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PREFACE

Electron density is one of the fundamental concepts underpinning modern
chemistry. Introduced through Max Born’s probability interpretation of the wave
function, it is an enigma that bridges the classical concepts of particles and
fluids. The electronic structure of matter is intimately related to the quantum
laws of composition of probabilities and the Born–Oppenheimer separation
of electronic and nuclear motions in molecules. The topology of the electron
density determines the details of molecular structure and stability. The electron
density is a quantity that is directly accessible to experimental determination
through diffraction experiments. It is the basic variable of density functional
theory, which has enabled practical applications of the mathematical theory
of quantum physics to chemical and biological systems in recent years. The
importance of density functional theory was recognized by the 1998 Nobel Prize
in chemistry to Walter Kohn and John Pople.

In the first part (Chapters 1–6) of this book, we aim to present the reader with
a coherent and logically connected treatment of theoretical foundations of the
electron density concept, beginning with its statistical underpinnings: the use of
probabilities in statistical physics (Chapter 1) and the origins of quantum mechan-
ics. We delve into the philosophical questions at the heart of the quantum theory
such as quantum entanglement (Chapter 2), and also describe methods for the
experimental determination of electron density distributions (Chapter 3). The con-
ceptual and statistical framework developed in earlier chapters is then employed
to treat electron exchange and correlation, the partitioning of molecules into atoms
(Chapter 4), density functional theory, and the theory of the insulating state of
matter (Chapter 5). Chapter 6 concludes with an in-depth treatment of density-
functional approximations for exchange and correlation by Viktor Staroverov.

The second part (Chapters 7–11) deals with applications of the electron
density concept in chemical, biological, and materials sciences. In Chapter 7,
Chakraborty, Duley, Giri, and Chattaraj describe how a deep understanding of
the origins of chemical reactivity can be gleaned from the concepts of density
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functional theory. Applications of electron density in molecular similarity analysis
and of electron-density-derived molecular descriptors form the subject matter of
Chapter 8. In Chapter 9, Politzer, Bulat, Burgess, Baldwin, and Murray, elaborate
on two of the most important such descriptors, namely, electrostatic potentials
and local ionization energies, with particular reference to nanomaterial applica-
tions. All the applications discussed thus far have dealt with electron density
in position space. A complementary perspective is obtained by considering the
electron density in momentum space. MacDougall and Levit illustrate this in
Chapter 10, by employing the Laplacian of the electron momentum density as a
probe of electron dynamics. Pilania, Zhu, and Ramprasad conclude the discus-
sion in Chapter 11 with some applications of modern density functional theory
to surfaces and interfaces. The book is addressed to senior undergraduate and
graduate students in chemistry and philosophers of science, as well as to current
and aspiring practitioners of computational quantum chemistry, and anyone inter-
ested in exploring the applications of the electron density concept in chemistry,
biology, and materials sciences.

I would like to express my sincere thanks and appreciation to the numerous
friends and colleagues who helped to make this book a reality by graciously
contributing their precious time and diligent efforts in reviewing various chapters
or otherwise offering their valuable suggestions, namely, Drs. Felipe Bulat and
A. K. Rajagopal (Naval Research Laboratory, Washington, DC), Prof. Shridhar
Gadre (University of Pune and Indian Institute of Technology, Kanpur, India),
Dr. Michael Krein (Lockheed Martin Advanced Technology Laboratories,
Cherry Hill, NJ and Rensselaer Polytechnic Institute, Troy, NY), Prof. Preston
MacDougall (Middle Tennessee State University, Murfreesboro, TN), Prof.
Cherif Matta (Mount Saint Vincent University and Dalhousie University,
Halifax, Nova Scotia, Canada), Dr. Salilesh Mukhopadhyay (Feasible Solutions,
NJ), Profs. Peter Politzer and Jane Murray (CleveTheoComp LLC, Cleveland,
OH), Prof. Sunanda Sukumar (Albany College of Pharmacy, Albany, NY and
Shiv Nadar University, Dadri, India), Prof. Ajit Thakkar (University of New
Brunswick, Fredericton, Canada), and Prof. Viktor Staroverov (University of
Western Ontario, Canada). I also owe a deep debt of gratitude to the institutions
and individuals who hosted me at various times during the last couple of years
and provided me with the facilities to complete this book, namely, Rensselaer
Polytechnic Institute in Troy, NY, and my host there Prof. Curt Breneman; the
Institute of Mathematical Sciences in Chennai, India, and my host there Prof. G.
Baskaran; and Shiv Nadar University in Dadri, India. The patient assistance of
Senior Acquisitions Editor, Anita Lekhwani, and her very capable and efficient
team at John Wiley & Sons has also been invaluable in this process.

N. Sukumar

Department of Chemistry
Shiv Nadar University
Dadri, UP, India
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Figure 8.7 PEST ray trace showing ray length and angle-of-reflection information
recorded at each point of intersection of the rays with the molecular surface [111]. (Repro-
duced with permission from Breneman CM, Sundling CM, Sukumar N, Shen L, Katt WP,
Embrechts MJ. J Comput Aided Mol Des 2003;17:231–240, Copyright 2003 Springer).

PE

Figure 8.8 Construction of PESD signatures employing MEP and MLP [114]. (Repro-
duced with permission from Das S, Krein MP, Breneman CM. J Chem Inf Model 2010;
50 (2): 298–308, Copyright 2010 American Chemical Society).



Figure 9.1 Color-coded diagram of the electrostatic potential on the molecular surface
of 4-hydroxy-1,3-thiazole computed at the B3PW91/6-31G(d,p) level. The locations of
the atomic nuclei are visible through the surface; sulfur is at the top, and nitrogen is at
the lower right. Color ranges, in kilocalories per mole, are red > 15.0 > yellow > 0.0 >

green > −8.0 > blue.

Figure 9.2 Color-coded diagram of the average local ionization energy on the molec-
ular surface of 4-hydroxy-1,3-thiazole computed at the B3PW91/6-31G(d,p) level. The
locations of the atomic nuclei are visible through the surface; sulfur is at the top, and
nitrogen is at the lower right. Color ranges, in electro volts, are red > 14.0 > yellow >

12.0 > green > 10.0 > blue.
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Figure 9.3 (a) Chemically functionalized CMOS nanomechanical resonator (shaded
bridge) with electrical actuation and transduction. (b) Exposure of CMOS nanomechani-
cal resonator to nitrobenzene (analyte), water (interferent), and cyclohexane (interferent)
shows the selectivity of sensor. On the abscissa, f = frequency.



(a) (b)

Figure 9.5 Calculated molecular electrostatic potentials on the 0.001 au molecular sur-
faces of HFIPA (a) and DNT (b), from B3LYP/6-311G(d,p) wavefunctions. In HFIPA,
the hydroxyl group is at the top; in DNT, the methyl group is at the right. Color ranges,
in kilocalories per mole, are (a, HFIPA) red > 30 > yellow > 17.0 > green > 0.0 >

blue, and (b, DNT) red > 20 > yellow > 13.0 > green > 0.0 > blue.
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Figure 9.6 Various stable complexes formed between HFIPA and DNT, with binding
energies ranging from 7.7 kcal/mol to 1.8 kcal/mol at the B3LYP/6-311G(d,p) level. Some
key structural elements (distances between closest contacts) are shown.



Figure 9.7 Diagram of the average local ionization energy on the molecular surface of
coronene, computed at the B3PW91/6-311 G(d,p) level. Color ranges, in electron volts,
are red >12 > yellow > 10 > green > 9 > blue. The light blue circles indicate the
positions of the local minima found in the central ring.

(a) (b)

Figure 9.8 Diagram of the average local ionization energy on the 0.001 au molecular
surface of the 1-H-coronene radical computed at the B3PW91/6-31G(d,p) level. The added
hydrogen atom is in (b), coming out of the plane of the figure, in the lower portion of it.
Color ranges, in electron volts, are red > 12 > yellow > 10 > green > 9 > blue. The
light blue circles indicate the positions of the local minima found in the central ring and
that associated with C9 (a).



Figure 9.9 Diagram of the electrostatic potential on the 0.001 au surface of an NH2-
end-substituted (6,0) carbon nanotube, at the HF/STO-4G level. The NH2 group is at the
right. The tube is otherwise terminated with hydrogens. Color ranges, in kilocalories per
mole, are red >20 > yellow >0 > green > −20 > blue.

(a) (b)

Figure 9.10 Diagram of the electrostatic potential on the 0.001 au surface of a pristine
(a) and a Stone–Wales defective (b) (5,5) carbon nanotube, at the HF/STO-4G level. Both
tubes are terminated with hydrogens. The defect is in the central portion of the tube facing
the reader (b). Color ranges, in kilocalories per mole, are red > 9 > yellow > 0 > green
> −5 > blue.

(a) (b)

Figure 9.11 Diagram of the average local ionization energy on the 0.001 au surface of
a pristine (a) and a Stone–Wales defective (b) (5,5) carbon nanotube at the HF/STO-4G
level. Both tubes are terminated with hydrogens. The defect is in the central portion of
the tube facing the reader (b). Color ranges, in electron volts, are red > 18.0 > yellow
> 16.0 > green > 14.5 > blue.
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Figure 10.2 Isovalue surfaces for ∇2� = −0.015 au for naphthalene (a) and azulene
(b). All momenta coordinates inside the envelopes are momenta for which the electron
dynamics are locally laminar (∇2� < 0). The vertical axis in both images corresponds
to the component of electron momentum parallel to the direction of the C–C bond that
is shared by both rings. The axis that appears to be coming toward the viewer is the
component of electron momentum that is perpendicular to the plane containing the nuclei
in both molecules. The momentum coordinates in both images extend out to ± 1.0 au.
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Figure 10.3 (a) An isovalue surface for ∇2� = −0.030 au for naphthalene, with the
same axis system shown in Figure 10.2. All momenta inside the envelope, therefore, have
locally more laminar electron dynamics than points on the surface shown in Figure 10.2.
(b) Isovalue surface for which ∇2� is marginally less than zero, computed for the TTF
radical cation. The vertical axis corresponds to the component of electron momentum that
is perpendicular to the plane containing the nuclei. The axis that appears to be coming
toward the viewer corresponds to the component of electron momentum that is parallel to
the central C–C bond. The momentum coordinates in both images extend out to ± 1.0 au.
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Figure 11.3 A schematic illustration depicting a microscopic view of a surface. In “real-
life” situations, a surface of any material may significantly deviate from its idealistic
bulk-terminated geometry and often contains zero-, one-, and two-dimensional defects;
surface adsorbates; etc.
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determined using Equation 11.26; this is the same as (a), but with both the vibrational
and configurational entropic contributions included. The solid curves indicate the interface
phase boundaries, and the dotted curves represent the onset of formation of bulk SiO2.
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1
INTRODUCTION OF PROBABILITY
CONCEPTS IN PHYSICS—THE PATH
TO STATISTICAL MECHANICS

N. Sukumar

It was an Italian gambler who gave us the first scientific study of probability
theory. But Girolamo Cardano, also known as Hieronymus Cardanus or Jerome
Cardan (1501–1576), was no ordinary gambler. He was also an accomplished
mathematician, a reputed physician, and author. Born in Pavia, Italy, Cardan was
the illegitimate son of Fazio Cardano, a Milan lawyer and mathematician, and
Chiara Micheria. In addition to his law practice, Fazio lectured on geometry at
the University of Pavia and at the Piatti Foundation and was consulted by the
likes of Leonardo da Vinci on matters of geometry. Fazio taught his son math-
ematics and Girolamo started out as his father’s legal assistant, but then went
on to study medicine at Pavia University, earning his doctorate in medicine in
1525. But on account of his confrontational personality, he had a difficult time
finding work after completing his studies. In 1525, he applied to the College
of Physicians in Milan, but was not admitted owing to his illegitimate birth.
Upon his father’s death, Cardan squandered his bequest and turned to gambling,
using his understanding of probability to make a living off card games, dice, and
chess. Cardan’s book on games of chance, Liber de ludo aleae (On Casting the
Die, written in the 1560s, but not published until 1663), contains the first ever
exploration of the laws of probability, as well as a section on effective cheat-
ing methods! In this book, he considered the fundamental scientific principles
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2 INTRODUCTION OF PROBABILITY CONCEPTS IN PHYSICS

governing the likelihood of achieving double sixes in the rolling of dice and how
to divide the stakes if a game of dice is incomplete.

First of all, note that each die has six faces, each of which is equally likely
(assuming that the dice are unloaded). As the six different outcomes of a single
die toss are mutually exclusive (only one face can be up at any time), their
probabilities have to add up to 1 (a certainty). In other words, the probabilities of
mutually exclusive events are additive. Thus, P (A = 6) = 1/6 is the probability
of die A coming up a six; likewise P (B = 6) = 1/6 is the probability of die B
coming up a six. Then, according to Cardan, the probability of achieving double
sixes is the simple product:

P(A = 6; B = 6) = P(A = 6) × P(B = 6) = 1/36.

The fundamental assumption here is that the act of rolling (or not rolling) die
A does not affect the outcome of the roll of die B. In other words, the two dice
are independent of each other, and their probabilities are found to compound in a
multiplicative manner. Of course, the same conclusion holds for the probability
of two fives or two ones or indeed that of die A coming up a one and die B
coming up a five. So we can generalize this law to read

P(A; B) = P(A) × P(B), (1.1)

provided A and B are independent events. Notice, however, that the probability
of obtaining a five and a one when rolling two dice is 1/18, since there are two
equally likely ways of achieving this result: A = 1; B = 5 and A = 5; B = 1.
Thus

P(A = 1; B = 5) + P(A = 5; B = 1) = 1

6
× 1

6
+ 1

6
× 1

6
= 1

18
.

Likewise, the probability of obtaining a head and a tail in a two-coin toss is
1/2 × 1/2 + 1/2 × 1/2 = 1/2, while that of two heads is 1/2 × 1/2 (and the same
for two tails) because the two-coin tosses, whether performed simultaneously or
sequentially, are independent of each other.

Eventually, Cardan developed a great reputation as a physician, successfully
treating popes and archbishops, and was highly sought after by many wealthy
patients. He was appointed Professor of Medicine at Pavia University, and was
the first to provide a (clinical) description of typhus fever and (what we now
know as) imaginary numbers. Cardan’s book Arts Magna (The Great Art or The
Rules of Algebra) is one of the classics in algebra. Cardan did, however, pass
on his gambling addiction to his younger son Aldo; he was also unlucky in his
eldest son Giambatista. Giambatista poisoned his wife, whom he suspected of
infidelity, and was then executed in 1560. Publishing the horoscope of Jesus
and writing a book in praise of Nero (tormentor of Christian martyrs) earned
Girolamo Cardan a conviction for heresy in 1570 and a jail term. Forced to give
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up his professorship, he lived the remainder of his days in Rome off a pension
from the Pope.

The foundations of probability theory were thereafter further developed
by Blaise Pascal (1623–1662) in correspondence with Pierre de Fermat
(1601–1665). Following Cardan, they studied the dice problem and solved the
problem of points, considered by Cardan and others, for a two player game,
as also the “gambler’s ruin”: the problem of finding the probability that when
two men are gambling together, one will ruin the other. Blaise Pascal was the
third child and only son of Étienne Pascal, a French lawyer, judge, and amateur
mathematician. Blaise’s mother died when he was three years old. Étienne had
unorthodox educational views and decided to homeschool his son, directing that
his education should be confined at first to the study of languages, and should
not include any mathematics. This aroused the boy’s curiosity and, at the age of
12, Blaise started to work on geometry on his own, giving up his playtime to
this new study. He soon discovered for himself many properties of figures, and,
in particular, the proposition that the sum of the angles of a triangle is equal to
two right angles. When Étienne realized his son’s dedication to mathematics, he
relented and gave him a copy of Euclid’s elements.

In 1639, Étienne was appointed tax collector for Upper Normandy and the
family went to live in Rouen. To help his father with his work collecting taxes,
Blaise invented a mechanical calculating machine, the Pascaline, which could
do the work of six accountants, but the Pascaline never became a commercial
success. Blaise Pascal also repeated Torricelli’s experiments on atmospheric pres-
sure (New Experiments Concerning Vacuums , October 1647), and showed that a
vacuum could and did exist above the mercury in a barometer, contradicting Aris-
totle’s and Descartes’ contentions that nature abhors vacuum. In August 1648, he
observed that the pressure of the atmosphere decreases with height, confirming
his theory of the cause of barometric variations by obtaining simultaneous read-
ings at different altitudes on a nearby hill, and thereby deduced the existence of a
vacuum above the atmosphere. Pascal also worked on conic sections and derived
important theorems in projective geometry. These studies culminated in his Trea-
tise on the Equilibrium of Liquids (1653) and The Generation of Conic Sections
(1654 and reworked on 1653–1658). Following his father’s death in 1651 and
a road accident in 1654 where he himself had a narrow escape, Blaise turned
increasingly to religion and mysticism. Pascal’s philosophical treatise Pensées
contains his statistical cost-benefit argument (known as Pascal’s wager) for the
rationality of belief in God:

If God does not exist, one will lose nothing by believing in him, while if he does
exist, one will lose everything by not believing.

In his later years, he completely renounced his interest in science and math-
ematics, devoting the rest of his life to God and charitable acts. Pascal died of
a brain hemorrhage at the age of 39, after a malignant growth in his stomach
spread to the brain.
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In the following century, several physicists and mathematicians drew upon
the ideas of Pascal and Fermat, in advancing the science of probability and
statistics. Christiaan Huygens (1629–1694), mathematician and physicist, wrote
a book on probability, Van Rekeningh in Spelen van Geluck (The Value of all
Chances in Games of Fortune), outlining the calculation of the expectation in
a game of chance. Jakob Bernoulli (1654–1705), professor of mathematics at
the University of Basel, originated the term permutation and introduced the
terms a priori and a posteriori to distinguish two ways of deriving probabil-
ities. Daniel Bernoulli (1700–1782), mathematician, physicist, and a nephew of
Jakob Bernoulli, working in St. Petersburg and at the University of Basel, wrote
nine papers on probability, statistics, and demography, but is best remembered
for his Exposition of a New Theory on the Measurement of Risk (1737). Thomas
Bayes (1702–1761), clergyman and mathematician, wrote only one paper on
probability, but one of great significance: An Essay towards Solving a Problem
in the Doctrine of Chances published posthumously in 1763. Bayes’ theorem is
a simple mathematical formula for calculating conditional probabilities. In its
simplest form, Bayes’ theorem relates the conditional probability (also called the
likelihood ) of event A given B to its converse, the conditional probability of B
given A:

P(A|B) = P(B|A)P (A)

P (B)
, (1.2)

where P (A) and P (B) are the prior or marginal probabilities of A (“prior” in
the sense that it does not take into account any information about B) and B,
respectively; P (A|B) is the conditional probability of A, given B (also called
the posterior probability because it is derived from or depends on the specified
value of B); and P (B|A) is the conditional probability of B given A. To derive
the theorem, we note that from the product rule, we have

P(A|B) P (B) = P(A; B) = P(B|A) P (A). (1.3)

Dividing by P (B), we obtain Bayes’ theorem (Eq. 1.2), provided that neither
P (B) nor P (A) is zero.

To see the wide-ranging applications of this theorem, let us consider a couple
of examples (given by David Dufty). If a patient exhibits fever and chills, a doctor
might suspect tuberculosis, but would like to know the conditional probability
P (TB|fever & chills) that the patient has tuberculosis given the present symptoms.
Some half of all TB sufferers exhibit these symptoms at any point in time. Thus,
P (fever & chills|TB) = 0.5. While tuberculosis is now rare in the United States
and affects some 0.01% of the population, P (TB) = 0.0001; fever is a common
symptom, generated by hundreds of diseases, and affecting 3% of Americans
every year, and hence P (fever & chills) = 0.03. Thus the conditional probability
of TB given the symptoms of fever and chills is

P(TB|fever & chills) = 0.5 × 0.0001/0.03 = 0.001667
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or about 1.6 in a thousand. Another common situation is when a patient has a
blood test done for lupus. If the test result is positive, it can be a concern, but the
test is known to give a false positive result in 2% of cases: P (test⊕|no lupus) =
0.02. In patients with lupus, 99% of the time the test result is positive, that is,
P (test⊕|lupus) = 0.99. A doctor would like to know the conditional probability
P (lupus|test⊕) that the patient has lupus, given the positive test result. Lupus
occurs in 0.5% of the US population, so that P (lupus) = 0.005. The probability
of a positive result in general is

P(test⊕) = P(test⊕; lupus) + P(test⊕; no lupus)

= P(test⊕; lupus) × P(lupus) + P(test⊕; no lupus) × P(no lupus)

= 0.99 × 0.005 + 0.02 × 0.995

= 0.02485,

where we have used the sum rule for mutually exclusive events in the first step,
and Equation 1.3 in the next step. The probability of lupus, given the positive
test result, is then P (lupus|test⊕) = 0.99 × 0.005/0.02485 = 0.199. So, in spite
of the 99% accuracy of the test, there is only a 20% chance that a patient testing
positive actually has lupus. This seemingly nonintuitive result is due to the fact
that lupus is a very rare disease, while the test gives a large number of false
positives, so that there are more false positives in any random population than
actual cases of the disease.

The next actor in our story is Pierre-Simon de Laplace (1749–1827), a math-
ematician and a physicist, who worked on probability and calculus over a period
of more than 50 years. His father, Pierre Laplace, was in the cider trade and
expected his son to make a career in the church. However, at Caen University,
Pierre-Simon discovered his love and talent for mathematics and, at the age of
19, went to Paris without taking his degree, but with a letter of introduction to
d’Alembert, from his teacher at Caen. With d’Alembert’s help, Pierre-Simon was
appointed professor of mathematics at École Militaire, from where he started pro-
ducing a series of papers on differential equations and integral calculus, the first
of which was read to the Académie des Sciences in Paris in 1770. His first paper
to appear in print was on integral calculus in Nova Acta Eruditorum , Leipzig, in
1771. He also read papers on mathematical astronomy to the Académie, including
the work on the inclination of planetary orbits and a study of the perturbation of
planetary orbits by their moons. Within 3 years Pierre-Simon had read 13 papers
to the Académie, and, in 1773, he was elected as an adjoint in the Académie des
Sciences. His’ 1774 Mémoire sur la Probabilité des Causes par les Évènemens
gave a Bayesian analysis of errors of measurement. Laplace has many other
notable contributions to his credit, such as the central limit theorem, the prob-
ability generating function, and the characteristic function. He also applied his
probability theory to compare the mortality rates at several hospitals in France.

Working with the chemist Antoine Lavoisier in 1780, Laplace embarked on
a new field of study, applying quantitative methods to a comparison of living
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and inanimate systems. Using an ice calorimeter that they devised, Lavoisier and
Laplace showed respiration to be a form of combustion. In 1784, Laplace was
appointed examiner at the Royal Artillery Corps, where he examined and passed
the young Napoleon Bonaparte. As a member of a committee of the Académie des
Sciences to standardize weights and measures in 1790, he advocated a decimal
base, which led to the creation of the metric system. He married in May 1788; he
and his wife went on to have two children. While Pierre-Simon was not modest
about his abilities and achievements, he was at least cautious, perhaps even
politically opportunistic, but certainly a survivor. Thus, he managed to avoid the
fate of his colleague Lavoisier, who was guillotined during the French Revolution
in 1794. He was a founding member of the Bureau des Longitudes and went on
to lead the Bureau and the Paris Observatory. In this position, Laplace published
his Exposition du Systeme du Monde as a series of five books, the last of which
propounded his nebular hypothesis for the formation of the solar system in 1796,
according to which the solar system originated from the contraction and cooling
of a large, oblate, rotating cloud of gas.

During Napoleon’s reign, Laplace was a member, then chancellor of the
Senate, receiving the Legion of Honor in 1805 and becoming Count of the Empire
the following year. In Mécanique Céleste (4th edition, 1805), he propounded an
approach to physics that influenced thinking for generations, wherein he “sought
to establish that the phenomena of nature can be reduced in the last analysis to
actions at a distance between molecule and molecule, and that the considera-
tion of these actions must serve as the basis of the mathematical theory of these
phenomena .” Laplace’s Théorie Analytique des Probabilités (1812) is a classic
of probability and statistics, containing Laplace’s definition of probability; the
Bayes rule; methods for determining probabilities of compound events; a discus-
sion of the method of least squares; and applications of probability to mortality,
life expectancy, and legal affairs. Later editions contained supplements apply-
ing probability theory to measurement errors; to the determination of the masses
of Jupiter, Saturn, and Uranus; and to problems in surveying and geodesy. On
restoration of the Bourbon monarchy, which he supported by casting his vote
against Napoleon, Pierre-Simon became Marquis de Laplace in 1817. He died
on March 5, 1827.

Another important figure in probability theory was Carl Friedrich Gauss
(1777–1855). Starting elementary school at the age of seven, he amazed his
teachers by summing the integers from 1 to 100 instantly (the sum equals
5050, being the sum of 50 pairs of numbers, each pair summing to 101).
At the Brunswick Collegium Carolinum, Gauss independently discovered the
binomial theorem, as well as the law of quadratic reciprocity and the prime
number theorem. Gauss’ first book Disquisitiones Arithmeticae published in
1801 was devoted to algebra and number theory. His second book, Theoria
Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium (1809),
was a two-volume treatise on the motion of celestial bodies. Gauss also used
the method of least squares approximation (published in Theoria Combinationis
Observationum Erroribus Minimis Obnoxiae, 1823, supplement 1828) to
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successfully predict the orbit of Ceres in 1801. In 1807, he was appointed
director of the Göttingen observatory. As the story goes, Gauss’ assistants were
unable to exactly reproduce the results of their astronomical measurements.
Gauss got angry and stormed into the lab, claiming he would show them
how to do the measurements properly. But, Gauss was not able to repeat
his measurements exactly either! On plotting a histogram of the results of a
particular measurement, Gauss discovered the famous bell-shaped curve that
now bears his name, the Gaussian function:

G(x) = A e−x2/2σ 2
, (1.4)

where σ is the spread, standard deviation, or variance and A is a normalization
constant. A = (2π)−1/2/σ if the function is normalized such that

∫ ∞
−∞ G(x) = 1.

The error function of x is twice the integral of a normalized Gaussian function
between 0 and x :

erf(x) = 2√
π

x∫
0

e−t2
dt . (1.5)

It is of a sigmoid shape and has wide applications in probability and statistics.
In the field of statistics, Gauss is best known for his theory of errors, but this
represents only one of Gauss’ many remarkable contributions to science. He pub-
lished over 70 papers between 1820 and 1830 and in 1822, won the Copenhagen
University Prize for Theoria Attractioniscorporum Sphaeroidicorum Elliptico-
rum Momogeneorum Methodus Nova Tractata , dealing with geodesic problems
and potential theory. In Allgemeine Theorie des Erdmagnetismus (1839), Gauss
showed that there can only be two poles in the globe and went on to specify
a location for the magnetic South pole, establish a worldwide net of magnetic
observation points, and publish a geomagnetic atlas. In electromagnetic theory,
Gauss discovered the relationship between the charge density and the electric
field. In the absence of time-dependent magnetic fields, Gauss’s law relates the
divergence of the electric field E to the charge density ρ(r):

∇ · E = ρ(r), (1.6)

which now forms one of Maxwell’s equations.
The stage is now set for the formal entry of probability concepts into physics,

and the credit for this goes to the Scottish physicist James Clerk Maxwell and the
Austrian physicist Ludwig Boltzmann. James Clerk Maxwell (1831–1879) was
born in Edinburgh on June 13, 1831, to John Clerk Maxwell, an advocate, and
his wife Frances. Maxwell’s father, a man of comfortable means, had been born
John Clerk, and added the surname Maxwell to his own after he inherited a coun-
try estate in Middlebie, Kirkcudbrightshire, from the Maxwell family. The family
moved when James was young to “Glenlair,” a house his parents had built on the
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1500-acre Middlebie estate. Growing up in the Scottish countryside in Glenlair,
James displayed an unquenchable curiosity from an early age. By the age of
three, everything that moved, shone, or made a noise drew the question: “what’s
the go o’ that?” He was fascinated by geometry at an early age, rediscovering
the regular polyhedron before any formal instruction. However, his talent went
largely unnoticed until he won the school’s mathematical medal at the age of
13, and first prizes for English and poetry. He then attended Edinburgh Academy
and, at the age of 14, wrote a paper On the Description of Oval Curves, and Those
Having a Plurality of Foci describing the mechanical means of drawing mathe-
matical curves with a piece of twine and generalizing the definition of an ellipse,
which was read to the Royal Society of Edinburgh on April 6, 1846. Thereafter,
in 1850, James went to Cambridge, where (according to Peter Guthrie Tait) he
displayed a wealth of knowledge, but in a state of disorganization unsuited to
mastering the cramming methods required to succeed in the Tripos. Nevertheless,
he obtained the position of Second Wrangler, graduating with a degree in math-
ematics from Trinity College in 1854, and was awarded a fellowship by Trinity
to continue his work. It was during this time that he extended Michael Faraday’s
theories of electricity and magnetism. His paper On Faraday’s Lines of Force,
read to the Cambridge Philosophical Society in 1855 and 1856, reformulated the
behavior of and relation between electric and magnetic fields as a set of four
partial differential equations (now known as Maxwell’s equations , published in
a fully developed form in Maxwell’s Electricity and Magnetism 1873).

In 1856, Maxwell was appointed professor of natural philosophy at Marischal
College in Aberdeen, Scotland, where he became engaged to Katherine Mary
Dewar. They were married in 1859. At 25, Maxwell was a decade and a half
younger than any other professors at Marischal, and lectured 15 hours a week,
including a weekly pro bono lecture to the local working men’s college. During
this time, he worked on the perception of color and on the kinetic theory of gases.
In 1860, Maxwell was appointed to the chair of natural philosophy at King’s
College in London. This was probably the most productive time of his career.
He was awarded the Royal Society’s Rumford Medal in 1860 for his work on
color, and elected to the Society in 1861. Maxwell is credited with the discovery
that color photographs could be formed using red, green, and blue filters. In
1861, he presented the world’s first color photograph during a lecture at the
Royal Institution. It was also here that he came into regular contact with Michael
Faraday, some 40 years his senior, whose theories of electricity and magnetism
would be refined and perfected by Maxwell. Around 1862, Maxwell calculated
that the speed of propagation of an electromagnetic field is approximately the
speed of light and concluded, “We can scarcely avoid the conclusion that light
consists in the transverse undulations of the same medium which is the cause
of electric and magnetic phenomena .” Maxwell then showed that the equations
predict the existence of waves of oscillating electric and magnetic fields that
travel through an empty space at a speed of 310,740,000 m/s. In his 1864 paper A
Dynamical Theory of the Electromagnetic Field , Maxwell wrote, “The agreement
of the results seems to show that light and magnetism are affections of the same
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substance, and that light is an electromagnetic disturbance propagated through
the field according to electromagnetic laws .”

In 1865, Maxwell left London and returned to his Scottish estate in Glen-
lair. There he continued his work on the kinetic theory of gases and, using a
statistical treatment, showed in 1866 that temperature and heat involved only
molecular movement. Maxwell’s statistical picture explained heat transport in
terms of molecules at higher temperature having a high probability of moving
toward those at lower temperature. In his 1867 paper, he also derived (indepen-
dently of Boltzmann) what is known today as the Maxwell–Boltzmann velocity
distribution:

fv

(
vx, vy, vz

) =
( m

2kT

)3/2
exp

[
−m

(
vx

2 + vy
2 + vz

2
)

2kT

]
, (1.7)

where fv(vx, vy, vz) dvx dvy dvz is the probability of finding a particle with veloc-
ity in the infinitesimal element [dvx , dvy , dvz] about velocity v = [vx, vy, vz],
k is a constant now known as the Boltzmann constant (1.38062 × 10−23 J/K),
and T is the temperature. This distribution is the product of three independent
Gaussian distributions of the variables vx, vy , and vz, with variance kT /m .

Maxwell’s work on thermodynamics also led him to devise the Gedanken-
experiment (thought experiment) that came to be known as Maxwell’s demon .
In 1871, Maxwell accepted an offer from Cambridge to be the first Cavendish
Professor of Physics. He designed the Cavendish Laboratory, which was for-
mally opened on June 16, 1874. His four famous equations of electrodynamics
first appeared in their modern form of partial differential equations in his 1873
textbook A Treatise on Electricity and Magnetism:

∇ · E = ρ(r) Gauss’s law, (1.8)

∇ · B = 0 Gauss’s law for magnetism, (1.9)

∇ × E = −∂B/∂t Faraday’s law of induction, (1.10)

∇ × B = J + ∂E/∂t Ampère’s law with Maxwell’s correction, (1.11)

where E is the electric field, B the magnetic field, J the current density, and
we have suppressed the universal constants, the permittivity, and permeability
of free space. Maxwell delivered his last lecture at Cambridge in May 1879 and
passed away on November 5, 1879, in Glenlair.

The story goes that Einstein was once asked whom he would most like to meet
if he could go back in time and meet any physicist of the past. Without hesitation,
Einstein gave the name of Newton and then Boltzmann. Ludwig Eduard Boltz-
mann was born on February 20, 1844, in Vienna, the son of a tax official. Ludwig
attended high school in Linz and subsequently studied physics at the University
of Vienna, receiving his doctorate in 1866 for a thesis on the kinetic theory of
gases, under the supervision of Josef Stefan. Boltzmann’s greatest contribution to
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science is, of course, the invention of statistical mechanics, relating the behavior
and motions of atoms and molecules with the mechanical and thermodynamic
properties of bulk matter. We owe to the American physicist Josiah Willard Gibbs
the first use of the term statistical mechanics . In his 1866 paper, entitled Über die
Mechanische Bedeutung des Zweiten Hauptsatzes der Warmetheorie, Boltzmann
set out to seek a mechanical analog of the second law of thermodynamics, noting
that while the first law of thermodynamics corresponded exactly with the prin-
ciple of conservation of energy, no such correspondence existed for the second
law. Already in this 1866 paper, Boltzmann used a ρ log ρ formula, interpreting
ρ as density in phase space. To obtain a mechanical formulation of the second
law, he started out by providing a mechanical interpretation of temperature by
means of the concept of thermal equilibrium, showing that at equilibrium both
temperature and the average kinetic energy exchanged are zero.

To establish this result, Boltzmann considered a subsystem consisting of two
molecules and studied their behavior assuming that they are in equilibrium with
the rest of the gas. The condition of equilibrium requires that this subsystem
and the rest of the molecules exchange kinetic energy and change their state in
such a way that the average value of the kinetic energy exchanged in a finite
time interval is zero, so that the time average of the kinetic energy is stable.
However, one cannot apply the laws of elastic collision to this subsystem, as it
is in equilibrium with, and exchanging energy and momentum with, the rest of
the gas. To overcome this obstacle, Boltzmann proposed a remarkable argument:
he argued that, at equilibrium, the evolution of the two-particle subsystem is
such that, sooner or later, it would pass through two states having the same total
energy and momentum. But, this is just the same outcome as if these states had
resulted from an elastic collision. Herein, we can find the germ of the ergodic
hypothesis. Boltzmann regarded the irregularity of the system evolution as a sort
of spreading out or diffusion of the system trajectory among the possible states
and thus reasoned that if such states are able to occur, they will occur. It is only
the existence of such states that is of importance and no assumption was made
regarding the time interval required for the system to return to a state with the
same energy and momentum. In particular, Boltzmann made no assumption of
periodicity for the trajectory. Only the fact of closure of the trajectory matters to
the argument, not when such closure occurs.

Next, Boltzmann derived the kinetic energy exchanged by the two molecules
in passing from one state to the other, and then generalized the results to other
states, assuming the equiprobability of the direction of motion (again based on
the irregularity and complexity of molecular motion) and averaging the results
for the elastic collision over all collision angles. He thus obtained a condition for
the average kinetic energy to reach equilibrium, which was analogous to that for
thermal equilibrium. Concluding from this that temperature is a function of the
average kinetic energy, Boltzmann then proceeded to derive a mechanical analog
of the second law of thermodynamics in the form of a least action principle.
He showed that, if a mechanical system obeys the principle of least action, the
kinetic energy (in analogy to heat dQ) supplied to a periodic system is given by
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2d(τE)/τ , where E = (1/τ)
∫ τ

0 E dt is the average kinetic energy. Hence, if no
energy is supplied (corresponding to the adiabatic condition dQ = 0), the ratio
E/v is an invariant. The concept of probability enters into this formulation in
a most fundamental way. We can distinguish at least two interpretations of the
concept of probability in Boltzmann’s writings. He used the term probability in
the sense of relative frequency or sojourn time of a trajectory in order to interpret
thermodynamic parameters as average mechanical quantities. Elsewhere, he had
defined probability of a trajectory with certain constraints as the ratio between
the number of trajectories satisfying those constraints and the number of all
possible trajectories. The equivalence between these two probability measures
leads directly to ergodic hypothesis.

On completing his Privatdozenten (lectureship) in 1867, Boltzmann was
appointed professor of mathematical physics at the University of Graz. The next
year he set out to create a general theory of the equilibrium state. Boltzmann
argued on probabilistic grounds that the average energy of motion of a molecule
in an ideal gas is the same in each direction (an assumption also made by
Maxwell) and thus derived the Maxwell–Boltzmann velocity distribution
(Eq. 1.7). Since for an ideal gas, all energy is in the form of kinetic energy,
E = 1

2mv2, the Boltzmann distribution for the fractional number of molecules
Ni/N occupying a set of states i and possessing energy Ei is thus proportional
to the probability density function (Eq. 1.7):

Ni

N
= gi exp(−Ei/kBT )∑

j gj exp(−Ej/kBT )
, (1.12)

where gi is the degeneracy (the number of states having energy Ei), Ni the
number of molecules at equilibrium temperature T in a state i with energy Ei and
degeneracy gi , and N = ∑

i Ni the total number of molecules. The denominator
in Equation 1.12 is the canonical partition function:

Z(T ) =
∑

i

gi e−Ei/kBT . (1.13)

He applied the distribution to increasingly complex cases, treating external
forces, potential energy, and motion in three dimensions. In his 1868 paper, he
elaborated on his concept of diffuse motion of the trajectory among possible
states, generalizing his earlier results to the whole available phase space
consistent with the conservation of total energy. In 1879, Maxwell pointed out
that this generalization rested on the assumption that the system, if left to itself,
will sooner or later pass through every phase consistent with the conservation
of energy—namely, the ergodic hypothesis. In his 1868 paper, Boltzmann also
pioneered the use of combinatorial arguments, showed the invariance of the
phase volume during the motion, and interpreted the phase space density as
the probability attributed to a region traversed by a trajectory. Here, we see the
precursor to Max Born’s statistical interpretation of the quantum wave function.
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Boltzmann was also the first one to recognize the importance of Maxwell’s
electromagnetic theory. He spent several months in Heidelberg with Robert Bun-
sen and Leo Konigsberg in 1869 and then in Berlin with Gustav Kirchoff and
Herman von Helmholtz in 1871, working on problems of electrodynamics. During
this time, he continued developing and refining his ideas on statistical mechanics.
Boltzmann’s nonequilibrium theory was first presented in 1872 and used many
ideas from his equilibrium theory of 1866–1871. His famous 95-page article,
Weitere Studien über das Wärmegleichgewicht unter Gasmolecülen (Further Stud-
ies on the Thermal Equilibrium of Gas Molecules), published in October 1872,
contains what he called his minimum theorem , now known as the H-theorem ,
the first explicit probabilistic expression for the entropy of an ideal gas. Boltz-
mann’s probability equation relates the entropy S of an ideal gas to the number
of ways W (Wahrscheinlichkeit) in which the constituent atoms or molecules
can be arranged, that is, the number of microstates corresponding to a given
macrostate:

S = k log W. (1.14)

Here, log refers to natural logarithms. The H-theorem is an equation based on
Newtonian mechanics that quantifies the heat content of an ideal gas by a numer-
ical quantity H (short for heat). Defined in terms of the velocity distributions
of the atoms and molecules of the gas, H assumes its minimum value when the
velocities of the particle are distributed according to the Maxwell–Boltzmann (or
Gaussian) distribution. Any gas system not at its minimal value of H will tend
toward the minimum value through molecular collisions that move the system
toward the Maxwell–Boltzmann distribution of velocities.

After a stint as professor of mathematics at the University of Vienna from 1873
to 1876, Boltzmann returned to Graz to take the chair of experimental physics. In
1884, Boltzmann initiated a theoretical study of radiation in a cavity (black body
radiation) and used the principles of thermodynamics to derive Stefan’s law:

E ∝ T 4, (1.15)

according to which the total energy density E radiated by a black body is pro-
portional to the fourth power of its temperature T . Study of this radiation led
Wilhelm Wien and Max Planck to their famous scaling law, whereby the energy
density in the cavity is given by ν times a function of ν/T , ν being the fre-
quency of radiation and T the temperature of the cavity. Planck’s main interest
in these studies was the question of the origin of irreversibility in thermodynam-
ics. Following Boltzmann’s procedure, he was able to show that, for radiation in
the cavity, the entropy S is a function of E /ν. Thus, for a reversible adiabatic
process (dS = 0), E /ν is an invariant.

