a spherical structure with an almost round surface could be achieved during the complete ordering transition at 600 °C within 60 min via vigorous surface diffusion from the corner to the terrace. It is slightly lower than the predicted phase transition temperature (~650 °C) for the 18 nm Pt₃Co cube⁵ and also lower than the temperature in the DHTAP because of the prolonged diffusion at the pretreatment stage at low temperature. We noticed that the surface of the cube after keeping 60 min at 300 °C became rough with a number of dangling atoms (Figure S4A). The results show that the loosed surface due to diffusion could make the surface ordering easier at a lower temperature. Unlike LTDAP, DHTAP could obtain a fully L1₂-Pt₃Co truncated cubic NP with sharper corners at a relatively higher temperature (~700 °C, Figure 3). As is shown in Figure 3, RIBPT starts first, and SDIPT gradually occurs behind RIBPT. Finally, the fully ordered L1₂-Pt₃Co truncated NPs could form. Considering the different heating procedures, the LTDAP promotes the diffusion of atoms from the corner to the surface, so this long-range diffusion makes SDIPT start earlier than the short-range RIBPT (Figure 4). The scenario becomes different under DHTAP, where RIBPT starts first on the (100) before the corner atoms diffuse to the (100) terrace. Above all, the entire particle becomes ordered around 20 min, which benefits from both the SDIPT and RIBPT. In general, the ordering under DHTAP (completed in 20 min) is faster than that under LTDAP (completed in 60 min), and both LTDAP and DHTAP induce SDIPT on the (100) surface and RIBPT on both the (100) and (110) surfaces (Figure 4). Although they have different phase transition rates at the various stages, intermetallics from SDIPT always produce a higher growth rate than that from RIBPT. We further quantify for the shape-controlled phase transition behaviors on the {100} surface utilizing the {100} facet preserved ratio in view of the 2D model and 3D model (see Supporting Information). As expected, the {100} facet preserved ratio in view of the two-and three-dimensional (2D and 3D) models of DHTAP (48.02% and 25.83%, respectively, Figures S20 and S21) is larger than that of LTDAP (32.63% and 9.58%, respectively, Figures S20 and S21), which was consistent with our
slab is lower than that of four possible disordered (110) surface.

To further thermodynamically favor because the high-energy surface tends to reconstruct, react with each other, or adsorb the other small molecule to lower its surface energy. To further demonstrate the essence of the disordering-ordering phase transition, we calculated the vacancy formation energy (\(E_f\)) in the disordered PtCo (100) and (110) slabs (Figure 5C,D), respectively. The lower vacancy formation energies will promote interdiffusion of the constituent atoms via a vacancy diffusion mechanism and further promote ordering.\(^{53}\) The calculated \(E_f\) is plotted as a function of \(\mu_{Pt}\) (Figure 5C).

The Co atom always has a lower \(E_f\) than the Pt atom in the interior bulk region of disordered PtCo (Figure 5C). The results indicated that the diffusion of Co atoms dominated the ordering process, and then the detailed \(E_f\) (\(\mu_{Pt} = 5.0\) eV) calculation of Co vacancy within the PtCo (100) and (110) surface slabs as a function of the distance from the surface was further carried out and shown in Figure 5F,H. Obviously, \(E_f\) on the (100) and (110) surfaces is always lower than that of the corresponding interior region, or namely the bulk-like region (Figure 5F,H). These results echoed that the phase transition starts from the surface rather than the interior at a relatively low temperature. The lowest \(E_f\) on the disordered PtCo (100) surface slab (\(-5.131\) eV) is lower than that on the disordered PtCo (110) surface slab (\(-2.861\) eV) (Figure 5F,H). It is consistent with the previous analysis that the triggering of the ordering process on (110) is after that on (100).

CONCLUSIONS

In summary, our research reveals the dynamic disorder-to-order transition in the PtCo NPs by observing the layer-by-layer ordering behaviors of facet alloy nanocrystals with random distribution atoms along both [100] and [110] directions at the atomic scale, involving the completion between surface diffusion and phase transition. A proper annealing process seems to be able to trigger the phase transition at the lower temperature as well as accelerate the transition via short-range diffusion. In addition, we discover that the ordering transition always accompanies the long-range diffusion, which seems to make the shape change inevitable. The “trade-off” between surface diffusion and reconstruction is one of the most critical steps in the preparation of the faceted preserved intermetallic-based electrocatalysts. We believe that our results provide a comprehensive atomistic-scale insight into the structural evolution during the phase transition and give ideas and suggestions on designing catalysts through the post-thermal annealing for enhanced electrocatalytic activity and durability by optimizing the surface and near-surface atomic structure. These findings would establish the foundation for surface engineering during the formation of Pt-M intermetallics and the regulation of their electrocatalytic performance. Last but not least, our work presents the in situ HAADF-STEM imaging technique of tracking the atomic configurations with sub-Ångström resolution.
MATERIALS AND METHODS

Chemicals and Materials. Platinum acetylacetonate [Pt(acac)2] and 2,4-pentanedione-cobalt (2:1) [Co(acac)2] were purchased from Strem Chemical. Oleylamine (OAm, 80–90%) and oleic acid (OA, ≥99%) were bought from Aladdin. Chloroform and ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. All the chemicals and materials were employed as received.