In 1890, Boltzmann was appointed to the chair of theoretical physics at the
University of Munich in Bavaria, Germany, and succeeded Stefan as professor
of theoretical physics in his native Vienna after the latter’s death in 1893. In
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1900, at the invitation of Wilhelm Ostwald, Boltzmann moved to the Univer-
sity of Leipzig. Although the two were on good personal terms, Ostwald was
one of Boltzmann’s foremost scientific critics and the latter struggled to gain
acceptance for his ideas among his peers. Ostwald argued, for instance, that the
actual irreversibility of natural phenomena proved the existence of processes that
cannot be described by mechanical equations. Unlike Boltzmann, most chemists
at that time did not ascribe a real existence to molecules as mechanical entities;
the molecular formula was treated as no more than a combinatorial formula. The
Vienna Circle was strongly influenced at that time by the positivist–empiricist
philosophy of the Austrian physicist and philosopher Ernst Mach (1838–1916),
who occupied the chair for the philosophy of the inductive sciences at the Uni-
versity of Vienna. As an experimental physicist, Mach also held that scientific
theories were only provisional and had no lasting place in physics. He advanced
the concept that all knowledge is derived from sensation; his philosophy was
thus characterized by an antimetaphysical attitude that recognized only sensa-
tions as real. According to this view, phenomena investigated by science can be
understood only in terms of experiences or the “sensations” experienced in the
observation of the phenomena; thus, no statement in science is admissible unless
it is empirically verifiable. This led him to reject concepts such as absolute time
and space as metaphysical. Mach’s views thus stood in stark opposition to the
atomism of Boltzmann. Mach’s reluctance to acknowledge the reality of atoms
and molecules as external, mind-independent objects was criticized by Boltzmann
and later by Planck as being incompatible with physics. Mach’s main contribu-
tion to physics involved his description and photographs of spark shock-waves
and ballistic shock-waves. He was the first to systematically study supersonic
motion, and describe how passing the sound barrier caused the compression of
air in front of bullets and shells; the speed of sound bears his name today. After
Mach’s retirement following a cardiac arrest, Boltzmann returned to his former
position as professor of theoretical physics in Vienna in 1902, where he remained
for the rest of his life.

On April 30, 1897, Joseph John Thomson announced the discovery of “the
carriers of negative electricity”—the electron—to the Royal Institution in Eng-
land. He was to be awarded the Nobel Prize in 1906 for his determination of its
charge to mass ratio. Meanwhile, in November 1900, Max Planck came to the
realization that the Wien law is not exact. In an attempt to define an entropy of
radiation conforming with Stefan’s empirical result (Eq. 15), Planck was led to
postulate the quantum of action:

E/ν = nh. (1.16)

This result was first publicly communicated to a small audience of the German
Physical Society on December 14, 1900. In his 1901 paper On the Law of Distri-
bution of Energy in the Normal Spectrum , Planck used Boltzmann’s H-function
to explain that the entropy S of a system is proportional to the logarithm of its
probability W , to within an arbitrary additive constant. He later called this the
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general definition of entropy . The great Boltzmann, however, took little notice
of these revolutionary developments in theoretical and experimental physics that
would soon confirm his theories. Growing increasingly isolated and despondent,
Boltzmann hanged himself on September 5, 1906, while on vacation in Duino,
near Trieste. On Boltzmann’s tombstone is inscribed his formula S = k log W .
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2
DOES GOD PLAY DICE?

N. Sukumar

2.1 QUANTA OF RADIATION

We saw in the previous chapter how the study of black-body radiation
initiated by Boltzmann led Wien to his famous scaling law. Paul Ehrenfest
(PhD, 1904), one of the foremost students of Ludwig Boltzman at Vienna,
was the first to point out the divergence of the energy density of black-body
radiation predicted by the classical wave theory of light at low frequencies;
he called this the “Rayleigh–Jeans catastrophe in the ultraviolet” (nowadays
known as the ultraviolet catastrophe). Realizing that the classical wave theory is
not valid at low frequencies, Planck postulated the quantum of action (Eq. 1.16)
to obtain an entropy of radiation that would conform with Stefan’s empirical
fourth power dependence on temperature (Eq. 1.15) and eliminate the ultraviolet
catastrophe. Planck’s law was essentially an interpolation formula between the
Wien radiation law, valid for high frequencies (ν) and low temperatures (T ),
and the Rayleigh–Jeans formula, valid at low ν and high T . The former is
derived from the assumption ∂2S/∂U 2 = constant/U , where S is the entropy
of black-body radiation and U its energy, whereas the latter can be obtained
from ∂2S/∂U 2 = constant/U 2. Interpolating between these formulae, Planck
assumed instead

∂2S/∂U 2 = constant

U(b + U)
(2.1)
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(where b is a constant), from which he derived his famous radiation law for the
energy density of black-body radiation:

uν = 8πhν3

c3

[
exp

(
hν

kT

)
− 1

] [Planck]. (2.2)

This equation reduces to the Wien law at high ν and low T :

uν = 8πhν3

c3
exp

(
− hν

kT

)
[Wein] (2.3)

and to the Rayleigh–Jeans radiation law at low ν and high T :

uν = 8πν2kT

c2
[Rayleigh–Jeans radiation]. (2.4)

Planck adopted Boltzmann’s statistical concept of entropy in order to elevate
Equation 2.1 from a “lucky guess” to a “statement of real physical significance”:
he assumed that the entropy S of a system of oscillators of frequency ν is given
by S = k log W , where W is the number of distributions compatible with the
energy of the system and k is Boltzmann’s constant. These results were obtained
during a period of 8 weeks, which Planck later described thus [1, 2]: “After a few
weeks of the most strenuous work of my life, the darkness lifted and an unexpected
vista began to appear .” Planck communicated these results at a meeting of the
German Physical Society on December 14, 1900 [3], by reading his paper On the
Theory of the Energy Distribution Law of the Normal Spectrum , which introduced
for the first time his “universal constant h .”

Ehrenfest realized that Planck’s hypothesis challenged Boltzmann’s assump-
tion of equal a priori probabilities of volume elements in phase space. It was
Albert Einstein, a technical expert at the Swiss patent office in Bern, who rec-
ognized the logical inconsistency in combining an electrodynamical description
based on Maxwell’s equations, which assume that energy can vary continuously,
with a statistical description, where the oscillator energy is restricted to assume
only discrete values that are integral multiples of hν. Equation 2.1, in fact, com-
bines the wave and particle aspects of radiation, although this was not Planck’s
explicit intention. Planck’s conception of energy quantization was of oscillators
of frequency ν that could only absorb or emit energy in integral multiples of
hν: the quantization only applied to the interaction between matter and radia-
tion. Einstein’s 1905 paper in Annalen der Physik on the photoelectric effect and
the light quantum hypothesis [4], wherein Einstein proposed that radiant energy
itself is quantized, launched the quantum revolution in our physical conceptions
of matter and radiation, winning him the Nobel Prize in 1921.

Albert Einstein was born on March 14, 1879, in the German town of Ulm, the
first child of Pauline and Hermann Einstein. Pauline was a talented pianist and
Hermann was a merchant. In 1880, the family moved to Munich, where Hermann
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started a business with his brother Jacob. A daughter Maria (also called Maja)
was born in 1881. Albert was a good student and excelled at school, but generally
kept to himself and detested sports and gymnastics [5]. Both Albert and Maja
learned to play the piano; Albert would play Mozart and Beethoven sonatas,
accompanied by his mother, and he delighted in piano improvisations. Their uncle
Jacob would pose mathematical problems, which Albert derived great satisfaction
from solving. When a family friend gave him a book on Euclidean geometry
when Albert was 12 years old, it was like a revelation. Albert also taught himself
calculus. After the family moved to Italy to start a new business, Albert moved
to Zurich in 1895, and the following year he gave up his German citizenship and
enrolled at the Swiss Federal Institute of Technology (Eidgenössische Technische
Hochschule, ETH). At ETH, his proposal for an experiment to test the earth’s
movement relative to the ether was rebuffed by Professor Heinrich Weber. After
graduation from ETH, Einstein failed to secure a university position and was
unemployed for nearly a year before obtaining a series of temporary teaching
positions. He was granted Swiss citizenship in 1901, moved to Bern the following
year, and finally secured an appointment at the Swiss federal patent office. Here
he found the time to work on his own on scientific problems of interest to him.
Hermann Einstein died of a heart attack in Milan in 1902. Albert married Mileva
Maric, a former classmate from ETH, the following year. Their son, Hans Albert,
was born in 1904.

That brings us to Einstein’s annus mirabilis or miracle year, 1905: the 8-
month period during which he published in the Annalen der Physik four of
the most important papers of his life, in addition to his PhD thesis [6] for the
University of Zurich: (i) On a Heuristic Viewpoint Concerning the Production and
Transformation of Light dealing with the photoelectric effect, received in March
[4]; (ii) On the Motion—Required by the Molecular Kinetic Theory of Heat—of
Small Particles Suspended in a Stationary Liquid on Brownian motion and the
determination of Avogadro’s number, which helped to resolve lingering doubts
on the reality of molecules, received in May [7], (iii) On the Electrodynamics of
Moving Bodies on special relativity, received in June [8], (iv) Does the Inertia of
a Body Depend Upon Its Energy Content? on mass–energy equivalence, received
in September [9]. Einstein was then 26. The revolution in physics was under way!

At the turn of the century, the wave theory of light, based on Maxwell’s
equations and continuous functions in space, was firmly established. The exis-
tence of electromagnetic waves had been confirmed by Heinrich Hertz in a series
of experiments beginning in 1886, but these same experiments also produced the
first evidence for the photoelectric effect [10]. The photoelectric effect occurs
when ultraviolet or visible light illuminates the surface of an electropositive metal
subjected to a negative potential: there is then a flow of electrons from the cathode
(cathode rays). This discovery spurred several others to investigate the pheno-
menon. It was established that radiation from an electric arc discharges the
cathode, without affecting the anode [11], that red and infrared radiation are
ineffective in inducing a photoelectric current [12], that the photoelectric current
is proportional to the intensity of light absorbed [13], that the emission occurs
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only at frequencies exceeding a minimum threshold value ν0 [14], with the more
electropositive the metal comprising the electrode, the lower the threshold fre-
quency ν0 [15] and that the energy of the ejected photoelectrons is independent
of the intensity of the incident light but proportional to its frequency above the
threshold, that is, to ν − ν0 [14, 16]. These observations seemed incompatible
with Maxwell’s electromagnetic theory, but were explained by Einstein’s hypoth-
esis of discrete light corpuscles or quanta, each of energy hν and each capable
of interacting with a single electron. This electron can then absorb the single
light quantum (photon); part of its energy is used to overcome the attraction of
the electron to the metal and the rest would appear as the kinetic energy of the
photoelectron.

From the law of conservation of energy, the maximum kinetic energy of the
photoelectrons is given by hν − hν0, where hν0 is the energy necessary to remove
an electron from the metal, a constant for a given material. This was verified by
Hughes [17] who measured the maximum velocity of photoelectrons ejected from
a number of metals. In a series of painstaking experiments over 10 years cul-
minating in 1916, Robert Millikan [18] confirmed Einstein’s prediction that the
stopping potential for the electrons would be a linear function of the frequency
of the incident light, thereby providing irrefutable evidence for the existence
of photons and the first direct photoelectric determination of Planck’s constant
h . Millikan obtained the value h = 6.57 × 10−27 erg/s for the constant of pro-
portionality between the kinetic energy of photoelectrons and the frequency of
absorbed light, and showed that this value is independent of the surface, work
for which he received the Nobel Prize in 1923.

2.2 ADIABATIC INVARIANTS

Paul Ehrenfest had long realized the importance of the variable E /ν and
he sought a conceptual foundation for the quantum hypothesis in terms of
generalized adiabatic invariants:

If you contract a reflecting cavity infinitely slowly, then the frequency ν and the energy
E of each proper vibration increase simultaneously in such a way that E /ν remains
invariant under this “adiabatic” influence. The a priori probability must always depend
on only those quantities which remain invariant under adiabatic influencing, or else
the quantity ln W will fail to satisfy the condition, imposed by the second law on the
entropy, of remaining invariant under adiabatic changes. [19]

In December 1912, Ehrenfest found the result he was seeking: “Then my
theorem reads . . . The average kinetic energy of our system increases in the
same proportion as the frequency under an adiabatic influencing .” According
to Ehrenfest’s adiabatic hypothesis [20], quantum admissible motions transform
to other admissible motions under adiabatic influences. Ehrenfest thus launched
on a program for finding quantum states by quantizing the adiabatic invariants.
Ehrenfest’s adiabatic principle determined the formal applicability of the
formalism of classical mechanics to the quantum theory, and also enabled the
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determination of stationary states of systems that were adiabatically related to
other known systems.

In 1913, the Danish physicist Niels Bohr [21] applied the quantization of
energy and angular momentum to explain the spectral lines of hydrogen. He
proposed that electrons move without loss of energy in stable, stationary orbits
around the nucleus in an atom, with fixed energy and with angular momentum
being equal to an integral multiple of h/2π , and furthermore that absorption or
emission of radiation by atoms occurs only when an electron jumps between two
different stationary orbits. The frequency of the radiation emitted or absorbed
during the transition between stationary orbits of energy Em and En is given by
the energy quantization rule:

Em − En = hν. (2.5)

Wilson [22] and Sommerfeld [23] extended Bohr’s model of the atom to
include elliptical, in addition to circular, electron orbits, and postulated that sta-
tionary states are characterized by constant and quantized action integral of the
angular momentum: ∮

pdq = nh, (2.6)

where p is the momentum corresponding to the generalized coordinate and q
and n are integer quantum numbers. Ehrenfest [24] then showed the equivalence
of Sommerfeld’s quantization condition (Eq 2.6) with the adiabatic principle of
mechanics.

2.3 PROBABILITY LAWS

Einstein’s light quanta of 1905 were energy quanta satisfying Equation 1.16;
there was no concept of momentum associated with them yet. Einstein continued
brooding on light quanta in the following years, but increasingly became preoccu-
pied with the development of general relativity. His principle of the equivalence
of inertial and gravitational mass was first formulated in 1907. Einstein resigned
from the patent office in 1909 and was appointed to the newly created position of
associate professor of theoretical physics at the University of Zurich. In 1911, he
moved to Prague as full professor, and began work on deriving the equivalence
principle from a new theory of gravitation. By 1916 Einstein, now in Berlin, had
completed his formulation of the general theory of relativity and returned to the
problem of light quanta. Analysis of statistical fluctuations of black-body radia-
tion now led him to associate a definite momentum with a light quantum. Einstein
[25] provided a new derivation for Planck’s radiation law by assuming that the
transitions follow probability laws similar to those known to govern radioactivity
[26]. Einstein considered a gas interacting with electromagnetic radiation, the
entire system being in thermal equilibrium. Let the probability per unit time of
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spontaneous emission from a higher energy level Em to a lower energy level En
be Am→n, and the probability per unit time of emission from Em to En induced
or stimulated by radiation of frequency ν be Bm→nuν and that for stimulated
absorption from En to Em be Bn→muν . The equilibrium condition (microscopic
reversibility) requires that

Bn→muν exp

(
− En

kT

)
= (Bm→nuν + Am→n) exp

(
−Em

kT

)
. (2.7)

Assuming that Bm→n = Bn→m, as required by the high temperature
Rayleigh–Jeans limit, yields

uν = Am→n/Bm→n

exp

(
Em − En

kT

)
− 1

. (2.8)

Comparing Equation 2.8 with the Wien radiation law (Eq. 2.3) for high
frequencies and with the Rayleigh–Jeans result (Eq. 2.4) for low frequencies,
Einstein [25] obtained Bohr’s quantization condition (Eq. 2.5) for transitions
between atomic stationary states, and also

Am→n = 8πhν3

c3
Bm→n, (2.9)

which then immediately gives Planck’s radiation law (Eq. 2.2). Note that without
the stimulated emission term in Equation 2.7, one obtains only the Wien law.

In order to obtain Planck’s law (Eq. 2.2), Einstein had to associate a definite
momentum

p = hν/c, (2.10)

with a light quantum: “if a bundle of radiation causes a molecule to emit or absorb
an energy amount hν, then a momentum hν/c is transferred to the molecule,
directed along the bundle for absorption and opposite the bundle for emission .”
Consider now the term involving Am→n, the spontaneous emission probability,
and recall that radiation can be viewed as consisting of discrete quanta or pho-
tons, each with definite energy and momentum. This term has the atom emitting
photons at random times in random directions (and suffering a recoil hν/c) gov-
erned purely by the laws of probability, a feature of the quantum theory which
many would find deeply disturbing in the years to follow. Einstein himself was
the first to realize the deep conceptual crisis caused by spontaneous emission [5]:
“it is a weakness of the theory . . . that it leaves the time and direction of elemen-
tary processes to chance” [27]. Others would consider all of quantum mechanics
to be but a revision of statistical mechanics [28]; the laws of quantum mechanics
place restrictions on the simultaneous probability distributions of complementary
observables. But the probabilistic nature of spontaneous quantum processes and
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its irreconcilability with classical notions of causality would continue to trouble
Einstein for the rest of his life: “That business about causality causes me a lot
of trouble, too. Can the quantum absorption and emission of light ever be under-
stood in the sense of the complete causality requirement, or would a statistical
residue remain? . . . I would be very unhappy to renounce complete causality”
[29]. It is indeed ironic that the person who was perhaps more responsible than
any other for the introduction of statistical ideas into quantum mechanics would
be so reluctant to reconcile himself to the statistical nature of the theory!

The final bit of experimental confirmation for the quantum corpuscular view
of radiation came from Arthur Holly Compton’s experiments on the scattering
of X-rays in 1923, but the basic facts underlying the phenomenon had long
been known. That the scattered radiation had lower penetrating power than the
primary radiation was shown for γ -rays by Eve [30] and by Kleeman [31] and
for X-rays by Sadler and Mesham [32]. Madsen [33] and Florance [34] further
showed that the wavelength of the scattered radiation depends on the angle of
scattering. Gray [35] recognized that these observations could not be explained
by the prevailing classical theory on the basis of Maxwell’s electrodynamics.
To explain his experimental observations, Compton assumed instead that each
quantum of X-ray energy is concentrated in a single quantum and acts as a unit
on a single electron, that “each electron which is effective in the scattering scatters
a complete quantum” and that “the quanta of radiation are received from definite
directions and scattered into definite directions” [36]. Applying the principles of
conservation of energy and momentum, he then derived his well-known formula
for the change in wavelength on scattering:

�λ =
(

h

mc

)
(1 − cos θ), (2.11)

where θ is the scattering angle, m the electron mass, and c the velocity of light.
He presented these results at a meeting of the American Physical Society in
Washington in April 1923 and in a paper entitled “A quantum theory of the
scattering of x-rays by light elements” published in the Physical Review [36],
wherein he concluded, “The experimental support of the theory indicates very
convincingly that a radiation quantum carries with it directed momentum as well
as energy .” These results were also independently derived by Debye [37].

Thus, Einstein’s light quanta now acquired physical significance and a firm
experimental foundation. However, phenomena such as interference and diffrac-
tion could still be understood only by recourse to the wave theory of light. The
stabilities of many-electron atoms and molecules also defied explanation in the
older version of the quantum theory. The best guide to bridging the classical and
quantum theories at that time seemed to be the correspondence principle, cham-
pioned by Bohr; this principle declared that quantum theory reduces to classical
mechanics in the limiting case where the quantum of action becomes infinitely
small h → 0. The translation of classical formulae into quantum theory generally
required a lot of guess work and differed from problem to problem.
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2.4 MATTER WAVES

Before the advent of quantum mechanics, the physics of matter (based on the
concepts of particles and atoms obeying the laws of mechanics) and the physics
of radiation (based on the idea of wave propagation) seemed difficult to reconcile
with each other. Yet, the interaction of matter with radiation called for a unified
theory of matter and radiation. This was what attracted Louis Victor de Broglie
(1892–1987) to theoretical physics: “the mystery in which the structure of matter
and of radiation was becoming more and more enveloped as the strange concept
of the quantum, introduced by Planck in 1900 in his researches into black-body
radiation, daily penetrated further unto the whole of physics .” Louis de Broglie
was the younger son of Victor, 5th Duc de Broglie, and Pauline d’Amaillé. Their
elder son, Maurice, was an experimental physicist who worked on X-rays and the
photoelectric effect, and was one of Arthur Compton’s early supporters. Their
father died in 1906 and Maurice, then 31, assumed responsibility for Louis’s edu-
cation. After completing secondary school in 1909, Louis entered the Sorbonne
in Paris, first studying history, then law, and graduated with an arts degree at the
age of 18. By then he was already becoming more interested in mathematics and
physics, and he decided to study theoretical physics instead. Louis was awarded
the Licence ès Sciences in 1913, but then World War I broke out, and he served
in the army, as a telegraph operator at the Eiffel Tower.

Resuming his research in theoretical physics after the war, de Broglie tried to
reconcile Einstein’s light quantum hypothesis with the phenomena of interference
and diffraction, and suggested the need to associate the quanta with a periodicity
[38]. He had always been impressed by the formal analogy between the principle
of least action in mechanics and Fermat’s principle of least time in optics, on
which Hamilton had published nearly a century ago. Louis also continued his
interest in experimental physics, working with his brother at Maurice’s laboratory.
The concept of matter waves now began to take shape:

As in my conversations with my brother we always arrived at the conclusion that
in the case of X-rays one had both waves and corpuscles, thus suddenly . . . in the
course of summer 1923, I got the idea that one had to extend this duality to material
particles, especially to electrons.

Thus, E = hν should apply not only for photons but also for electrons. Using
Einstein’s mass–energy relation and Planck’s law, de Broglie now proposed [39]
that any particle of rest mass m0 and velocity v is associated with a wave whose
frequency ν0 is given by

ν0 = m0c
2

h
(2.12)

or

λ = h

p
= h

m0v

√
1 − v2

c2
, (2.13)
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where h is Planck’s constant, λ the wavelength of the wave, c the speed of light
in vacuum, p the momentum, and m0c

2 the rest energy of the particle. He then
showed that velocity v is just the group velocity of the phase waves [40] and
asserted that “a stream of electrons passing through a sufficiently narrow hole
should also exhibit diffraction phenomena .” He further suggested that “It is in
this direction where one has probably to look for experimental confirmation of
our ideas” [40]. In November 1924, de Broglie presented his doctoral thesis
“Reserches sur la Théorie des Quanta” containing these ideas to the Faculty of
Sciences at the University of Paris [41, 42]. He was awarded the Nobel Prize for
this work in 1929. Einstein [43] regarded de Broglie’s discovery “a first feeble
ray of light on this worst of our physics enigmas” and was convinced that the
concept of matter waves “involves more than merely an analogy” [44].

James Franck, professor of experimental physics at the University of
Göttingen, realized that the electron diffraction experiment suggested by de
Broglie had already been performed by Davisson and Kunssman [45]. These
authors had studied the scattering of electrons from nickel, palladium, and
magnesium, interpreting the angular distribution of scattered electrons as due to
the variation of the electron density in the atomic shells. Franck explained this
scattering as a diffraction phenomenon, and found that the wavelength agreed
with de Broglie’s formula (Eq. 2.13). Walter Elsasser, a student of Professor
Max Born at Göttingen, showed that the Ramsauer effect [46–48] could be
explained as an interference effect of matter waves [49]. Davisson was not
convinced by Elsasser’s interpretation, but his subsequent work with nickel
targets [50] confirmed de Broglie’s formula (Eq. 2.13), as did the experiments
by George Paget Thomson, son of J. J. Thomson, and his student Andrew Reid
[51] on electron diffraction by thin films. Davisson and George Thomson shared
the Nobel Prize for these discoveries in 1937.

2.5 QUANTUM STATISTICS

In 1924, an Indian physicist, Satyendra Nath Bose at Dacca University, derived
Planck’s radiation law independent of classical electrodynamics, on the basis of
a new method of counting [52], now known as Bose–Einstein statistics . Bose
replaced the counting of wave frequencies with the counting of cells in phase
space. He considered a cell in one-particle phase space with momentum between
p and p + dp. Because of the relation (Eq. 2.13) for momentum, he associated a
volume h3 with each such cell, which then led him to Planck’s law (Eq. 2.2). This
scheme implicitly assumes—and these are the key assumptions explicitly stated
later by Einstein in 1925—statistical independence of cells in phase space and
the indistinguishability of particles within a cell. His paper having been rejected
by the Philosophical Magazine, Bose forwarded the manuscript to Einstein, who
recognized its importance, translated it into German and sent it for publication to
the Zeitschrift für Physik , with his recommendation. Einstein [53] also showed
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that the new statistics, applied to an ideal monatomic gas, gave rise to an inter-
ference term in the energy fluctuations, in addition to the term arising from
the Maxwell–Boltzmann statistics of noninteracting particles. In a second paper
[44], he discussed the interference term in the energy fluctuation formula with
reference to de Broglie’s work. Einstein also considered the consequences of
extremely low temperature and realized that

in this case, a number of molecules steadily growing with increasing density goes
over in the first quantum state (which has zero kinetic energy) while the remaining
molecules distribute themselves . . . A separation effected; one part condenses, the
rest remains a ‘saturated ideal gas’ [44]

A phenomenon now known as Bose–Einstein condensation [54]. The 2001 Nobel
Prize was awarded to Cornell, Ketterle, and Wieman for their experimental real-
ization of a gaseous Bose–Einstein condensate consisting of thousands to millions
of atoms [55, 56].

In 1926 [57], Paul Adrien Maurice Dirac (1902–1984) showed that, for an
ideal gas of N = ∑

i ni particles with total energy E = ∑
i niεi , such that ni

particles have energy εi ; Bose statistics implies that the number of microstates
w is

w = 1 [Bose], (2.14)

whereas Boltzmann statistics requires

w = N!


ini!
[Boltzmann]. (2.15)

Thus the single microstate symmetric in the N particles is the only one allowed
in Bose statistics. Dirac also showed that the statistics implied by the condition
(Eq. 2.14) led directly to Planck’s radiation law (Eq. 2.2), thereby finally lifting
the veil of mystery shrouding that equation. Dirac [57] and separately Fermi [58]
realized that there is a third possibility, where the state is antisymmetric in the
particles. This leads to Fermi–Dirac statistics, the statistics obeyed by electrons.

2.6 MATRIX MECHANICS AND COMMUTATION RELATIONS

Meanwhile, there were momentous developments from the laboratory of Max
Born (1882–1970) at the University of Göttingen. Max was the son of the
anatomist and embryologist Gustav Born and Margarethe Kauffmann. His mother
died when he was four years old. Max studied at Breslau, Heidelberg, and Zurich.
After his Habilitation (license to teach) in 1909, he settled as a Privatdozent at
Göttingen. Here, he formed close ties with the leading mathematicians David
Hilbert and Herman Minkowski. Hilbert was soon impressed with Born’s excep-
tional abilities and took him under his wing. Between 1915 and 1919, Born
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was professor of physics at the University of Berlin. Here he came into contact
with Einstein and the two formed a life-long friendship. In 1913, Max married
Hedwig and converted from Judaism to his wife’s Lutheran faith the following
year. Born moved back to Göttingen in 1921 as professor of theoretical physics
and director of the institute for theoretical physics, after negotiating a position for
his long-time friend and experimental colleague James Franck. The two would
develop a close collaboration over the following dozen years. This collaboration
and cross-fertilization between experimental and theoretical physics—and pure
mathematics, as represented by Hilbert—would prove crucial to the development
of quantum mechanics. Yet another of Born’s singular qualities was his extraordi-
nary ability to recognize and nurture talent, even when they might outshine him.
Seven of Born’s students and assistants at Göttingen—Max Delbrück, Enrico
Fermi, Werner Heisenberg, Maria Goeppert-Mayer, Gerhard Herzberg, Wolfgang
Pauli, and Eugene Wigner—would eventually go on to win Nobel Prizes!

Among the most brilliant of Born’s assistants was Werner Heisenberg (1901–
1976), who employed the correspondence principle in an entirely new way: to
guess, not the solution to a specific quantum problem, but the mathematical
scheme for a new mechanics [2]. Expanding time-dependent variables by Fourier
expansions, as in classical mechanics, Heisenberg went on to represent physical
quantities in his quantum theory by sets of complex Fourier amplitudes and found
that the Fourier amplitudes obeyed a curious multiplication rule:

X2
n,n′ =

∑
n′′

Xn,n′′Xn′′,n′ . (2.16)

He then applied this theory to the problems of the anharmonic oscillator and
the rigid rotor, finding results in agreement with observations. These results were
published in the Zeitschrift für Physik in the summer of 1925 [59]. One of the
first to hail the significance of this paper was Neils Bohr in Copenhagen.

On studying Heisenberg’s manuscript, Max Born recalled his college algebra
lectures at Breslau, and realized that the multiplication rule obeyed by Heisen-
berg’s sets of Fourier amplitudes was precisely the rule for multiplication of
matrices, propounded 70 years earlier by Arthur Cayley [60]. Born then employed
Pascual Jordan, an assistant to Professor Courant at Göttingen and an expert on
matrices, and together they wrote up their paper “On quantum mechanics” in the
fall of 1925 [61]. This remarkable paper laid out the foundations of quantum
dynamics for nondegenerate systems with one degree of freedom. Representing
coordinates and momenta by matrices q and p, respectively, they derived the
canonical equations of motion:

q̇ = ∂H/∂p and ṗ = −∂H/∂q (2.17)

by finding the extrema of the Lagrangian matrix

L = pq̇ − H, (2.18)
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where H is the Hamiltonian matrix, and ṗ and q̇ are the time derivatives of p
and q, respectively. Employing the adiabatic principle or the equivalent Som-
merfeld quantization condition (Eq. 2.6), and using the correspondence principle
to expand p and q into Fourier series, Born and Jordan also derived the basic
commutation relation between coordinates and momenta:

[p, q] = pq − qp =
(

h

2πi

)
1, (2.19)

where 1 is the unit matrix. Born called this commutation relation the exact quan-
tum condition and derived great satisfaction from having condensed Heisenberg’s
quantum conditions into this one equation [62]. The fact that all diagonal ele-
ments in Equation 2.19 are equal to h/2πi can be seen as a consequence of the
correspondence principle. At that time, however, Heisenberg found “the fact that
xy was not equal to yx was very disagreeable to me.” Although he “had written
down the . . . quantization rule” (Eq. 2.16), he “did not realize that this was just
pq-qp” [63].

In November 1925, Born et al. [64] generalized these results to systems with
an arbitrary, finite number of degrees of freedom in their sequel On Quantum
Mechanics II . Here, they postulated the commutation relation (Eq. 2.19) and
derived the canonical equations of motion (Eq. 2.17), as well as Bohr’s quanti-
zation condition (Eq. 2.5). This paper also introduced canonical transformations,
which are transformations of the variables p,q → P,Q that preserve the commu-
tation relation (Eq. 2.19). Transformations of the form

P = U−1pU; Q = U−1qU (2.20)

are canonical transformations, for any arbitrary matrix U. The canonical equations
of motion (Eq. 2.17) are invariant under such canonical transformations. Solv-
ing the equations of motion then reduces to finding a canonical transformation
such that

H(P,Q) = H(U−1pU, U−1qU) = U−1H(p,q)U = E (2.21)

is diagonal. This is equivalent to the Hamilton–Jacobi equation of classical
mechanics and implies that

HU = UE, (2.22)

the solutions to which are the roots of the secular equation:

|H − λ1| = 0. (2.23)

In a series of applications, Wolfgang Pauli [65] demonstrated the superiority of
Heisenberg’s matrix mechanics to the older quantum theory. Heisenberg won the
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Nobel Prize in physics for 1932 (actually awarded in 1933) for his “creation of
quantum mechanics.”

Meanwhile at Cambridge, the British theoretical physicist Paul Dirac [66–68]
derived an alternative, but equivalent, formulation of Heisenberg’s mechanics,
without explicit use of matrices, by starting with the multiplication rule (Eq. 2.16)
and seeking the classical analog of the commutator between two functions u and
v . This he found in the Poisson bracket:

{u, v} =
∑

r

{
(∂u/∂qr)(∂v/∂pr) − (∂u/∂pr)(∂v/∂qr)

}
(2.24)

introduced over a century earlier by Simeon Denis Poisson [69]. Using the alge-
braic properties of the Poisson bracket, Dirac deduced its quantum analog, and
by analogy with the corresponding values for the Poisson bracket, he derived the
commutation relations between coordinates qr and momenta pr :

[qr , qs] = 0, [pr , ps] = 0, and [qr , ps] = i

(
h

2π

)
δrs, (2.25)

where the Dirac delta is defined as

δrs = 0 for r �= s,

δrs = 1 for r = s.
(2.26)

By this means Dirac showed the formal equivalence between quantum mechan-
ics and the Hamilton–Jacobi formulation of classical mechanics. By all accounts,
Dirac was a brilliant mind and his methods baffled many of his peers. He would
reportedly often be found sitting alone in an empty classroom, staring fixedly at
the blank blackboard. After a few hours he would get up and write down a single
equation. At various times Einstein wrote about him “I have trouble with Dirac.
This balancing on the dizzying path between genius and madness is awful” [70]
and later on “Dirac, to whom, in my opinion, we owe the most logically perfect
presentation of quantum mechanics” [71].

2.7 WAVE FUNCTIONS

Erwin Schrödinger (1887–1961) was born in Vienna to Rudolf Schrödinger and
Georgine Emilia Brenda. He received his PhD from the University of Vienna in
1910, and his Habilitation in 1914. He served as an assistant to Franz Exner at
Vienna and after the First World War, to Max Wien in Jena. Schrödinger devel-
oped a deep and lasting interest in Vedanta philosophy. He married Annemarie
Bertel in 1920 and, after brief academic stints at Stuttgart and Breslau, moved
to Zurich in 1921. Here, he published the famous Schrödinger equation in a
paper on “Quantization as an Eigenvalue Problem” in the Annalen der Physik .
Schrödinger realized that if de Broglie’s matter waves are real, there had to
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be a corresponding wave equation. From Sommerfeld’s quantization condition
(Eq. 2.6) and de Broglie’s equation (Eq. 2.13), he obtained∮

1

λ
dq = n, (2.27)

which suggests an eigenvalue problem. Generalizing de Broglie’s waves to the
case of a bound particle, Schrödinger obtained the energy levels as eigenvalues
of an operator. When applied to the electron in the hydrogen atom, with a rel-
ativistic treatment of the electron, he found results that were not in accord with
the experimental observations. Disappointed, Schrödinger abandoned this line of
investigation. The discrepancy, however, was not because Schrödinger’s approach
was incorrect, but because electron “spin” was unknown at that time! When he
returned to the problem several months later, Schrödinger found that a nonrela-
tivistic treatment of the electron gave results in agreement with the experiment
[72] for hydrogen-like atoms. By analogy with the classical Hamilton’s equation,
Schrödinger obtained

H

(
q,

1

ψ

δψ

∂q

)
= E, (2.28)

where ψ is a wave function, a continuous differentiable function of q . Applying
his theory to the linear harmonic oscillator, the rigid rotor and the diatomic
molecule, Schrödinger obtained results in full agreement with Heisenberg’s
matrix mechanics results. In subsequent papers [73–75], starting from the
classical wave equation and the assumption

ψ(q,t) = ψ(q)e
−2πiEt

h , (2.29)

where E/h is the frequency ν, from Planck’s law, he deduced

∇2ψ + 8π2m

h2
(E − V )ψ = 0, (2.30)

for motion in a potential V , and what is now known as Schrödinger’s time-
dependent equation:

− h2

8π2m
∇2ψ + V ψ = h

2πi

∂ψ

∂t
. (2.31)

Schrödinger interpreted ψψ∗ as a weight function of the electron charge dis-
tribution in configuration space, so that ρ = eψψ∗ is the electron charge density,
e being the charge of the electron. He emphasized that ψ is, in general, a func-
tion in configuration space and not (except for the one-electron case) in real
space. Schrödinger [76] also established the formal, mathematical identity of
wave mechanics and matrix mechanics. It was subsequently demonstrated that
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if the wave function is regarded as a field in space and time, but treated as
an operator subject to quantum conditions, the quantum formalism for parti-
cles and the formalism for waves are mathematically equivalent—this goes by
the name of second quantization [77, 78]. In 1927, Schrödinger succeeded Max
Planck at Friedrich-Wilhelms Universität (now Humboldt University) in Berlin,
but, becoming disgusted with the Nazi anti-Semitism, left Germany in 1933 and
went on to the Magdalen College in Oxford. Schrödinger shared the Nobel Prize
in 1933 with Paul Dirac. Returning to Austria in 1936, he suffered harassment
and dismissal from his position at the University of Graz on account of his oppo-
sition to Nazism. He then fled to Italy with his wife, and then went on to Oxford
and Ghent, before settling in Dublin in 1940. He eventually returned to Vienna
in 1956.

The time-dependent Schrödinger equation can be transformed into a pair of
hydrodynamic equations: the continuity equation

∂ρ

∂t
+ ∇ · j = 0 (2.32)

relating the temporal change of the scalar charge density ρ to the divergence of
the vector current density j:

j = eh

4πim
(ψ∗∇ψ –ψ∇ψ∗), (2.33)

and an Euler-type equation of motion. Using a wave function in the polar form

ψ = √
ρe2πiS/h, (2.34)

where S is a phase factor, leads to a current density of the form

j = e

m
ρ∇S. (2.35)

This leads to a fluid dynamical formulation of quantum mechanics [79–83],
wherein the electron density is treated as a classical fluid, moving with velocity
e
m

∇S, under the influence of classical Coulomb forces augmented by a potential
of quantum origin. The quantum potential was invoked by de Broglie [80] to
explain interference and diffraction phenomena. The fluid dynamical formalism
involves the solution of a set of nonlinear partial differential equations, instead
of Equation 2.31.

2.8 THE STATISTICS OF ELECTRONS

In 1893, Pieter Zeeman at Leiden University set out to find out “whether the
light of a flame if submitted to the action of magnetism would perhaps undergo
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any change.” In August 1896, he observed “an immediate widening” (splitting)
of the spectral lines, which persisted only as long as the magnetic field stayed on
[84]. Stern and Gerlach [85] studied atomic beams of silver in a magnetic field,
first at the University of Frankfurt and then at the Institute for Physical Chemistry
in Hamburg. They found that the atomic beams were split into two components,
with a conspicuous absence of any silver atoms in the center of the deflection
pattern, that is, at the position of the undeflected beam. Similar splitting was
subsequently observed with beams of other atoms. These experiments revealed
the existence of an additional degree of freedom and an extra angular momentum
component (which, for historical reasons, goes by the unfortunate name of “spin”)
for the electron in an atom. These were the problems addressed by Wolfgang
Pauli while visiting Bohr in Copenhagen in the fall of 1922. After getting his
PhD from the University of Munich under the supervision of Sommerfeld, Pauli
had worked as an assistant to Max Born at Göttingen, and, in 1923, he accepted
a Privatdozent position at Hamburg. He was already an expert on relativity,
having written an article on the theory for the Encyklopdie der mathematischen
Wissenschaften [86] at the age of 20 on Sommerfeld’s request. Pauli now realized
that the shell structure of atoms and the structure of the periodic table can be
explained by labeling each electronic state with a set of four quantum numbers
and excluding the possibility that more than one electron occupies any given
level [87]. Pauli stated this exclusion principle as: “There never exist two or
more equivalent electrons in an atom which, in strong fields, agree in all quantum
numbers .”

The Pauli exclusion principle, which was empirically obtained by Stoner [88],
is a consequence of the antisymmetric wavefunction required by Fermi–Dirac
statistics. An antisymmetric wavefunction for a system of N electrons can be
written in the form of a determinant:

ψ(1, 2, . . . , N) = (N!)−
1/2

⎡
⎢⎣

ψ1(1) · · · ψ1(N)
...

. . .
...

ψN(1) · · · ψN(N)

⎤
⎥⎦ , (2.36)

known as a Slater determinant , first introduced by Dirac [57]. Here, the nota-
tion ψi(j) denotes electron j represented by the set of quantum numbers i
and (N !)−1/2 is a normalization factor. That this determinantal form is really
antisymmetric follows from the fact that a determinant is antisymmetric under
an exchange of any two (rows or) columns, which is equivalent to interchanging
the labels of two electrons. For such an antisymmetric wavefunction, there can
be no stationary states with two or more electrons having the same set of quan-
tum numbers, because the determinant vanishes when two (rows or) columns are
identical. Thus, such an antisymmetric wavefunction naturally obeys the Pauli
exclusion principle.
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2.9 DOES GOD PLAY DICE?

For Max Born, reconciling the corpuscular aspects of electrons, as exhibited by
the collision experiments in James Franck’s laboratory at Göttingen, took pri-
macy. Born introduced the statistical interpretation of the wave function, and
it was primarily for this work that he was awarded the Nobel Prize in 1954.
“The statistical interpretation of de Broglie’s waves was suggested to me by my
knowledge of experiments on atomic collisions which I had learned from my exper-
imental colleague James Franck” [89]. In Born’s conception, the squared wave
amplitudes or intensities determine the probability of the presence of the corre-
sponding quanta or their density. Thus, “it was almost self-understood to regard
|ψ |2 as the probability density of particles .” However, to reconcile the statis-
tical interpretation with the existence of quantum interference phenomena,
one needs to modify the classical laws for compounding probabilities: If a
wave function ψ1 with probability density P(ψ1) = |ψ1|2 is superposed with a
wave function ψ2 with probability density P(ψ2) = |ψ2|2, the probability density
of the superposed wave ψ1 + ψ2 is given by

P(ψ1 + ψ2) = |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + ψ1
∗ψ2 + ψ2

∗ψ1, (2.37)

NOT just the sum of the individual probabilities |ψ1|2 + |ψ2|2. The last two
terms in Equation 2.37 are the interference terms. Seen in this way, quantum
mechanics is a modification of the basic laws of classical statistics.

Consider the general solution

ψ(x, t) =
∑

n

cnψn(x) exp

(
2πiEnt

h

)
(2.38)

of the time-dependent Schrödinger equation (Eq. 2.31) and assume the ψn(x) to
be normalized. Further assuming that a system can be in only one stationary state
at any given time (as postulated by Bohr), Born thus interpreted [90]

|cn|2 = | ∫ ψn(x, t)ψn
∗(x, t) dx|2 (2.39)

as the probability that the system is in state n at time t . For a system which is in
the state n at time t = 0 and then evolves under the action of a time-dependent
potential V (x, t), integration of Equation 2.31 for any subsequent time t yields

ψn(x, t) =
∑
m

bnmψm(x) exp

(
2πiEmt

h

)
, (2.40)

where |bnm|2 is the transition probability for the state, initially in state n at
t = 0, to be found in state m at time t . In general, if the system is given by
the solution (Eq. 2.38) at time t = 0, then the probability for it to be in state
m at time t is

∑
m |cmbmn|2. This is different from what would be expected on
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the basis of the classical theory of composition of probabilities of independent
events, which would lead us to expect a transition probability

∑
m |cm|2|bmn|2.

Thus the transition probabilities between states cannot be regarded as independent
events. The phases of the expansion coefficients now assume physical significance
on account of the interference of probabilities. These results were also derived
independently by Dirac [67].

Born reinforced the statistical nature of his theory by writing with regard to
atomic collisions,

One does not get an answer to the question, how probable is a given effect of the
collision? . . . From the standpoint of our quantum mechanics, there is no quantity
which causally fixes the effect of a collision in an individual event. I myself am
inclined to renounce determinism in the atomic world [90],

but acknowledged “but that is a philosophical question for which physical argu-
ments alone do not set standards .” Born’s papers received a mixed reception
from his peers. Among those who found it hard to abandon classical notions of
causality and retained severe reservations about the statistical interpretation of
the wave function were Schrödinger, de Broglie, and Einstein. Einstein expressed
his philosophical distaste for Born’s statistical interpretation of quantum mechan-
ics by declaring that God does not play dice. Einstein’s negative reaction was a
severe blow for Born, as the two were close personal friends and maintained an
active correspondence throughout their lives [29].

Owing to his strong pacifist views and Jewish ancestry, Born was stripped
of his professorship by the Nazi regime and he emigrated from Germany in
1933. He took up a position at the University of Cambridge, and worked at the
Indian Institute of Science in Bangalore in 1935 and 1936. Sir C. V. Raman
persuaded him to stay on in India as Professor of Mathematical Physics, but the
appointment fell through owing to political problems at the institute [91]. Max
Born was then appointed Tait Professor of Natural Philosophy at the University
of Edinburgh, where he stayed from 1936 until his retirement in 1953. He was
elected a Fellow of the Royal Society of London in 1939. Born returned to
Germany on retirement from Edinburgh at the age of 65. In 1954, nearly three
decades after his seminal papers on quantum mechanics, two decades after his
assistant Heisenberg was similarly recognized, and a quarter century after Einstein
had first nominated them both, Max Born was awarded the Nobel Prize “for
his fundamental research in quantum mechanics, especially for his statistical
interpretation of the wavefunction.”

Einstein’s argument against the statistical interpretation of quantum mechan-
ics was that it does not provide a “complete description” of the motion of an
individual particle. Consider the problem of an electron diffracting through a slit
and striking a detection screen. If we know that an electron arrives at a point A
on the screen, we know instantly that it did not arrive at a different, distant point
B �= A. This would imply an instantaneous action at a distance between A and B.
But had not Einstein abolished just such an action at a distance from Newtonian
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mechanics with his theory of relativity? As we shall see, quantum mechanics
denies locality and makes only statistical predictions concerning the probabil-
ity of an electron arriving at a given point on the screen. Does this foreclose
the possibility that a more detailed, deterministic description, one underlying the
undoubtedly correct mathematical apparatus of quantum mechanics, might exist
and might someday be found? Clearly, Einstein and others like David Bohm
believed so. Born was inclined to doubt it, but considered it an open, philosoph-
ical question. Bohr, Heisenberg, and most other physicists maintained that the
statistical description provided by quantum mechanics is complete and is the only
one compatible with observational evidence. The famous debate between Bohr
and Einstein was joined at the 1927 Solvay conference and would continue for
years [29, 92]. It is widely believed today that Bohr won those debates. On the
basis of the experimental evidence available at that time, however, there was no
way to make a call. Max Born’s position, that this was only a matter of interpre-
tation and that the distinction was of no practical consequence, was off the mark
too, but this would not be known until 1964 (with the proof of Bell’s theorem
[93, 94]).

By 1933, Einstein had left Germany just prior to Hitler coming to power.
Einstein then immigrated with his family to the United States and settled at
the Institute for Advanced Study in Princeton. In 1935, with Boris Podolsky
and Nathan Rosen, he reformulated his objections in the clearest form yet [95].
Employing the noncommuting observables position and momentum for two par-
ticles that were initially interacting, Einstein, Podolsky, and Rosen showed that
quantum mechanics predicted the existence of two-particle states with strong
correlations between the positions of the two particles and strong correlations
between their momenta. Measurements of position would always give values
symmetric about the origin. So, a measurement on one particle also reveals with
certainty the position of the other. The particle momenta are likewise corre-
lated, owing to momentum conservation, and thus measurement of one particle’s
momentum is sufficient to know with certainty the momentum of the other. These
correlations survive even after the particles have separated by a large dis-
tance. Schrödinger [96] coined the term entanglement to characterize this lack of
factorability of the quantum wavefunction. Since position and momentum do not
commute, they cannot be simultaneously determined with certainty. One has to
choose between an accurate measurement of position and an accurate measure-
ment of momentum. But this choice can be made even after the particles have
separated. Such “delayed choice” experiments were first suggested by David
Bohm and Yariv Aharonov [97]. Since a measurement on the first particle does
not disturb the second distant particle, Einstein, Podolsky, and Rosen concluded
that the individual particles must have had well-defined values of position and
momentum even before the measurement, and thus that the quantum mechanical
description (which disallows such simultaneously well-defined values of non-
commuting variables) has to be incomplete. In other words, the proposition that
the quantum mechanical description is complete is incompatible with the notion
of “objective reality”—which they defined as follows:
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If without in any way disturbing a system we can predict with certainty (i.e. with
a probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.

They emphasized that one

would not arrive at our conclusion if one insisted that two . . . physical quantities can
be regarded as simultaneous elements of reality only when they can be simultaneously
measured or predicted.

Bohr [98] responded to Einstein, Podolsky, and Rosen’s argument by for-
bidding us to speak of properties of individual particles, even when they are
distant from each other. Bohr emphasized the importance of a careful description
of the details of the measuring apparatus, and “the impossibility of any sharp
distinction between the behavior of atomic objects and the interaction with the
measuring instruments which serve to define the conditions under which the phe-
nomena appear” [92]. Others tried to relate the quantum measurement problem
to the role of a conscious observer. In this view then, physics would not be
about the world as it exists, but about our knowledge of the world. The para-
dox this leads to can be illustrated by the experiment suggested by Schrödinger
and known nowadays as that of Schrödinger’s cat [99], and the related one of
Wigner’s friend. Here, a cat is destined to be the hapless victim of a chemical
weapon that can be set off by a radioactive trigger. When the radioactive atom
decays, it triggers the release of a poison gas, which then kills the cat. The cat
along with the entire apparatus is sealed in a box and hidden from view until
someone opens the box to check on the status of the cat.

A cat is penned up in a steel chamber, along with the following device (which must
be secured against direct interference by the cat): in a Geiger counter, there is a tiny
bit of radioactive substance, so small that perhaps in the course of one hour, one of
the atoms decays, but also, with equal probability, perhaps none; if it happens, the
countertube discharges, and through a relay releases a hammer that shatters a small
flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one
would say that the cat still lives if meanwhile no atom has decayed. The psi-function
of the entire system would express this by having in it the living and dead cat (pardon
the expression) mixed or smeared out in equal parts [99].

The laws of quantum mechanics and radioactive decay only give us the
probability of decay at any time. If we can describe the cat by a wave function,
then we might say that the cat was initially in the “alive” state. After one half
life of the radioactive material, the probability that the cat might still be alive is
now reduced to 50% and its wavefunction can be described by the superposition
1/2 “dead” + 1/2 “alive.” After we open the box and see what has happened,
we know for certain whether the cat is alive or dead. The superposition
wavefunction now collapses into one of the two states: either definitely “alive”
or definitely “dead”—and as this does not happen until we open the box, any
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responsibility for killing the cat lies not with the cruel person who designed
and set up the experiment, but with the curious observer who opened the box to
check on the cat’s well-being! Wigner devised a curious twist to this experiment,
which brought out the role of the observer even more starkly. Suppose he were
not to open the box himself, but to depute a friend to do so. Until and unless the
friend reported the result to him, Wigner would still describe the state of the cat
as 1/2 “dead” + 1/2 “alive.” But Wigner’s friend would describe the state of the
same cat as either definitely alive or definitely dead. All this fueled considerable
confusion and a fertile field for science fiction and metaphysics with questions
such as “does a tree fall in a forest if there is nobody around to see or hear it?”

In his 1932 book on the Mathematical Foundations of Quantum Mechanics
[100] John von Neumann provided a proof on the mathematical impossibility of
a more detailed, deterministic description (known by the name of hidden vari-
ables) underlying quantum mechanics, and concluded: “It is therefore not . . . a
question of reinterpretation of quantum mechanics—the present system of quan-
tum mechanics would have to be objectively false in order that another description
. . . than the statistical one be possible.” The problem with von Neumann’s proof
was not immediately realized and most physicists assumed that the question of
hidden variables was settled, until David Bohm [81, 101] explicitly constructed
a model with hidden variables in 1952. Even so, in view of the remarkable suc-
cesses of quantum mechanics, few physicists were willing to “waste” their time
on conceptual or foundational problems in quantum theory, until John Bell came
along, and it took another decade before his work was taken seriously enough
to be put to experimental test. Bell started his career in accelerator design, but
devoted most of his life to conceptual and theoretical questions. In 1964, he
turned his attention to the correlations between measurements on a pair of entan-
gled particles. Bell [93] investigated the possibility of allowing the results of
measurements on each particle to depend on the hidden variables carried by
that particle and on the setting of the apparatus employed for the measurement,
with the restriction that the result of a measurement on the first particle should
not depend on the setting of the second, distant measuring device. This locality
restriction is a consequence of Einstein’s relativity principle, whereby no physical
signal can travel faster than light, in an experimental setup where the instrument
settings are rapidly changed during the time of flight of the particles to the detec-
tors, when the particles are no longer physically interacting with each other. Bell
found that any such hidden variable theory would predict correlations differ-
ent from quantum mechanics for some settings of the measuring apparatus.
This remarkable result now goes by the name of Bell’s theorem. Here, at last
was the possibility of being able to experimentally resolve the Bohr–Einstein
controversy by measuring the correlations between entangled quantum particles!
It was only some 30 years after Einstein, Podolsky, and Rosen’s paper that
the first such experiments were actually performed [102–105]. The matter was
finally settled only in the 1980s with the remarkable delayed choice experiments
on correlated quantum particles performed by Alain Aspect and his coworkers
[106–108]. All these experiments, and subsequent ones [109–114], have borne
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out the statistical correlations predicted by the quantum theory. The inescapable
conclusion seems to be that entangled quantum objects must be treated as
a single entity, described by a correlated wavefunction that cannot be fac-
torized into individual-particle components. Aspect’s experiments involved
“super-luminal communication” between a pair of entangled quantum photons:
the two polarization detectors were separated by a space-like separation, that is,
one that no signal traveling at or below the velocity of light could connect, and
the settings of the detectors were changed during the flight of the photons from
the source to the detectors. Such “super-luminal communication” has since been
demonstrated over distances more than 10 km [109–112] and forms the basis of
what is now known as quantum teleportation [113, 114].

REFERENCES

1. Planck M. In: von Laue M, editor. Physikalische Abhandlungen und Vorträge. Braun-
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3
THE ELECTRON DENSITY

N. Sukumar and Sunanda Sukumar

3.1 MOLECULAR STRUCTURE

The concept of molecular structure is fundamental to the practice and
understanding of chemistry. At the heart of this concept lies the
Born–Oppenheimer separation of electronic and nuclear motions [1–3].
This separation introduces a great computational and practical simplification in
the study of chemistry, but is neither essential to the conceptual formulation
of molecular structure nor universally valid. The notion that a molecule has
structure is fundamental to much of chemistry as practised today. In the words
of Woolley [4], “The idea that molecules are microscopic, material bodies with
more or less well-defined shapes has been fundamental to the development
of our understanding of the physicochemical properties of matter, and it is
now so familiar and deeply ingrained in our thinking that it is usually taken
for granted—it is the central dogma of chemistry.” Indeed, Woolley [4–9]
has argued that the notion that a single molecule has a shape—a nearly fixed
(relative) arrangement of nuclei in space—is a classical idea imposed on the
quantum mechanical picture of matter. Practising chemists customarily envision
molecular structure in terms of two-dimensional graphs and ball-and-stick-type
molecular models. Such models are simple to visualize and have immense
intuitive appeal. We shall define structure here from a statistical perspective,
as that which distinguishes an object from an arbitrary collection of its parts,
in this case, a molecule from the set of its constituent atoms. This definition
generalizes the concept of molecular structure to situations where the relative
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spatial locations of the constituent atoms may not be fully known, or even well
defined.

In 1927, Max Born and J. Robert Oppenheimer [1] effected an approximate
separation of electronic and nuclear motions in molecules by means of a pertur-
bation expansion in the ratio of the electronic to nuclear masses, and showed that
molecular states can be approximately represented as products of electronic and
nuclear functions.

�(r, R) ≈ ψ(r; R)χ(R), (3.1)

where �(r,R) is an eigenfunction of the molecular Hamiltonian H:

H�(r, R) = E�(r, R), (3.2)

H = Tn + Te + Vne + Vee + Vnn. (3.3)

Here, we use r to represent the electronic coordinates and R to represent the
nuclear coordinates. Tn is the nuclear kinetic energy, Te the interelectronic kinetic
energy, while Vne, Vee, and Vnn include the electron-nuclear attraction, interelec-
tronic repulsion, and internuclear repulsion terms, respectively. Equation 3.1 is the
Born–Oppenheimer approximation. The electronic function ψ(r;R) is obtained
by solution of the electronic Schrödinger equation:

Hψ(r;R) = Eψ(r;R), (3.4)

The electronic structure problem then involves solving for the eigenfunctions of
an electronic Hamiltonian,

H = Te + Vne + Vee. (3.5)

The semicolon denotes the parametric dependence of ψ on the nuclear coordi-
nates. E is the total energy of the molecule, while E is termed the electronic
energy. The nuclear function χ(R) satisfies an equation of motion:

[Tn + E + Vnn]χ(R) ≈ Eχ(R). (3.6)

The eigenvalues of the electronic Hamiltonian H (together with the internuclear
repulsion terms Vnn in H) thus form an effective potential energy surface on
which the nuclei are envisioned to move. As the nuclei are several thousand
times heavier than the electrons, Born and Oppenheimer argued that the elec-
trons move much faster than the nuclei; consequently, at any given instant, the
electrons feel the instantaneous effect of the nuclei, whereas the nuclei feel an
average, smeared-out effect of the moving electrons. The physical picture that
emerges from the Born–Oppenheimer approximation is that of this smeared-
out electron cloud instantaneously adjusting to the motion of the slowly moving
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nuclei. Thus, although they move in accordance with the quantum Schrödinger
equation (Eq. 3.6), the nuclei are visualized in a corpuscular framework, whereas
the electrons are represented by an electron cloud or charge density. This picture
is central to most chemical concepts today, but it is important to recognize the
limitations on its validity.

In 1951, Max Born [2, 3] reexamined the problem without invoking a pertur-
bation with respect to the ratio of electronic to nuclear masses, and instead recast
it as an exact sum-over-states expansion:

�(r, R) =
∑

i

ψi(r, R)χi(R); (3.7)

where ψi(r;R) is the i th electronic state wavefunction with eigenvalue Ei :

Hψi(r;R) = Eiψi(r;R). (3.8)

The set of electronic functions ψi(r;R) for all i now form a basis for the expan-
sion of the total wavefunction �(r,R). In coordinate representation,[

−1

2
∇2

e + Vne + Vee

]
ψi(r; R) = Eiψi(r; R). (3.9)

Using the expansion (Eq. 3.7) in the Schrödinger equation (Eq. 3.2) and making
use of the eigenvalue equation (Eq. 3.8),

∑
j

∑
α

pα
2

2Mα

ψj(r, R)χj (R) + [Ei + Vnn]ψi(r; R)χi(R) = Eiψi(r; R)χi(R),

(3.10)

where we have used

Tn =
∑

α

pα
2

2Mα

, (3.11)

pα = i�∇α are nuclear momentum operators and Mα are nuclear masses, nuclear
variables being represented by Greek subscripts; � is an abbreviation for h/2π .
In addition to the terms appearing in the Born–Oppenheimer equation (Eq. 3.4),
we now have both diagonal and off-diagonal (j �= i) terms in Equation 3.10,
resulting from the action of the nuclear kinetic energy operator on the electronic
basis functions. These terms take the form

Aij = i�

Mα

ψj
∗(r, R)∇αψi(r, R), (3.12)

Bα
ij = 1

2Mα

ψj
∗(r, R)∇2

αψi(r, R). (3.13)
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The vector diagonal term Aα
ii is a most interesting quantity, whose importance

was not realized until recently. It is of relevance to the geometric phase and
plays a crucial role in the density functional polarization theory of insulators.
This quantity is discussed in detail in Chapter 5. The scalar diagonal term Bα

ii

represents an adiabatic correction to the Born–Oppenheimer energy, while the
off-diagonal Born coupling terms Aα

ij and Bα
ij for i �= j serve to couple different

electronic states [2, 10]. The vector term Aα
ij (for j �= i) appears in the equation

of motion as a dot product with the nuclear momentum operator pα:[∑
α

pα
2

2Mα

+ Ei + Vnn

]
χi(R) +

∑
j

∑
α

[Aα
ij pα + Bα

ij ]χj (R) = Eiχi(R).

(3.14)

The Born–Oppenheimer approximation is thus tantamount to neglecting the
terms involving the Born coupling terms. As Vne is the only term in the electronic
Hamiltonian H that depends on nuclear coordinates, the expression (Eq. 3.12) may
be rewritten using the eigenvalue equation (Eq. 3.8) as

Aij
α = i�

Ei − Ej

ψj
∗(r, R)[∇αVne]ψi(r, R). (3.15)

The appearance of the energy difference denominator in Expression 3.15 for
the Born coupling term Aα

ij shows that a necessary, but not sufficient, condition
for the validity of the Born–Oppenheimer approximation is that the electronic
wavefunction must be nondegenerate at all points in the region of interest in
nuclear configuration space. This can be seen through the terms Bα

ij and Aα
ij that

are related through the identity:

Bα
ij = −1

2
�

[
∇α · Aα

ij +
∑

k

Aα
ik · Aα

kj

]
, (3.16)

which is easily verified by differentiation of Expression 3.12 with respect to
nuclear coordinates. This enables the molecular Hamiltonian to be written in the
gauge-invariant matrix form [10–12]:

H =
∑

α

1

2Mα

[pα + Aα] · [pα + Aα] + [E + Vnn]. (3.17)

In addition, the nature of the intramolecular forces is also of importance in
effecting the Born–Oppenheimer separation. Essén [13, 14] presented an alter-
native analysis of the Born–Oppenheimer separation, as instead a separation
between collective and internal motions in a molecule, which, on account of
the small ratio of electronic to nuclear masses, can be approximately identified
with relative nuclear motions and electronic motions relative to fixed nuclei,
respectively.
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The two-dimensional graphical structure of a molecule generally forms the
input to an electronic structure computation within the Born–Oppenheimer
approximation. This has provoked some discussion [4–9, 15] as to whether
molecular structure is really derivable from first principles quantum mechanics.
There have been several recent efforts directed at first principles computation
of molecular structure beyond the Born–Oppenheimer approximation. These
nowadays go by the name of non-Born–Oppenheimer methods or NOMO
(nuclear orbital plus molecular orbital) theory [16–18]. The earliest such studies
were a pioneering series of computations at the Hartree–Fock (see Section 3.2)
level of theory, performed by Thomas [19–24], for a series of second-row
hydrides, putting electrons into electronic orbitals and protons into protonic
orbitals, separately antisymmetrizing the electronic and protonic wavefunctions
and iterating the Fock equations to self-consistency. While the solution of the
electronic Schrödinger equation within the Born–Oppenheimer approximation
takes the coordinates of the nuclei as input parameters, no such input is required
for computing the eigenfunctions of the total molecular Hamiltonian (Eq. 3.5),
which only takes the numbers of each kind of particle as input. Equilibrium bond
lengths and bond angles emerge in this picture as peaks in the protonic radial
distribution function. These computations yielded a remarkable structure for
ammonia, very different from the expected pyramidal structure: the molecular
structure of ammonia in this picture was a disk centered on the nitrogen atom!
While the pyramidal structure is indeed the equilibrium ground state structure
of ammonia obtained from the solution of the electronic Schrödinger equation
within the Born–Oppenheimer approximation, it is not an eigenfunction of the
total Hamiltonian of the isolated molecule. The ground state solution of the total
molecular Schrödinger equation beyond the Born–Oppenheimer approximation
is a symmetric linear combination of two pyramidal ammonia wavefunctions (ψ1
and ψ2) that are related by a reflection operation (Fig. 3.1). The wavefunction
for the first excited state ψ− of ammonia is the corresponding antisymmetric
linear combination:

ψ+ =
√

1

2
[ψ1 + ψ2],

ψ− =
√

1

2
[ψ1 − ψ2]. (3.18)

Indeed, excitation of a proton from ψ+ to ψ− gives rise to a line in the
protonic spectrum that corresponds to the observed microwave line in ammo-
nia; this is conventionally explained as due to umbrella-flipping transformation
between ψ1 and ψ2 (Fig. 3.1). Woolley [4–9] has argued that when experimental
structure determinations reveal broken symmetry in molecules, this must be due
to weak intermolecular or other environmental perturbations. Such formulations
provide attractive alternative means for deriving and visualizing molecular struc-
ture, treating electrons and protons on a similar footing, and without invoking
the Born–Oppenheimer approximation.
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Figure 3.1 The structure and protonic spectrum of ammonia. The lower part of the figure
shows the radial distribution functions for the protons as functions of the N–H distance
[15]. (Reproduced with permission from Sukumar N. Found Chem 2009;11(1):7–20,
Copyright 2009 Springer.)

3.2 SELF-CONSISTENT TREATMENT OF MANY-ELECTRON
SYSTEMS

As early as 1922, Bohr [25] suggested that the electrostatic field through which
an electron moves in an atom can be represented by a static distribution of the
other electrons, or in other words by the averaged electron density of the remain-
ing electrons. Thus, even before the discovery of the Schrödinger equation, many
experimental results from atomic spectroscopy could be qualitatively understood
by identifying the electronic energy levels with those of a single electron mov-
ing in the central field of the nucleus and other electrons. Hartree [26] then
used this suggestion to develop a method for self-consistently including interelec-
tronic repulsion in the Schrödinger equation. Writing the nonrelativistic electronic
Hamiltonian for a one-electron atom of atomic number Z as

Hi(0) = −1

2
∇2

i + Z

ri

, (3.19)

where the subscript i labels the electron, the nonrelativistic electronic Hamilto-
nian for an N -electron atom is then

H =
N∑

i=1

H
(0)
i +

∑
i<j

1

rij

. (3.20)

Here and in the remainder of this chapter, we use atomic units wherein the
charge and mass of the electron are set to unity and further � = 1. Assuming an
approximate N -electron wavefunction, given as a simple product of one-electron
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functions (called orbitals),

ψ(1, 2, . . . , N) =
N∏

i=1

ϕi(i), (3.21)

Hartree demonstrated how to obtain these orbitals systematically. The electron i
moves in an effective one-electron potential:

V eff
i =

N∑
j �=i

∫
ϕj

∗(j)ϕj (j)

rij

drj =
∑
j �=i

〈
ϕj (j)

∣∣∣∣∣ 1

rij

∣∣∣∣∣ ϕj (j)

〉
, (3.22)

where Dirac’s bra and ket notation [27] of dual vector spaces has been used in
the second identity. Vi

eff is the electrostatic interaction of the i th electron with
the N − 1 other electrons. The i th electron is thus assumed to move in the poten-
tial field owing to the average charge distributions of all the other electrons in
the atom. We now replace the interelectronic repulsion operator

∑
i<j

1
rij

(sec-

ond term in Equation 3.20) with the effective potential
∑N

i=1 Vi
eff. This enables

the Schrödinger equation to be separated into contributions from individual elec-
trons. The problem then reduces to the solution of N independent equations of
the form

[Hi
(0) + Vi

eff]ϕi(i) = εiϕi(i). (3.23)

Defining the Coulomb operator

Jj (i) =
〈
ϕj (j)

∣∣∣∣∣ 1

rij

∣∣∣∣∣ ϕj (j)

〉
, (3.24)

the effective potential becomes

Vi
eff =

N∑
j �=i

Jj (i). (3.25)

The Hartree equations then take the integrodifferential form⎡
⎣Hi(0) +

N∑
j �=i

Jj (i)

⎤
⎦ϕi(i) = εiϕi(i). (3.26)

The effective potential Vi
eff in Equation 3.22 depends on the set of unknown

orbitals {ϕ}, which are themselves obtained by solving the Hartee equations
(Eq. 3.23). Hartree obtained both the orbitals and the effective potential by an
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iterative procedure, starting with a set of approximate orbitals {ϕi
(0)(i)}. This

gives a first approximation to the Coulomb operator:

J
(0)
j (i) =

〈
ϕ

(0)
j (j)

∣∣∣∣∣ 1

rij

∣∣∣∣∣ ϕ(0)
j (j)

〉
(3.27)

and a first approximation to the effective Hamiltonian:

Hi
(1) = Hi

(0) +
N∑

j �=i

J
(0)
j (i). (3.28)

Solving the set of N equations

Hi
(1)ϕi(i) = εi

(1)ϕi
(1)(i) (3.29)

gives the next level of approximation to the orbitals {φi
(1)(i)}. These are then

used to define the next level of approximation to the Coulomb operator:

J
(1)
j (i) =

〈
ϕ

(1)
j (j)

∣∣∣∣∣ 1

rij

∣∣∣∣∣ ϕ(1)
j (j)

〉
, (3.30)

which, in turn, leads to an effective Hamiltonian

Hi
(2) = Hi

(0) +
N∑

j �=i

J
(1)
j (i), (3.31)

and the next set of Hartree equations:

Hi
(2)ϕi(i) = εi

(2)ϕi
(2)(i), (3.32)

and thus an improved set of orbitals {ϕi
(2)(i)}. The process is repeated until

a set of orbitals yields an effective potential that, when used in the Hartree
equations for the next level of approximation, yields back the same set of orbitals,
a condition known as self-consistency . The electrons are now said to move in
a self-consistent field (SCF) and the converged set of orbitals are known as
SCF orbitals . The electronic energy of the N -electron atom in the Hartree SCF
approximation is given by

EHartree =
N∑

i=1

〈ψ |Hi
(0)|ψ〉 +

∑
i<j

〈
ψ

∣∣∣∣∣ 1

rij

∣∣∣∣∣ψ
〉
. (3.33)
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If the SCF orbitals are normalized, the electronic energy in the Hartree SCF
method is given by

E =
N∑

i=1

εi
(0) +

∑
i<j

Jij , (3.34)

where

εi
(0) = 〈ϕi(i)|Hi

(0)|ϕi(i)〉 (3.35)

and Jij is the Coulomb integral, defined as

Jij = 〈ϕi(i)|Jj (i)|ϕi(i)〉 = 〈ϕj (j)|Ji(j)|ϕj (j)〉=
〈
ϕi(i)ϕj (j)

∣∣∣∣∣ 1

rij

∣∣∣∣∣ ϕi(i)ϕj (j)

〉
,

(3.36)

Jij represents the electrostatic repulsion between two charge clouds |ϕi(i)|2 and
|ϕj (j)|2.

The electronic wavefunction in the Hartree method does not have the correct
Fermi–Dirac statistics for a many-electron system, because the Hartree product
(Eq. 3.21) is not antisymmetric with respect to permutation of electrons. Thus
the Pauli principle is not satisfied. This was rectified by Fock [28] and Slater
[29], who used an antisymmetrized product instead. Writing the wavefunction in
the Slater determinant form (Eq. 2.36), we now have, in addition to the Coulomb
integral (Eq. 3.36), an additional term arising from permutation of electrons in the
same orbital, but with opposite spin. As these electrons differ in the spin quantum
number, the Slater determinant does not vanish under such permutations. The
additional term in the Hamiltonian is the exchange integral:

Kij =
〈
ϕi(1)ϕj (2)

∣∣∣∣ 1

r12

∣∣∣∣ϕj (1)ϕi(2)

〉
, (3.37)

which has no classical analog, and arises solely from the antisymmetry principle.
The electronic energy in the Hartree–Fock approximation can be written as a
sum over the N /2 spatial orbitals:

EHF = 2
N/2∑
i=1

εi
(0) +

N/2∑
i<j

(4Jij − 2Kij ) +
N/2∑
i=1

Jii

= 2
N/2∑
i=1

εi
(0) +

N/2∑
i,j

(2Jij − Kij ) (3.38)

The second identity is obtained by noting that

Jij = Jji Kij = Kji Jii = Kii. (3.39)
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The Hartree–Fock equations can be obtained by considering arbitrary variations
in the orbitals ϕ and employing the calculus of variations to give [30, 31]

[Hi
(0) +

∑
j

(2Jj − Kj)]ϕi = ϕiλij , (3.40)

where the Coulomb and exchange integrals are now defined through the expres-
sions

Ji(1)ϕj (1) =
〈
ϕi(2)

∣∣∣∣ 1

r12

∣∣∣∣ ϕi(2)

〉
ϕj (1), (3.41)

Ki(1)ϕj (1) =
〈
ϕi(2)

∣∣∣∣ 1

r12

∣∣∣∣ ϕj (2)

〉
φi(1), (3.42)

and the Lagrange multipliers λij are elements of a Hermitian matrix λ, that
is, λij = λji

∗. The Hartree–Fock equations (Eq. 3.40) can be written in the
convenient matrix form

Fϕ = ϕλ, (3.43)

where the Fock operator F is defined as

F = H(0) +
∑

j

(2Jj − Kj) (3.44)

and

ϕ = [ϕi ϕ2 · · · ϕN/2]. (3.45)

Diagonalization of the matrix λ yields the orbital energies ε

εi = 〈ϕi |F |ϕi〉 = ε
(0)
i +

∑
j

(2Jij − Kij ). (3.46)

3.3 DENSITY MATRICES AND ELECTRON CORRELATION

All terms in the nonrelativistic molecular Hamiltonian and the electronic Hamil-
tonian are either one-body- or two-body terms. Thus, knowledge of the full
N -electron wavefunction is not necessary; one needs no more than the reduced
two-electron density matrix for molecular electronic problems [32, 33]. We define
the density operator using Dirac’s bra and ket notation [27] as

ρ = |ψ〉〈ψ |, (3.47)

and the full N -electron density matrix in coordinate representation as

�(r1, r2, . . . , rN, σ1, σ2, . . . , σN |r′
1, r′

2, . . . , r
′
N, σ ′

1, σ
′
2, . . . , σ

′
N) =

N!ψ∗(r1, r2, . . . , rN, σ1, σ2, . . . , σN)ψ(r′
1, r′

2, . . . , r′
N, σ ′

1, σ2, . . . , σ
′
N) (3.48)
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Here, the spatial coordinates have been denoted by r and the spins by σ .
The primes are used to indicate that operators act only on the primed variables;
primed and unprimed variables are set equal to each thereafter. The density
operator is Hermitian (ρ = ρ∗) and idempotent (ρ2 = ρ). Integrating � over the
coordinates of all but two electrons (and summing over their spins) yields the
reduced two-electron density matrix �(2):

�(2)(r1, r2, σ1, σ2|r′
1, r′

2, σ
′
1, σ

′
2) = N(N − 1)

∫
dr3 · · ·

∫
drN

∑
σ3

· · ·
∑
σN

ψ∗(r1, r2, . . . , rN, σ1, σ2, . . . , σN)ψ(r′
1, r′

2, . . . , r′
Nσ ′

1, σ
′
2, . . . , σ

′
N)

(3.49)
Similarly integrating � over the coordinates of all but one electron (and sum-
mation over their spins) yields the reduced one-electron density matrix �(1), a
function of the coordinates and spin of a single electron:

�(1)(r1σ1|r′
1σ

′
1) = γ (r|r′) = N

∫
dr2 · · ·

∫
drN

∑
σ2

· · ·
∑
σN

ψ∗(r1, r2, . . . , rNσ1, σ2, . . . , σN)ψ(r′
1, r′

2, . . . , r′
Nσ ′

1, σ
′
2, . . . , σ

′
N).

(3.50)
In an analogous manner, one can define the reduced density matrices in

momentum space � by considering the wavefunctions in the momentum rep-
resentation and integrating over electronic momenta:

∏
(1)(p1σ1|p′

1σ
′
1) = N

∫
dp2 · · ·

∫
dpN

∑
σ2

· · ·
∑
σN

ψ∗(p1, p2, . . . ,

pN, σ1, σ2, . . . , σN)ψ(p′
1, p′

2, . . . , p′
N, σ ′

1, σ
′
2, . . . , σ

′
N). (3.51)

The diagonal elements of the first- and second-order density matrices are the
electron density and the pair density, respectively

ρ(r) = γ (r|r) = N

∫
dr2 · · ·

∫
drN

∑
σ

· · ·
∑
σN

ψ∗(r1, r2, . . . ,

rN, σ1, σ2, . . . , σN)ψ(r1, r2, . . . , rN, σ1, σ2, . . . , σN), (3.52)

ρ(r1, r2) = N(N − 1)

∫
dr3 · · ·

∫
drN

∑
σ1

· · ·
∑
σN

ψ∗(r1, r2, . . . ,

rN, σ1, σ2, . . . , σN)ψ(r1, r2, . . . , rN, σ1, σ2, . . . , σN), (3.53)

π(p) = N

∫
dp2 · · ·

∫
dpN

∑
σ

· · ·
∑
σN

ψ∗(p1, p2, . . . ,

pN, σ1, σ2, . . . , σN)ψ(p1, p2, . . . , pN, σ1, σ2, . . . , σN). (3.54)
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Here, we have summed over all electron spins to give spin-free densities ρ, π

and density matrices γ . Assuming the wavefunctions to be antisymmetric and
normalized, the trace of the first-order density matrix gives the total number of
electrons N , as does the integral over all space of the electron density:

Tr.γ (r|r′) = ∫ ρ(r) dr = N, (3.55)

∫ dr1 ∫ dr2 ρ(r1, r2) = N(N − 1). (3.56)

It is the electron densities ρ(r) and π(p) that will be the subject of the remain-
der of this book. ρ(r) represents the probability of an electron being found at
position r; π(p) the probability of an electron being found with momentum p;
ρ(r1, r2) the probability of two electrons being simultaneously found, one at r1
and the other at r2. Unlike the wavefunction, the electron densities and density
matrices, in position and momentum space, are amenable to direct experimen-
tal determination. In Section 3.4, we shall describe methods for experimental
determination of ρ(r).

As a consequence of the antisymmetry principle, the second-order density
matrix (and all higher order matrices) is antisymmetric with respect to each set
of electron indices:

�(2)(r1, r2, σ1, σ2|r′
1, r′

2, σ
′
1, σ

′
2) = −�(2)(r2, r1, σ2, σ1|r′

1, r′
2, σ

′
1, σ

′
2)

= −�(2)(r1, r2, σ1, σ2|r′
2, r′

1, σ
′
2, σ

′
1), (3.57)

whence

�(2)(r1, r2, σ1, σ2|r′
1, r′

2, σ
′
1, σ

′
2) = 0 for {r1, σ1} = {r2, σ2} (3.58)

or {r′
1, σ

′
1} = {r′

2, σ
′
2}.

This represents a Fermi hole for each electron at the position of any other
electron of the same spin. Furthermore, because of Coulomb repulsion, �(2)

should vanish even when two electrons of opposite spin σ1 �= σ2 come to occupy
the same spatial coordinates r1 = r2. This is known as the Coulomb hole.

It is apparent that all terms in the electronic Hamiltonian can be expressed in
terms of the reduced second-order density matrix:

〈Te〉 = −1

2
∇2

i γ (r|r′)|r=r′, (3.59)

〈Vne〉 =
∫

dr
∑

α

Zαρ(r)
|r − Rα| , (3.60)

〈Vee〉 = 1

2

∫
dr1

∫
dr2

ρ(r1, r2)

|r1 − r2|
. (3.61)

The electronic kinetic energy depends only on the first-order density matrix,
and the potential energy on the diagonal elements of the first- and second-order
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density matrices. In the Hartree–Fock approximation, the energy is given entirely
in terms of the one-electron density matrix:

EHF = −1

2
∇2

i γ (r|r′)|r=r′ −
∫

dr
∑

α

Zαρ(r)
|r − Rα|

+ 1

2

∫
dr1

∫
dr2

ρ(r1)ρ(r2) − γ (r1|r2)γ (r2|r1)

|r1 − r2|
. (3.62)

The Hartree–Fock approximation does not properly account for the tendency
of electrons of opposite spin to avoid each other (the Coulomb hole); electrons
of opposite spin behave, in this approximation, as quasi-independent particles,
interacting only in the sense that each electron moves in the effective potential
field owing to the other electrons. The tendency of electrons of the same spin to
avoid each other (the Fermi hole) is accounted for through the antisymmetry of
the Hartree–Fock wavefunction.

We now define [34] the correlation energy as “the difference between the exact
eigenvalue of the Hamiltonian and its expectation value in the Hartree–Fock
approximation.” Thus for the nonrelativistic electronic Hamiltonian considered
here, the correlation energy is the difference between the exact nonrelativistic
energy (in general, an unknown quantity) and the Hartree–Fock energy. Cor-
relation arises from the tendency of electrons to avoid each other beyond that
represented by the Hartree–Fock approximation. While electrons of the same spin
are kept apart by the antisymmetry principle, the average potential field in the
Hartree–Fock approximation does not adequately separate electrons of opposite
spin. The Hartree approximation, which neglects both exchange and correlation,
does an equally poor job with paired as with unpaired electrons, but these errors
(being of opposite sign) tend to cancel each other.

Popular methods of going beyond the Hartree–Fock approximation include
configuration interaction (CI), perturbation theory, diagrammatic coupled cluster
methods, and density functional theory (the subject of the next chapter). For a
closed-shell system, the Hartree–Fock wavefunction takes the form of a Slater
determinant, with each orbital occupied by either two electrons (occupied orbitals)
or none (virtual orbitals [30]). Wavefunctions for excited states have more nodes
than the ground state wavefunction. These nodes serve to keep electrons apart.
Thus, an effective way of including correlation would be to mix in higher excited
states. CI employs an expansion of the wavefunction for the electronic state of
interest in terms of Slater determinantal configurations. Unfortunately, the conver-
gence of the CI expansion is often disappointingly slow and a very large number
of configurations are typically required to account for a significant fraction of
the correlation energy. Constructing the density matrix from a CI wavefunction
(or any other wavefunction beyond Hartree–Fock) and diagonalizing the first-
order density matrix leads to a set of orbitals χi(r) (called natural orbitals) with
nonintegral occupation numbers ni :

∫ dr γ (r′|r)χi(r) = niχi(r). (3.63)
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Natural orbitals are thus eigenfunctions of the first-order density matrix; the
occupation numbers ni are the corresponding eigenvalues. Löwdin [32] showed
that natural orbitals lead to the most rapid convergence of CI expansions.

3.4 EXPERIMENTAL DETERMINATION OF THE ELECTRON
DENSITY

The most common experimental technique for the determination of electron den-
sities is X-ray diffraction. X-rays were discovered by Wilhelm Conrad Röntgen
in 1895, winning him the Nobel Prize in 1901, but it was Max von Laue who
first discovered that electrons are capable of diffracting X-rays. von Laue was
born in October 1879 at Pfaffendorf, near Koblenz, Germany, the son of Julius
von Laue. After a semester at the University of Munich, he went to the Univer-
sity of Berlin in 1902 to work under Max Planck. Here, he attended lectures by
Lummer on interference spectroscopy. After obtaining his doctorate in 1903, von
Laue went to the University of Gottingen, where he was offered the post of assis-
tant to Max Planck at the Institute for Theoretical Physics. He moved back to the
University of Munich in 1909 and served as privatdozent there, before accepting
appointment as professor of physics at the University of Zurich in 1912. The
idea that crystals could be used as a diffraction grating arose during a conver-
sation between Max von Laue and Paul Peter Ewald in 1912 in Munich. Using
a crystal of zinc sulfide, von Laue in collaboration with Friedrich and Knipping
found unequivocal evidence of regular diffraction of X-rays. For this work von
Laue was awarded the Nobel Prize in 1914. von Laue served as professor of
physics at the University of Berlin from 1919 to 1943, but was a vocal opponent
of Nazi policies. When Nazi Germany invaded Denmark during World War II,
the Hungarian chemist George de Hevesy dissolved the gold Nobel prizes of von
Laue and James Franck in aqua regia to keep them hidden from the Nazis (export
of gold was illegal at that time). The dissolved awards stayed undisturbed on a
shelf in Hevesy’s laboratory at the Neils Bohr Institute. After the war, Hevesy
returned to Denmark and precipitated the gold out of the acid, whereupon the
Nobel Foundation recast the Nobel prizes from the original gold.