Sample Preparation. Pt3Co cube was prepared by a general gas reducing agent in liquid solution method, which has been repeatedly reported. The produced NPs were washed and separated by dispersing the final reaction mixture in 2 mL of chloroform and 10 mL of ethanol, followed by centrifugation at 5000 rpm for 5 min. This procedure was repeated three times to get rid of the extra reactants and capping agents. The final products were dispersed evenly in chloroform for further in situ characterization.

STEM Images of In Situ Annealing Experiment. STEM images were performed on a JEM-ARM300F (JEOL, Tokyo, Japan) Grand ARM transmission electron microscope (TEM) equipped with two spherical aberration correctors at 300 kV. A TEM holder Fusion 200 (Protochips, North Carolina, USA) was used for controlling the in situ temperature during annealing. With the previous research of others, oxidizing or reducing gases will induce different types of segregation, which must be eliminated in our shaped preserved phase transition. Therefore, we chose the vacuum condition to observe the in situ ordering behaviors at atomic resolution. The as-prepared Pt3Co cube was dispersed in chloroform and dropped on Fusion Thermal E-chips comprised of a carbon film with 2 μm holes. The formation of intermetallic at the elevated temperature required a certain level of atom migration, which also leads to a side effect of surface geometry changes. According to the equilibrium phase diagram of bulk CoPt and nanosize effect, LTDAP and DHTAP were designed to study the formation process of intermetallic nanostructures. For LTDAP, the Pt3Co cube was heated from RT to 300 °C using a ramping rate of 30 °C/min, and the heating time was 60 min. With no phase transition at low temperature, the sample was heated to 600 °C using a ramping rate of 30 °C/min. The fully ordered phase was obtained after holding for 60 min at 600 °C. EDS mapping before and after annealing was acquired using JEOL’s large angle silicon drift detector (SDD) EDS with a large solid angle. For DHTAP, we followed the same preparation process. The other Pt3Co cube was heated from RT to 700 °C for 20 min using a ramping rate of 30 °C/min. All of the specimens were exposed to the electron beam only during data acquisition in order to weaken the influence of the electron beam.

S-STEM Images Simulation Method. To reveal the structure at the center of the Pt3Co NP during LTDAP, the Pt3Co crystal with L12 structure and six (100) surface slab models with 0, 20, 40, 60, 80, 100 atomic layers’ ordering L12 structure (Figure S5) were built. Because our initial Pt3Co NP has a cubic shape with a side length of ~18 nm, which is ~100 atomic layers of Pt3Co (100), we select 100 atomic layers to simulate these dynamic growing structures, suppose the growth on six (100) surfaces is simultaneous. The ordering L12 structure is put on the surface of (100), and the Pt layers are used to represent the disordered FCC structure to fade the brightness change more violently. All of these models were fed to QSTEM, a code for simulating TEM and STEM images, to generate the representative HAADF-STEM images. A square area of the atoms in the [100] zone axis direction was scanned for each model to get the corresponding S-STEM images (Figure S5 and Figure 1). Obviously, the brightness of the Co site becomes darker and darker with the increase in thickness of the ordering L12 structure.

Calculation of the (100) Facet Preserved Ratio in View of the 2D Model. Since the initial shape of our samples is a cube enclosed by 6 (100) facets, the (100) facet remaining ratio is a good descriptor to compare these two thermal annealing methods. Therefore, we defined a parameter, [100] facet preserved ratio in view of the 2D model, to quantify the (100) facet-remaining ratio. As is shown in the following Figure S20, the 4 sides along the remaining (100) were extended and intersected into a rectangle, whose length was regarded as the denominator. Clearly, the remaining length of along (100) facet was regarded as the numerator. In this way, the shape-controlled phase transition behaviors on the (100) surface could be quantified based on the assumption that the other two sides have the same behaviors as the side we have seen. Finally, the (100) facet preserved ratio in view of the 2D model for products under LTDAP is 32.63% and that for products under DHTAP is 48.02% (Figure S20).

Calculation of the (100) Facet Preserved Ratio in View of the 3D Model. To improve the quantification accuracy toward the calculation of the (100) facet preserved ratio, we quantified it in view of the 3D model. We built a simple obtuse cube to model the products after thermal annealing (Figure S21). The initial complete area of the {100} facet can be calculated based on the parameters of a0, b0, and c0, while the remaining area of the {100} facet can also be calculated based on the parameters of a1, b1, and c1. Therefore, the [100] facet preserved ratio in view of the 3D model, α, can be calculated as the following:

\[
\alpha = \frac{2a_1 \times b_1 + 2a_1 \times c_1 + 2b_1 \times c_1}{(2a_0 \times b_0 + 2a_0 \times c_0 + 2b_0 \times c_0) \times 100}\]

Since the HAADF-STEM images only exhibit the information from the 2D view (a0, b0, a1, and b1), we suppose that c0 and c1 are approximately equal to b0 and b1 separately. As a result, the (100) facet preserved ratio in view of the 3D model for products under LTDAP is 9.58% and that for products under DHTAP is 25.83% using the parameter read from Figure S20. One minor detail that we use the average length of the two corresponding sides to represent a1 and b1.