The pattern of radiation scattered by any object, called the diffraction pattern ,
can be exploited to obtain the electron density and the crystal structure. X-rays
are employed to produce the diffraction pattern because their wavelength λ is
typically of the same order of magnitude (of the order of Ångstroms) as the
spacing d between adjacent planes in the crystal. In crystals, nature has provided
us with a diffraction grating ideally suited for the diffraction of X-rays. A beam
of X-rays striking a crystal is scattered elastically (i.e., the scattered X-rays have
the same wavelength as the incident X-rays) into many specific directions. von
Laue observed that the reflected beams were only observed in certain directions.
In studying this effect, William Lawrence Bragg realized that the origin of this
selection of specific directions for the diffracted beam lies in the regularities of the
crystal structure [35, 36]. While in most directions the scattered waves interfere
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Figure 3.2 Illustration of the Bragg equation nλ = 2d sin θ . Since the path difference
(causing phase differences) of waves scattered by two adjacent planes is 2d sin θ , this
must equal nλ for reinforcement to occur to give a diffracted beam [44].

destructively with each other and hence cancel out, they add constructively in a
few specific directions, as determined by Bragg’s law:

nλ = 2d sin θ. (3.64)

Here, d is the spacing between diffracting planes (Fig. 3.2), θ the incident angle,
λ the wavelength of the beam, and n an integer. Waves scattered from adjacent
lattice planes will be exactly in phase, that is the difference in the paths traveled
by these waves will be an integral multiple nλ of the wavelength, and will
interfere constructively, only for those angles of scattering θ that satisfy Bragg’s
law. In analyzing the diffraction of X-rays by zinc sulfide, certain planes were
found to reflect strongly, while other planes did not. Bragg explained this by
assuming that the atoms in the crystal were arranged in a face-centered cubic
lattice, rather than a simple cubic lattice. This was confirmed by Bragg and his
father by analyzing several other crystal structures, both simple and complex
[37–43]. The first atomic-resolution structure to be solved was that of sodium
chloride in 1914 [37, 38], which revealed that the sodium and chlorine atoms
are not associated as molecules, indicating that the atoms are ionized in the
crystal structure and held together by electrostatic attraction of the oppositely
charged ions. Bragg also solved the structure of diamond [39, 40], revealing the
tetrahedral arrangement of its bonds. The Nobel Prize in physics was awarded
in 1915 to the British father and son duo, Sir William Henry Bragg (the father)
and William Lawrence Bragg (the son, also knighted in 1941, and at the age of
25, the youngest-ever Nobel laureate), “for their service in the analysis of crystal
structure by means of X-rays”.
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Bragg’s law does not interpret the relative intensities of the reflections. Thus
to solve for the arrangement of atoms within the unit cell, a Fourier transform
must be performed. In an X-ray diffraction measurement, a crystal is mounted on
a goniometer and gradually rotated while being subjected to X-ray bombardment,
which produces a diffraction pattern of regularly spaced dots (reflections). The
two-dimensional diffraction patterns at different rotations are then converted,
using Fourier transforms, into a three-dimensional model of the electron density
ρ(r) within the crystal:

ρ(r) =
∫

dq
(2π)3

F(q) eiq·r. (3.65)

The incident X-ray can be represented as a plane wave Aeik·r, where k is the
wave vector of the incident wave. At any position r within the sample, the density
of scatterers ρ(r) produces a scattered spherical wave with amplitude proportional
to the local amplitude of the incident wave and to the number of scatterers in
a small volume element dV around r: that is, to A eik·r ρ(r) dV . Consider
a scattered wave with wave vector k′ striking the detector at r′. For elastic
scattering |k| = |k′|. The change in the phase of the photon is thus eik′·(r′−r). The
net radiation arriving at r′ is the sum of all scattered waves throughout the crystal:
A ∫ drρ(r)eik·r eik′·(r′−r) = A eik′·r′ ∫dr ρ(r) ei(k−k′)·r = A eik′·r′

F (q), where q =
k′ − k. The measured intensity of reflected radiation is thus proportional to the
square of the amplitude |F (q)|2. The intensities of the reflections from an X-ray
diffraction measurement yield the magnitudes |F (q)|, but not the corresponding
phases. This is known as the phase problem . To obtain the phases, full sets of
reflections are collected with known alterations to the scattering, using one of
several methods (see below). Combining the magnitudes with the phases gives
F (q), the Fourier transform (Eq. 3.65) of which gives the electron density ρ(r).

Nowadays, the structures of systems containing several hundred atoms
involved in complicated structural permutations such as proteins can be
solved using X-ray diffraction. X-ray crystallography of biological molecules
was pioneered by Dorothy Crowfoot Hodgkin, who solved the structure of
cholesterol in 1937, vitamin B12 in 1945, penicillin in 1954, and insulin in
1969 [45]; she was awarded the Nobel Prize in chemistry in 1964. Max Perutz
and Sir James Cowdery Kendrew solved the first crystal structure of a protein,
sperm whale myoglobin [46], for which they were awarded the Nobel Prize
in chemistry in 1962. Since then, X-ray crystal structures of several tens of
thousands of proteins and complexes of proteins with nucleic acids have been
deposited in the protein data bank [47]. Indeed, there has hardly been a more
prolific field of science, as the number of Nobel prizes in the field of X-rays
(Table 3.1) indicates.

Before data collection can take place a suitable single crystal must be chosen.
A suitable crystal must possess two attributes: uniform internal structure and
proper size and shape. The first requirement is met if the crystal is pure at the
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TABLE 3.1 Nobel Prizes in the Field of X-rays and/or Diffraction

1901 Wilhelm Conrad Röntgen, in physics, for the discovery of X-rays
1914 Max von Laue, in physics, for the discovery of X-rays by crystals
1915 William Henry Bragg and William Lawrence Bragg, in physics, for the

determination of crystal structures using X-rays
1917 Charles Glover Barkla, in physics, for the discovery of the characteristic

X-radiation of the elements
1924 Karl Manne Georg Siegbahn, in physics, for discoveries in the field of

X-ray spectroscopy
1927 Arthur Holly Compton, in physics, for revealing the particle nature of

X-rays in scattering experiments on electrons
1936 Peter Debye, in chemistry, for determining the molecular structures by

X-ray diffraction in gases
1962 Max Ferdinand Perutz and John Cowdery Kendrew, in chemistry, for

determining the structure of hemoglobin and myoglobin
1962 Francis Crick, James Watson, and Maurice Wilkins, in medicine, for their

discoveries concerning the molecular structure of nucleic acids and their
significance in information transfer in living material

1964 Dorothy Crowfoot Hodgkin, in chemistry, for the determination of the
structure of penicillin and other important biochemical substances

1976 William N. Lipscomb, in chemistry, for the determination of the structures
of boranes

1979 Allan M. Cormack and Godfrey N. Hounsfield, in medicine, for the
development of computerized tomography

1981 Kai M. Siegbahn, in physics, for developing high resolution electron
spectroscopy

1985 Herbert A. Hauptman and Jerome Karle, in chemistry, for the development
of direct methods for X-ray crystallographic structure determination

1988 Johann Deisenhofer, Robert Huber, and Hartmut Michel, in chemistry, for
the determination of protein structures crucial to photosynthesis

2009 Venkatraman Ramakrishnan, Thomas A. Steitz, and Ada E. Yonath, in
chemistry, for studies of the structure and function of the ribosome

2011 Dan Shechtman, in chemistry, for the discovery of quasicrystals

molecular, atomic, or ionic level. The crystal must be a single crystal in that it
should not be twinned or composed of microscopic subcrystals.

Crystals can be screened by examination with a polarizing microscope. If
rotated about an axis normal to the polarizing material, the crystal should appear
uniformly dark in all positions or be bright and extinguish, that is, appear
uniformly dark, once every 90◦. A suitable size of the crystal is generally
0.1–0.3 mm. As the intensities of the diffracted rays from a given crystal are
proportional to the amount of material present in the specimen, there is an advan-
tage in selecting as large a crystal as possible; however, because of absorption
there is an optimum thickness to prevent a decrease in intensity and an increase
in random errors. For single crystals, it is best to have the crystal mounted on
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the goniometer for proper alignment and centering; modern diffractometers do
not require any orientation, only centering of the crystal.

The dimensions of the unit cell (a, b, c, α, β, γ ) may be found from the angles
2θ of deviations of given diffracted beams from the direction of the incident beam,
as each value of 2θ at which a diffraction maximum is observed is a function
only of the cell dimensions and of the radiation used.

3.4.1 Determination of the Unit Cell Constants and Their Use in
Ascertaining the Contents of the Unit Cell

Cell dimensions may be determined, with radiation of a known wavelength, from
values of 2θ for reflections of known indices, where 2θ is the deviation from the
diffracted beam. The Bragg equation is then used.

Example: Monoclinic cell, α = γ = 90◦, β = 100.12◦, sin β = 0.98445, λ =
1.5418 Å.
h K L 2θ(

◦
) θ(

◦
) sin θ nλ/2 sin θ (Å)

20 0 0 85.68 42.84 0.67995 22.675
22 0 0 96.82 48.41 0.74791 22.676 d100
0 4 0 47.41 23.705 0.40203 7.670 d010
0 0 10 104.14 52.07 0.78876 9.774 d001

Unit cell b is perpendicular to the plane of the paper. dhkl is the space between
the crystal planes hkl .

At this time, it is wise to measure the density of the crystal. A technique that
can be used to measure the density of the crystal is the flotation method. This
consists of suspending the crystal in a mixture of liquids, one lighter and one
heavier than the crystal and adjusting the proportion of the liquids dropwise until
the crystal remains suspended in the medium.

Let W be the weight in grams of 1 gram-formula weight of the contents of the
unit cell and V be the volume in cubic centimeters of this weight of the crystal.

Cell volume = 1726 Å
3 = 1726 × 10−24 cm3

Observed density (by flotation) = 1.34 g/cm3

NAvog unit cells occupy 1726 × 10−24 × 6.02 × 1023 cm3 = V = 1039 cm3

Density = W/V = W/(1726 × 0.602) g/cm3 = 1.34 g/cm3

Therefore,

W = 1.39 × 103 g/cm3

but

W = (ZM + zm)
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where Z is the number of molecules of the compound (molecular weight M )
per unit cell, and z is the number of molecules of the solvent of crystallization
(molecular weight m) per unit cell. In this example, M is known to be 340 and
m = 18 (for water):

(Z × 340) + (z × 18) = 1.39 × 103

The monoclinic symmetry of the unit cell suggests that Z is 4 or a multiple
of 4, leading to the conclusion that Z = 4 and z = 2 (W = 1396) is the correct
solution and that the solution Z = 3 and z = 20 (W = 1380), which is equally
probable from the calculated weight alone, is much less likely.

Having obtained this preliminary information about the crystal, data collection
can now commence. The result of the collection of X-ray diffraction data is
a relative intensity I for each reflection with indices, hkl , together with the
corresponding value of the scattering angle 2θ for that reflection. All the values
of I are on the same relative scale. The angular positions at which the scattered
radiation is observed (related to the scattering angle 2θ) depend only on the
dimensions of the crystal lattice, while the intensities of the different diffracted
beams depend only on the nature and arrangement of atoms within the unit cell.
Each diffracted beam contains information on the entire atomic structure of the
crystal and structure determination involves a matching of the observed intensity
pattern to that calculated from a postulated model. If the atomic arrangement
in a crystal is known, the intensities of reflections in the diffraction pattern can
be calculated and relative phases of these reflections are computed at the same
time. However, when the diffraction pattern is measured, phase information is not
obtainable. When an X-ray diffraction pattern is intercepted by a photographic
film or some other detecting devices, the phase relationships are lost; only the
amplitudes of the diffracted beams are known. The task of the crystallographers
is to recombine these waves mathematically with approximately correct phases to
give an image of the structure that scattered them. To compute an electron density
map and hence determine the crystal structure, phases must be calculated from
a “trial structure” together with the measured intensities. In order to represent
the diffracted waves, the exponential form cre

iαr) may be used to represent the
total scattering, where the amplitude of the wave is cr and the phase angle is
αr. This complex representation is merely a convenient way of representing two
orthogonal vector components in one equation. As the electrons are the only
components of the atom that scatter X-rays significantly and because they are
distributed over atomic volumes with dimensions comparable to the wavelengths
of X-rays used in structure analysis, X-rays scattered from one part of an atom
interfere with those scattered from another at all angles of scattering greater than
0◦. Only at 2θ = 0, all electrons in the atom scatter in phase, and the scattering
power of the atom at this angle, expressed relative to the scattering power of
a free electron, is equal to the number of electrons present. The amplitude of
the scattering for an atom is known as the atomic scattering factor or atomic
form factor and is symbolized as f . For most purposes in structure analysis, it is
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adequate to assume that atoms are spherically symmetrical, but with good data
small departures from spherical symmetry attributable to covalent bonding are
detectable. This means that the scattering by an assemblage of atoms—that is, by
the structure—can be very closely approximated by summing the contributions
to each scattered wave from each atom independently, taking appropriate account
of the differences in phase. As the diffraction pattern is the sum of the scattering
from all unit cells, and thus represents the average content of a single one of
these unit cells, vibrations or disorder may be considered the equivalent of the
smearing out of the electron density, so that there is a greater fall-off at a higher
sin θ/λ. Neutrons are scattered by atomic nuclei, rather than by electrons around a
nucleus, and, because the nucleus is so small (relative to the atom), the scattering
for a nonvibrating nucleus is almost independent of the scattering angle.

3.4.1.1 Scattering by a Crystal The X-radiation scattered by one unit cell of
a structure in any direction in which there is a diffraction maximum has a par-
ticular combination of amplitude and phase, known as the structure factor and
symbolized by F or F (hkl ). It is measured relative to the scattering by a sin-
gle electron and is the Fourier transform of the scattering density (electrons in
the molecule) sampled at the reciprocal lattice point hkl . The intensity of the
scattered radiation is proportional to the square of the amplitude |F 2|. The fall
off in intensity with high scattering angle increases as the vibrations of atoms
become greater, and these vibrations, in turn, increase with rising temperature.
If the vibration amplitude is sufficiently high, essentially no diffracted intensity
will be observed beyond some limiting value of the scattering angle; that is, the
“slit” is effectively widened by the vibration and so the “envelope” is narrow.

After the diffraction pattern has been recorded and measured in some approx-
imate manner, the next stage is solving the structure—that is, finding a suitable
trial structure (approximate positions of most atoms in a unit cell of known
dimensions and space group). This trial structure should be close enough to the
true structure so that it can be smoothly refined to a good fit to the data set. This
is done by the “direct methods”–analytical techniques for deriving an approxi-
mate set of phases, from which a first approximation to the electron density map
can be calculated. Interpretation of this may then give a suitable trial structure.
“Direct methods” make use of the fact that the intensities of reflections contain
structural information and that the electron density of a real crystal cannot be
negative. In practice, analytical methods of phase determination are carried out
on “normalized structure factors”—that is, values of the structure factor |F | mod-
ified to remove the falloff in the individual scattering factors f with increasing
scattering angles. Once a table of electron density |E| values has been prepared,
it is usual to rank these E values in decreasing order of magnitude and work with
the strongest 10% or so to calculate an E -map, which is an electron density map
calculated with E values. If all has gone well the structure will be clear in this
map. Sometimes, only part of the structure is revealed in an interpretable way and
the rest may be found from successive electron density maps. Generally, these
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“direct methods” result in a structure that can be refined and so the structure may
be considered to be determined.

3.4.1.2 Derivation of Trial Structures The intensity information that is
obtained in measuring the diffraction pattern of a crystal can be analyzed in
other ways than “direct methods”. These methods are of particular use in the
determination of certain structures with high symmetry within the asymmetric
unit and in the determination of the structures of biological macromolecules such
as proteins and polynucleotide molecules. Two other methods are the Patterson
method and the isomorphous replacement method. It is recommended that the
Patterson map of any structure with possible ambiguity from “direct methods”
be determined to see if it is consistent with the proposed trial structure.

3.4.1.3 Patterson Map A powerful method of analysis of the intensity distri-
bution in the diffraction pattern can be the study of the Patterson |F |2 map. The
technique is of great value in unraveling some complex structures, especially
those of macromolecules and other molecules containing heavy atoms or into
which heavy atoms can be readily substituted. The Patterson method consists
of evaluating a Fourier series for which only the indices and the |F |2 value of
each diffracted beam are needed; these quantities are directly derivable from the
primary experimental quantities—that is, the directions and intensities of the
diffracted beams:

P(u, v, w) = 1

V c

∑
all

∑
h,k,l

∑
|F |2 cos 2π(hu + kv + lw). (3.66)

There is only one Patterson function P(u, v, w) for a given crystal structure.
The function is evaluated at each point u, v, and w of a three-dimensional grid
that fills the space with the size and shape of a unit cell. No phase information
is required for this map because |F |2 is independent of phase. The Patterson
function P(u, v, w) at points u, v, and w is the sum of the appearances of the
structure when one views it from each atom in turn. It may be considered to be
obtained by multiplying the electron density at points x, y, and z with that at
x + u, y + v, and z + w and adding the resulting products for all values of x, y,
and z . Thus the Patterson function at points u, v, and w may be thought of as a
convolution of the electron density at all points (x, y, and z ) in the unit cell with
the electron density at points x + u, y + v, z + w. If any two atoms in the unit
cell are separated by a vector (u,v,w), then there will be a peak in the Patterson
map at u, v, and w . Thus the orientation and length of every interatomic vector
in the structure is represented in the Patterson map.

The contributions of individual interatomic attractions to the heights of the
peaks in this three-dimensional map are approximately proportional to the values
of ZiZj , where Zi is the atomic number of the atom at one end of the vector
and Zj is that of the atom at the other end. In general, the value of P at every
point u, v, and w corresponds to the sum of the situations at the ends of such a
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vector as it is laid down with its origin at every possible point in the structure.
The usefulness of the map decreases markedly with complicated structures com-
posed of many atoms of about equal atomic number. With crystals of very large
molecules, such as proteins, the overlap becomes hopeless to resolve, except for
the peaks arising from the interactions between atoms of very high atomic num-
ber. If a structure containing a complex molecule with a multitude of vectors
contains a group for which the vectors are known (relative to one another) rather
precisely—for example, a benzene ring in a phenyl derivative, then the vector
map can be calculated and the arrangement of vectors can be compared with the
arrangement of vectors in the original Patterson map. The fit of the calculated
and observed Patterson maps can be optimized with a computer by making a
rotational search to examine all possible orientations of one map with respect to
the other.

3.4.1.4 The Heavy-Atom Method In the heavy-atom method , one or a few
atoms in the structure have atomic number Zi considerably greater than those
of the other atoms present. The method is based on the premise that if one
atom has a much greater atomic scattering factor than the others, then the phase
angle for the whole structure will seldom be far from that of the single atom
alone. A way of using this method, if the molecule of interest does not contain
such an atom is by preparing a derivative containing, for example, bromine or
iodine with the hope that the molecular structural features of interest will not
be modified in the process. Heavy atoms can be usually located by analysis
of a Patterson map, although this depends on how many are present and how
heavy they are relative to the other atoms present. Some data relevant to an
organic compound containing Co, a derivative of vitamin B12 with the formula
C45H57O14N5CoCl·C3H6O·3H2O, are given below.

The derivative crystallizes in the space group P 212121 and the atomic numbers
of the atoms are Co 27, Cl 17, O 8, N 7, C 6, and H 1, respectively. The expected
approximate relative heights of the typical peaks in the Patterson map are

Co–Co = 27 × 27 = 729
Co–Cl = 27 × 17 = 459
Cl–Cl = 17 × 17 = 289
Co–O = 27 × 8 = 216
Co–C = 27 × 6 = 162
O–O = 8 × 8 = 64
H–H = 1 × 1 = 1

This map will then be dominated by the Co–Co and the Co–Cl vectors. The
atomic positions are then known in the space group, and the interatomic vectors
(u,v,w) between symmetry related atoms can then be formulated. Once the heavy
atom has been located the assumption is made that it dominates the diffraction
pattern, and the phase angle for each diffracted beam for the whole structure is
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approximated by that for the heavy atom. The atomic positions are then found
from the Patterson map and a comparison between observed peak positions with
the general expectation gives the atomic coordinates.

3.4.1.5 Isomorphous Replacement Method This is the best method for the
experimental determination of phase angles and is a very practical method for
solving very large structures such as proteins. If two crystals have the same space
group and their unit cells and atomic arrangements are identical, they are isomor-
phous. If atoms are added or replaced in such a system, the added or replaced
atoms may be found from Patterson maps and if the atoms are sufficiently heavy,
differences in the intensities of the two isomorphs can be used to determine
the approximate phase angle for each reflection. Thus, small differences in elec-
tron densities in isomorphous molecules can be used to determine the crystal
structures. The existence of isomorphism between a protein and a heavy atom
derivative may be demonstrated by the determination that their unit cell dimen-
sions do not differ by more than about 0.5% and that there are differences in the
diffraction intensity patterns. The structures of many proteins can thus be studied
with great success. With noncentrosymmetric structures, the situation is greatly
complicated by the fact that the phase angle may have any value from 0◦ to 360◦.
Here, insertion of a bulky heavy atom causes a displacement of the rest of the
structure and thus the structure determined.

3.4.1.6 Anomalous Dispersion and Absolute Configuration Even when the
chemical formula and the three-dimensional structure of a molecule such as
tartaric acid are known there is ambiguity about the absolute configuration. Infor-
mation about the absolute configuration is not contained in the diffraction pattern
of the crystal as it is normally measured. The means of determining the abso-
lute configuration of molecules can be provided by X-ray crystallographic studies.
The absorption coefficient of an atom for X-rays shows discontinuities when plot-
ted as a function of the incident X-radiation. These discontinuities, also termed
absorption edges , are sufficient to excite an electron in a strongly absorbing atom
to a higher quantum state or to eject the electron completely when the energy of
the X-radiation is at or below but near the absorption edge. This has an effect
on the phase change on scattering. The scattering factor for the atom becomes
complex and the factor f is replaced by

fi + �f ′
i + i�f ′

i . (3.67)

Thus, if an atom in the structure absorbs, at least moderately, the X-rays
being used, then this absorption will result in a phase change for the X-rays
scattered by that atom–which is equivalent in its effect to changing the path
length through which the scattered radiation travels. As a result, there is an
effect on the intensities. In 1930, Koster, Knol, and Prins were able to determine
the absolute configuration of a zinc blende (ZnS) crystal. It was seen that the
shiny (111) faces have layers of sulfur atoms on the surface and the dull (111)
faces have layers of zinc atoms on the surface.
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3.4.2 Methods of Charge Density Analysis

In solving their early crystal structures, the Braggs assumed that X-rays are
diffracted from the center of each atom (as if the entire electron density is concen-
trated there) and, further, that the diffraction intensity is proportional to the atomic
number. These are very good approximations because, for most heavy atoms, the
electron densities are strongly peaked about the nuclear positions, and the angular
variations around each nucleus are very small when compared to the total electron
density. Nevertheless, high resolution X-ray diffraction measurements are capa-
ble of generating detailed maps of the electron density distributions and revealing
subtle density variations as a consequence of differences in chemical environ-
ment. Topological analysis of the total charge density has been exploited to obtain
net atomic moments, including charges, and to infer the nature of the chemical
bonding directly from the electron density distributions. X-ray diffraction is now
a unique tool for mapping the charge distribution and thereby elucidates the
structures and chemistry of crystals.

Electron density deformation maps have provided a wealth of qualitative
information on bonding. Such density deformation maps are defined as the
difference between the experimental density and the promolecule density
(the density corresponding to a superposition of spherical atoms [48]), both
calculated by Fourier summation. Experimental electron density deformation
maps are thermally smeared with the internal and external modes in the
crystal. Thermal effects can be minimized by performing the experiments at the
lowest possible temperatures, at which almost all modes are reduced to zero
point motion. In the Hansen Coppens formalism [49], the experimental X-ray
structure factors are typically fitted with core functions and an atom-centered
expansion of multipolar (spherical harmonic) valence density functions [49].
The atoms as defined by the sum of the nucleus-centered multipoles are
often referred to as pseudoatoms . Real spherical harmonics describe the
anisotropy of the valence electron density through multipole expansion. The
atomic core electron density is commonly fixed during the electron den-
sity fitting, assuming no perturbation of the core density due to chemical
bonding.

3.5 CONCLUDING REMARKS

The electron density concept is central to modern chemistry. In subsequent
chapters, we discuss how the study of electron density in position and momentum
space, and properties derived from it, can be used to partition the molecu-
lar properties into those of atoms and functional groups and to estimate the
molecular similarity. We also delve into density functional theory, its conceptual
aspects, and the applications of these concepts to surfaces and interfaces and
nanomaterials.
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4
ATOMS IN MOLECULES

N. Sukumar

The concept of an atom or a functional group in a molecule is central to chemi-
cal theory, predating our understanding of quantum mechanics, atomic structure,
and the nature of chemical bonding. Understanding the properties of atoms and
functional groups of atoms, as molecules undergo transformations and combina-
tions, is central to the science of chemistry. We recognize that an atom does not
lose every shred of its identity when it combines with another atom or group
of atoms to form a molecular or condensed phase assembly. Were it otherwise,
chemistry would not be a science, but merely an encyclopedic catalog of the prop-
erties of disparate molecules. While perfect transferability of an atom between
different molecules is an unattainable limit [1, 2], it is the quasi-invariant subset
of properties retained by an atom in different chemical environments [2, 3] that
we seek when we refer to the characteristics of an “atom in a molecule” (AIM).

The term atom is a loaded one in chemistry and is used in multiple contexts.
Chemists often talk of carbon and hydrogen in organic molecules, or of a halogen
displacing hydrogen in a reaction. While philosophers of chemistry have criticized
this loose usage of the term atom [4–8], it does not generally cause confusion
among chemists; it is understood that what is meant in this context is not the bare
atom or the elemental atom, but the “atom in the molecule.” Nevertheless, while
we may intuitively understand the concept of an AIM, its rigorous definition is
not without controversy. Various prescriptions have been proposed and the merits
and shortcomings of each have been debated spiritedly in the literature. In this
chapter, several schemes for partitioning a molecule into atoms are explored with
a view to deriving chemical insight from the AIM concept. The first requirement
of an AIM might be that it contains the nucleus of the free atom. Another would
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be that the electron density of the AIM would reduce to that of the free atom as
the other atoms are stripped away. For a many-electron atom, the core electron
density would be more or less unperturbed compared to that of the atom in its free
state; one would thus expect the core electron density to be carried largely intact
into the atom in its molecular environment. It is in the valence regions of atoms
that we should expect to see variations between atoms in different molecular
environments.

In general, if ρ(r) is the electron density at position r in the molecule and we
associate a density ρA(r) with every atom A in the molecule, we can define a
weight function wA(r) such that

ρA(r) = wA(r)ρ(r). (4.1)

We require, of course, that the AIM densities add up to the total molecular density
ρ(r) at every point r: ∑

A
ρA(r) = ρ(r), (4.2)

where the summation is over all atoms in the molecule. From Equations 4.1 and
4.2, we get ∑

A
wA(r) = 1. (4.3)

One can also define an atomic electron population NA for each AIM:

NA =
∫

ρA(r)dr, (4.4)

and a corresponding atomic charge ZA − NA, where ZA is the nuclear charge of
atom A. As the total density in the molecule integrates to the total number of
electrons N

N =
∫

ρ(r) dr, (4.5)

we have ∑
A

NA(r) = N. (4.6)

4.1 CRITICAL POINTS OF THE ELECTRON DENSITY

Concentration of electron density around the nuclei is the most obvious feature of
X-ray diffraction patterns of crystals. There is usually a maximum or a cusp in the
electron density at the position of each nucleus (the electron density has a cusp
at the position of the nucleus in the point nucleus approximation, with the slope
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of the density at the cusp proportional to the atomic number ∇ρ(r)|r=0 α − Z;
if the finite size of the nucleus is taken into account, the electron density has a
maximum with zero slope). This is the feature that makes it possible to deduce the
molecular structure from visual inspection of X-ray diffraction patterns. It also
forms the basis for the quantitative determination of crystal structure from diffrac-
tion experiments: the crystal structure is determined by least squares fitting of
the amplitudes of the calculated structure factors to the experimentally observed
ones (Chapter 3). Owing to their low atomic number, hydrogen atoms often have
shallow maxima, which makes them hard to be identified in X-ray diffraction
patterns (this is especially so in low resolution X-ray diffraction spectra of large
molecules such as proteins), and sometimes an electron density maximum may
be missing altogether in the case of a hydrogen atom bonded to a highly elec-
tronegative atom. But in all other cases, nuclei are associated with pronounced
maxima/cusps in the electron density (Fig. 4.1a). The electron density in an iso-
lated atom is a decreasing function as one moves away from the nucleus in any
direction, and this feature is generally retained when atoms combine to form
molecules (except for some hydrogen atoms bonded to highly electronegative
atoms, as mentioned above). The nuclei in a molecule thus function as attractors
of the electron density gradient vector field ∇ρ(r).

There are some special situations where the electron density may come to
a three-dimensional maximum at points that are not atomic nuclei. Molecules
with such nonnuclear maxima have been extensively studied (see below), but,
in general, the electron density comes to a three-dimensional maximum (i.e.,
a maximum along any direction in R3 space) only at the nuclear positions.
The steepest descent paths of the electron density form the gradient vector field
−∇ρ(r), which often suffices to reveal the pattern of covalent bonding in a
molecule. Most paths of the gradient vector field originate at a nucleus and
terminate at infinity (where the density decays to zero), but there is a path of
∇ρ(r) connecting each pair of bonded atoms (Fig. 4.1b). Along this path (called
the bond path [9]), the density decreases away from either nucleus and comes
to a minimum along the bond path ∇ρ(r)|rc

= 0 at a point known as the bond
critical point (rc). The bond critical point is a saddle point of the electron density:
here the electron density is a minimum along the bond path and a maximum in
the plane perpendicular to it.

Two other types of critical points, each with vanishing gradient of the electron
density ∇ρ(r)|rc

= 0, can be identified from the topology of the electron density
field: at a ring critical point, the electron density is a minimum in the plane of the
ring and a maximum perpendicular to the ring plane (Fig. 4.1a and b); at a cage
critical point, the electron density is a minimum along any direction. Critical
points of the electron density may thus be classified by the rank (number of
eigenvalues) and signature (sum of the signs of the eigenvalues) of the Hessian
of the electron density (∇∇ρ):

• Nuclear [3, −3] critical points: three negative eigenvalues of ∇∇ρ at rc
and ∇2ρ(r)|rc

< 0. While [3, −3] critical points are most often found at the
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Figure 4.1 (a) Electron density contours of benzene. Nuclei are associated with pro-
nounced maxima/cusps in the electron density. At a ring critical point, the electron density
is a minimum in the plane of the ring and a maximum perpendicular to the ring plane.
(b) Paths of the gradient vector field ∇ρ(r), showing also the special paths connecting
each pair of bonded atoms. (c) Contours of the Laplacian L(r) of the electron density of
benzene. (d) Contours of the electron density and its (e) Laplacian for azulene.
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positions of atomic nuclei, they are also occasionally found at other points
in space, referred to as nonnuclear attractors (NNA).

• Bond [3, −1] critical points: two negative and one positive eigenvalues of
∇∇ρ at rc.

• Ring [3, +1] critical points: one negative and two positive eigenvalues of
∇∇ρ at rc.

• Cage [3, +3] critical points: three positive eigenvalues of ∇∇ρ at rc and
∇2ρ(r)|rc

> 0.

The numbers and types of each kind of critical points that can coexist in a
molecule are governed by the Poincare–Hopf relationship:

n − b + r − c = 1, (4.7)

where n is the number of [3, −3] critical points (nuclei and NNA when they exist),
b is the number of [3, −1] critical points (bonds), r is the number of [3, +1]
critical points (rings), and c is the number of [3, +3] critical points (cages).
These topological features of the gradient vector field of the electron density
are the fundamental quantities employed by Bader [9–12] in the construction
of AIMs (QTAIM).

4.2 VIRIAL PARTITIONING OF THE ELECTRON DENSITY

We have thus far made no specification of the choice of the partition functions
wA(r) that divide molecules into AIMs, or even whether they may take continuous
real values or only discrete integer values. An attractive way to explore the prop-
erties of atoms in different chemical environments is to investigate the topology
of the total molecular electron density. This is the approach pioneered by Richard
Bader and his group [9–14] who, over the course of several decades, went on to
develop a systematic quantum theory of atoms in molecules on the basis of the
topology of the electron density distribution. Richard was born in 1931 to a family
of modest means in Canada, and from his young age delighted in observing the
natural world in his garden. One of the most important lessons his father taught
him was never to quit. As a child, he was given his first tricycle. But tricycles are
just toys and Richard wanted to play with a truck. So he punctured a metal gas
can with a nail, and tied it to the back of his tricycle, thus creating a theoretical
truck! [15] Discovering the joys of chemistry, he assembled a home laboratory
in his basement and performed experiments, often involving foul smelling gases
or small explosions. One of these went out of control one day, flooding Bader’s
house with hydrogen sulfide from a Kipp’s apparatus, until his father dealt with
the emergency by tossing the offending apparatus out of the house. Eventually,
Richard won a scholarship to attend McMaster University, becoming the first
in his immediate family to attend university. Here, he got a Master’s degree in
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physical organic chemistry under the tutelage of A. N. Bourns, followed by a
PhD from the Massachusetts Institute of Technology in 1958, studying reaction
mechanisms under the guidance of C. G. Swain. He then went on to study theo-
retical chemistry at Cambridge University with H. C. Longuet-Higgins. Here, he
was much influenced by the work of Berlin and A. C. Hurley using electrostatic
force concepts, as determined through the Hellmann–Feynman theorem [16, 17],
to explain chemical binding in terms of the electron density in real space, rather
than in terms of orbitals or abstract Hilbert spaces.

Returning to McMaster, Richard decided early in his scientific career that the
means to understanding chemistry at a fundamental level was through the electron
density. His first single-author in paper Molecular Physics in 1960 on vibra-
tional interaction constants employed orbital symmetry arguments years before
they became popular in chemistry through the Woodward–Hoffmann rules. This
was followed in the following decade by a series of papers on molecular charge
distributions and chemical binding. Collaborating with P. E. Cade at the Labo-
ratory for Molecular Structure and Spectra at the University of Chicago, Bader
studied molecular electron density distributions computed from Hartree–Fock
wavefunctions for hundreds of diatomic molecules. These studies led him to the
realization that the topology of the electron density ρ(r) provides a natural par-
titioning of the space of a molecule or crystal into mononuclear regions (AIMs)
that are by-and-large transferable between similar molecules. Furthermore, this
approximate transferability of ρ(r) is paralleled by the transferability of several
“atomic” properties between molecules.

Bader’s topological atoms result from partitioning space exhaustively into dis-
joint regions �A, �B . . . each associated with a particular AIM. This is equivalent
to the specification

wA(r) = 1 for rε�A (4.8)

= 0 otherwise.

The boundaries of the region �A are specified in Bader’s prescription by requiring
that at every point on the surface SA bounding the region �A the “zero-flux
condition”:

∇ρ(r) · n(r) = 0 (4.9)

is satisfied, where n(r) is the normal to the surface SA bounding the atomic region
�A. The surface integral of this quantity∮

dSA∇ρ(r) · n(r)dr = 0 (4.10)

is a measure of the flux of the gradient vectors of the charge density (∇ρ)
through the surface SA and vanishes over every atomic region �A. The inter-
atomic bounding surface between any pair of atoms is formed by all the steepest
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descent paths of the electron density −∇ρ(r) originating at the bond critical
point and terminating at infinity.

Using the partitioning (Eq. 4.8) in Equation 4.1 gives

ρA(r) = ρ(r) for rε�A (4.11)

= 0 otherwise.

Bader’s definition of an AIM thus results in atoms defined as nonoverlapping
objects in real space. Using Equation 4.11 in Equation 4.4 then yields for the
atomic electron population NA

NA =
∫

�A
ρ(r) dr, (4.12)

where the domain of integration is restricted to the region �A, called the basin of
atom A. As described in Chapter 3, the nuclei in a molecule function as attractors
of the electron density field. Bader’s topological atoms may thus be formally
defined as the union of an attractor of the gradient vector field of the electron
density with its corresponding basin. Applying Gauss’s theorem to Equation 4.10
leads to the result ∫

�A
∇2ρ(r)dr = 0, (4.13)

that is, the Laplacian of the electron density integrates to zero over every atomic
domain defined through the “zero-flux condition” [9].

Equation 4.13 can also be derived by applying Schwinger’s principle of sta-
tionary action [9, 18] to the open quantum system represented by the AIM

δW = 0, (4.14)

where the action W is given by the time integral of the Lagrangian

W =
∫

Ldt. (4.15)

The Lagrangian is the difference between the kinetic (T ) and potential (V ) ener-
gies. For a quantum system of many particles interacting through a potential V ,
L can be written as a function of the wavefunction ψ and its spatial and temporal
derivatives

L[ψ, �ψ, ψ̇, t] =
∫ {(

i

2

)
(ψ ∗ψ̇ − ψ̇∗ψ) − 1/2∇ ψ∗ · ∇ ψ − V ψ∗ψ

}
dr,

(4.16)
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where atomic units have been used, and a possible explicit dependence on time
has been indicated. The variation of the corresponding action integral with respect
to ψ and ψ∗ yields Schrödinger’s equations

iψ = Hψ,

−iψ∗ = Hψ∗,
(4.17)

where

H = −1/2∇2 + V. (4.18)

Schwinger’s principle of stationary action [18] may also be used to derive
Newton’s and Hamilton’s equations for a classical system. When the stationary
condition (Eq. 4.14) is satisfied, Equation 4.13 follows from the form (Eq. 4.16).
Partitioning a molecule according to Bader’s prescription thus leads to atoms
satisfying Schwinger’s quantum mechanics of open systems [9].

The kinetic energy density may be written in either of two alternate forms:
the Schrödinger form

K(r) = −1/4(∇2 + ∇′2)	(1)(r;r′)|r=r ′ = −1/4(ψ
∗∇2ψ + ψ∇2ψ∗), (4.19)

or the gradient form

G(r) = −1/2(∇·∇′)	(1)(r;r′)|r=r ′ = −1/2∇ψ∗ · ∇ψ, (4.20)

where 	(1)(r, r′)| is the reduced one-electron density matrix and the kinetic
energy densities are evaluated at r = r′. These two forms (Eqs. 4.19 and 4.20)
differ by a term proportional to the Laplacian of the electron density

K(r) − G(r) = L(r) = −1/4∇2ρ(r). (4.21)

Since the Laplacian integrates to zero (Eq. 4.13) over an atomic domain satisfying
the zero-flux condition, the kinetic energy is uniquely defined through either G
or K for an AIM

<T >
�

=
∫

�

K(r)dr =
∫

�

G(r)dr. (4.22)

Of course, the Laplacian also integrates to zero globally, so that the two forms
are globally equivalent and the total kinetic energy of a molecule is likewise
uniquely defined. Anderson et al. (2010) have argued that the local kinetic energy
can be defined through a variety of different forms, besides K(r) and G(r),
yielding an infinite variety of AIMs, most of which are not useful. Zadeh and
Shahbazian [19] have demonstrated that one can construct a variety of different
quantum subsystems–some of which have rather weird topologies–all obeying
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Equation 4.13, and thus Equation 4.22, but without satisfying the local zero-flux
condition (Eq. 4.9). It is thus the local zero-flux condition (Eq. 4.9), rather than
the net zero-flux condition (Eq. 4.13) or the equivalence of kinetic energy forms
(Eq. 4.22), that should be taken as the definition of Bader’s topological AIMs.

Any topological AIM satisfying Equations 4.13 and 4.21 also satisfies the
virial theorem

2 <T > =< r · ∇V >, (4.23)

where the quantity

V = − <r · ∇V > =<r · F> (4.24)

is known as the virial of the forces (F), due to the nuclei and other electrons,
acting on the electron at r. Hence, partitioning a molecule into atomic subsystems
satisfying Equation 4.9 is also called virial partitioning . For electrostatic inter-
actions, the potential energy takes the form V α r−1, so that the virial theorem
(Eq. 4.23) reduces to the form

2 <T > = − <V > . (4.25)

The fundamental role of the electron density in understanding chemical bonding
was pointed out by Fritz London in 1928 [20]. London was also the first to
define a bond path as a “bridge of density” between atomic nuclei. In 1933,
John Slater published a derivation of the virial theorem [21], extending it to
describe a molecule displaced from its equilibrium geometry. The virial theorem
is the Heisenberg equation of motion for the Dirac observable r.p, which has the
dimensions of action, where V is the molecular virial of all the external forces
exerted on the electron density. The Ehrenfest force theorem is the Heisenberg
equation of motion for the Dirac observable p = −i�∇, where the force is the
rate of change of momentum, as in classical mechanics. Richard Feynman’s
electrostatic theorem [17] is the Heisenberg equation of motion for the Dirac
observable −i�∇α , where ∇α is the gradient with respect to the coordinates of
the nuclei α. This theorem explains chemical bonding as due to the accumulation
of electron density between the nuclei exerting an attractive force on the nuclei
sufficient to overcome the force of electrostatic repulsion between them. These
concepts of the Ehrenfest force acting on the electron density and the Feynman
forces acting on the nuclei were employed by Richard Bader in developing his
theory of atoms in molecules.

Defining the quantum stress tensor σ (r) at any point in space as

σ(r) = 1/4{(∇∇ + ∇′∇′) − (∇∇′ + ∇′∇)}	(1)(r, r′)|r=r′

= 1/4(ψ
∗∇∇ψ + ψ∇∇ψ∗) − ∇ψ∗∇ψ − ∇ψ∇ψ∗, (4.26)
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and using the definitions (Eqs. 4.19 and 4.20) for the kinetic energy operators,
one obtains for the trace of the stress tensor

T r σ(r) = −K(r) − G(r) = −2G(r) − L(r) (4.27)

using Equation 4.21 for the Laplacian. Thus

1/4∇2ρ(r) = 2G(r) + V(r), (4.28)

where use has been made of the identity

∇ · (r · σ) = T rσ(r) + r · ∇ · σ. (4.29)

Equation 4.28 is the local form of the virial theorem and relates the Laplacian
of the density to the balance between the kinetic and potential energies.

4.3 THE BOND PATH AND THE MOLECULAR GRAPH

A bond is a connection between (usually a pair of) atoms. Chemists have
employed various conventions to define a bond between atoms, such as energetic
criteria, or based on a Cartesian distance cutoff between a pair of atoms, by
counting valencies, or by some other algorithm. Bader’s theory of atoms in
molecules [9] exploits the topology of the scalar electron density ρ(r) field and
its associated gradient vector field ∇ρ(r) to define the presence or absence of
a bond path between any pair of atoms. A bond path is defined as a trajectory
of the gradient vector field ∇ρ(r) connecting two atomic nuclei. In Bader’s
conception, a pair of bonded atoms is associated with a bond path and a bond
critical point between them. The network of bond paths then defines a molecular
graph, the nodes or vertices of which are atomic nuclei and the connections
between them represent chemical bonds between the atoms.

The correspondence between the existence of a bond path connecting two
nuclei with the presence of a chemical bond between them in Bader’s theory has
been criticized on the grounds that the existence of a bond path is “merely” a
topological property. However, Bader [22] has clarified that bond paths are not
the same as chemical bonds. A different definition of a bond could result in a
different connectivity and thus a different molecular graph. For instance, if a rare
gas atom is trapped at the center of a C60 cage, topology requires the existence of
60 bond paths between the rare gas atom and the 60 carbon atoms! However, most
chemists would be reluctant to characterize the resultant complex as one with 60
bonds between the rare gas atom and the carbons, on the basis of energetic or other
criteria. The mere existence of a bond path between a pair of atoms does not say
anything about the strength of the chemical bond; this topological information
needs to be combined with information about the magnitudes of the electron
density and the Laplacian at the bond critical point before meaningful chemical



THE BOND PATH AND THE MOLECULAR GRAPH 77

conclusions can be drawn. Thus even hydrogen bonds [23–28] and intermolecular
van der Waals complexes have recognizable bond paths and bond critical points
associated with them (Fig. 4.2). Of course, obtaining reliable computational data
on the critical points for some of the weaker interactions requires the inclusion of
electron correlation and correction for basis set superposition error [29]. It should

(a) (b)

(c) (d)

Figure 4.2 Hydrogen bonds and intermolecular van der Waals complexes have recog-
nizable bond paths and bond critical points associated with them. Superposition of the
contour lines (thin) of the charge density with the molecular graphs (bold) and inter-
atomic surfaces (bold) of the van der Waals complexes: (a) formaldehyde–chloroform,
(b) acetone–chloroform, (c) benzene–formaldehyde, and (d) 1,l-dichloroethaneacetone.
Bond critical points are denoted by squares and the ring critical points by ellipses
[25]. (Reproduced with permission from Koch U, Popelier PLA. J Phys Chem
1995;99:9747–9754, Copyright 1995 Springer.)
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be realized that it is often merely for convenience that chemists exclude these
kinds of weak interactions from the usual catalog of chemical bonds. Thus for
instance, it is largely a matter of semantic convenience rather than accuracy to
identify a system such as liquid water, which is connected through an extensive
network of hydrogen bonds at room temperature, with a molecule of H2O [5].

Despite these criticisms, the topology of the electron density and its network
of critical points generally provides a fairly reliable view of molecular struc-
ture that corresponds with chemical concepts. The broad agreement between the
molecular graphs generated using different criteria for defining bonds, for the vast
majority of molecules, demonstrates the robustness of the concepts of the chem-
ical bond and the molecular graph derived from it. Thus the molecular graphs
for propellanes (Fig. 4.3a) display a bond critical point between the bridgehead
atoms, while those for bicyclic molecules do not. Examination of the molecular
graphs for strained rings and electron deficient molecules displays the feature of
bent bond paths that chemists have come to expect from such systems (Fig. 4.3).

As mentioned earlier, nonnuclear attractors (NNA) of the electron density have
been observed in several metal clusters (Fig. 4.4), as well as in systems containing
a solvated electron (Fig. 4.5) [30–35]. Such attractors have their own basins of
attraction and can be considered as topological pseudoatoms. The electron densi-
ties at nonnuclear maxima are not very different from those at the [3, −1] critical
points connecting them to other maxima, and the integrated electron density in
the basin of a pseudoatom is typically a small fraction of an electron charge. NNA
are characterized by very low kinetic energy per electron and smooth electron
density distributions.

4.4 CATASTROPHE POINTS IN THE CHANGE
OF MOLECULAR STRUCTURE

The topology of the electron density during the process of bond formation and/or
bond breaking reveals interesting insights into the mechanisms of chemical reac-
tions. At this point, it is useful to distinguish between nuclear configurations
and molecular structure. The network of bond paths in a molecule characterizes
its molecular graph. Molecular structure is formed by an equivalence class of
molecular graphs that share the same topology. Equivalence of molecular graphs
is established with respect to the respective gradient vector fields of the electron
density. Two vector fields are equivalent if each trajectory of one field can be
mapped onto a corresponding trajectory of the other (and vice versa). Equivalence
of the gradient vector fields also maps the critical points of one field onto the cor-
responding critical points of the other. A molecular structure is thus a region of
nuclear configuration space, all points of which have the same molecular graph.
In Bader’s topological theory of molecular transformations [9, 36], nuclear con-
figuration space is exhaustively partitioned into disjoint regions corresponding
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(a) (b)

(c)

Figure 4.3 (a) The molecular graphs for [1.1.1] propellane displays a bond critical
point between the bridgehead atoms. The molecular graphs for strained rings and electron
deficient molecules such as (b) cyclopropane and (c) cyclopropane display the features of
bent bond paths.

to distinct molecular graphs. Change of molecular structure is a discontinuous
process of transformation of molecular graphs (through bond breaking and/or
bond formation), but this discontinuous change is driven by continuous trans-
formations of the coordinates in nuclear configuration space. Such topological
transformations are described by Thom’s catastrophe theory [37], which classifies
the topological singularities (catastrophes) into various classes. Chemical trans-
formations described by catastrophe theory include not only interconversion of
isomers that correspond to the same stoichiometric formula,but also dissociation,
association, substitution, and elimination reactions.
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(a)

(b)

Figure 4.4 Nonnuclear attractors (NNA) of the electron density in the metal clus-
ters (a) Na2 and (b) Na4 [30]. (Reproduced with permission from Cao WL, Gatti C,
MacDougall PJ, Bader RFW. Chem Phys Lett 1987; 141: 380–385, Copyright 1987
Elsevier.) Contour maps of the charge densities overlaid with bond paths and lines denot-
ing the intersections of the interatomic surfaces with the plane of the diagrams. There are
two bonds in Na2 and seven bonds in Na4. The positions of the bond critical points are
denoted by dots.

4.5 TOPOLOGY OF THE LAPLACIAN DISTRIBUTION

The Laplacian distribution L(r) of a scalar function such as the electron den-
sity ρ(r) distinguishes regions where this scalar function is locally concentrated
(∇2ρ(r) < 0) or depleted (∇2ρ(r)> 0) (Fig. 4.1c). The Laplacian of the density
details the balance between the kinetic and potential energies, as seen from the
local form of the virial theorem (Eq. 4.28). The integral of the Laplacian, over all
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dbe(zz) dbe(Y)

dbe(zz) dbe(Y)

(a)

(b)

se(2+1) se(3×1)

se(2+1) se(3×1)

Figure 4.5 Nonnuclear attractors (NNA) of the electron density in systems containing
a solvated electron [35]. (Reproduced with permission from Timerghazin QK, Peslherbe
GH. J Chem Phys 2007;127:064108, Copyright 2007 American Institute of Physics.)
(a) AIM plots for (HF)3

− isomers showing the electron density contours, overlaid with
bond paths and interatomic surfaces (solid gray lines). The attractors of electron density
are shown as circles and the bond critical points as boxes. (b) AIM plots for (HF)3

−

isomers showing the Laplacian of the electron density contours, overlaid with bond paths
and interatomic surfaces (solid gray lines.)

space or over a region bounded by the zero-flux surface (Eq. 4.9) defining the
basin of a topological AIM, goes to zero (see the discussion leading to Eq. 4.13
above). The electron density along the bond path and the Laplacian at the bond
critical point reveal clues as to the nature of bonding between the atoms in Bader’s
theory. In a covalent bond, the electron density accumulates in the region between
the nuclei and along the bond path (Fig. 4.1c), with a shallow curvature along
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the bond path and a steep curvature perpendicular to it. Thus, ∇2ρ(rc) < 0 (two
large negative and one small positive eigenvalues). Such bonds are characterized
by large magnitudes of the potential energy of attraction between electrons and
nuclei in the internuclear region. It is this Coulomb attraction of the nuclei for
the accumulated electron density in the internuclear region that is responsible for
the classical part of the binding stabilization (exchange provides the rest). In an
ionic bond, on the other hand, there is no significant accumulation of electron
density along the bond path; binding is primarily due to the electrostatic attrac-
tion of the net negative charge on the anion to the net positive charge on the
cation (Fig. 4.6). The electron density is characterized by a steep curvature along
the bond path and a shallow curvature perpendicular to it and thus ∇2ρ(rc)> 0.
Ionic bonds are characterized by large kinetic energy in the internuclear region.

(a) (b)

(c)

Figure 4.6 Paths of the gradient vector field of the electron density ∇ρ(r) for (a) HF,
(b) LiF, and (c) NaF.
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The Laplacian distribution L(r) of the electron density is itself a scalar function
and its topology can be studied in terms of the rank and signature of its own
critical points, that is, where ∇L(r) = 0. Local minima or (3, −3) critical points
of L(r) are regions of bonded or nonbonded charge concentration, linked to
each other by the unique pair of trajectories originating at an intervening (3, −1)
critical point. The resultant graphs generally form polyhedra bounding each atom,
with (3, +1) ring critical points at the faces and (3, +3) cage critical points at the
nuclei. The topology of L(r) reveals the characteristic shell structure of atoms,
as well as regions of charge concentration in the valence shells of molecules
(Fig. 4.1c), which forms the basis of the VSEPR model [38].

4.6 THE FERMI HOLE AND ELECTRON DELOCALIZATION

Ever since Gilbert Newton Lewis introduced the concept of the electron pair
bond, much of the discussion of structure and bonding in chemistry deals with
electron pairs [39, 40]. Electron pairing is a consequence of the Pauli exclusion
principle, the tendency of electrons with the same spin to avoid each other,
over and beyond the Coulomb repulsion between all electrons. The Fermi hole
(Chapter 3) is the physical manifestation of the Pauli exclusion principle; it
describes how the density of a reference electron at any point in space spreads out
into the space of another electron of the same spin, thereby excluding an identical
amount of same-spin density. The density of an uncorrelated α–β pair is

P αβ(r1, r2) = ρα(r1)ρ
β(r2). (4.30)

The pair density for electrons of same spin, however, is less than the simple
product of the one-particle densities. The difference is the density of the
exchange–correlation hole ρxc introduced in Chapter 5, which, in the absence
of Coulomb correlation, reduces to the Fermi hole

P αα(r1, r2) = ρα(r1){ρα(r2) + hα(r1, r2)} = ρα(r1)ρ
α(r2) + ρα

xc(r1, r2).

(4.31)

The density of the Fermi hole hα(r1,r2), a negative quantity, decreases the
amount of same-spin density at any point r2 by an amount determined by the
delocalization of the Fermi hole away from the reference point r1. As Bader
describes it [9], the Fermi hole is the electron’s doppelgänger ; it shadows the
electron’s motion and goes wherever the electron goes. If the Fermi hole is
localized, so is the electron; and when the electron is delocalized, so is its
Fermi hole. When integrated over all space for a fixed position of the reference
electron, the Fermi hole corresponds to the removal of one electronic charge of
same spin, that is, the integral of the Fermi hole density over all space equals −1∫

hα(r1, r2) dr2 = −1. (4.32)
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The density of the Fermi hole at the position of the reference electron equals
the negative of the total density of same-spin electrons, that is

hα(r1, r1) = −ρα(r1), (4.33)

ensuring that there is zero probability of finding another electron of same spin
at the position of the reference electron. In Hartree–Fock theory, the density of
the Fermi hole is given by

hα(r1, r2) = −
∑α

i

∑α

j
{ϕi

∗(r1)ϕj (r1)ϕj
∗(r2)ϕi(r2)}/ρα(r1), (4.34)

where the summations run over α spinorbitals, and with an analogous expression
for the Fermi hole due to β electrons. It is easily verified that the form (Eq. 4.34)
satisfies the conditions (Eq. 4.32) and (Eq. 4.33). The quantity within curly
brackets {ρα(r2) + hα(r1, r2)} in Equation 4.31 is the conditional same-spin
density, the weighted probability of an α electron being at r2 when another is
at r1 (weighted by the total number of α electrons). Equation 4.31 is thus a
restatement of Bayes theorem (Chapter 1). From Equations 4.32 and 4.33, we
find that the conditional probability of finding a second α spin electron at the
reference point r1 vanishes and that the conditional probability integrates to
Nα − 1 over all space, where Nα is the number of electrons of α spin, that is, if
an α spin electron is definitely at r1, then the total probability of finding another
α spin electron elsewhere in the system is Nα − 1.

With Hartree–Fock wavefunctions, ρxc reduces to the Hartree–Fock exchange
density

ρx
α(r1, r2) = ρα(r1)h

α(r1, r2) = −
∑α

i

∑α

j
{ϕi

∗(r1)ϕj (r1)ϕ
∗
j (r2)ϕi(r2)}.

(4.35)

Double integration of this exchange density over the coordinates of both electrons
gives the total Fermi correlation for electrons of α spin, which equals the negative
of the number of electrons of α spin∫ ∫

ρx
α(r1, r2) dr1dr2 = −Nα. (4.36)

Restricting the double integrations to the basin of atom A yields the total Fermi
correlation within A

Fα(A,A) =
∫

�A

∫
�A

ρx
α(r1, r2)dr1dr2. (4.37)

The limiting value of Fα(A,A) is −Nα(A), the negative of the number of elec-
trons with α spin in atom A; this corresponds to all α spin electrons of atom A
being localized within the atomic basin of A and all remaining α spin density
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excluded from A. The Fermi hole thus acts to exclude α electron density from
the space surrounding a reference α electron. Since the Pauli principle does not
exclude electrons of β spin from this space, electrons will tend to form spa-
tially localized α–β pairs and exclude all other electrons, of α and β spin, from
the space surrounding the reference pair. We thus define the localization index
λ(A) as

λ(A) = |Fα(A,A) + Fβ(A,A)| =
∫

�A

∫
�A

ρx(r1, r2) dr1dr2 (4.38)

= 2
∑

i,j
Sij (A)2 for a restricted Hartree−Fock wavefunction,

=
∑

i,j
n

1/2
i n

1/2
j Sij (A)2 in terms of natural orbitals,

where Sij is the overlap integral between spinorbitals i and j in the basin of
atom A, ni and nj are the natural orbital occupation numbers, and where the
summations now run over all occupied spinorbitals. While perfect localization
is possible only for an isolated system, one finds near-complete localization for
core electrons and for some simple ionic hydrides.

Conversely, the exchange of electrons between the basins of atoms A and B
is given by

Fα(A,B) =
∫

�A

∫
�B

ρx
α(r1, r2) dr1dr2 (4.39)

= −
∑α

i

∑α

j

∫
�A

∫
�B

{ϕi
∗(r1)ϕj (r1)ϕj

∗(r2)ϕi(r2)} dr1dr2

= −
∑

i

α∑
j

α
Sij (A)Sji(B).

F α(A,B) is then used to define the delocalization index δ(A,B), also known as
the shared electron density index

δ(A,B) = 2|Fα(A,B) + Fβ(A,B)| = 2
∫

�A

∫
�B

ρx(r1, r2) dr1dr2 (4.40)

= 4
∑

i

∑
j
Sij (A)Sji(B) for a restricted Hartree−Fock wavefunction,

= 2
∑

i

∑
j
n

1/2
i n

1/2
j Sij (A)Sji(B) in terms of natural orbitals,

where the summations again run over all occupied spinorbitals. The localization
and delocalization indices for an atom add up to the atomic population

N(A) = λ(A) + 1/2

∑
B �=A

δ(A,B). (4.41)
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The valence of atom A can be defined, for closed-shell wavefunctions, as the
sum of all the delocalization indices from A to all other atoms

V (A) =
∑

B �=A
δ(A,B) = 2|N(A) − λ(A)|. (4.42)

As a quantitative measure of electron sharing between atomic basins, the delo-
calization index between atoms connected by a bond path has been found to
correlate well with other measures of bond order for organic [41–43] and non-
polar inorganic molecules [44].

The delocalization index has also been employed to construct aromaticity
measures [45–48]. While aromaticity is a multidimensional phenomenon, man-
ifested in bond length equalization, resonance stabilization, and ring currents, it
is a consequence of delocalization of electrons over a ring. Bader [45] observed
that, in conjugated organic molecules, the delocalization of the Femi hole density
between atoms not connected by a bond path decreases with the distance between
them. However, in benzene and other aromatic systems, the π-electron density is
considerably more delocalized between the basins of carbon atoms para to each
other (the atoms that are spin paired in the Dewar resonance structures) than
between those meta to each other, despite the fact that the meta atoms are much
closer. This observation inspired a proposal to define an aromaticity measure in
terms of the average of the delocalization indices of all atoms para to each other
in a given ring. Thus, naphthalene has a lower para delocalization index than ben-
zene; and the inner rings in straight-chain acenes (anthracene and naphthacene)
have lower para delocalization indices than the outer rings. This is also the case
for the inner six-member rings in fullerenes, while the situation is reversed in the
staggered acenes (phenanthrene, chrysene, and triphenylene). However, the para
delocalization index as a measure of aromaticity is useful only for six-member
rings. A different aromaticity measure constructed from delocalization indices is
the π -fluctuation aromatic index, defined as the divergence from the average of
π -delocalization indices for all bonded pairs of atoms in a ring. Electron density-
based aromaticity measures for several polycyclic hydrocarbons are displayed in
Figure 4.7.

4.7 ELECTRON LOCALIZATION FUNCTION

A local measure of electron localization can be derived from the Fermi hole
through Taylor expansion of the spherically averaged conditional pair probabil-
ity, that is, the quantity {ρα(r2) + hα(r1, r2)} in Equation 4.31 [49–54], which
contains the leading term

�(r) = G(r) − Tw(r), (4.43)
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Figure 4.7 The para delocalization index, an electron density-based aromaticity measure,
for several polycyclic hydrocarbons [47]. (Reproduced with permission from Poater J,
Fradera X, Duran M, Sola M. Chem—Eur J 2003; 9 (2): 400–406, Copyright 2003 Wiley.)
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where Tw(r) is the Weiszäcker kinetic energy density

Tw(r) = ∇ρ(r) · ∇ρ(r)
8ρ(r)

. (4.44)

�(r) is a measure of the local excess kinetic energy due to Pauli repulsion.
It vanishes for one-electron systems and for regions within multielectron sys-
tems dominated by a single, localized spinorbital. This prompted Becke and
Edgecombe [51, 52] to interpret this quantity as a measure of electron localization.
In order to obtain a function that increases with increasing electron localization
and is bounded from above, Becke and Edgecombe defined the electron local-
ization function [51]

ELF(r) = {1 + [�(r)/�0(r)]
2}−1, (4.45)

where �0(r) is the kinetic energy of a uniform electron gas with density ρ(r)

�0(r) = (3/5)(6π2)2/3 ρ(r)5/3. (4.46)

�(r)/�0(r) is thus a localization index defined with respect to the uniform
electron gas as reference. ELF(r) as defined above is restricted to the range
[0,1]. ELF = 1/2 corresponds to the uniform electron gas, while the upper limit
ELF = 1 corresponds to perfect localization.

Since ELF(r) is a scalar function, its gradient field enables partitioning of
the molecular space into adjacent nonoverlapping basins of attraction. An atom
with more than two electrons (i.e., beyond helium in the periodic table) con-
tains one or more inner core basins, surrounding the nucleus and localized on
the atom, and one or more outer valence basins. ELF(r) distributions for atoms
reveal the expected characteristic atomic shell structure (Fig. 4.8). A valence
basin in a molecule may be localized on an atom or shared between two or more
atoms. Valence basins are thus characterized by the synaptic order, the number of
atomic valence shells in which they participate. The valence shell of a molecule
is the union of its valence basins. The topology of ELF(r) has been employed
extensively in studies of chemical bonding, aromaticity, chemical reactivity [47],
and intermolecular interactions. Surfaces at successively higher values of ELF(r)
can be used to generate bifurcation diagrams that yield clues to the nature of
bonding in molecules and hydrogen-bonded intermolecular complexes. At suf-
ficiently low values of ELF(r), the entire system is contained within a single
connected envelope or domain. At higher values of ELF(r), separate discon-
nected domains corresponding to the core, valence nonbonding (monosynaptic),
and valence bonding (di- or polysynaptic) regions separate out. The order in
which this happens is governed by the nature of the bonding in the system. For
a weakly hydrogen-bonded complex, the localization domain first bifurcates into
separate atomic domains, each of which subsequently bifurcates into valence and
core domains. For stronger hydrogen-bonded systems, the core–valence bifurca-
tion occurs first.
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4.8 THE SOURCE FUNCTION

We have interpreted the Laplacian ∇2ρ(r) as mapping out regions of concentra-
tion or depletion of electron density and also as representing the balance between
the kinetic and potential energies at r. Another way to look on the Laplacian is as
the generator of the electron density distribution, by virtue of Poisson’s equation
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Figure 4.8 ELF(r) distributions for atoms, revealing the expected characteristic atomic
shell structure, for (a) Ne, (b) Ar, (c) Kr, (d) Xe, (e) Rn, and (f) Zn [51]. (Reproduced
with permission from Becke A, Edgecombe KE. J Chem Phys 1990;92(9): 5397–5403,
Copyright 1990 American Institute of Physics.)
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ρ(r) = −1

4π

∫
dr′ ∇2ρ(r′)

|r − r′| . (4.47)

The integrand in Equation (4.47) is called the local source function [53, 54]

LS(r, r′) = −1

4π

∇2ρ(r ′)
|r − r′| , (4.48)

representing the effectiveness of the concentration (or depletion) ∇2ρ(r′) at r′ in
functioning as a source (or sink) for the electron density at r modulated by the
Green’s function or influence function (4π |r − r′|)−1. Using Equation 4.28, the
local source may be rewritten as

LS(r, r′) = −
(

1

π

)
2G(r′) + V (r′)

|r − r′| . (4.49)

Any region where the electron density is locally concentrated (∇2ρ(r′) < 0) in
a molecule, and where the potential energy dominates the kinetic energy, acts as
a source for the electron density at other points in the molecule, while a region
where the electron density is locally depleted (∇2ρ(r)′ > 0) and where the kinetic
energy dominates acts as a sink, removing electron density from r.

The integral of the local source over the basin � of an atom or functional group
is called the source function S(r, �) contribution from that atom or functional
group to ρ(r)

S(r, �) =
∫

�

LS(r, r′)dr′. (4.50)
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Using Equation 4.50 in Equation 4.47 gives

ρ(r) =
∫

�

LS(r, r′) dr′ +
∑

�′ �=�

∫
�′

LS(r, r′) dr′

= S(r, �) +
∑

�′ �=�
S(r, �′). (4.51)

The electron density at any point in an AIM may thus be decomposed into a
contribution arising from sources within the basin of the atom and a contribution
arising from sources external to the atom. The source function is a measure of
the relative contribution of an atom or group to the density at any point.

The source function is a very sensitive measure of the chemical transferability
of atoms and functional groups between different molecules. It is, in fact, a more
sensitive index of transferability than is the atomic energy or integrated electron
population. Perfect transferability of atomic/group properties requires not just
the transferability of the corresponding electron density but also that the sum
of the contributions to this density from the remaining atoms or groups in the
molecule (second term in Eq. 4.51) be constant. While one may study the source
functions at any point r in a molecule, it is customary and instructive to compare
the source function contributions of different atoms and groups to the electron
density at a bond critical point. Table 4.1 shows the source function contributions
of different groups to the density at the bond critical point of the terminal C–H
bond (ρb) in a series of n-alkanes, where the terminal methyl group is known to
have transferable properties (beyond ethane in the series). The source function
contribution of the neighboring methylene group to ρb is constant after ethane.
Furthermore, the ethyl group in propane contributes the same amount to ρb as
the propyl group in butane or the butyl group in pentane. Thus the sum of the
source contributions to ρb from groups external to the methyl group is constant.

For a series of diatomic hydrides, the source contribution from the hydrogen
atom to the electron density at the bond critical point has been shown [55] to
decrease with increasing electronegativity of the atom bonded to the hydrogen.

TABLE 4.1 Source Function Contributions of Different Groups to the Density at
the Bond Critical Point of the Terminal C–H Bond in a Series of n-Alkanesa

Ethane H-CH2 CH2 H
0.2704 0.0100 0.0026

Propane H-CH2 CH2 CH3
0.2701 0.0091 0.0035

Butane H-CH2 CH2 CH2 CH3
0.2701 0.0091 0.0020 0.0016

Pentane H-CH2 CH2 CH2 CH2 CH3
0.2702 0.0090 0.0019 0.0008 0.0009

aAdapted from Reference 53.
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Studies of lithium clusters [55] show that the source function also clearly discri-
minates between nuclear and nonnuclear maxima of ρ(r): the internal source
contribution to the density at the nuclear maxima in all clusters is more than
99.96%, while it is no more than 74% for NNAs (Table 4.2), the remaining
26% arising from external source contributions, mostly from the closest linked
Li basins. The source function contributions to the electron density at the bond
critical points linking pairs of NNAs arise 60–70% from the NNAs, with the
remainder from more remote basins. This delocalized distribution of sources
reflects the loosely bound character of the valence electrons in the negatively
charged pseudoatoms. The source function has been employed [55] to classify
hydrogen bonds on the basis of characteristic source contributions to the density
at the hydrogen bond critical point. Study of the source function can also shed
light on metal–metal bonding, such as in Mn2(CO)10 where the Mn atoms act
as sinks for the electron density at the metal–metal bond critical point, with the
carbonyl oxygens acting as sources, indicating the highly nonlocalized nature of
the metal–metal bond in this complex.

4.9 STOCKHOLDER PARTITIONING OF THE ELECTRON DENSITY

Let us now turn to a different way of partitioning the electron densities between
atoms in a molecule. The stockholder partitioning scheme was first proposed
by Fred Hirshfeld in 1977 [56]. Here, we first form a promolecule from the
superposition of the electron densities of the isolated atoms, with the nuclei at
the positions of the corresponding nuclei in the molecule. The molecular electron
density is then partitioned among the atoms, such that each AIM contributes to
the molecular density ρ(r) at each point in proportion to its contribution to the
promolecule’s density ρ0(r) = ∑

A ρ0
A(r) at that point

wA(r) = ρ0
A(r)

ρ0(r)
= ρA(r)

ρ(r)
, (4.52)

where ρ0
A(r) are the reference atomic densities to which the AIM densities ρA(r)

are compared. The second equality in Equation 4.52 is merely a restatement of
the general definition (4.1) for the weight function. This partitioning is anal-
ogous to the way a company’s shares (and profits) are apportioned among its
stockholders—in proportion to each stockholder’s original contribution to the
corpus of the company. Hirshfeld’s partitioning scheme results in overlapping
atoms, in contrast to Bader’s partitioning. This allows for an understanding of
chemical bonding in terms of the overlap electron density between atoms. Nale-
wajski and Parr [57] showed that Hirshfeld’s partitioning scheme follows from
requiring that the loss of information (entropy deficiency functional)

�S[ρ/ρ0] =
∑

A

∫
ρA(r)ln

{
ρA(r)

ρ0
A(r)

}
dr (4.53)
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be minimized on formation of the molecule from neutral atoms. Minimization of
the functional (Eq. 4.52) subject to a set of constraints

Fk[ρ] = F 0
k (4.54)

is equivalent to solving

δ{�S[ρ/ρ0] +
∑

k

λkFk[ρ]} = 0, (4.55)

where the λk are Lagrange multipliers. For two densities ρ and ρ0, �S gives the
information distance between ρ and ρ0 or the information deficiency of ρ relative
to ρ0. Thus minimizing the functional �S (Eq. 4.53) subject to the constraints

∑
A

ρA(r) = ρ(r) and
∑

A

ρ0
A(r) = ρ0(r) (4.56)

leads to

∑
A

[
ln

{
ρA(r)

ρ0
A(r)

}
+ λ(r) − 1

]
δρA(r) = 0. (4.57)

Hence,

1 − λ(r) = ρA(r)

ρ0
A(r)

= ρ(r)
ρ0(r)

, (4.58)

from which the Hirshfeld condition (Eq. 4.52) immediately follows. However,
it should be noted that other information-theoretic measures do not necessarily
reduce to the Hirshfeld partitioning.

The Hirshfeld partitioning scheme and its information-theoretic interpretation
have been criticized on several grounds and extended by Ayers [58] and by
Bultinck and coworkers [59, 60]. The first serious problem is the arbitrariness
involved in choosing neutral atoms as the reference densities [61] in defining
the entropy loss functional. This choice has no strict theoretical basis and is
adopted merely for computational convenience. For heteronuclear, strongly ionic
molecules, in particular, it might seem more reasonable to use the ionic fragments
as reference densities. For instance, constructing the promolecule LiF from a
combination of neutral Li and F atomic densities results in atomic charges of
±0.57. If instead, the Li+ and F− ions are employed to build the promolecule,
the atomic charges of ±0.98 are obtained. Using the opposite combination of
Li− and F+ ions leads to atomic charges of ±0.30 (with the positive charge still
on Li). The Hirshfeld AIM electron populations thus depend sensitively on the
choice of the promolecule density.
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These ambiguities are further exacerbated when dealing with ionic molecules.
One can still retain a neutral promolecule at the cost of having a promolecule
density that does not integrate to the molecular density, but this makes the con-
nection to information theory suspect. Furthermore, interpretation of the function
(Eq. 4.53) as an information entropy measure requires that

NA =
∫

ρA(r)dr =
∫

ρ0
A(r) dr = N0

A (4.59)

for every atom, that is, the promolecule atom should have the same electronic
population as the AIM. This requirement is not generally satisfied by the Hirshfeld
procedure.

Defining a shape function for each atom as a density per electron

σA(r) = ρA(r)
NA

, (4.60)

with an analogous expression for the promolecular atoms σ 0
A(r), the information

loss function (Eq. 4.53) can be recast [58, 62] as

I =
∑

A

NA

∫
σA(r)ln

{
σA(r)

σ 0
A(r)

}
dr +

∑
A

NA ln

(
NA

N0
A

)
. (4.61)

The first term in Equation 4.61 represents the information loss because of the
change in shape of the electron density (polarization) on molecule formation,
while the second term is an entropy of mixing, reflecting the transfer of electronic
charge between “atoms” on molecule formation. Note that the shape functions
are normalized to unity by virtue of Equation 4.1

∫
σA(r)dr =

∫
σ 0

A(r) dr = 1, (4.62)

supporting the interpretation of I as an information entropy. The polarization
contributions to the entropy are always nonnegative. The entropy of mixing term
arises from the violation of the condition (Eq. 4.59). Each term also satisfies the
condition of statistical independence (additivity of independent events), as would
be expected of any measure of information.

This reformulation enabled Bultinck and coworkers [59, 60] to address some
of the ambiguities and shortcomings of the original Hirshfeld procedure using
an alternative, iterative scheme for defining the weight functions in Equation
4.1: Starting from some freely chosen promolecule with atomic densities ρ0

A(r)
and atomic populations NA

0, the Hirshfeld partitioning procedure is applied and
the atomic densities ρ1

A(r) and populations NA
1 are computed. The densities
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ρ1
A(r) are used to construct the promolecule in the next iteration. The weighting

functions in each iteration are given by

Wi
A(r) = ρi

A(r)
ρi−1(r)

. (4.63)

A self-consistent set of charges is obtained by forcing the promolecular atoms to
have the same electron populations as in the AIM, that is, the process is contin-
ued until NA

i = NA
i−1 for all atoms to within a self-consistency threshold. Once

this point is reached, there is thus no further net charge transfer between the
atoms and the entropy of mixing term no longer contributes. Since the require-
ment (Eq. 4.59) is now satisfied for every reference atom that contributes to the
promolecule, the function (Eq. 4.53) or (Eq. 4.59) represents a mathematically
proper measure of information entropy. It is only after the requirement (Eq. 4.59)
is satisfied that one may identify the ρi

A(r) with AIM densities. This formulation
eliminates of the arbitrariness in the choice of the promolecule, allowing iterated
Hirshfeld atoms to be defined for charged as well as neutral molecules. One
still has the arbitrariness as to which electronic states of the isolated atoms to
use in constructing the promolecule—and alternative partitioning schemes have
been proposed to address this [60]. The iterative Hirshfeld procedure has been
shown to converge rapidly [59]. Furthermore, the self-consistent iterative Hirsh-
feld atomic charges are independent of the initial choice of promolecule, only
weakly dependent on the basis set and correlate well [59, 60] with atomic charges
obtained by fitting the electrostatic potential on a grid (CHELPG [63]).

4.10 ATOMS IN MOMENTUM SPACE

We now investigate AIM partitioning in momentum space. The fundamental
quantity analogous to ρ(r) in momentum space is the electron momentum den-
sity γ (p)

γ (p) = N

∫
dp2 . . .

∫
dpN�∗(p, p2, . . . , pN)�(p, p2, . . . , pN). (4.64)

However, ρ(r) and γ (p) are related to each other only through Fourier-Dirac
transformation of the full N-electron wavefunction

�(p, p2, . . . , pN) = (2π)−3N/2
∫

dr1

∫
dr2 . . .

∫
drN exp

(
−i

N∑
i=1

pi · ri

)

× ψ(r1, r2, . . . , rN). (4.65)

The attractiveness of the momentum space formalism is that the kinetic energy
functional is known exactly. It is also helpful in interpreting the results of electron
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momentum spectroscopy and Compton scattering experiments. However, atomic
momentum densities are not spherically symmetric. The absence of features cen-
tered on the nuclei means that partitioning the momentum density of a molecule
with respect to zero-flux surfaces of ∇γ (p) does not result in basins that can be
identified with atoms. Nevertheless, interesting information can be gleaned from
study of the Laplacian distributions ∇2γ (p) in momentum space (Chapter 10).

Hirshfeld partitioning of molecular momentum densities may be used to define
AIMs in momentum space. Analogous to Equations 4.1 and 4.52, we may define

γA(p) = γ 0
A(p)∑

A γ 0
A(r)

γ (p), (4.66)

where γA(p) and γ 0
A(p) are the momentum densities of the AIM and the free atom

A, respectively, centered at p = 0. This scheme yields integrated atomic charges
that agree well with atomic charges obtained from the corresponding Hirshfeld
AIMs in coordinate space [64].

4.11 DENSITY MATRIX PARTITIONING

Although only the total energy of a system is an observable and fragment ener-
gies are not, chemical explanations are often formulated in terms of energies of
interaction. This is due to the fact that the only meaningful energetic quantities in
chemical reactions are energy differences. Schemes for the partitioning of energy
in molecules are thus popular and have pedagogic value. For a molecular system
of electrons and nuclei interacting through only Coulomb forces, the energy is
a function of the first-order (nondiagonal) and second-order (diagonal) density
matrices (Chapter 3)

γ (1)(r; r′) = N

∫
dr2 . . .

∫
drN�∗(r, r2, . . . , rN)�(r′, r2, . . . , rN); (4.67)

γ (2)(r1, r2) = N

∫
dr3 . . .

∫
drN�∗(r1, r2, r3, . . . , rN)�(r1, r2, r3, . . . , rN).

(4.68)

An exact energy partitioning based on decomposition of these density matrices
into intraatomic and interatomic components can be performed with respect to
both Bader’s topological and Hirshfeld’s stockholder AIMs. Li and Parr [65]
employed a partitioning similar to Equations 4.1 and 4.2 for the nondiagonal
first-order density matrix

γ (1)(r; r′) =
∑

A

wA(r)γ (1)(r; r′), (4.69)
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where the wA(r) satisfy Equation 4.3. Note that the diagonal part of γ (1) is simply
the one-electron density: γ (1)(r; r) = ρ(r). The second-order density matrix is
obtained similarly through a double partitioning

γ (2)(r1, r2) =
∑

A

∑
B

wA(r)wB(r)γ (2)(r1, r2). (4.70)

The total molecular Born-Oppenheimer energy (Chapter 3), for a system of elec-
trons and nuclei interacting through only Coulomb forces, is the sum of the
electronic energy E and the internuclear repulsion energy Vnn

EBO = E + Vnn, (4.71)

E = <T > + <V > + <U>, (4.72)

<T > =
∫

1

2
∇ · ∇′γ (1)(r; r′)|r=r′dr, (4.73)

<V > = −
∑

A

ZA

∫
dr

ρ(r)

|r − RA| , (4.74)

<U> = 1/2

∫
dr1

∫
dr2

γ (2)(r1, r2)

r12
, (4.75)

Vnn = 1/2

∑
A

∑
B �=A

Vnn
AB = 1/2

∑
A

∑
B�=A

ZAZB

RAB
. (4.76)

Using the density matrix partitions (Eqs. 4.69 and 4.70) in Equations 4.71–4.76
enables the partitioning of all the energy terms into intraatomic and interatomic
components

<T > =
∑

A

TA =
∑

A

∫
1/2 wA(r) ∇ · ∇′γ (1)(r; r′)|r=r ′dr, (4.77)

<V > =
∑

A

∑
B

VAB = −
∑

A

∑
B

ZA

∫
dr

ρB(r)
|r − RA| , (4.78)

<U> =
∑

A

UAA + 1/2

∑
A

∑
B �=A

UAB, (4.79)

where

UAA = 1/2

∫
dr1

∫
dr2 wA(r1) wA(r2)

γ (2)(r1, r2)

r12
(4.80)

and

UAB =
∫

dr1

∫
dr2 wA(r1) wB(r2)

γ (2)(r1, r2)

r12
. (4.81)
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Note that VAB �= VBA in Equation 4.78 above. Using relations (Eqs. (4.76)–
(4.81)) in Equation 4.71 yields the expression for the total Born-Oppenheimer
energy

EBO =
∑

A

EA + 1/2

∑
A

∑
B �=A

EAB
int, (4.82)

where EA, the internal energy of AIM A, contains all the intraatomic energy
contributions

EA = TA + VAA + UAA, (4.83)

and EAB
int represents the energy of interaction between AIMs A and B

EAB
int = VAB + VBA + UAB + Vnn

AB. (4.84)

Note that the internal energy EA of AIM A as defined above is different from
the energy obtained by integrating the electronic energy functional (T + V + U)

over the basin of AIM A; the latter also includes a partitioning of some of the
interaction energy (VAB + VBA + UAB) included in Equation 4.84 between the
atomic basins. As can be seen in Figure 4.9, the expressions (Eqs. 4.83 and 4.84)
for the internal energy EA and the interaction energy EAB

int both involve large
cancellations between the individual energy components [66].

The difference between the AIM energy EA and the energy of the corre-
sponding isolated atom A is the energy of deformation of the electron density

EA
def = EA − EA

0, (4.85)

while the difference between the total Born-Oppenheimer energy and the sum of
the energies of the isolated neutral atoms is the binding energy of the molecule

Ebind = EBO −
∑

A

EA
0 =

∑
A

Edef
A + 1/2

∑
A

∑
B�=A

Eint
AB. (4.86)

It is also instructive to examine the classical Coulomb and exchange–correlation
contributions to the interaction energy (Fig. 4.9c) or to the binding energy. Since
the second-order density matrix can be partitioned into Coulomb (first term in
Eq. 4.87) and exchange–correlation components (second term in Eq. 4.87)

γ (2)(r1, r2) = ρ(r1)ρ(r2) + γxc
(2)(r1, r2), (4.87)

UAA and UAB in Equations 4.80 and 4.81 can be likewise partitioned

UAA = UAA
Coul + UAA

xc, (4.88)

UAB = UAB
Coul + UAB

xc, (4.89)
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Figure 4.9 Plots of (a) the internal energy EA and (b) the interaction energy EAB
int,

for H2 as functions of internuclear distance, showing the large cancellations between
the individual energy components. (c) Partition of the interaction energy (EAB

int) into
classical (VAB

Class) and exchange–correlation (UAB
xc) contributions for H2 as functions of

internuclear distance [66]. (Reproduced with permission from Blanco MA, Martin Pendas
A, Francisco E. J Chem Theor Comput 2005; 1096–1109, Copyright 2005 American
Chemical Society.)
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where

UAA
Coul = 1/2

∫
dr1

∫
dr2 wA(r1)wA(r2)

ρ(r1)ρ(r2)

r12

UAA
xc = 1/2

∫
dr1

∫
dr2wA(r1)wA(r2)

γ
(2)
XC(r1, r2)

r12

UAB
Coul =

∫
dr1

∫
dr2wA(r1)wB(r2)

ρ(r1)ρ(r2)

r12

UAB
xc =

∫
dr1

∫
dr2wA(r1)wB(r2)

γ
(2)
XC(r1, r2)

r12
, (4.90)

so that

EAB
int = VAB

Class + UAB
xc, (4.91)

where

VAB
Class = VAB + VBA + UAB

Coul + Vnn
AB (4.92)

includes all the classical electrostatic terms. For molecules that are essentially
covalent, there are large cancellations in both the intraatomic and in the classical
interatomic terms that constitute the binding energy. The picture that emerges with
Bader’s topological atoms satisfying the condition (Eq. 4.8) is that of essentially
neutral atoms, largely unchanged from the isolated atoms, that is, with small
deformation energies [66]. Binding in homopolar diatomics is almost exclusively
due to the quantum effects of exchange–correlation interaction. Partitions based
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on overlapping atomic densities (as in the Hirshfeld scheme) result in larger
intraatomic and interatomic energy components [67]. The binding energy is then
governed by the detailed balance between intraatomic and interatomic energy
contributions, each considerably larger than the binding energy itself.

When there is significant charge transfer, as in heteronuclear diatomics, the
intraatomic deformation energy terms are large and positive for the atom losing
charge, irrespective of the partitioning scheme employed [67]. For the negatively
charged atom, the effects of electron population and the intrinsic deformation of
the atomic density largely cancel out. The classical electrostatic interaction plays
a stabilizing role for ionic bonds, more than compensating for the energy required
to deform the atomic densities. Most of the classical electrostatic interaction is
well reproduced by a point charge model, irrespective of the partitioning scheme,
but in general, both classical and quantum effects are relevant in understanding
the binding.

Vanfleteren et al. [68] employed a double-atom partitioning for the molecular
first-order density matrix

γ (1)(r; r′) =
∑

A

∑
B

[wA(r)wB(r′) + wB(r)wA(r′)]γ (1)(r; r′). (4.93)

Terms in (Eq. 4.93) diagonal in the atomic indices (A=B) correspond to atomic
density matrices, with eigenvalues between 0 and 2. However, the atomic den-
sity matrices alone do not sum to the total number of electrons but correlate
well with the atomic localization indices λ(A). The remaining electrons are in
the off-diagonal (A �= B) terms of (93), which correspond to bond matrices.
These matrices were shown to have good localization properties, even when used
with fuzzy atomic boundaries, in contrast to single-index partitioning based on
Equation 4.69 [69]. The total electron populations in the bond matrices correlate
with the shared electron density indices δ(A,B) [68].