DFT Simulation Method. DFT calculations using the projector augmented wave method with a kinetic energy cutoff of 520 eV was performed in the Vienna ab initio simulation package. The generalized gradient approximation with the Perdew–Burke–Ernzerhof exchange–correlation functional was applied in our calculations. A 1 × 1 × 1 conventional cell containing 4 atoms (Figure S5A) was used to model the ordered L12 Pt3Co bulk phase. Two kinds of (100) surface slabs and two kinds of (110) surface slabs with nine atomic layers (Figure S22) were built for the ordered Pt3Co phase. A 2 × 2 × 2 FCC supercell containing 32 atoms (Figure S5B) was adopted to model the solid solution of Pt3Co, whose random structure was generated by following the recipes of Monte Carlo special quasi-random structure within the ATAT codes. We cleaned all the possible (100) and (110) surfaces (Figures S23 and S24) for the disordered Pt3Co NP. A vacuum region of 10.0 Å thick was added between these periodic slabs. The energy convergence criterion is 0.0001 eV/atom for electronic minimization steps.

The Surface Energy. The stability of each surface energy (E) can be calculated as

\[
E = [E_{slab} - (n_Pt - 3n_Co)\mu_{Pt} - n_CoE_{PdCo}] / 2A
\]

where E_slab is the DFT calculated energy of the slab, n_Pt and n_Co are the numbers of the Pt and Co atoms respectively, \(\mu_{Pt}\) is the chemical potential of the Pt of the surface slab and is utilized as the variable, and A is the area of the surface. In our experiment, the chemical potential \(\mu_{Pt}\) ranged from −5.5 eV (Pt atoms in FCC bulk) to −4.5 eV (Pt atoms on the [100] surface). The DFT calculated surface energies of all possible (100) and (110) surfaces of ordered and disordered Pt3Co are displayed in Figure S25. Obviously, Order-Pt3Co-100-Pt, Order-Pt3Co-110-Pt, disorder-Pt3Co-100-4, and disorder-Pt3Co-110-4 display the lowest surface energy among their respective possible (100) and (110) surface configurations in the range of \(\mu_{Pt}\) considered here. The Vacancy Formation Energy. We calculated the respective vacancy formation energy because lower vacancy formation energies will promote the vacancy diffusion mechanism. We first calculated the vacancy formation energy \(E_v\) of Pt atom and Co atom in disordered Pt3Co bulk phase. As far as the Co vacancy is concerned, we calculated all of the possible Co vacancy (8 in total, Figure S26A). As for the Pt vacancy, we...
calculated 8 approximately symmetrical sites (Figure S26B). The Pt vacancy formation energy was calculated as follow:

\[E_v = E_x - E_{PtCo} + \mu_{Pt} \]

where \(E_x \) is the DFT calculated energy of the corresponding disordered PtCo bulk with a Pt vacancy, \(E_{PtCo} \) is the energy of the perfect disordered PtCo bulk, and \(\mu_{Pt} \) is the chemical potential energy of Pt.\(^9\) And the Co vacancy formation energy could be defined as

\[E_v = E_y - E_{PtCo} + \mu_{Co} = E_y - E_{PtCo} + (E_{PtCo} - 3\mu_{Pt}) \]

where \(\mu_{Co} \) is the chemical potential energy of Co and \(E_{PtCo} \) is the total energy of PtCo. All possible results in Figure S27A indicate that the Co vacancy is easier to form in this disordered PtCo system. Therefore, we carried out the vacancy formation energy within disordered PtCo (100) and (110) surface slabs based on the Co vacancy. Their corresponding possible vacancy positions are labeled in Figure S26C, D. The dependence of the calculated \(E_v \) for Co vacancy on the \(\mu_{Pt} \) is exhibited in Figure S27B, C.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c10775.

Morphology and element distribution characterization, QSTEM simulation results, alignment example, the interstitial space calculation, atomic proportion analysis, facet preserved ratio, surface slab models, surface stability, the possible vacancy positions, vacancy formation energy, and the growth rate (PDF)

AUTHOR INFORMATION

Corresponding Authors

Jianbo Wu — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Center of Hydrogen Science, and Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China; orcid.org/0000-0002-3574-5585; Email: jianbouwu@sjtu.edu.cn

Hong Zhu — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Center of Hydrogen Science, and Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China; orcid.org/0000-0001-7919-5661; Email: hong.zhu@sjtu.edu.cn

Authors

Fan Li — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Yuan Zong — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Yanling Ma — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Mingxu Wang — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Wen Shang — State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; orcid.org/0000-0002-6984-3060

REFERENCES