4.12 CONCLUDING REMARKS

While the very concept of the electron density is a consequence of the
Born–Oppenheimer separation of electronic and nuclear motions in molecules
(Chapter 3), there has recently been a preliminary study [70] of AIM partitioning
on molecular wavefunctions computed without making the Born–Oppenheimer
approximation. In these schemes, both electrons and nuclei are treated on a
similar footing, using multicomponent molecular orbitals. Such computations
include the effects of nuclear motion. Topological analysis of the resulting
single-particle density is able to distinguish between atomic basins containing
different isotopes.

A variety of schemes based on the electron density have been proposed for
the partitioning of molecules into atoms, some using the topology of the electron
density function in real space and justified on the basis of the virial theorem
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and Schwinger’s action principle, others using interpenetrating atoms with fuzzy
boundaries, justified on information-theoretic grounds. Some of the insight pro-
vided by different schemes is definitely complementary. The study of AIMs has
proved its potential in providing conceptual understanding of many key con-
cepts in chemistry and biochemistry, such as molecular graphs, transferability of
atomic and functional group properties, the chemical bond, energetics of covalent
and ionic bonds, chemical reactivity, the topology of molecular transformations,
electron localization and delocalization, valence shell concentrations of electrons,
bond orders, aromaticity, resonance, and the genetic code itself. AIM partition-
ing has demonstrated rich applications in organic chemistry, bonding in the
solid state, metal–metal bonding, hydrogen bonding, molecular and bioisosteric
similarity analysis, QSAR/QSPR (quantitative structure-activity/property rela-
tionships), and drug design. Some of these applications are reviewed in other
chapters herein (Chapters 7 and 8) and elsewhere [13,71–73].

4.13 EPILOGUE

Richard Bader continued to teach chemistry at McMaster, his alma mater, for 30
years until 1996, when he officially retired. Thereafter, as an Emeritus Professor,
he published 60 (out of a total of 223) refereed articles and book chapters on
theoretical chemistry and physics, his last article published after his eightieth
birthday [74]. Richard Bader passed away in Burlington, Ontario, on Sunday
January 15, 2012, at age 80, after a difficult struggle with lung disease. He is
survived by his wife Pam, three daughters, and grandson.

According to Professor Claude Lecomte, using the electron density (ρ), a
Dirac quantum mechanical observable, to describe interatomic interactions was
the missing bridge between quantum mechanics and crystallography that QTAIM
has provided. Richard gave another dimension to the concept of electron density
applied to chemical bonding. As a consequence of the QTAIM theory, Richard
was the promoter of a very intense and constructive scientific dialog between
crystallographers and quantum chemists (and thus between theoreticians and
experimentalists) on the basis of quantum physics. This dialogue may have never
been as fruitful and constructive (or even existing) had it not been for Richard
Bader (C. Lecomte, private communications; 2012). Over and beyond Richard’s
scientific achievements and the outstanding theoretical developments flowing
from his theory, this communication between theoreticians and experimentalists
in the shared waters of the electron density distribution can be considered one of
the most important consequences of his work, beneficial for both communities
(E. Espinosa, private communications; 2012).

Among the seminal contributions that Richard made to science is passion for
science and its communication. This was the additional spice that he brought
to scientific debate (A. Pinkerton, private communications; 2012). His passion
in defending the theory of Atoms in Molecules at conferences and the impossi-
bility of session chairs to stop the discussions will be remembered by all who
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attended any conference with Bader. This characteristic passion was not reserved
just for conferences, seminars, and distinguished lectures but also marked his
undergraduate classes at McMaster. It was also not uncommon for Richard to
lead a few graduate students into his office to continue their Socratic discussion
after a class had ended. Soon everybody would have chalk dust on their hands.
The passion with which he shared those ideas will continue to jump out and
grab attention when future students watch his archived lectures (P. Macdougall,
private communications; 2012).

Richard never had much respect for authority, as Professor Jack Dunitz recalls.
It is said about Wolfgang Pauli that on his ascent to Heaven, he was given a unique
privilege: God himself was to explain the fundamental mysteries of the Universe.
When God came to the part where He started discussing the nature of light and
its interactions with matter, Pauli shook his head and cried out “Falsch!” One
likewise hopes that Richard will not get involved in any controversy up there,
as he might win! (J. Dunitz, private communications; 2012.) Owing to the force
of his personality and the popular Star Wars trilogy, Richard was often teased
with Darth Bader jokes, to which he would respond “May the zero-flux be with
you” [15].
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5
DENSITY FUNCTIONAL APPROACH
TO THE ELECTRONIC STRUCTURE
OF MATTER

N. Sukumar

5.1 THE HOHENBERG–KOHN THEOREMS

We have seen in Chapter 3 that, in principle, we do not need the full many-
electron wave function to determine the energy and other properties of quantum
mechanical systems. As nonrelativistic quantum mechanics of molecular sys-
tems involves only two-body Coulomb forces, the two-particle density matrix
contains all the information to determine these properties exactly. In fact, the
one-electron density ρ(r) is often sufficient for most purposes. This general result
was shown by Walter Kohn and his student Pierre Hohenberg in 1964 [1]. Walter
Kohn was born in Vienna in 1923 to Salomon and Gittel Kohn. Gittel’s parents,
Rappaport, were orthodox Jews. Salomon ran a business producing and selling
quality art postcards. Gittel was highly educated, with a flair for languages. At
the Akademische Gymnasium, Walter’s favorite subject was Latin; mathematics
earned him his only C. Following the union (Anschluss) of Austria with the
German Third Reich in 1938, the Kohn family business was confiscated and
Walter was expelled from school. His sister, Minna, managed to emigrate to
England and Walter too in August 1939, where they were taken in by Charles
and Eva Hauff of Sussex; but Salomon and Gittel were unable to leave Austria
and were both murdered during the holocaust. In May 1940, Churchill ordered
male “enemy aliens” to be interned, and thus Walter found himself, at the age of
17, interned in various camps, before being shipped off to Canada.
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At various camps in Quebec and New Brunswick, Walter managed to study
physics, chemistry, and mathematics with the help of camp educational programs
taught by other internees. By working as a lumberjack, he was able to save
money to buy textbooks in mathematics and chemical physics and passed McGill
University’s junior matriculation examination. On his release from internment in
January 1942, Walter was welcomed to the home of Professor Bruno Mendel
and his wife Hertha in Toronto. Even so, attending the University of Toronto,
he was not allowed to enroll in chemistry courses on account of his German
nationality. After 21/2 years in the undergraduate program, while also serving in
the Canadian Army, Walter received a bachelor’s degree in applied mathematics
and then a master’s. Receiving a Lehman fellowship, he joined Harvard for
a Ph.D. under Julian Schwinger. Here Kohn developed a variational principle
for three-body scattering, receiving his Ph.D. in 1948. He then stayed on at
Harvard, dividing his time between research and teaching one of the first broad
courses on solid state physics in the United States. In 1951, Kohn was at Neils
Bohr’s Institute in Copenhagen on a National Research Council fellowship, before
returning to the United States to teach at the Carnegie Institute of Technology
(now Carnegie Mellon University). Regular visits and summer jobs at Bell Labs
provided opportunity for interaction and/or collaboration with researchers on the
cutting edge of solid state physics, such as John Bardeen, G. Wannier, Phillip
Anderson, and Quin Luttinger.

Kohn moved to the University of California at San Diego in 1960 and, in
the fall of 1963, spent a sabbatical semester at the École Normale Supérieure
in Paris. Here, reading some metallurgical literature, he became interested in
the concept of effective charge of an atom in an alloy, which describes the
charge transfer between atomic cells locally in coordinate space (in contrast to
the delocalized momentum space picture used in solid state physics). Wondering
whether an alloy is characterized completely or only partially by its electronic
density distribution, Kohn proved that the external potential v(r) is determined,
within a trivial additive constant, by the distribution of electron density ρ(r). As
ρ(r) determines the number of electrons,

N =
∫

ρ(r)dr, (5.1)

it follows that ρ(r) also uniquely determines the ground state wave function ψ ,
the ground state electronic energy,

E = E[ρ(r)], (5.2)

the molecular structure and all other electronic properties of the molecule. In
1981, Riess and Münch [2] extended the Hohenberg and Kohn theorem to sub-
domains of a bounded quantum system, showing that the ground state density of
an arbitrary subdomain uniquely determines the ground state properties of this or
any other domain. In fact, any nonzero volume part of the nondegenerate ground
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state electron density contains all information about the molecule. Paul Mezey
[3, 4] has termed this the holographic electron density theorem . Furthermore,
all information about molecular properties not exhibited by a given molecular
structure but exhibited by the same molecule in a different state or conformation
(such as the response of a molecule to a specific interaction) is fully encoded
in any nonzero volume of the nondegenerate ground state electron density. This
principle provides theoretical justification for the study of structure–activity rela-
tionships (Chapters 7 and 8), as most biological activities deal not with properties
of isolated molecules in their equilibrium geometries but with the response of
molecules to complex intermolecular interactions.

Kohn established an existence theorem for the unique energy functional
E[ρ(r)], for the case of a nondegenerate ground state, by reductio ad absurdum:
assume that there exists another potential v′(r) with ground state ψ ′ that gives
rise to the same density ρ(r) as given by the potential v(r) with ground state
ψ . Except in the case where v(r) − v′(r) = constant, we must have ψ ′ �= ψ , as
they satisfy different Schrödinger equations:

E =<ψ |H |ψ> and E′ =<ψ ′|H ′|ψ ′>, (5.3)

and the ground states were assumed nondegenerate. Here E and E′ are the
respective ground state energies of the electronic Hamiltonians H and H ′:

H = T + V + U and H ′ = T + V ′ + U, (5.4)

where

< ψ |V |ψ > =
∫

v(r)ρ(r)dr, (5.5)

and T and U are the kinetic energy and the energy of interelectron repulsion,
respectively. From the variational theorem for the Hamiltonian H ′, we have

E′ =<ψ ′|H ′|ψ ′> < <ψ |H ′|ψ > =<ψ |H + V ′ − V |ψ>, (5.6)

so that

E′ < E +
∫

[v′(r) − v(r)]ρ(r)dr. (5.7)

Similarly, from the variational theorem for the Hamiltonian H , we have

E =<ψ |H |ψ> < < ψ ′|H |ψ ′> =<ψ ′|H ′ + V − V ′|ψ ′>, (5.8)

or

E <E′ +
∫

[v(r) − v′(r)]ρ(r)dr. (5.9)
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Adding Equations 5.7 and 5.9, the terms under the integrals cancel out, leading
to an inconsistency, unless the original presumption was in error. Thus v(r) and
v′(r) can differ by at most a trivial constant. So v(r), and thus H , is a unique
functional of ρ(r).

Kohn then set his new American student in Paris, Pierre Hohenberg, to prove
a variational principle for the energy functional E[ρ(r)]: for a trial density ρ ′(r)
satisfying

ρ ′(r) ≥ 0 (5.10)

and
N =

∫
ρ ′(r)dr, (5.11)

E0 ≤ E[ρ ′(r)], (5.12)

where E0 is the true ground state energy. This result was also published in the
same 1964 paper.

The Hohenberg–Kohn theorems hinge on questions of N-representability and
v-representability: the density ρ(r) must be derivable from an antisymmetric wave
function (N-representability), which must be the ground state solution of the
Schrödinger equation corresponding to some potential v(r) (v-representability).
It was shown by Gilbert [5] in 1975 that any positive density function satisfying
Equations 5.10 and 5.11 and the condition:

∫
|∇ρ ′(r)1/2|2 dr < ∞ (5.13)

can be derived from an antisymmetric wave function, thereby solving the N-
representability problem, but v-representability is, in general, not guaranteed by
an arbitrary trial density. Around the same time, Mel Levy devised what is now
known as the constrained search formalism [6–8] by considering the functional
F [ρ(r)] of the density that minimizes the expected value of T + U over all
antisymmetric wave functions ψ , which yield that density ρ(r):

F [ρ(r)] = minψ→ρ <ψ |T + U |ψ> . (5.14)

F [ρ(r)] can then be found by minimization of the expectation value <ψ |T +
U + V|ψ> with respect to arbitrary variations of the wave function ψ . Here, the
one-electron potential operator V of Equation 5.5 acts as the Lagrange multiplier
for the constraint that the wave function ψ yields the correct density ρ(r). To
tackle the v-representability problem, Mel Levy similarly designed a constrained
search formalism [6–8] for the first-order density matrix:

γ (r|r ′) = N

∫
dr2 . . .

∫
drNψ∗(r, r2 . . . rN)ψ(r′, r2 . . . rN) (5.15)
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in terms of a functional

W [γ (r|r ′)] = minψ→γ <ψ |U |ψ> (5.16)

of the first-order density matrix that minimizes the expectation value of the
interelectron repulsion U over all wave functions ψ that yield that density
matrix γ (r|r ′ ).

5.2 THE CHEMICAL POTENTIAL

We can thus write the Hohenberg–Kohn energy functional in terms of the Levy
functional F[ρ(r)]:

E[ρ(r)] = F [ρ(r)] +
∫

v(r)ρ(r)dr. (5.17)

Then, from the second Hohenberg–Kohn theorem, Equation 5.12, we obtain for
arbitrary variations in the density ρ ′(r), with constant v(r):

δ{E[ρ ′(r)] − μN[ρ ′(r)]} = 0, (5.18)

where μ is the Lagrange multiplier for the normalization constraint on the density,
Equation 5.11, and can be defined as the functional derivative of the energy
functional with respect to the density:

μ = δE[ρ(r)]
δρ(r)

. (5.19)

In 1978, Robert Parr and coworkers [9, 10] identified this chemical potential as
the negative of the electronegativity familiar to chemists:

χ = −μ =
(

∂E

∂N

)
v

(5.20)

≈ 1/2(I + A), (5.21)

where I is the ionization energy and A the electron affinity. Parr’s electronega-
tivity formula thus reduces to Mulliken’s electronegativity definition [11] in the
finite difference approximation. Parr had earlier worked with DuPont chemist
Rudolph Pariser on the molecular orbital theory of π-electron systems, originat-
ing the Pariser–Parr–Pople semiempirical method [12]. Now at the University of
North Carolina, Parr was among the first theoretical chemists to work on density
functional theory and is perhaps the person most responsible for the immense
popularity that this theory has gained among chemists. Parr and coworkers also
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showed that the equilibrium condition requires equalization of chemical poten-
tials in a molecule, a fact that had been recognized earlier by Sanderson [13] and
termed the principle of equal orbital electronegativities.

We can pursue the thermodynamic analogy further to obtain a generalization
of the Hellmann–Feynman theorem:

dE = μdN +
∫

ρ(r)dv(r)dr. (5.22)

Taking functional derivatives of the Levy functional, Equation 5.17 can be rewrit-
ten as,

E[ρ] = Nμ + F [ρ] −
∫ (

δF [ρ]

δρ(r)

)
ρ(r)dr. (5.23)

Defining the sum of the last two terms as −Q, that is,

−Q = F [ρ] −
∫ (

δF [ρ]

δρ

)
ρ(r)dr (5.24)

and differentiating yields:

dE = Ndμ + μdN − dQ, (5.25)

or using Equation (5.22),

Ndμ = dQ +
∫

ρ(r)dv(r)dr, (5.26)

which is a generalization of the Gibbs–Duhem equation [14].
The functional derivative of the chemical potential with respect to the density

is the chemical hardness (or band gap in solids):

η = δμ

δρ(r)

∣∣∣∣
v(r)

= δ2E[ρ(r)]
δρ(r)2

∣∣∣∣
v(r)

=
(

∂2E

∂N2

)
v

≈ 1/2(I − A), (5.27)

which appears in Pearson’s principle of hard and soft acids and bases [15, 16]. The
other functional derivatives have been identified as the Fukui function [17–20].

f = δμ

δv(r)

∣∣∣∣
N

= δ2E[ρ(r)]
δρ(r)δv(r)

= ∂ρ(r)
∂N

∣∣∣∣
v

, (5.28)

which measures propensity for chemical reactivity [21], and the response function
δρ(r)/δv(r)|N = δ2Eρ(r)]/δv(r)δv(r′)|ρ(r). Further discussions on these chem-
ical concepts derived from density functional theory is relegated to Chapter 7,
and applications of these concepts to drug design can be found in Chapter 8.
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5.3 THE EXCHANGE-CORRELATION HOLE

The interelectron repulsion U appearing in Equation 5.4 is a two-body operator
with the expectation value:

〈ψ |U|ψ〉 = 1/2

∫
dr

∫
dr′ ρ(r, r′)

|r − r′| , (5.29)

where the pair density,

ρ(r, r′) = N(N − 1)

∫
dr3 . . .

∫
dr′

N |ψ(r, r′, r3 . . . rN)|2, (5.30)

gives the probability of simultaneously finding an electron at the point r within
volume element dr and another electron at the point r′ within volume element
dr′. Here, we have assumed the electron coordinates to include both space and
spin, and the integrals over the electron coordinate to include summations over
the spins as well. From Equations 5.1 and 5.30, the electron density ρ(r) is then
given by

ρ(r) = 1

N − 1

∫
dr′ρ(r, r′), (5.31)

while double integration of Equation 5.30 leads to the condition

∫
dr

∫
dr′ρ(r, r′) = N(N − 1). (5.32)

In Chapter 2, we have seen that in a classical description, the motions of the
electrons are not correlated, so that the classical simultaneous probability of
finding an electron at r and another electron at r′ is simply the product of the
individual probabilities:

P class(r, r′) = ρ(r)ρ(r′). (5.33)

Substituting this classical definition into Equation 5.29 gives

〈ψ |U class|ψ〉 = 1/2

∫
dr

∫
dr′ ρ(r)ρ(r′)

|r − r′| , (5.34)

which is the classical Coulomb repulsion or the Hartree energy, treated in
Section 3.2. But electrons obey Fermi–Dirac statistics, and thus electrons with
the same spin are kept apart from the Pauli exclusion principle. Furthermore,
owing to Coulomb repulsion, even electrons of opposite spin tend to avoid each
other more than suggested by the average description above. These two effects
mean that each electron reduces the probability of finding another electron
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around it and thus creates a depletion or hole of electron density around itself.
This is known as the exchange-correlation hole, with a density ρXC(r, r′).

The quantum mechanical pair density can now be written in terms of this
exchange-correlation hole as

ρ(r, r′) = ρ(r)ρ(r′) + ρ(r)ρXC(r, r′). (5.35)

From normalization, we thus see that every electron is surrounded by a hole in
the electron density of equal and opposite charge:

∫
dr′ρXC(r, r′) = −1. (5.36)

This normalization condition is also known as the sum rule. It is easy to
see that the exchange part of the hole (also known as the Fermi hole) has the
charge of −1, while the correlation hole (also known as the Coulomb hole) has
a net zero charge.

5.4 THE KOHN–SHAM EQUATION

Let us apply Levy’s constrained search formalism to define a functional T0[ρ(r)]
of the density that determines the smallest expectation value of the kinetic energy
operator T :

T0[ρ(r)] = minψ→ρ <ψ |T |ψ>, (5.37)

subject to the constraint that the wave function ψ yield the correct density ρ(r)
at each point in space. This can be achieved by introducing a Lagrange multiplier
v(r) for each point in space and minimizing

<ψ |T |ψ> +
∫

v(r)ρ(r)dr =<ψ |T + V |ψ> (5.38)

with respect to arbitrary variations of the (antisymmetric) wave function ψ , where
V is given by Equation 5.5. But this is just the ground state energy of the
Hamiltonian

H0 = T + V. (5.39)

As the kinetic energy T is a sum of one-electron operators, the many-electron
wave function ψ can be constructed as a normalized Slater determinant of eigen-
functions of the equation,

[−1/2∇2 + v(r)]|ϕk(r)> = εk|ϕk(r)>, (5.40)
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with the N lowest eigenvalues. This one-electron Schrödinger-like equation was
derived in 1965 by Kohn and his postdoctoral fellow, Lu Sham, on Kohn’s return
to San Diego [22]. The ϕk are now known as Kohn–Sham orbitals . The ground
state energy is the sum of those N lowest eigenvalues and

T0[ρ(r)] =
∑N

k=1

〈
ϕk

∣∣∣∣−1

2
∇2

∣∣∣∣ ϕk

〉
(5.41)

can be considered to be the kinetic energy of a hypothetical noninteracting system
(with Hamiltonian H0). Here, the external potential V acts as a set of Lagrange
parameters to satisfy the constraint that the Kohn–Sham orbital densities sum up
to give the true electron density of the interacting system:

ρ(r) =
∑N

k=1
|ϕk(r)|2. (5.42)

Adding the interelectron repulsion operator U gives the energy functional for the
interacting system:

E[ρ(r)] = T0[ρ(r)] +
∫

v(r)ρ(r)dr + 1

2

∫
dr

∫
dr′ρ(r)ρ(r′)/|r − r′| + Exc,

(5.43)

where we have used Equations 5.34 and 5.35, and Exc is the exchange-correlation
energy:

Exc = 1

2

∫
dr

∫
dr′ρ(r)

ρXC(r, r′)
|r − r′| (5.44)

defined in terms of the exchange-correlation hole ρXC(r, r′) introduced in
Section 5.3. The Kohn–Sham Equation 5.40 may also be rewritten in terms of
a Kohn–Sham effective potential vKS(r) as:

[−1/2∇2 + vKS(r)]|ϕk(r) > = εk|ϕk(r)>, (5.45)

where
vKS(r) = v(r) + ve(r) + vxc(r), (5.46)

ve(r) =
∫

dr′ ρ(r′)
|r − r′| (5.47)

is the electrostatic potential, and vxc(r) is the exchange-correlation potential [23]:

vxc(r) = δEXC

δρ(r)
. (5.48)
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The solution to the interacting many-electron problem thus reduces to finding
a good approximation to the unknown exchange-correlation term, followed by
solving the set of one-electron Kohn–Sham Equations 5.45. Kohn and Sham
thus obtained a practical recipe for obtaining the electron density and the
total electronic energy, formulating a theory going beyond the Hartree–Fock
treatment—including electron correlation—at the cost of solving the one-
electron Equation 5.45. This work was cited in the award of the Nobel Prize for
chemistry in 1998 [24] to Walter Kohn, now at the University of California at
Santa Barbara.

The simplest approximation (the Local density approximation [25]) is obtained
by writing Exc(r) as a functional of only the local density ρ(r) at r:

ELDA
xc [ρ] =

∫
dreLDA

xc [ρ(r)]. (5.49)

We can also explicitly introduce spins to give the Local spin density approxima-
tion (LSDA):

ELSDA
xc [ρ↑, ρ↓] =

∫
dreLSDA

xc [ρ↑(r), ρ↓(r)], (5.50)

where exc
LSDA is the exchange-correlation energy density of a uniform electron

gas with spin densities ρ↑(r) and ρ↓(r) equal to their local atomic or molecu-
lar values. Considering its simplicity, LSDA performs remarkably well for many
atoms, molecules, and solids, and it has been widely used by solid-state physicists.
Thus LSDA gives accurate geometries and charge densities for most systems.
Inspite of a systematic overbinding, binding energies obtained with LSDA are
often better than 1 eV. Calculated vibrational frequencies are often accurate to
within 10–20%. In general, LSDA results are much better than those obtained
with the Hartree–Fock approximation. This “unreasonable” effectiveness of the
local density approximation is somewhat surprising, as the electron density dis-
tribution in an atom or small molecule is quite far from that of a uniform electron
gas! The successes of LSDA can be attributed to various exact properties of its
exchange-correlation hole, such as the sum rule, Equation 5.36. However, there
are serious problems with LSDA that render it of limited use to problems of
interest to chemists. Thus, for instance, negative ions are unbound in LSDA!
LSDA overestimates the binding energy of the F2 molecule by 100% and that
of CO2 by as much as 84 kcal/mol. Owing to rapid density variations within the
interiors of atoms, atoms and small molecules represent very severe tests on the
quality of density functional approximations. In general, LSDA predicts wrong
dissociation limits for many molecules, incorrect ground states for many atoms
and is severely inadequate for thermochemistry [26]. Furthermore, in contrast to
methods such as configuration interaction, LSDA—and even more sophisticated
density functionals—fail in situations where near-degeneracies are encountered
(the so-called nondynamical correlation).
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A possible improvement on LSDA is to introduce dependence on the local
density and its gradients:

EGGA
xc [ρ↑, ρ↓, ∇ρ↑,∇ρ↓] =

∫
dr eGGA

xc [ρ↑(r), ρ↓(r), ∇ρ↑(r), ∇ρ↓(r)].

(5.51)

Such approximations are known as Generalized gradient approximations

(GGAs). These are often used in conjunction with a number of adjustable
parameters, which are determined by fitting known results of high accuracy for
diverse systems. Introducing dependence on the Laplacian of the density and its
gradients leads to meta-GGA.

Other methods of going beyond LSDA are based on obtaining an improved
description of the exchange-correlation hole. John Perdew [27, 28] showed that
while ELDA

xc obeys the sum rule, Equation 5.36, straightforward addition of gra-
dient terms to LSDA results in an exchange-correlation hole that does not satisfy
the sum rule. Another exact property that should be required of the exchange-
correlation energy functional is the asymptotic condition far from the nuclei, such
as in the exponential tails of atomic and molecular electron distributions, where
it follows from Equation 5.44 and hole normalization, Equation 5.36, that

exc(r) → −ρ(r)
2r

as r → ∞. (5.52)

This asymptotic condition is not satisfied by LSDA, but Axel Becke in
1988 designed a gradient correction for the exchange (Ex

B88) that satisfied
this requirement [29]. Gradient corrections for correlation are important for
properties that involve electron nonconserving processes, such as ionization
energies, and in 1991, Perdew and Wang [30–34] designed such a parameter-free
gradient-corrected correlation functional (EPW91

c ). These functionals reduced
the errors associated with DFT calculations by an order of magnitude from
LSDA.

Now exchange energies are known to be much larger than correlation energies
and we already know, from Hartree-Fock theory, how to treat exchange exactly.
This immediately suggests a hybrid method, using the exact Hartree–Fock
exchange (EHF

x ) in combination with a density functional treatment for the
correlation component. Unfortunately, this straightforward approach fails
miserably and results are generally worse than LSDA, owing to fortuitous
cancellation of errors between the exchange and correlation components of
the energy in LSDA. So in 1993, Becke proposed using half of the exact
Hartree-Fock exchange, leaving the other half together with the correlation
energy to be determined by a GGA approximation [35]. Another hybrid scheme
(B3PW91) suggested by him involved three semiempirical parameters a0, ax
and ac determined by fitting experimental data, and an exchange-correlation
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energy functional of the form:

EB3PW91
xc = ELSDA

xc + a0(E
HF
x − ELSDA

x ) + ax�EB88
x + ac�EPW91

c , (5.53)

where � signifies the gradient part of the corresponding functional, and the exact
Hartree–Fock exchange EHF

x is evaluated using the Kohn–Sham orbitals [36].
The most widely used density functional for chemical applications is B3LYP,
which has the same form as mentioned above, but with the gradient part of the
correlation energy replaced by one prescribed by Chengteh Lee, Weitao Yang,
and Robert Parr (LYP) [37]. The success of the hybrid schemes B3PW91 and
B3LYP underscores the importance of nonlocal exchange—beyond that which
can be accounted for by local density gradients alone [38–40]. A discussion on
more recent density functionals can be found in Chapter 6.

5.5 A MATTER OF PHASE

The unique mapping between the density ρ(r) and the potential v(r) shown by
Hohenberg and Kohn does not apply to the case of an infinite periodic insulator in
an electric field. Application of a uniform electric field to a system with a periodic
potential does not permit a ground state solution, because a translation against
the direction of the field by a whole number of lattice constants will always result
in a decrease in the electronic energy. This impossibility of a ground state in the
presence of a finite electric field invalidates the Hohenberg–Kohn proof of DFT
for a periodic system in an electric field. The clue to extending DFT to such
cases lies in the phase associated with a quantum wave function.

In 1963, Herzberg and Longuet-Higgins predicted a change of sign of the
electronic wave function [41] around a closed loop of structure deformations
encircling a point of Jahn–Teller degeneracy [42] between two electronic states:
“If the wave function of a given electronic state changes sign when transported
adiabatically around a closed loop in nuclear configuration space then the state
must become degenerate with another at some point within the loop. This sign
reversal condition is necessary and sufficient to establish the existence of an inter-
section” [41]. A few years earlier, Yariv Aharonov and David Bohm [43] had
discovered that electromagnetic potentials play a far more fundamental role in the
quantum theory than in classical mechanics. In classical mechanics, it is the elec-
tric and magnetic fields that are the fundamental quantities and electromagnetic
potentials are introduced merely for convenience. Aharonov and Bohm found
that quantum mechanics predicts physical effects of potentials on charged parti-
cles even in regions where all the fields, and hence all forces on the particles,
are zero. This can be seen by passing an electron beam through a beam splitter
(Fig. 5.1). The two resultant beams are allowed to pass on opposite sides (1 and
2) of a very tightly wound solenoid (so that the magnetic field H is essentially
confined within the solenoid) and then recombined. The electromagnetic vector
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Electron
beam

Beam Solenoid
Interference

1

2

regionsplitter

Figure 5.1 Schematic setup for the Aharonov–Bohm effect [43], demonstrating the
fundamental role of electromagnetic potentials in the quantum theory. An electron beam
is split into two by a beam splitter; the two resultant beams pass on opposite sides (1 and
2) of a tightly wound solenoid and are then recombined. Because of the nonzero magnetic
flux through any closed loop around the solenoid, there is a nontrivial and experimentally
detectable phase difference between the two beams 1 and 2, even in the absence of any
significant magnetic field along the paths traversed by the electrons.

potential A, however, cannot be zero everywhere outside the solenoid because
the total magnetic flux through any closed loop around the solenoid is a constant:

∮
A.dx = H.ds = . (5.54)

Along each path 1 or 2, the wave function of the electron will acquire a phase
factor exp{−ie/c�

∫
1A.dx} and exp{−ie/c�

∫
2A.dx}, so that the phase difference

between the two beams is

�S/� = − e

c�

∮
A.dx. (5.55)

The Aharonov–Bohm effect was experimentally confirmed soon thereafter by
Chambers [44], but a similar effect had been observed in the context of optics a
few years earlier by Pancharatnam [45]. It was only in 1979 that the connection to
molecular physics was made, when Alden Mead and Donald Truhlar [46] realized
that the sign change of Herzberg and Longuet-Higgins is a molecular analog of
the Aharonov–Bohm effect. The analog of the magnetic vector potential in the
moecular situation is the diagonal Born vector term introduced in Chapter 3:

Aii = i <ψi |∇R|ψi>, (5.56)

where R is a nuclear coordinate and ψi the electronic wave function in state i.
The sign change of Herzberg and Longuet-Higgins is a manifestation of what
is now known as the geometric phase or Berry phase [47–56]. The general
nature of this phenomenon was discovered in 1984 by Michael Berry [47, 48]
and generalized further [49–52] to encompass nonadiabatic, noncyclic and, even
non-Abelian situations. The Kramers degeneracy between up spin and down spin
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states is a molecular manifestation of a non-Abelian geometric phase. In the
general context, the geometric phase is given by:

γ =
∫

Aii .dR. (5.57)

In a Jahn–Teller molecule, where two electronic states are degenerate at a point
in nuclear configuration space, there is thus a phase change of π acquired
by the electronic wave function around the point of degeneracy, and a com-
pensating phase change acquired by the nuclear wave function, such that the
total wave function remains single valued. The effects of this geometric phase
would be manifested as interference between trajectories passing on either side of
the Jahn–Teller intersection. This effect was confirmed experimentally in 1986
through the observation of fractional quantization in the molecular pseudorota-
tion (a series of molecular deformations in a closed loop around the degeneracy)
of Na3 [53]. In addition to the geometric phase in the molecular situation, Mead
and Truhlar [46] predicted a further phase factor due to permutation of identical
nuclei.

For a path 1, 2, . . . , M in configuration space, the geometric phase may be
rewritten as:

γ = −Im. log
∏M

s=1
〈ψ(s)|ψ(s + 1)〉

= −Im. log Tr.
∏M

s=1
ρ ′(s),

(5.58)

where ρ̂(s) = |ψ(s)> <ψ(s)| is the density operator. The geometric phase for-
malism has been applied to develop a density polarization functional theory of
insulators [57–63]. Here, knowledge of both the change in periodic density and
the change in polarization is required to obtain the change in periodic potential
and the change in the electric field. The exchange-correlation functional now
has an explicit dependence on the macroscopic polarization, which induces an
exchange-correlation electric field. The macroscopic polarization is defined as
the dipole moment induced in the material in response to an applied electric
field and is conventionally related to the total surface charge. In the new theory
the macroscopic polarization is a bulk property, the first moment of the electron
distribution, and can be defined in terms of the geometric phase:

P = −Im. log < ψ |e2πiR̂|ψ >

= i

∫
BZ

< ψ |∇R|ψ > .dR = γ, (5.59)

where R̂ is the position operator, the integral is over the Brillouin zone and
volume normalization has been assumed.

For conductors, the excitation gap goes to zero as the size of the system
becomes large, while for insulators it remains finite. Walter Kohn showed in
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1964 [64] that this difference is also reflected in the ground-state many-body
wave function, which is delocalized for conductors and localized for insulators.
The insulating state thus represents a rather special organization of electrons in
the ground state, which can be probed by the localization tensor or the second
moment of the electron distribution [65]:

<rirj> = 1

N

∫
dr

∫
dr′(r − r′)i(r − r′)jρ(r)ρXC(r, r′), (5.60)

This is qualitatively different in insulators and in conductors. In insulators, the
integral converges for large |r − r′| and the localization tensor is finite, whereas
in conductors, the integral diverges. This is a measure of what Kohn has called
the “near-sightedness” of the electron distribution [66–68]. As we have seen in
Chapter 4, it is this “near-sightedness” of electronic matter that is also responsible
for the approximate transferability of atomic and functional group properties
between molecules.
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6
DENSITY-FUNCTIONAL
APPROXIMATIONS FOR EXCHANGE
AND CORRELATION

Viktor N. Staroverov

6.1 THE CHALLENGE OF DENSITY-FUNCTIONAL THEORY

Density-functional theory (DFT) is based on two pivotal theorems due to
Hohenberg and Kohn [1]. The first theorem states that the ground-state density
ρ(r) of a system of electrons uniquely determines the Hamiltonian and hence
all properties that can be derived from it. Using mathematical language, we can
say that the total electronic energy of the system is a functional of the electron
density

E = E[ρ]. (6.1)

The second Hohenberg–Kohn theorem demonstrates that the exact ground-state
density and energy of the system can be found by minimizing the functional
E[ρ] over all admissible densities. The task of minimizing E[ρ] amounts to
solving the many-electron Schrödinger equation but, on the face of it, appears
much simpler. Even a vague appreciation of the immense complexity of the
Schrödinger equation makes one suspect that it cannot be tamed so easily and
that the almost miraculous solution of the electronic structure problem by DFT
must come at a price. At least, there must be a catch.

There is actually not one catch, but two. First, the exact functional E[ρ] is
not known and, some believe, is so complicated that it is practically unknowable.

A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and
Materials Sciences, First Edition. Edited by N. Sukumar.
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The second catch is that E[ρ], even if it were known, is not explicit, meaning that
the exact mapping from ρ to E cannot in general be written down as a formula
with E on the left-hand side and ρ on the right. Not all is lost, however, since we
are free to approximate E[ρ] with expressions involving standard functions and
usual mathematical operations. Development of approximate density functionals
that yield accurate electronic energies for the widest possible range of systems
and properties is the chief preoccupation of DFT.

As of 2011, there are hundreds of density-functional approximations to choose
from. Most of them perform remarkably well for certain types of problems and
fail for others. For example, the B3LYP and PBE functionals are very good at
predicting structural and thermodynamical properties but not for charge-transfer
excitation energies, barriers of chemical reactions, polarizabilities, and noncova-
lent interactions. Sometimes, approximate functionals are designed to perform
well for a particular property. However, this works like a see-saw: improvement
for one target property often results in deterioration for others. The great prolif-
eration of approximate density functionals and their uneven performance are in
part responsible for certain skepticism toward DFT as a method.

In fairness to DFT, one should always keep in mind that practical compu-
tational chemistry never deals with the exact density functional but only with
density-functional approximations . If we knew the exact functional, then every
DFT calculation would be exact. When we say “DFT fails,” we mean that the
density-functional approximation we chose to use fails to give the correct pre-
diction. Such failures are not surprising and even should be expected, given how
simple some approximations are. What is surprising is that compact closed-form
density-to-energy expressions developed by theorists work as well as they do.

There are currently two views on the status of DFT. One view is that the-
orists have done everything they could, but the problem of approximating the
exact functional is so hard that the hopes of making further progress may be
fading. This sentiment is sometimes felt by the users who have been growing
impatient with the incremental progress of density functionals since the early
1990s when functionals such as B3LYP entered computational chemistry and
completely transformed it. One should be reminded, however, that DFT has been
in a similar position before: the significance of the Hohenberg–Kohn theorems
was realized back in 1964, but it took two decades to understand the limitations
of the early density-functional approximations and develop density functionals
that were usefully accurate for chemical applications. Likewise, the limitations
of present-day DFT only reflect the inadequacies of density-functional approx-
imations that have been invented so far. Over the past decade, theorists have
been busy trying to understand the reasons for successes and failures of currently
available functionals and made great strides in this regard. As a result, there is a
basis for an optimistic view that DFT is ripe for a “paradigm shift,” which will
eventually lead to qualitatively better functionals.

The purpose of this chapter is to explain the inner workings of density-
functional approximations and to give a sense of where DFT is heading in the
near future. For a more technical account of some of the older topics discussed
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in this chapter, the reader is referred to Reference 2. To keep things simple,
we write many equations in this chapter in the form applicable only to closed-
shell (“spin-unpolarized”) systems. For spin-polarized systems, where the spin-up
and spin-down densities are not equal, some modifications may be required (see
Section 8.2 in Reference 3). This convention eliminates the need to include spin
subscripts and sums over spins. Spin-specific quantities are discussed only when
necessary.

6.2 EXCHANGE AND CORRELATION FUNCTIONALS

The starting point for approximating the electronic energy functional is to think
of E[ρ] as a sum of several terms. The idea is to identify those terms that are
known exactly, define others in some convenient way, and then focus on the only
unknown term that remains. This is precisely what Kohn and Sham [1] did by
writing the total energy functional as

E[ρ] = Ts[ρ] + V [ρ] + U [ρ] + Exc[ρ]. (6.2)

In Equation (6.2),

Ts[ρ] = −1

2

occ.∑
k

∫
φ∗

k (r)∇2φk(r) dr (6.3)

is the kinetic energy of a hypothetical system of noninteracting electrons whose
total ground-state density is exactly equal to ρ(r), and φk(r) are the so-called
Kohn–Sham orbitals occupied by these electrons, such that

ρ(r) =
occ.∑
k

|φk(r)|2. (6.4)

The symbol
∑occ.

k means that each term in the sum must be included as many
times as there are electrons occupying the orbital φk (one, two, or zero). The
functional

V [ρ] =
∫

ρ(r)v(r) dr (6.5)

is the electrostatic energy of the electron density interacting with the external
potential v(r), whereas

U [ρ] = 1

2

∫
dr1

∫
dr2

ρ(r1)ρ(r2)

|r1 − r2|
(6.6)

is the electrostatic energy of ρ(r) interacting with itself. The last term, Exc[ρ],
incorporates everything else and is called the exchange-correlation energy. It is
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the only term that is unknown. In a way, the Kohn–Sham method packs all the
complexity of the total energy functional into the exchange-correlation functional.
But this is a clever reshuffle because approximating a part (Exc) is safer than
directly approximating the whole (E).

The first step in tackling the exchange-correlation functional involves the same
trick as for E[ρ]: we divide Exc[ρ] into two parts, one large and one small, in
such a way that the large part can be defined and computed exactly. These two
parts are called, respectively, exchange and correlation functionals

Exc[ρ] = Ex[ρ] + Ec[ρ]. (6.7)

For closed-shell systems, where each Kohn–Sham orbital is doubly occupied,
the exchange part is defined exactly by the expression

Eexact
x [ρ] = −

N/2∑
k,l=1

∫
dr1

∫
dr2

φk(r1)φ
∗
k (r2)φ

∗
l (r1)φl(r2)

|r1 − r2|
. (6.8)

This definition is borrowed from the closed-shell Hartree–Fock theory, where an
equation identical to Equation 6.8 represents the Hartree–Fock exchange energy
(see Section 2.3.5 in Reference 4). The functional Eexact

x [ρ] is an implicit func-
tional of the density: it depends on ρ through the Kohn–Sham orbitals that are
related to ρ by Equation 6.4.

In atoms and molecules near their equilibrium geometries, the correlation
energy Ec is roughly an order of magnitude smaller than the exchange energy Ex.
We seem to be making progress: instead of approximating the total energy we now
need to approximate only a relatively small part, Ec. Yet anyone who has ever run
DFT calculations knows that the exchange energy is usually approximated. This
brings up the question: why would one want to use an approximate functional for
exchange when an exact formula is readily available? The short answer is that
the pairing of Eexact

x with standard correlation functionals gives poor accuracy in
calculations of most properties of interest. In order to understand how this comes
about and why theorists work so hard to approximate something that is already
known, we need to invoke the concept of exchange and correlation holes.

As explained in Section 1.3.5 of Reference 5, the exchange-correlation energy
can be written exactly as

Exc[ρ] = 1

2

∫
dr1 ρ(r1)

∫
dr2

ρxc(r1, r2)

|r1 − r2|
, (6.9)

where ρxc(r1, r2) is a function called the (coupling-constant-averaged) exchange-
correlation hole density . Equation 6.9 is physically revealing: it suggests that we
think of the exchange-correlation energy as coulombic interaction between an
electron at r1 and the surrounding exchange-correlation hole charge ρxc(r1, r2).
Note that hole charge at r2 is not static but depends on the current position of
the electron r1 —as if the hole were riding along with the electron.
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The exchange-correlation hole may be subdivided into exchange and correla-
tion holes

ρxc(r1, r2) = ρx(r1, r2) + ρc(r1, r2), (6.10)

so we can write for the exchange functional

Ex[ρ] = 1

2

∫
dr1 ρ(r1)

∫
dr2

ρx(r1, r2)

|r1 − r2|
. (6.11)

The analogous expression for the correlation functional is

Ec[ρ] = 1

2

∫
dr1 ρ(r1)

∫
dr2

ρc(r1, r2)

|r1 − r2|
. (6.12)

By comparing Equation 6.11 with Equation 6.8 we see that the exact exchange
hole for a closed-shell system is

ρexact
x (r1, r2) = − 2

ρ(r1)

N/2∑
k,l=1

φk(r1)φ
∗
k (r2)φ

∗
l (r1)φl(r2), (6.13)

where φk are the occupied Kohn–Sham orbitals. The exact correlation hole is,
of course, not known.

It turns out [6] that the exact exchange hole in a molecule is delocalized, mean-
ing that for a given position of the reference electron r1, the plot of ρx(r1, r2)

as a function of r2 has deep minima at other nuclei, no matter how remote.
By contrast, the total exchange-correlation hole, ρxc(r1, r2), is typically local-
ized around the reference electron. This implies that the exact correlation hole,
ρc(r1, r2), must also be highly delocalized in order to cancel out the nonlocality
of the exact exchange hole. Thus, if we want to combine the exact exchange
functional with a density-functional approximation for correlation, we need to
devise a very sophisticated, highly nonlocal functional.

For a long time, all attempts to marry the exact exchange expression with
an approximate correlation functional were defeated, although recently there has
been some progress, which we will discuss toward the end of this chapter. A sim-
pler, pragmatic alternative is to abandon the exact exchange functional and use
instead an approximation that is based on a localized hole and so is compati-
ble with an approximate correlation functional. Of course, by giving up exact
exchange in favor of approximations, one introduces an error into Ex[ρ]. Fortu-
nately, this error tends to be canceled out by a similar opposite-sign error in the
approximation for Ec[ρ]. This built-in cancellation of errors has proved to be a
very fruitful idea, and it was the principal reason for the tremendous success of
exchange-correlation functionals developed in the 1980s and 1990s.
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6.3 INGREDIENTS AND TECHNIQUES FOR CONSTRUCTING
DENSITY FUNCTIONAL APPROXIMATIONS

Development of density-functional approximations is a bold enterprise with rela-
tively few strict guidelines. This means that one can be creative and try different
routes. In fact, it is the absence of any mechanical prescriptions for systematic
improvement of approximate functionals that makes DFT such an interesting
subject.

The central objective of Kohn–Sham DFT is to come up with accurate approx-
imations to the exact exchange-correlation functional. These approximations are
usually cast in the form of integral expressions of the type

Exc[ρ] =
∫

exc(ρ, . . .) dr, (6.14)

where exc is some function of ρ(r) and other density-dependent ingredients. Since
the dimension of this quantity is energy

volume , exc is called the exchange-correlation
energy density .

The most common ingredients of exc are the modulus of the gradient of the
density

g = |∇ρ|, (6.15)

the Laplacian of the density

l = ∇2ρ, (6.16)

the Kohn–Sham (noninteracting) kinetic energy density

τ = 1

2

occ.∑
k

|∇φk|2, (6.17)

the (closed-shell) exact exchange energy density

eexact
x (r1) = −

N/2∑
k,l=1

∫
φk(r1)φ

∗
k (r2)φ

∗
l (r1)φl(r2)

|r1 − r2|
dr2, (6.18)

which is just the inner integral of Equation 6.8, and the paramagnetic current
density, defined in atomic units by

j = 1

2i

occ.∑
k

(
φ∗

k∇φk − φk∇φ∗
k

)
. (6.19)
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Observe that in the last equation, the expression in parentheses is purely ima-
ginary, so that j itself is always real. Obviously, if the Kohn–Sham orbitals are
real, the current density is zero.

Both g and l depend on ρ explicitly, whereas τ , eexact
x , and j cannot be written

entirely in terms of ρ, although they are uniquely determined by it. Accordingly,
density-functional approximations of the type

Exc[ρ] =
∫

exc(ρ, g, l) dr (6.20)

are called explicit , whereas functionals of the type

Exc[ρ] =
∫

exc(ρ, g, τ, eexact
x , . . .) dr (6.21)

are called implicit . Orbital-dependent functionals [7] are the most practically
important type of implicit density functionals.

The ingredients g, l, τ , and j are called semilocal because they depend on
the value of ρ or φk at r and/or in an infinitesimal neighborhood of r. The exact
exchange energy density eexact

x is different in this respect because it depends
on values of all φk everywhere, as reflected in the integration over r2. Such
ingredients are said to be nonlocal . Semilocal density-functional approximations
are those that involve one or more semilocal ingredients.

A significant portion of the vocabulary of modern DFT was developed by
John Perdew in reference to a systematic approach called Jacob’s ladder of
density-functional approximations [8]. In this classification, density-functional
approximations that are constructed using the electron density ρ and no other
ingredients represent rung 1 of the ladder and are termed local density approxi-
mations (LDA)

ELDA
xc [ρ] =

∫
exc(ρ) dr. (6.22)

Approximations where exc depends on ρ and g represent rung 2 and are called
generalized-gradient approximations (GGA)

EGGA
xc [ρ] =

∫
exc(ρ, g) dr. (6.23)

Rung 3 approximations depend, in addition to ρ and g, on l and/or τ and are
called meta-GGAs (MGGA)

EMGGA
xc [ρ] =

∫
exc(ρ, g, l, τ ) dr. (6.24)
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The functionals of rung 4 involve dependence on a nonlocal ingredient, the exact
exchange energy density, and are termed hyper-GGAs (HGGA),

EHGGA
xc [ρ] =

∫
exc(ρ, g, l, τ, eexact

x ) dr. (6.25)

Approximations of rungs 1 through 4 involve only occupied Kohn–Sham orbitals.
There is also a fifth rung where one finds approximations that involve occupied
and virtual Kohn–Sham orbitals.

The historical development of density-functional approximations for exchange
correlation may be regarded as the process of climbing Jacob’s ladder or as a
story of passing the following milestones:

1. Analysis of exactly solvable models and introduction of various local den-
sity approximations.

2. Development of GGAs and meta-GGAs by bringing into play semilocal
ingredients and by grafting selected properties of the exact functional.

3. Introduction of exact exchange into semilocal functionals (hybrid DFT).
4. Empirical construction (fitting).
5. Development of nonlocal correlation functionals compatible with exact

exchange.

Most density functionals that are currently in use fall into groups 1 through 4,
while functionals of group 5 are still at experimental stage. The rest of this
chapter offers a close look at various strategies of devising density-functional
approximations.

6.4 NONEMPIRICAL DERIVATION AND LOCAL DENSITY MODELS

In an ideal world, we might be able to derive the exact exchange-correlation
functional from first principles. In reality, we have to settle for less. One possible
strategy is to obtain the exact functional for a solvable model system and hope
that the same expression will work well in general. To illustrate this approach,
let us consider a trivial example of one electron in an external potential v(r). The
Schrödinger equation for this system is identical with the Kohn–Sham equation

[
−1

2
∇2 + v(r)

]
φ(r) = Eφ(r), (6.26)

where φ(r) is the exact wavefunction and simultaneously the exact Kohn–Sham
orbital. Suppose that φ(r) is normalized and real. (If φ is complex, it can always
be made real as explained in Section 2.2 of Reference 9.) Since there is only one
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electron in this system, the density is just ρ = φ2, so φ = ρ1/2. Let us multiply
Equation 6.26 from the left by φ(r), integrate over r, and write the result as

E[ρ] = −1

2

∫
ρ1/2(r)∇2ρ1/2(r) dr +

∫
ρ(r)v(r) dr. (6.27)

This is clearly an explicit density functional, and it is exact for any one-electron
system. One should not be surprised, however, that this functional gives dismal
results for many-electron systems.

Although Equation 6.27 is useless for practical purposes, it tells us something
about the true functional. First, for any one-electron system with a constant
external potential, the true E[ρ] should reduce to Equation 6.27. Second, the fact
that Equation 6.27 is exact for some systems but not for others suggests that the
true E[ρ] and hence Exc[ρ] cannot be written as a single analytic expression
valid for all electron numbers. When a second electron is added to the system,
the true E[ρ] must switch discontinuously from Equation 6.27 to something else.
Such sudden switching is not a property of analytic functionals.

Another model system that gives rise to a more useful nonempirical functional
is a uniform electron gas , also called the jellium model . The uniform electron
gas is a system of many interacting electrons moving in the field of a uniform
positive background charge of the same density as the averaged electron density.
The latter requirement ensures overall electric neutrality. The total volume of
this system is assumed to be large but finite, so that Kohn–Sham orbitals can be
normalized. For a uniform electron gas, ρ(r) = const.

One can show (see, for instance, Section 6.1 in Reference 3) that for a clot
of spin-unpolarized uniform electron gas of volume V the exchange energy is
given exactly by the expression

ELDA
x [ρ] = −Cx

∫
ρ4/3(r) dr, (6.28)

where Cx = (3/4)(3/π)1/3 ≈ 0.73856 and the integration is over V . The exact
correlation functional for a uniform electron gas is not known (except in the high
and low density limits), but the correlation energy of this system has been studied
numerically and parametrized in the form of analytic functionals such as [10]

ELDA
c [ρ] = −A

∫
ρ(1 + α1rs) ln

[
1 + 1

A(β1r
1/2
s + β2rs + β3r

3/2
s + β4r

2
s )

]
dr,

(6.29)

where rs = (3/4πρ)1/3 and A, α1, β1, β2, β3, and β4 are fixed parameters.
In real atoms and molecules, the electron density is far from uniform (it is

approximately piecewise exponential), so Equations 6.28 and 6.29 are no longer
exact. Despite this, the sum of Equations 6.28 and 6.29 gives a reasonably
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accurate approximation to the true exchange-correlation energy. The LDA pre-
dicts fairly accurate bond lengths and lattice constants but severely overestimates
atomization energies of molecules and solids. For comparison, the Hartree–Fock
method, which is computationally more expensive than the LDA, predicts bond
lengths much less accurately than LDA and underestimates atomization energies
with a mean absolute error that is twice as large as the overbinding error of
LDA. This is remarkable: a basic DFT method outperforms a basic wavefunc-
tion method. Good as LDA is, it is still not good enough for most chemical
applications. As we shall see in the following section, attempts to derive exact
density functionals for nonuniform densities by formal density-gradient expan-
sions do not yield better general-purpose approximations. This compels one to
seek different, less formulaic procedures for going beyond LDA.

One way to improve the LDA is to relax the requirement that this functional
be exact for a uniform electron gas and instead demand better performance for
chemically relevant systems. For the exchange component, this can be achieved
by treating the constant Cx in Equation 6.28 as an empirical parameter—the
technique is known as Slater’s Xα method [11]. For correlation, one can start
with some LDA expression and reparametrize it by fitting to the exact correlation
energies of a few atoms. This strategy is represented by the Brual–Rothstein
functional [12]. The gains in accuracy made in this manner, however, are modest.

A third method for deriving density functionals is to start with a model for
the coupling-constant-averaged exchange-correlation hole, ρxc(r1, r2). Once the
hole is specified, we insert it into Equation 6.9 and integrate over r2 to obtain
a density functional. For a density functional that is not explicitly derived from
an exchange-correlation hole, one assumes that there is a model hole underlying
it. The implied hole may be hard or even impossible to recover from a given
Ex[ρ] or Ec[ρ], but it strongly influences the performance of the functional.
Unfortunately, approximation of exchange-correlation hole densities is as difficult
as direct approximation of functionals themselves, so this method does not by
itself lead to more accurate results.

6.5 SEMILOCAL FUNCTIONALS BEYOND THE LOCAL DENSITY
APPROXIMATION

The most natural way to account for the nonuniformity of electron density in
atoms and molecules is to construct an approximate functional in terms of ρ and
its gradient ∇ρ or, rather, the gradient norm |∇ρ|. Because density-functional
approximations must satisfy certain dimensionality requirements, it is convenient
to make the energy density exc depend on |∇ρ| through the so-called reduced
density gradient,

s = |∇ρ|
ρ4/3

. (6.30)
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The reduced gradient s is a dimensionless quantity since the dimensions of ρ and
|∇ρ| are length−3 and length−4, respectively. Now one can attempt to improve
on the LDA by devising a functional of the form

Exc[ρ] =
∫

eLDA
xc (ρ)

[
1 + μ(ρ)s2 + . . .

]
dr, (6.31)

where μ(ρ) is a function of the density that reduces to a constant for the exchange
component. Approximations of this type are called density-gradient expansions .
The coefficients of the lowest powers of s in Equation 6.31 can be rigorously
derived for two extreme cases: the slowly varying density limit and the high-
density limit [5]. Since the leading gradient correction terms are nonempirical, one
might assume that Equation 6.31 cannot be worse than the LDA. But DFT often
confounds expectations. It turns out that truncated density-gradient expansions
are less accurate than the LDA for atoms and molecules. In particular, addition
of the μ(ρ)s2 term to the LDA energy density makes total correlation energies
positive [5], which is an unphysical result.

The failure of truncated density-gradient expansions for Exc[ρ] was analyzed
and explained by Perdew and coworkers [5]. They showed that the exchange-
correlation hole underlying the second-order gradient expansion exhibits spurious
undamped oscillations as |r1 − r2| → ∞ and so violates two important condi-
tions, namely, the negativity constraint for the exchange hole charge

ρx(r1, r2) < 0, (6.32)

and the requirement that the exchange-correlation hole charge be normalized to
−1 for every reference point r1∫

ρxc(r1, r2) dr2 = −1. (6.33)

The incorrect behavior of the function ρx(r1, r2) associated with second-order
truncated density-gradient expansions translates via Equation 6.9 into large errors
in energy for real atoms and molecules.

Another problem with truncated density-gradient expansions is that the cor-
responding exchange potential, vx(r) = δEx[ρ]/δρ(r), has a pathological diver-
gence in the exponential density tails found in all atomic and molecular charge
distributions. This divergence is caused by the density-gradient correction term
that is proportional to ρ1/3s2 and so diverges asymptotically for an exponential
density. To see this, we substitute ρ(r) = e−br into Equation 6.30 and obtain

s = |∇ρ|
ρ4/3

= |∂ρ/∂r|
ρ4/3

= be−br

e−4br/3
= bebr/3. (6.34)

This shows that ρ1/3s2 ∼ ebr/3 → ∞ as r → ∞.
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In order to remedy the unphysical behavior of the exchange hole and exchange
potential associated with density-gradient expansions, Perdew, Becke, and others
proposed to replace the truncated series in square brackets in Equation 6.31 with
a damping function Fxc(ρ, s), such that it remains finite as r → ∞. This leads
to density-functional approximations of the form

Exc[ρ] =
∫

eLDA
xc (ρ)Fxc(ρ, s) dr, (6.35)

which are called GGAs. The analytic form of the function Fxc varies from case
to case. For example, Becke’s exchange functional of 1986 (B86) [13] and the
Perdew–Burke–Ernzerhof (PBE) GGA [14] employ damping functions of the
form

F PBE
x (s) = 1 + as2

1 + bs2
, (6.36)

whereas Becke’s exchange functional of 1988 (B88) uses

F B88
x (s) = 1 + as2

1 + bs ln(s + √
1 + s2)

. (6.37)

In both cases, a and b are functional-specific constants that are either determined
from known exact properties of Ex[ρ] or are fitted to experimental data. GGAs
for the correlation energy have a more complicated form but also use damping
functions to ensure that the correlation energy density has proper behavior in
various physically relevant limits.

After GGA were perfected by the late 1980s, they were found to perform
not only much better than the LDA but also quite well relative to medium-level
wavefunction methods. The latter fact is especially significant if we recall that
GGAs have a much lower computational cost than wavefunction methods. As
soon as all that came to light around 1991, many quantum chemists who had
been previously skeptical about DFT finally became converts.

6.6 CONSTRAINT SATISFACTION

Although we do not know the exact exchange-correlation functional, we do know
quite a few of its mathematical properties. Suppose we identify several such
properties, adopt them as constraints, and then construct a density-functional
approximation that satisfies those constraints. With respect to these mathematical
properties, the resulting approximation will mimic the exact functional. We might
also expect that the more properties our approximation shares with the exact
functional, the more accurate and transferable it will be. This strategy of density-
functional design, called constraint satisfaction [15], has produced some of the
most successful density-functional approximations available today.
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What properties of the exact functional are known? First of all, we know
that for any admissible electron density, the exact exchange energy is strictly
negative

Ex[ρ] < 0, (6.38)

while the exact correlation energy is nonpositive

Ec[ρ] ≤ 0. (6.39)

The equality in Equation 6.39 holds for all one-electron systems and only for
such systems. Lieb and Oxford [16] showed that the exchange-correlation energy
in Coulombic systems of electrons is also bounded from below

Ex[ρ] ≥ Exc[ρ] ≥ −C

∫
ρ4/3(r) dr, (6.40)

where C = 1.68.
For any one-electron density ρ1(r), the exact Ex[ρ] cancels out the spurious

Coulomb self-repulsion energy. This means that for any one-electron density ρ1,
the exact functionals should satisfy the relations

Exc[ρ1] = Ex[ρ1] = −U [ρ1], (6.41)

where U [ρ1] is given by Equation 6.6 with ρ = ρ1. Notice that when this con-
straint applies, the Kohn–Sham functional of Equation 6.2 correctly reduces to
the exact one-electron density functional of Equation 6.27.

For uniform electron densities, every exchange density-functional approxima-
tion should reduce to the known exact expression for a uniform electron gas,

Ex[ρ] = ELDA
x [ρ] if ρ(r) = const, (6.42)

where ELDA
x [ρ] is given by Equation 6.28.

Mel Levy [17] deduced many properties of the exact exchange and correlation
functionals under various coordinate scaling transformations of the density. The
most important of these transformations is the uniform scaling of the density,
defined by

ρλ(r) = λ3ρ(λr), (6.43)

where λ is a constant. The name “uniform” refers to the fact that all three
Cartesian components of r = (x, y, z) are scaled by the same λ. As λ is varied,
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the density either contracts or becomes more diffuse, but the integral of ρλ(r)
over the entire space remains independent of λ∫

ρλ(r) dr =
∫

λ3ρ(λr) dr

=
∫

dx

∫
dy

∫
dz λ3ρ(λx, λy, λz)

=
∫

d(λx)

∫
d(λy)

∫
d(λz) ρ(λx, λy, λz)

=
∫

dx ′
∫

dy ′
∫

dz′ ρ(x ′, y ′, z′) =
∫

ρ(r′) dr′ = N. (6.44)

The key property of the exact exchange functional is that it obeys the simple
scaling law

Ex[ρλ] = λEx[ρ]. (6.45)

The exact correlation functional does not have a simple scaling behavior, but it
is known that

lim
λ→∞

Ec[ρλ] > −∞. (6.46)

It is also known that in a finite many-electron system, the true exchange-
correlation potential vxc(r), defined as the functional derivative of Exc[ρ] with
respect to ρ, has the following asymptotic behavior:

vxc(r) ≡ δExc[ρ]

δρ(r)
−−−→
r→∞ −1

r
. (6.47)

The asymptotic behavior of the exchange-correlation energy density is as follows:

exc(r) −−−→
r→∞ −ρ(r)

2r
. (6.48)

The list can be continued, but the message is clear: (i) density-functional approx-
imations should reproduce known properties of the exact exchange-correlation
functional and (ii) any approximation that violates a known exact constraint
should be suspect. To illustrate the method of constraint satisfaction, we will
explain how it was used to eliminate one embarrassing artifact of early density-
functional approximations.

The hydrogen atom is one of the few systems of chemical interest for which
the Schödinger equation can be solved analytically. The exact ground-state den-
sity of the H atom is ρ(r) = 1

π
e−2r and the corresponding exact total energy

is E = − 1
2 hartree. The LDA and most GGAs fail to give these results because
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these functionals incorrectly predict nonzero correlation energies for one-electron
systems, in violation of the constraint

Ec[ρ1] = 0, (6.49)

where ρ1 is a one-electron density. For the same reason, LDA and GGA give
nonzero correlation energies for other one-electron systems such as H+

2 . One
notable exception is the Lee–Yang–Parr (LYP) correlation GGA in which the
correlation energy density is proportional to the product of spin-up and spin-down
densities, ραρβ . As a result, LYP predicts Ec = 0 for any N-electron system
where all electrons have parallel spins. That is, LYP happens to be correct for
N = 1 but is wrong for N ≥ 2.

To satisfy the constraint of Equation 6.49, Becke devised an indicator function
that distinguishes one-electron densities from all others. This function is based on
certain properties of the kinetic energy density τ(r) and its interplay with other
density-functional ingredients. To understand Becke’s reasoning, we consider the
quantity

τW = 1

8

|∇ρ|2
ρ

, (6.50)

called the Weizsäcker gradient correction to the Thomas–Fermi kinetic energy
density. The property of τW that we need is the following double inequality

0 ≤ τW ≤ τ − 1

2

|j|2
ρ

, (6.51)

where j is the current density defined by Equation 6.19. The first part of this
inequality, τW ≥ 0, is obvious from the definition of τW . Proof of the second
part of Equation 6.51 requires some work.

Let us consider first closed-shell systems. For such systems, the gradient of
the density is given by

∇ρ = ∇
⎛
⎝2

N/2∑
k=1

φ∗
k φk

⎞
⎠ = 2

N/2∑
k=1

(
φ∗

k∇φk + φk∇φ∗
k

)
. (6.52)

Here, 2
∑N/2

k=1 φ∗
k∇φk is a complex-valued vector quantity which we can rewrite as

2
N/2∑
k=1

φ∗
k∇φk =

N/2∑
k=1

(φ∗
k∇φk + φk∇φ∗

k )

+
N/2∑
k=1

(φ∗
k∇φk − φk∇φ∗

k ) = 1

2
∇ρ + ij, (6.53)
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where we used Equations 6.52 and 6.19 (the latter without the factor of 1
2 because

we are summing over N
2 orbitals). Since 1

2∇ρ and j are always real, we can think
of them, respectively, as the real and imaginary parts of 2

∑N/2
k=1 φ∗

k∇φk . Since
for z = x + iy we have |z|2 = [Re(z)]2 + [Im(z)]2, we can write∣∣∣∣∣∣2

N/2∑
k=1

φ∗
k∇φk

∣∣∣∣∣∣
2

= 4

∣∣∣∣∣∣
N/2∑
k=1

φ∗
k∇φk

∣∣∣∣∣∣
2

= 1

4
|∇ρ|2 + |j|2 = 2ρτW + |j|2. (6.54)

But according to the Cauchy–Schwarz inequality

4

∣∣∣∣∣∣
N/2∑
k=1

φ∗
k∇φk

∣∣∣∣∣∣
2

≤ 4

⎛
⎝N/2∑

k=1

|φk|2
⎞
⎠

⎛
⎝N/2∑

k=1

|∇φk|2
⎞
⎠ = 2ρτ. (6.55)

Comparing Equations 6.54 and 6.55 we see that 2ρτW + |j|2 ≤ 2ρτ or,
equivalently,

τW ≤ τ − 1

2

|j|2
ρ

. (6.56)

This concludes the proof of Equation 6.51. Note that for real orbitals, where j is
identically zero, Equation 6.51 reduces to

0 ≤ τW ≤ τ. (6.57)

The next step is an important observation that the equality in Equation 6.55 holds
only if the number of occupied Kohn–Sham orbitals is one. In this case,

τ = τW + 1

2

|j|2
ρ

(6.58)

or simply τ = τW if the orbital is real.
For spin-polarized system (when ρα = ρβ ), Equation 6.51 branches into two

separate inequalities, one for each spin

0 ≤ |∇ρσ |2
8ρσ

≤ τσ − 1

2

|jσ |2
ρσ

, (6.59)

where σ = α or β. The quantities ρσ , τσ , and jσ are given by equations similar
to Equations 6.4, 6.17, and 6.19 in which only singly-occupied σ -spin orbitals
are included. Again, if only one σ -spin orbital is occupied, the second inequality
in Equation 6.59 becomes a strict equality

τσ = 1

8

|∇ρσ |2
ρσ

+ 1

2

|jσ |2
ρσ

. (6.60)
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Following Becke [18, 19], we now introduce the function

ησ = 1

τσ

(
τσ − 1

8

|∇ρσ |2
ρσ

− 1

2

|jσ |2
ρσ

)
. (6.61)

As explained above, ησ (r) vanishes identically for any one-electron system and
is strictly positive in systems that contain two or more σ -spin electrons. Consider
now the meta-GGA correlation functional

Ec[ρ] =
∫ [

eαβ
c (r) +

∑
σ

eσσ
c (r)ησ (r)

]
dr, (6.62)

where eαβ
c and eσσ

c are some GGA-type expressions for the opposite-spin and
parallel-spin correlation energy densities, respectively. Because of the presence
of ησ (r) in Equation 6.62, every functional of this form will correctly yield zero
for the σσ -spin correlation energy in any system with a single σ -spin electron
and a nonzero energy in any system with two or more σ -spin electrons. This is
now a standard trick for constructing correlation functionals that are free from the
one-electron self-interaction error. Density-functional approximations that use it
include Bc88 [20], Bc95 [21], B98 [22], τ -HCTH [23], TPSS [24], VS98 [25],
M06 [26], and others.

Although constraint satisfaction is currently the most rigorous practical method
of constructing density-functional approximations, it has its limitations. Enforce-
ment of any particular constraint does not by itself guarantee that the resulting
functional will be better. This is because by imposing one known constraint we
may unwittingly violate other—unknown—constraints that may be more impor-
tant. In fact, better performance is sometimes achieved when an exact constraint
is relaxed. For example, any GGA can and should reduce to the LDA functional
of Equation 6.28 when ρ(r) = const because LDA is the proper functional for
a uniform density. Some of the most successful density functionals in chemistry
sacrifice this property in favor of better performance for nonuniform densities. In
particular, the LYP correlation functional in not exact for a uniform electron gas,
yet predicts highly accurate correlation energies for atoms. BLYP, B3LYP, and
other exchange-correlation functionals that include LYP also fail to yield correct
energies for a uniform electron gas, but this has little effect on their performance
in chemical applications.

Another example of beneficial and even intentional constraint violation
involves GGA functionals. For a slowly varying density (i.e., for s → 0), any
exchange GGA should reproduce the known low-order terms in the exact
density-gradient expansion:

Ex[ρ] = −Cx

∫
ρ4/3(1 + μs2 + . . .) dr, (6.63)

where the theoretical value of μ is 10/81 ≈ 0.1235. When this constraint is
enforced, GGAs predict accurate bond lengths in molecules and lattice constants
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in solids but give poor atomization energies. Perdew and coworkers [27] showed
that a GGA can produce accurate atomization energies only if it strongly violates
Equation 6.63 and has an enhanced gradient dependence. The PBE GGA in partic-
ular was designed to give accurate atomization energies, and so it has μ = 0.2195,
which is about twice as large as required by the density-gradient expansion. All
attempts to construct an accurate GGA face the dilemma [28]: using the the-
oretical value of μ leads to accurate bond lengths but yields poor atomization
energies; increasing μ improves atomization energies but worsens bond lengths
and lattice constants. Being a very restrictive form, GGAs cannot simultaneously
perform well for both properties. Thus, for calculations of atomization energies,
one should use the PBE GGA or its hybrid versions with μ = 0.2195. For bulk
properties of solids, one should use a modified version called PBEsol (PBE
revised for solids) that restores the nonempirical value μ = 10/81.

6.7 THE COMEBACK OF EXACT EXCHANGE: GLOBAL
AND LOCAL HYBRIDS

A decade ago, Peter Gill [29] published an “obituary” for DFT in the Australian
Journal of Chemistry . According to his account, DFT was born in 1927 and
passed away in 1993. The cause of her demise was an unsuccessful operation
performed on her by “an eminent Canadian surgeon,” a follower of Dr. Franken-
stein, who attempted to cure DFT by blending her with wavefunction theory into
a “grisly hybrid.” It would be instructive for us here to understand what prompted
the famous surgeon to recommend such a drastic treatment.

As we discussed earlier, semilocal correlation functionals do not work well
in combination with the exact exchange functional of Equation 6.8, but good
performance is easily achieved if both exchange and correlation approximations
are semilocal. In 1993, however, Becke showed [30] that one can go beyond the
accuracy of GGAs by representing the exchange contribution with a mixture of
the exact exchange functional and a semilocal approximation. This discovery led
to many so-called hybrid functionals such as B3PW91, B3LYP, and PBEh.

The basic form of hybrid functionals is

Exc = aEexact
x + (1 − a)Ex + Ec, (6.64)

where Ex and Ec are some semilocal density-functional approximations and a

(0 ≤ a ≤ 1) is a universal parameter called a mixing fraction . The value of a is
usually determined by empirical fitting of Equation 6.64 to reproduce experimen-
tal atomization energies, exact nonrelativistic energies, reaction barrier heights,
and other data. Fitting to atomization energies typically gives a ≈ 0.2 for GGAs
and a ≈ 0.1 for meta-GGAs, while fitting to reaction barrier heights yields
a ≈ 0.5.

Mixing exact and approximate exchange functionals is not an empirical cook-
book recipe. The hybrid scheme has a theoretical underpinning that not only
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explains why hybrid functionals work better than GGAs but also predicts the
optimal value of a in various situations [31].

From the point of view of computational chemists, hybrid functionals were a
smashing success because they represented the first quantum-mechanical method
that was simultaneously accurate, reliable, and computationally cheap. Ironically,
it is the “grisly hybrids” that made DFT so effective and popular.

The term “hybrid” in relation to functionals such as B3LYP is now often
used with the qualifier global to indicate that the value of a in Equation 6.64
is position-independent. This can be emphasized by rewriting Equation 6.64 in
terms of energy densities

Exc =
∫ [

aeexact
x (r) + (1 − a)ex(r) + ec(r)

]
dr. (6.65)

The fact that the optimal value of a has large system-dependent variations sug-
gests a generalization of Equation 6.65 by turning the mixing fraction a into a
function of r

Exc =
∫ {

a(r)eexact
x (r) + [1 − a(r)]ex(r) + ec(r)

}
dr, (6.66)

Such forms are called local hybrids . In the local hybrid scheme, the objective is
to devise a mixing fraction a(r) that adapts to the local chemical environment.
The basic requirements for the mixing fraction a(r) are that it be restricted to the
range of values between 0 and 1 and reduce to 1 for any one-electron density.

The first mixing fraction was suggested by Becke [19]

a(r) = τW (r)
τ (r)

, (6.67)

and implemented in a local hybrid functional by Jaramillo et al. [32]. This choice
gives accurate reaction barriers but produces disappointing results for atomization
energies [32]. More recently, Kaupp and coworkers [33] constructed and imple-
mented self-consistently several local hybrid functionals with various mixing
fractions. One of those is given by

a(r) =
M∑

m=1

bm

[
τW (r)
τ (r)

]m

, (6.68)

where M is a small integer and bm are fractional coefficients. Another is

a(r) =
[

s(r)
b + s(r)

]2

, (6.69)

where s is the reduced gradient of Equation 6.30 and b is a positive param-
eter. It was found that a local hybrid functional using the mixing fraction of
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Equation 6.68 with M = 1 and b1 ≈ 0.5 predicts simultaneously accurate atom-
ization energies and reaction barriers.

In view of the resounding success of global hybrid functionals, the local hybrid
scheme was initially thought to hold great promise. However, finding a mixing
fraction a(r) that would decisively beat global hybrid functionals proved more
difficult than anticipated. As a result, the overall accuracy of the best local hybrid
functionals proposed to date is not significantly higher than that of the global
hybrid scheme with an optimal mixing constant. Attempts to develop better local
hybrid approximations continue despite these setbacks.

6.8 THE BEST OF BOTH WORLDS: RANGE-SEPARATED HYBRIDS

Interaction of opposite-spin electrons at close range (small r12 ≡ |r1 − r2|) is
adequately described by semilocal exchange-correlation approximations but not
by the exact (Hartree–Fock-type) exchange functional. In fact, the Hartree–Fock
method does not correlate the motion of electrons with opposite spins at all. That
is why molecular properties for which short-range (SR) electron interactions are
dominant (e.g., equilibrium geometries and atomization energies) are predicted
by approximate DFT much better than by the Hartree–Fock method. Conversely,
when two electrons are far apart (large r12), their interaction is better described
with the exact exchange functional than with semilocal density-functional approx-
imations. Consequently, properties determined by long-range (LR) interactions
(e.g., electronic Rydberg excitations, polarizabilities, and charge-transfer pro-
cesses) require a large fraction of exact exchange (50% or more). The physical
insight arising from these observations suggests a hybrid scheme in which SR
interactions are treated by density-functional approximations while LR interac-
tions are described by the exact exchange. This is precisely the idea of the
so-called range-separated or screened hybrid functionals, and it proved to be
one of the DFT’s biggest successes of the past decade.

In the range-separated hybrid scheme, the electron–electron Coulomb repul-
sion operator is partitioned into a SR and a LR component

1

r12
= 1 − f (r12)

r12︸ ︷︷ ︸
SR

+ f (r12)

r12︸ ︷︷ ︸
LR

, (6.70)

where f (r12) is a “screening function” that satisfies the following requirements:
(a) 0 ≤ f ≤ 1, (b) f → 0 when r12 → 0, and (c) f → 1 when r12 → ∞. The
SR component of a given exchange functional can be obtained by replacing the
Coulomb operator 1/r12 in Equation 6.11 with its SR part to give

ESR
x [ρ] = 1

2

∫
dr1 ρ(r1)

∫
dr2

1 − f (r12)

r12
ρx(r1, r2), (6.71)
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where ρx(r1, r2) is the exchange hole density corresponding to the functional.
Similarly, the LR exchange component of a functional may be defined by

ELR
x [ρ] = 1

2

∫
dr1 ρ(r1)

∫
dr2

f (r12)

r12
ρx(r1, r2). (6.72)

For instance, the LR part of the exact exchange functional (whose exchange hole
is given by Equation 6.13) is

Eexact,LR
x [ρ] = −

N/2∑
k,l=1

∫
dr1

∫
dr2 φk(r1)φ

∗
k (r2)

f (r12)

r12
φ∗

l (r1)φl(r2). (6.73)

The two popular choices for the screening function are the exponential function

f (r12) = 1 − e−ωr12, (6.74)

where ω is a positive constant, and the Gauss error function

f (r12) = erf(ωr12) = 2√
π

∫ ωr12

0
e−t2

dt, (6.75)

where ω is also a positive parameter. The error function is convenient in cal-
culations employing Gaussian-type basis sets because all necessary two-electron
integrals in this case can be evaluated efficiently.

To separate a functional into a LR and a SR parts by Equations 6.71 and
6.72, one needs the associated exchange hole. Aside from the exact exchange
functional, exchange holes are known for only a handful of density-functional
approximations such as LDA, Becke–Roussel [34], PBE, and TPSS. (In the
case of LDA, the SR and LR parts can be derived in closed form [35, 36]; in
the cases of PBE and TPSS, exchange holes were reverse-engineered from the
corresponding functionals.) To circumvent this restriction, Hirao and coworkers
[37, 38] proposed a different definition of the screened components, which does
not require the exchange hole and so is applicable to any GGA.

Screened hybrid functionals that combine the LR part of exact exchange with
the SR part of a semilocal density-functional approximation have been proposed
by several researchers [37, 38]. In particular, Vydrov and Scuseria [39] combined
the SR PBE exchange with the LR exact exchange into a LR-corrected PBE
hybrid functional called LC-ωPBE . This functional is given by

ELC-ωPBE
xc (ω) = Eexact,LR

x (ω) + EPBE,SR
x (ω) + EPBE

c , (6.76)

where the recommended value of the screening parameter is ω = 0.40 bohr−1.
LR-corrected functionals such as LC-ωPBE have excellent performance for a
wider range of properties than other types of density-functional approximations.
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A different way of combining SR and LR parts of exchange functionals has
found use in condensed-matter physics. It had long been suspected that certain
properties of solids should be better described with hybrid functionals than with
semilocal approximations. Unfortunately, the exact exchange energy is difficult to
evaluate accurately for metallic and weakly insulating solids using conventional
techniques. This is due to the unphysically slow spatial decay of exact exchange
interactions in systems with vanishing band gaps, which itself is a consequence of
the essentially nonlocal character of the exact exchange energy density. To make
hybrid DFT calculations on solids possible, Heyd, Scuseria, and Ernzerhof (HSE)
[40] proposed to replace the LR portion of exact exchange in a global hybrid
functional with a LR part of a semilocal density functional. This is equivalent
to taking a semilocal functional and hybridizing the SR part of exchange. If the
starting functional is the PBE GGA, this construction yields the HSE functional

EHSE
xc (ω) = aEexact,SR

x (ω) + (1 − a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (6.77)

where the parameter ω (0 ≤ ω < ∞) is adjusted to achieve the best possible
accuracy for the problem of interest. Observe that smaller values of ω cause the
mixing to be switched on at shorter interelectron distances. The HSE functional
can be viewed as an interpolation between pure PBE and the global hybrid PBE
functional (PBEh): When a = 0.25 and ω = 0, HSE reduces to PBEh, while in
the limit ω → ∞ it reduces to PBE. For solids, computational cost of HSE is
much closer to that of PBE than of PBEh. The main practical advantage of the
HSE hybrid is that it predicts much more accurate lattice constants and band gaps
than any standard semilocal functional including LDA, PBE, and TPSS [41].

6.9 EMPIRICAL FITS

So far, we have discussed the methods of density-functional design that avoid
empiricism as much as possible. New density-functional approximations were
obtained either by rigorous derivations for exactly solvable models or by devising
phenomenological mathematical expressions that were consistent with known
properties of the exact functional. At some point in this process, it was necessary
to introduce one or more parameters whose values were a priori unknown. These
values were found by fitting computed properties to high-quality experimental
data. It is because of this step that DFT is sometimes regarded as a semiempirical
method.

Since there is no hope of deriving the exact exchange-correlation functional,
while the method of constraint satisfaction is arduous and slow, it is hard to resist
the pragmatism of fully empirical constructions. In the empirical approach, one
starts by postulating a flexible analytic representation for the energy density and
then tunes it by minimizing discrepancies between theoretical predictions and
experimental observations. For example, on the basis of analysis of the density
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matrix expansion, Van Voorhis and Scuseria (VS98) [25] proposed parametrizing
the exchange functional in the following form:

EVS98
x [ρ] =

∫
ρ4/3

[
b0

h(s, z)
+ b1s

2 + b2z

h2(s, z)
+ b3s

4 + b4s
2z + b5z

2

h3(s, z)

]
dr, (6.78)

where s is defined by Equation 6.30, z = τρ−5/3 − CF with CF = 3
5 (3π2)2/3

and h(s, z) = 1 + c(s2 + z), whereas b0, b1, b2, b3, b4, b5, and c are adjustable
parameters.

Optimization of empirical functionals can be carried out on several levels. On
the first level, one optimizes linear and nonlinear parameters appearing in the
expression for the energy density. On the second level, one writes the density-
functional approximation in the form

Exc[ρ] =
∫ ∑

m

ame(m)
xc (ρ, s, . . .) dr, (6.79)

where e(m)
xc are various representations of the exchange-correlation energy density

and am are adjustable empirical coefficients. All global and local hybrid function-
als belong to this type. If desired, one may proceed even further to the third level,
called external optimization [42], and consider a linear combination of several
“model chemistries,”

Exc[ρ] =
∑

n

dnE
(n)
xc [ρ], (6.80)

where the quantities E
(n)
xc [ρ] represent results of fully self-consistent Kohn–Sham

calculations using different functionals; dn are their weights fitted to a set of
experimental data. Naturally, functionals that are optimized on two or three levels
achieve a higher accuracy than functionals optimized on one level only.

The parameter optimization is usually accomplished by minimizing the root
mean square (RMS) deviation of predictions from experiment

RMS =
√∑

s

∑
p(xcalc

sp − x
exp
sp )2

Nx

, (6.81)

where xcalc
sp and x

exp
sp are, respectively, the calculated and experimental values of

property p in system s, and Nx is total number of such data.
Most of the existing empirical density functionals are based on the

analytic representations of exchange and correlation energy densities proposed,
respectively, by Van Voorhis and Scuseria [25] and by Becke [43, 44]. These
functionals include VS98 [25], Becke’s exchange-correlation approximation of
1997 (B97) [43], the 1998 hybrid GGA [45], and hybrid meta-GGA [22] of
Schmider and Becke, the GGA of Hamprecht, Cohen, Tozer, and Handy [46]
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(HCTH), and its various reparametrizations. The most sophisticated empirical
exchange-correlation functionals existing today are those of the Minnesota 2006
(M06) suite developed by Zhao and Truhlar [26, 47].

The M06 suite consists of four functionals: M06, M06-2X, M06-L, and M06-
HF. All four have the same analytic form combining the functional forms of
LDA, PBE, VS98, and B97 but differ by the values of more than 40 indepen-
dent empirical parameters. The parameters are adjusted for optimal performance
in four different types of chemical problems. M06 is a hybrid meta-GGA with
27% of exact exchange; it is designed to provide a consistently good accuracy
for transition metals, main-group thermochemistry, medium range correlation
energy, and barrier heights. M06-2X has twice as much exact exchange as M06
(a = 0.54; other parameters are reoptimized) and is trained to give the best pos-
sible performance for main-group compounds, valence and Rydberg electronic
excitation energies, and noncovalent interactions. The M06-2X parametrization,
however, is not good for transition metals. M06-L (where L stands for local) is
a reparametrization of M06 with no exact exchange, dropped to enable appli-
cation of the functional to very large and periodic systems. M06-L is the most
accurate for transition metal compounds but not very accurate for reaction barrier
heights that require a large fraction of exact exchange. Finally, M06-HF includes
100% of exact exchange to achieve good performance for charge-transfer excited
states. Although M06 functionals contain many empirical parameters, they also
respect several important exact constraints including the uniform electron gas
limit (Eq. 6.42) and are free from the one-electron self-interaction error (Eq. 6.41).

Development of empirical density functionals requires large databases
of accurate experimental data. Early empirical functionals were trained on
relatively small test sets of atomization energies. By contrast, functionals of
the M06 suite rely on a truly massive set of data that includes dozens of
atomization energies, ionization potentials, and electron and proton affinities;
bond dissociation energies, isomerization energies, and a variety of reaction
barriers; hydrogen-bonded systems; charge-transfer, dipole-interaction, and
π – π stacking complexes; valence and Rydberg vertical excitation energies;
and thermochemistry of transition metal reactions. The high flexibility combined
with the unprecedented diversity of the training set enable the M06 functionals
to predict chemical and physical properties with a reliability matching that of
some high-level wavefunction methods.

6.10 CORRELATION FUNCTIONALS COMPATIBLE WITH EXACT
EXCHANGE

Perhaps the most sophisticated density functionals constructed to date are Becke’s
nondynamical correlation functional of 2005 (B05) [48] and the 2008 hyper-
GGA of Perdew, Staroverov, Tao, and Scuseria (PSTS) [49]. Both functionals
use the exact exchange energy density of Equation 6.18 as an ingredient in the
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correlation part. This makes the correlation functional compatible with the exact
exchange functional. The complexity of the B05 and PSTS functionals reflects
not only the difficulty of the problem but also our growing understanding of the
interplay between exchange and correlation.

The starting point for the B05 model is analysis of two types of electron corre-
lation, called dynamical and nondynamical (static). Dynamical correlation is due
to close-range Coulombic interactions and so is essentially local in character. In
systems where most of the correlation energy is dynamical, the exact exchange
and correlation holes are both localized around the reference electron. Such sys-
tems include atoms, molecules near their equilibrium geometry, and the uniform
electron gas. Semilocal density-functional approximations (LDA, GGA, meta-
GGA) work well for such systems precisely because the LDA, GGA, meta-GGA
exchange, and correlation holes are themselves localized. Nondynamical correla-
tion arises in many-electron systems consisting of two of more fragments whose
Coulombic interaction is weak or negligible. Each such fragment is effectively
an independent system, so the exact exchange-correlation hole for electrons of
any one fragment is contained entirely within that fragment. The exact exchange
hole in such systems is split between all fragments, which means that the exact
correlation hole must be delocalized as well. Semilocal density-functional approx-
imation cannot recognize this delocalization and so they do not work well for
systems with strong nondynamical correlation. A possible way to detect and
account for nondynamical correlation is by using the real-space structure of the
exact exchange hole as a diagnostic tool.

In an isolated hydrogen atom, the exact exchange hole around the reference
electron is contained entirely within the vicinity of the nucleus and integrates
to −1. In a highly stretched H2 molecule, the exact exchange hole is divided
between the two atoms. As a result, the effective normalization of the exact
exchange hole around each H atom in stretched H2 is only − 1

2 . According to
Becke [50], an effective normalization of − 1

2 means that the reference electron
excludes less than one opposite-spin electron from its immediate vicinity, which
raises the energy of each H atom in the stretched H2 molecule. Therefore, Becke
argued, the effective hole in each half of stretched H2 needs to be deepened to
repel electrons of opposite spin. The deepening of the effective exchange hole
amounts to introducing nondynamical correlation and is modeled as follows:

ρα
xc(r1, r2) = ρα

x (r1, r2) + fc(r1)ρ
β
x (r1, r2), (6.82)

ρ
β
xc(r1, r2) = ρ

β
x (r1, r2) + fc(r1)ρ

α
x (r1, r2). (6.83)

Here, ρα
x and ρ

β
x are effective holes seen, respectively, by spin-up and spin-down

electrons, while fc is a position-dependent correlation parameter determined by
two physical constraints: (i) 0 ≤ fc ≤ 1; (ii) an exchange-correlation hole cannot
contain more than one electron. The explicit form of this parameter proposed by
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Becke is

fc(r) = min

[
1 − Nα

x (r)

N
β
x (r)

,
1 − N

β
x (r)

Nα
x (r)

, 1

]
, (6.84)

where Nα
x (r) and N

β
x (r) are position-dependent integrals of the exchange hole

charge over the atomic region when the reference electron is at r. The exchange-
correlation energy is obtained by substituting the above expressions for the
exchange-correlation holes into Eq. 6.9 to give

Exc[ρ] = 1

2

∑
σ=α,β

∫
dr1 ρσ (r1)

∫
dr2

ρσ
xc(r1, r2)

r12
. (6.85)

Since the exact exchange hole of Equation 6.13 cannot be integrated efficiently,
the values of Nα

x and N
β
x in the B05 model are found using the approximate

Becke–Roussel model exchange hole [34] instead of the exact ρσ
x (r1, r2). Even

with this simplification, one still needs to solve numerically a complicated non-
linear equation for each point r. Another obstacle is that the piecewise definition
of fc(r) by Equation 6.84 causes this function to have a discontinuous derivative
that complicates self-consistent implementation of the B05 model. These diffi-
culties were surmounted by Arbuznikov and Kaupp [51] and by Proynov and
coworkers [52] who implemented the B05 functional in a fully self-consistent
Kohn–Sham scheme, with minor modifications of Becke’s original definitions.
Although these researchers have so far reported only preliminary results, the
numbers are encouraging: B05 does perform significantly better than B3LYP for
difficult reaction barriers and gives excellent bond lengths [52].

The PSTS hyper-GGA also employs the exact exchange energy density to
model nondynamical correlation. PSTS is essentially a local hybrid with a very
complicated mixing fraction designed to interpolate between two extreme types of
density regions for which the proper amount of exact exchange is known. The first
type of density regions are called normal . These are the regions where the exact
exchange-correlation hole is spatially localized around an electron and integrates
to −1 over a narrow range. As we saw above, this is the situation where semiem-
pirical density-functional approximations for exchange and correlation work very
well because of mutual error cancellation. Therefore, in normal regions, the local
fraction of exact exchange, a(r), is designed to be small. “Abnormal” regions
are those where the exact exchange-correlation hole is highly nonlocal and inte-
grates to a value greater than −1 over the region. For example, all multicenter
one-electron densities and regions with a fractional electron charge are abnormal
in this sense. In abnormal regions, the mixing fraction a(r) should be close to 1.
For all intermediate situations, the mixing fraction adjusts the amount of exact
exchange to some appropriate value between 0 and 1.

Construction of the PSTS mixing fraction is largely phenomenological and
is guided by exact constraints. Nevertheless, the complexity of the problem



CURRENT TRENDS AND OUTLOOK FOR THE FUTURE 151

requires a few empirical parameters. These parameters were determined by
fitting to 97 molecular standard enthalpies of formation and 42 reaction barrier
heights. Initial assessment of the PSTS functional showed that it performs
much better than conventional global hybrids for reaction barrier heights,
although there was no accuracy gain for atomization energies. As with the B05
functional, self-consistent implementation of the PSTS hyper-GGA is nontrivial
and requires further simplifications [53].

6.11 CURRENT TRENDS AND OUTLOOK FOR THE FUTURE

One of the most fascinating topics in DFT that has come to prominence recently
is the performance of density functionals for systems with fractional electron
numbers and fractional spins [54–59]. It has been even argued [56] that all
failures of present-day DFT can be understood by analyzing the errors of existing
exchange-correlation approximations in such systems.

The story starts in 1982 when Perdew et al. [60] published a seminal paper in
which they analyzed behavior of the exact density functional in systems with a
fractional number of electrons. How can a system have a “fractional number of
electrons?” As far as real atoms and molecules are concerned, electrons are of
course indivisible, so the total number of electrons in a real chemical system is
always an integer. What is meant by a system with a fractional electron number
is a linear combination (“ensemble”) of wavefunctions representing systems with
different integer electron numbers.

Consider an example. When the internuclear distance in an H+
2 molecule is

stretched to infinity, the electron is physically localized either on one nucleus
or on the other. Let the wavefunctions representing these two states, H· · ·H+
and H+ · · ·H, be φL and φR , respectively. The wavefunctions φL and φR are
degenerate ground-state eigenfunctions of the Hamiltonian. By the fundamen-
tal quantum-mechanical principle of linear superposition, any normalized linear
combination of these wavefunctions, cLφL + cRφR , where |cL|2 + |cR|2 = 1, is
also a valid ground-state solution of the Schrödinger equation. This includes a
half-and-half combination with |cL|2 = |cR|2 = 1

2 in which each of the atoms
has only half an electron. In this sense, any fractional electron number q = |cL|2
is possible on the left atom, giving rise to the supermolecule H1−q · · ·H+q . We
say that the region around each proton in stretched H2 is a system with a frac-
tional electron number (or a fractional charge). In practice, fractional charges are
found not only at infinite nuclear separation but also in a moderately stretched
H+

2 molecule where the internuclear distance is a little greater than at equilib-
rium. Similarly, a molecular ion of the general formula A+

2 can be viewed as
a supersystem composed of two many-electron systems with fractional electron
numbers.

Suppose now that we have a system with N = J + q electrons, where J is
a positive integer and 0 ≤ q ≤ 1. Within Kohn–Sham DFT, the electron density
of this system is constructed in accordance with the Aufbau principle, that is, by



152 DENSITY-FUNCTIONAL APPROXIMATIONS FOR EXCHANGE AND CORRELATION

filling each of the J lowest energy Kohn–Sham spin-orbitals with one electron
and placing the fraction q of an electron in the highest occupied molecular orbital
(HOMO). The reason for using the Aufbau rule is because our system belongs
to a supersystem that is supposed to be in the ground state. Thus, we write

ρ(r) =
J∑

k=1

|φk(r)|2 + q|φHOMO(r)|2. (6.86)

Perdew and coworkers [60] showed that, in general, the exact ground-state energy
of a (J + q)-electron system is a linear combination of the ground-state energies
of the J - and (J + 1)-electron systems

E(J + q) = (1 − q)E(J ) + qE(J + 1), 0 ≤ q ≤ 1 (6.87)

This means that the plot of the exact E as a function of q between J and J + 1
is a straight line.

It turns out that if we calculate the electronic energy using any existing density-
functional approximation and then plot E(J + q) as a function of q, the result
will not be a straight line. Approximate density functionals are close to target at
the end points J and J + 1 but fail to reproduce the straight line in between: the
actual plot is a curve that is usually bent downward. This means that in systems
such as H+

2 , application of the variational principle to approximate density func-
tionals yields the maximally delocalized density (H+1/2 · · ·H+1/2) whose energy
is much lower than it should be. This artificial lowering of the energy in systems
with fluctuating electron number is known as the charge delocalization error .

Similar analysis of spin-up and spin-down degeneracies in electrically neutral
open-shell systems leads to the concept of fractional spin [56]. Consider an
isolated hydrogen atom. In the absence of an external magnetic field, the ground
state of this system is doubly degenerate: the spin-up eigenstate ψ↑ has the same
energy as the spin-down eigenstate ψ↓, that is, E↑ = E↓. Since the Hamiltonian
is spin-independent, any normalized linear combination of these eigenfunctions,
c↑ψ↑ + c↓ψ↓, with |c↑|2 + |c↓|2 = 1 is also an eigenfunction of the Hamiltonian.
Assuming that this linear combination is normalized, we can interpret it as a
wavefunction of an H atom with a fraction γ = |c↑|2 of α-spin and a fraction
|c↓|2 = 1 − γ of β-spin. The exact energy of an isolated H atom is independent
of γ , so we should have

E(γ ) = γE↑ + (1 − γ )E↓ = const, 0 ≤ γ ≤ 1. (6.88)

Therefore, the plot of E(γ ) for an H atom should be a horizontal line seg-
ment. Weitao Yang and coworkers found that, instead of a horizontal line, all
approximate density functionals predict a curve that is bent upward [58]. They
also found that the maximum deviation from linearity, which occurs at the mid-
point, coincides with the magnitude of the nondynamical correlation error in an
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infinitely stretched H2 molecule. This discovery revealed an intimate connection
between the fractional-spin error and nondynamical correlation.

The practical implications of the charge and spin delocalization errors are enor-
mous. Binding energy curves for dissociating neutral molecules predicted with
approximate DFT have massive positive errors at large internuclear distances.
This occurs because neutral molecules dissociate into fractional-spin fragments
for which approximate density functionals predict too high energies. In calcu-
lations of reaction barriers, theoretical energies of reactants are fairly accurate,
but the energies of transition states are too low because transition states often
consist of weakly interacting fractionally charged fragments for which approx-
imate functionals predict too low energies. As a result, reaction barriers are
severely underestimated. At the same time, molecular polarizability (a measure
of the responsiveness of the electron density to an applied electric field) pre-
dicted by approximate density functionals is too high because fractional charges
are artificially driven toward the edges of the molecule. In short, LDA, GGA,
and meta-GGA fail to predict accurately many molecular properties because these
approximations violate the important exact constraints of Equations 6.87 and 6.88.

The second fundamental result that follows from the analysis of Perdew et al.
[60] is that the slope of the exact function E(N), where N is a continuous electron
number, changes discontinuously when N passes through an integer value. The
significance of this fact will come to light once we reveal the physical meaning
of the slope of E(N).

Suppose first that N approaches the nearest integer J from above, that is, N =
J + q, where q is a fractional electron number (0 ≤ q ≤ 1). From Equation 6.87
we obtain

dE

dN
= dE

dq
= E(J + 1) − E(J ), N = J + q (6.89)

The quantity E(J + 1) − E(J ) is the negative ionization potential of the (J + 1)-
electron system or, equivalently, the negative electron affinity of the J -electron
system. Now let N approach J from below, that is, let us take N = J − q, where
q ≥ 0. We rewrite Equation 6.87 as

E(J − q) = qE(J − 1) + (1 − q)E(J ), 0 ≤ q ≤ 1 (6.90)

Differentiation of this equation with respect to N yields

dE

dN
= −dE

dq
= E(J ) − E(J − 1), N = J − q (6.91)

This is the negative ionization potential of the J -electron system or, equivalently,
the negative electron affinity of the (J − 1)-electron system. It is instructive to
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rewrite these relations in terms of one-sided limits:

dE

dN

∣∣∣∣
N→J+

= lim
δ→0

dE

dN

∣∣∣∣
J+δ

= −IJ+1 = −AJ , (6.92)

dE

dN

∣∣∣∣
N→J−

= lim
δ→0

dE

dN

∣∣∣∣
J−δ

= −IJ = −AJ−1, (6.93)

where IJ and AJ are, respectively, the ionization potential and electron affinity
of the J -electron system. The last two equations mean that the exact derivative
dE/dN jumps by a constant when the number of electrons passes through an
integer J . This constant is equal to

dE

dN

∣∣∣∣
N→J+

− dE

dN

∣∣∣∣
N→J−

= IJ − AJ . (6.94)

Let us summarize. The exact ground-state energy of an N-electron system (i.e.,
a system with a continuous electron number N), plotted as a function of N , is
a linkage of straight-line segments. The function E(N) is itself continuous, but
its first derivative, dE/dN , is discontinuous at all integer values of N . When
N approaches an integer J from below, dE/dN is the exact negative ionization
potential of the J -electron system. When N approaches an integer J from above,
dE/dN is the exact negative electron affinity of the J -electron system.

Equations 6.87, 6.88, and 6.94 represent fundamental properties of the exact
density functional. All semilocal density-functional approximations tend to vio-
late these equations in many ways. The function E(N) in approximate DFT no
longer consists of straight-line segments but is a linkage of curves. Disconti-
nuities of dE/dN are observed only when a fraction of electron is added to a
new orbital shell or subshell, whereas at other integer values of J , the curve
E(N) is smooth. Since the slopes of E(N) are incorrect in approximate DFT,
many physical properties including total energies, ionization potentials, electron
affinities, band gaps, and polarizabilities are predicted with large errors.

Long-range-corrected hybrid density functionals and functionals that combine
exact exchange with compatible nonlocal correlation violate the exact constraints
of Equations 6.87, 6.88, and 6.94 to a lesser extent than the older (semilocal)
approximations. For this reason, the newer functionals exhibit significantly better
performance for a wider range of molecular properties than LDAs, GGAs, and
meta-GGAs. Nevertheless, there is currently no approximate density functional
that is entirely free from the fractional-charge and fractional-spin errors or which
has correct derivative discontinuities at every integer electron number. Finding a
way to construct functionals that respect the constraints of Equations 6.87, 6.88,
and 6.94 would be a crucial step in overcoming the limitations of present-day
DFT. If such a method is found, it will take DFT to the next level of predictive
capability.

This brings us to an optimistic conclusion. If the history of DFT teaches us
anything, it is that breakthroughs in density-functional development are usually
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preceded by years of scrutiny and introspection. This is why successful
functionals tend to arrive in waves. The waves that have come ashore so
far are LDAs, GGAs, global hybrids, and range-separated hybrids. The latest
advances in our understanding of the limitations of existing density-functional
approximations open exciting new opportunities for theorists and give us reasons
to hope that the future of density-functional theory is secure.
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7
AN UNDERSTANDING OF THE
ORIGIN OF CHEMICAL REACTIVITY
FROM A CONCEPTUAL DFT
APPROACH

Arindam Chakraborty, Soma Duley, Santanab Giri, and
Pratim Kumar Chattaraj

7.1 INTRODUCTION

One very basic question that has intrigued chemists is why a stable molecule,
on coming close to a suitable counterpart under favorable conditions becomes
excited, loses its own identity completely and thereby forms a new molecule!
The energy criterion simply says that “ . . . all spontaneous processes in the
environment are associated with a lowering in the net free energy of the sys-
tems involved,” which eventually leads to a stable state of the system in the
form of favorable products. Scientists, experimentalists, as well as theoreticians,
throughout the years, have tried hard to successfully rationalize the reactivity
trends of molecular systems on chemical interaction. While the experimental
chemists verified the above energy formalism through rigorous survey of a large
set of chemical reactions, the theorists started developing intuitive mathemati-
cal paradigms toward setting a rationale behind such molecular reactivity. One
very popular theoretical approach is conceptual density functional theory (CDFT)
[1–4], which has proved to be an extremely successful method for describing the
ground-state properties of molecules. The success of CDFT encompasses not only
standard bulk materials but also complex materials such as proteins and carbon
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nanotubes. The main idea of DFT, stemming from the two theorems developed
by Hohenberg and Kohn [5], is to describe an interacting system of fermions
via its probability density, ρ(r), and not via its many-body wave function, ψ(r1,
r2, . . . , rN ). Further, the many-body problem of N electrons with 3N spatial
coordinates is reduced to just three coordinates. For an N-electron system, the
corresponding Hamiltonian is completely determined by the number of electrons
(N) and the external potential υ(r). Thus, all the properties of the system may
be attained by appropriate variations of N and υ(r). This approach of analyz-
ing chemical behavior has been termed conceptual DFT by Parr and Yang [1],
who pioneered this DFT methodology. This method includes several global and
local reactivity indices. These reactivity indices, also called reactivity descrip-
tors , serve as mathematical response functions to describe chemical behavior of
molecular motifs in the same manner as those observed from a variety of popular
qualitative chemical concepts, such as electronegativity (χ) [6–8], hardness (η)
[9–11], and electrophilicity (ω) [12–14]. Thus, the qualitative aspects of struc-
ture and bonding in chemical systems and their diverse reactivity patterns on
chemical attack may be understood from a theoretical basis on a careful scrutiny
of the different conceptual DFT-based global reactivity descriptors such as elec-
tronegativity (χ) [6–8], hardness (η) [9–11], and electrophilicity (ω) [12–14],
as mentioned earlier, as well as local variants such ase atomic charges (Qk)
[15] and Fukui functions (FFs) (fk) [16], which play a key role in ascertain-
ing the local site selectivity in a molecule. Section 7.2 delineates an overview
of the conceptual DFT-based global and local reactivity indices. An appraisal of
the reactivity descriptors in determining molecular reactivity is presented in terms
of several associated electronic structure principles in Section 7.3. Section 7.4
describes some applications of the conceptual DFT-based descriptors and the
allied electronic structure principles in elucidating the stability, reactivity, and
aromaticity of different organic and inorganic molecular systems. Section 7.5
delivers some concluding remarks.

7.2 REACTIVITY DESCRIPTORS

7.2.1 Global Reactivity Descriptors

The global reactivity descriptors determine the chemical behavior of a molecu-
lar species by considering it as a whole. The key global descriptors other than
electronegativity (χ), hardness (η), and electrophilicity (ω) that determine chem-
ical reactivity are chemical potential (μ), softness (S), polarizability (α), and
magnetizability (ξ ).

7.2.1.1 Electronegativity (χ ) Electronegativity (χ), first proposed by Linus
Pauling in 1932 as a development of valence bond theory [17, 18], is defined
as the ability of an atom (or rarely a functional group) in a molecule to attract
bonded electrons (or electron density) toward itself. Electronegativity, which has
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been shown to be correlated with a number of other chemical properties, is not
strictly a property of an atom but rather that of an atom within a molecule [18].
Pauling’s calculation of the electronegativity values for the elements is based on
a thermodynamic consideration, which assumes that the covalent bond between
two different atoms (A–B) is stronger than would be expected by taking the
average of the strengths of the A–A and B–B bonds. According to valence bond
theory, of which Pauling was a notable proponent, this “additional stabilization”
of the heteronuclear bond is due to the contribution of ionic canonical forms
to the bonding. The difference in electronegativity between atoms A and B is
given by

χA − χB = (eV )−1/2

√
Ed(AB) − [Ed(AA) + Ed(BB)]

2
, (7.1)

where the dissociation energies, Ed, of the A–B, A–A, and B–B bonds are
expressed in electron volts, the factor (eV )−1/2 is included to ensure a dimension-
less result. Hydrogen was chosen as the reference atom, and its electronegativity
was arbitrarily assigned a value 2.2. An electronegativity scale ranging from 0.7
to 4.0 for the elements, as proposed by Pauling, was found to correlate well with
common chemical intuition. Pauling’s notion of the electronegativity of an ele-
ment was supposed to vary with its chemical environment. Several other methods
of calculating electronegativity have been proposed and, although there may be
small differences in the numerical values, all methods show the same periodic
trends between elements. Mulliken [19, 20] proposed that the arithmetic mean of
two experimental observables viz., first ionization potential (IP) and the electron
affinity (EA), should be a measure of the tendency of an atom to attract elec-
trons. Thus, the electronegativity (χ) according to Mulliken’s formalism can be
mathematically expressed as

χ = IP + EA

2
. (7.2)

As this definition is not dependent on an arbitrary relative scale, it is also invariant
with the chemical environment and has been termed as absolute electronegativity
by Pearson [21]. Allred and Rochow [22, 23] interpreted the electronegativity of
an atom as an electrostatic force of attraction that exists between the nucleus and
the valence electron(s), the electrons that are housed at a linear distance from
the nucleus which is equivalent to the covalent radius (rcov) of the atom. The
electrostatic force experienced by the outermost electrons varies directly with the
effective nuclear charge Z∗, while it is inversely proportional to the square of
the covalent radius (rcov). Thus, the Allred–Rochow electronegativity (χAR) can
be formulated as

χAR = 0.359
Z∗

r2
cov

+ 0.744. (7.3)
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Sanderson [24–30] noted the relationship between electronegativity and atomic
size and proposed that the electronegativity (χ) should be proportional to the
compactness of an atom. Specifically

χ = D

Da
, (7.4)

where D, the electron density of an atom, is expressed as Z/rcov
3 (Z is the

atomic number and rcov
3 is its corresponding atomic volume (covalent radius

cubed) and Da is the expected electron density of an atom, calculated from
extrapolation between the noble gas elements. This work underlies the concept of
electronegativity equalization , which suggests that electrons distribute themselves
around a molecule to minimize the energy or to equalize the electronegativity
[31]. Allen [32] put forward a very simple definition of electronegativity that
is related to the average energy of the valence electrons in a free atom and is
expressed as

χ = nsεs + npεp

ns + np
, (7.5)

where εs,p are the one-electron energies of s- and p-electrons in the free atom and
ns and np are the number of s- and p-electrons in the valence shell. In other words,
Allen’s electronegativity can be correlated with the ionization potentials of the s-
and p-orbitals of the atom. It is also considered as the first quantum mechanical
realization of Pauling’s electronegativity [32]. The one-electron energies can be
determined directly from spectroscopic data, and so electronegativities calculated
by this method are sometimes referred to as spectroscopic electronegativities .

7.2.1.2 Chemical Potential (μ) Gyftopoulos and Hatsopoulos [33], in an
attempt to present a more physically meaningful explanation of electronegativity,
considered a free atom or a free ion as a thermodynamic system. They provided
a quantum thermodynamic definition of electronegativity of a system, which
was identified as the negative of its electronic chemical potential (μ). The
chemical potential (μ) of an atomic assembly may be evaluated by the theory
of statistical ensembles. Thus if an atom or a molecule be considered as a
member of a grand canonical ensemble where the energy (E) and the number
of electrons (N) are continuous functions and vary independently, the chemical
potential of the ensemble may be formulated as

μ = ∂E

∂N
at constant entropy. (7.6)

The ground-state electron density is determined by a constrained variational
optimization of the electronic energy. The Lagrange multiplier enforcing the
density normalization constraint is also called the chemical potential (μ). Thus
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μ can be simply written as the partial derivative of the system’s energy (E) with
respect to the number of electrons at fixed external potential υ(r)

μ =
(

∂E

∂N

)
υ(r)

. (7.7)

Furthermore, as the chemical potential (μ) of a system from the perspective of
density functional theory (DFT) [1, 8] is considered as “the escaping tendency
of an electronic cloud,” electronegativity (χ) is the negative thereof. Thus,

χ = −μ = − ∂E

∂N
at constant entropy, (7.8)

which varies continuously with N and temperature (θ).
The process of chemical potential equalization is sometimes referred to as

the process of electronegativity equalization . This connection comes from Mul-
liken’s definition of electronegativity. By inserting the energetic definitions of
the ionization potential and electron affinity into the Mulliken electronegativity,
it is possible to show that the Mulliken chemical potential is a finite difference
approximation to the derivative of the electronic energy with respect to the num-
ber of electrons, that is, the ionization potential, or ionization energy, of an atom
or molecule is the energy required to strip it of an electron. The EA, Eea, of
an atom or molecule is the energy required to detach an electron from a singly
charged negative ion, that is,

μMulliken = −χMulliken = − IP + EA

2
=

[
δE[N]

δN

]
N=N0

, (7.9)

where IP and EA are the ionization potential and electron affinity of the atom,
respectively. Furthermore, according to the Koopmans’ theorem [34], the ion-
ization potential (IP) and electron affinity (EA) of a molecular system can be
expressed in terms of the energies of the frontier molecular orbitals (FMOs) as

IP = −εHOMO and EA = −εLUMO

Thus, μ = 1

2
(εHOMO + εLUMO). (7.10)

7.2.1.3 Chemical Hardness (η) and Softness (S) The unique idea of chemical
hardness for a molecular species initially stems from some conclusions drawn
by inorganic chemists in explaining the interactions of several metal ions with
suitable anions. The classification of chemical systems as “hard” or “soft” was
successfully implemented by Pearson [35–39] in the early 1960s in connection
with the study of generalized Lewis acid–base reactions

A + : B → A:B
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where A, the electron acceptor, is the acid and the electron-pair donor B is the
base.

The acids and bases were classified as hard or soft by Pearson [35–39] on a
purely qualitative basis where hardness simply meant the degree of compactness
of the electron cloud surrounding the nucleus in a molecular system and softness
was the extent to which the electronic environment around the nucleus/nuclei of
an atomic/molecular species loosens itself. The general characteristics of hard
and soft acids and bases, according to Pearson, may be illustrated as below:

Hard Soft

Acids High positive charge Low positive charge
Low polarizability High polarizability
Small size Larger size

Bases High electronegativity
difficult to oxidize low
polarizability

Low electronegativity
easily oxidized higher
polarizability

Further experimental investigations revealed that hard acids preferred to bind
with hard bases, while soft acids preferentially bind to soft bases. This pref-
erence for a “hard–hard” and “soft–soft” combination among two classes of
acids and bases became more or less a rule of thumb, known as the hard–soft
acid–base (HSAB) principle [40]. The HSAB principle sheds light on how a pair
of interacting systems possessing a hard–hard or soft–soft combination attains
an extra thermodynamic stabilization, but it does not give a quantitative measure
of hardness and softness. Later, Parr and Pearson [10, 41, 42] mathematically
defined the chemical hardness (η) for a molecular system, identified as the first
derivative of the chemical potential (μ) or the second derivative of the energy
(E) as a function of the number of electrons N at a fixed external potential υ(r)

η =
(

∂μ

∂N

)
υ(r)

=
(

∂2E

∂N2

)
υ(r)

. (7.11)

The convexity of the E versus N curve renders the value of η positive, and from
the method of finite differences, the curvature equals IP − EA, which signifies
hardness. Therefore,

η =
(

∂μ

∂N

)
υ(r)

=
(

∂2E

∂N2

)
υ(r)

= IP − EA. (7.12)

Thus for a normal charge-transfer (CT) process such as that in a Lewis acid–base
pair, the chemical hardness (η) of a species is a measure of its resistance to
further shift of electrons to the other species and corresponds qualitatively to its
compactness.
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The reciprocal of the global hardness (η) for a molecular species is defined as
its global softness (S) [43], which is expressed as

S = 1

2η
= 1

2

(
∂N

∂μ

)
υ(r)

. (7.13)

Thus, the global softness (S) of a system quantitatively measures the relative
diffuseness of the electron density between two interacting pairs. Chemical hard-
ness (η) and softness (S) can therefore be quantitatively well correlated with
molecular polarizability (α), following the trend predicted qualitatively by the
HSAB principle.

7.2.1.4 Electrophilicity Index (ω) In terms of conceptual chemistry, an elec-
trophile is designated as a species that has a special affection for electrons. It
is generally an electron-deficient system, might possess some positive charge,
or even be a free radical with a tendency to attract electron-rich components
called nucleophiles . As chemical reaction involves the shifting and rearrange-
ment of electrons between reactant moieties to create new products by the
rupture of electron–electron linkages (bonds) and the formation of new ones,
the electrophiles and nucleophiles play a sheet anchor role in devising the mech-
anistic pathways of almost all types of organic and inorganic chemical reactions,
such as acid–base, redox, addition, substitution, elimination, and molecular rear-
rangement. Thus, an electrophile on interaction with an electron-rich species
(nucleophile) will strongly attract the electron density of the latter and get stabi-
lized with the gradual lowering of energy and formation of a stable covalent bond.
Initially, there was no quantitative designation of this simple qualitative idea as
to the extent to which the electrophilic system is energetically stabilized on grad-
ual transfer of electron density from the adjacent nucleophile. Maynard et al.
[44], on experimenting with the human immunodeficiency virus type 1 (HIV-1)
nucleocapsid protein p7 (NCp7) with a variety of electrophilic agents, showed
that the fluorescence decay rates vary almost linearly with the ratio of the square
of electronegativity (χ) to hardness (η), χ2/η. This quantity is the capacity of an
electrophile to attract electrons from a nucleophile to give a covalent bond. This
innovative qualitative idea proposed by Maynard et al. [44] soon caught the eyes
of Parr and coworkers [12] and, in an attempt to quantify the electron-attracting
power of a species, they coined a new descriptor called electrophilicity index
(ω). Parr’s postulate of electrophilicity index (ω) unlike Maynard et al. (which
was developed from kinetic considerations by studying reaction rates) is based
on thermodynamics. Thus, ω is a measure of the favorable change in energy on
saturation of a system with electrons. The electrophilicity index (ω) as defined
by Parr et al. [12] is

ω = μ2

2η
= χ2

2η
. (7.14)
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The above expression for electrophilicity (ω) is comparable with the equation
of electrical power (W ) in classical physics, where W = V 2/R, V and R being
the voltage and electrical resistance, respectively. Thus, ω represents the “elec-
trophilic power” of a species. Comprehensive reviews on electrophilicity index
(ω) [13, 14, 45] have dealt with its genesis and rigorous applications toward an
understanding of chemical reactivity.

Electrodonating (ω−) and Electroaccepting (ω+) Powers In order to correlate the
energy changes associated between the corresponding acceptors and donors in a
CT process, Gazquez et al. [46] utilized the second-order Taylor series energy
expansion formula as a function of the number of electrons (N) in the intervals
between N − 1 and N , and N and N + 1, to show that the electrodonating (ω−)
and the electroaccepting (ω+) powers may be defined as

ω− = (μ−)2

2η− ; ω+ = (μ+)2

2η+ , (7.15)

where μ− and μ+ are the chemical potentials for electron donation and elec-
tron acceptance, respectively, and η− and η+ signify the hardness for electron
donation and electron acceptance, respectively. Furthermore, μ− and μ+ can in
fact be equated to μ [46], so that μ− = μ+ = μ and likewise η− = η+ = η.
This eventually equates the electrodonating (ω−) and the electroaccepting (ω+)
powers with the original concept of electrophilicity (ω) owing to which ω, ω−,
or ω+ may be expressed in terms of chemical potential (μ) and hardness (η) as
ω− = ω+ = ω = μ2/2η. Gazquez et al. [46] proposed two sets of definitions for
ω− or ω+ based on two different approaches, one exploiting the original formula
above, expressed as

ω+ = EA2

2 (IP − EA)
, (7.16)

ω− = IP2

2 (IP − EA)
, (7.17)

and the other utilizing an alternative expression for energy

ω+ = (IP + 3EA)2

16 (IP − EA)
, (7.18)

ω− = (3IP + EA)2

16 (IP − EA)
, (7.19)

where IP and EA are the first ionization energy and electron affinity, respectively,
of the system. It was further shown that this alternative approach of expressing
ω− or ω+ yields better correlations [46].
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Net Electrophilicity (�ω±) The concept of net electrophilicity (�ω±) for a
system recently proposed by Chattaraj et al. [47] is an attempt to assess the
electron-accepting power of a molecule on chemical reaction due to the combined
attractive and repulsive effects arising out of the presence of both electrons and
nuclei. In other words, this new dual descriptor (�ω±) is an appraisal of the elec-
trophilicity of a system relative to its own nucleophilicity and definitely serves to
provide a physically more meaningful understanding of the electrophilic power
of a system. From energy considerations, it is apparent that a larger value of ω+
for a system corresponds to an enhanced capability to accept charge, whereas a
smaller value of ω− implies it acts as a better donor. Therefore, the mathematical
foundation of �ω± arises out of a parity between ω+ and ω− where the negative
(or reciprocal) of ω− is compared with ω+. Thus, net electrophilicity (�ω±) in
terms of ω+ and ω− is formulated as

�ω± = {ω+ − (−ω−)} = (ω+ + ω−) (7.20)

or

�ω± =
{
ω+ −

(
1

ω−

)}
.

7.2.1.5 Polarizability (α) and Magnetizability (ξ ) The polarizability (α) of an
atom or molecule is described as the lowest order response of its electron cloud
to an external weak electric field [48, 49]. The static dipole polarizability (α)
is a linear response property and is defined as the second derivative of the total
electronic energy (E) with respect to the external homogeneous electric field as

ααβ = −
(

∂2E

∂Fα∂Fβ

)
F=0

, (7.21)

where Fα and Fβ are the electric field components for a fixed coordinate system
with α, β, γ = x, y, z. The polarizability (α) is very sensitive to basis set, electron
correlation, and relativistic effects and to the vibrational structure in case of a
molecule. Qualitatively, polarizability (α) has been found to vary inversely with
global hardness (η) [9,50–56] with increasing softness, a molecule becomes more
polarizable, and an interesting linear correlation is established between the static
dipole polarizability (α) and the third power of molecular softness (S) [57–59].

The magnetizability (ξ ) of a chemical system is a measure of the linear
response of its electron cloud to an externally applied magnetic field. It is
expressed as ∣∣∣∣ξ = −

(
∂2ε(B)

∂B2

)∣∣∣∣
B=0

, (7.22)

where B is the external magnetic field.
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The magnetizability (ξ ) of a chemical species is found to vary with its softness
(S) and polarizability (α). Thus, a softer species is found to be more polarizable
and hence more magnetizable [60].

7.2.2 Local Reactivity Descriptors

The various CDFT-based global reactivity parameters discussed above show how
to predict the structural changes and reactivity patterns of simple molecular sys-
tems. However, a deeper insight into the activity of a particular atomic site in a
molecule during chemical interactions or excitations can be gained from a careful
survey of different local reactivity descriptors such as electron density (ρ(r)), FF
(f (r)), local softness (s(r)), local hardness (η(r)), philicity (ω(r)), and nucle-
ophilicity excess (�ω±

g ). The local descriptors thus help to determine the site
selectivity in a chemical reaction.

7.2.2.1 Electron Density (ρ(r)) The electron density (ρ(r)), a local reactivity
descriptor by itself, is a measure of the first-order variation of the energy as a
function of the external potential (υ(r)) [1, 61] It is expressed as

ρ(r) =
(

δE

δυ(r)

)
N

. (7.23)

The electron density provides useful site reactivity information for a molecular
species.

7.2.2.2 Fukui Function (f (r)) The FF (f (r)) [16, 62] is a very popular local
reactivity descriptor that is usually applied to rationalize the site selectivity of
chemical systems. It is actually defined as the differential change in electron
density (ρ(r)) because of an infinitesimal change in the number of electrons (N)
and is expressed as

f (r) =
(

∂ρ(r)
∂N

)
υ(r)

=
(

δμ

δυ(r)

)
N

. (7.24)

Since there is a discontinuity in the derivative of Equation 7.24 for integral values
of N , three different types of FFs can be defined by applying the finite difference
and frozen core approximations as follows [16, 62]:

f +(r) =
(

∂ρ(r)
∂N

)+

υ(r)
≈ ρN+1(r) − ρN(r) ≈ ρLUMO(r) for nucleophilic attack,

(7.24a)

f −(r) =
(

∂ρ(r)
∂N

)−

υ(r)
≈ ρN(r) − ρN−1(r) ≈ ρHOMO(r) for electrophilic attack,

(7.24b)
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and

f 0(r) = 1

2
[f +(r) + f −(r)] for radical attack. (7.24c)

Thus, f (r) physically signifies the propensity of a particular atomic site in a
molecule toward chemical reactivity by virtue of the different local parameters,
in the sense of the frontier orbital theory as proposed by Fukui et al. [63–66].
The FFs are therefore referred to as the DFT analog of the frontier orbitals [67].
Equation 7.24 also implies that a larger variation of the chemical potential (δμ)
for a particular reactive site in a molecule corresponds to an increase in the value
of f (r). A higher f (r) value for an active site in a molecule thus signifies an
increase in its local reactivity [43] as well, and so, the most reactive site of a
chemical species is associated with the largest f (r) value, which originates from
the following rule of chemical reactivity: “ large |dμ| is good.” Thus, at a point
r in a system, a higher value of f +(r) presupposes a greater reactivity toward a
nucleophilic attack that results in an electron increase in the system [63–66, 68,
69]. Similarly, a higher f −(r) value implies an increasing tendency toward elec-
trophilic attack, resulting in an electron decrease in the system [63–66, 68, 69].

7.2.2.3 Condensed Fukui Functions Computational chemists generally prefer
to consider an atom rather than any “point” in a molecule as the plausible site of
electrophilic/nucleophilic attack. Consequently, a coarse-grained atom by atom
representation of the FF, called condensed-to-atom Fukui function , was proposed
by Yang and Mortier [70], based on a finite difference approach in terms of the
Mulliken population analysis (MPA) scheme that may be represented as

f +
k = qk(N + 1) − qk(N) for nucleophilic attack, (7.25a)

f −
k = qk(N) − qk(N − 1) for electrophilic attack, (7.25b)

f o
k = [qk(N + 1) − qk(N − 1)]/2 for radical attack, (7.25c)

where qk refers to the electron population at a particular atomic site k in a
molecule. Equation 7.25(a–c) can be easily evaluated from population analysis
data.

The calculation of the FF using the variational technique for a nondegenerate
ground state of a system has been proposed [71], which determines f (r) and η.
Assuming the ground-state electron density ρ to be known, the hardness kernel
may be expressed as [72]

η(r, r′) = δ2F [ρ]

δρ(r)δρ(r ′)
, (7.26)

where F [ρ] is the Hohenberg–Kohn universal functional comprising the elec-
tronic kinetic energy and the electron–electron repulsion energy. Subsequently,
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a hardness functional (of an arbitrary function g) may be defined as

η[g] =
∫ ∫

g(r)g(r′)η(r, r′)drdr′. (7.27)

If η[g] with respect to g(r) is minimized subject to the normalization condition∫
g(r)dr = 1, (7.28)

the exact FF for the system is obtained, and the extremum value of η[f ] can be
considered to be the exact hardness of the system.

For an inhomogeneous gas, the necessary gradient correction in the FF has
been obtained [73]. For a homogeneous system of N electrons constrained to
move in a cavity of volume V , the FF within the local density approximation
(LDA) is given by

f (r) =
(

∂ρ(r)
∂N

)
υ(r)

= ρ(r)
N

, (7.29)

where ρ(r) and f (r) are constants equal to N/V and 1/V , respectively.
For an inhomogeneous gas, the necessary corrections are incorporated as [73]

f (r) = ρ(r)
N

[1 + αφ(r; ρ(r), ∇ρ, ∇2ρ, . . .)], (7.30)

where α is a parameter.
Using the normalization condition, the FF can be approximated as a dimen-

sionless quantity, φ [73]

φ ≈ 1

ρ
∇.

[ ∇ρ

ρ2/3

]
= ∇2ρ

ρ5/3
− 2

3

∇ρ.∇ρ

ρ8/3
. (7.31)

7.2.2.4 Local Softness (s(r)) and Local Hardness (η(r)) The earlier discus-
sions on global softness (S) and FFs f (r) have clearly settled the fact that a
“softer” molecule is supposed to be more polarizable and hence more reactive
through a covalent interaction because of the greater delocalization of its electron
cloud and an increase in the chemical potential (μ). To explain such reactivity
behavior for the local sites in a molecule, Parr and Yang [1] postulated that the
preferred sites for attacking groups in a molecule are described by the maxima
of the FF (f (r)) [16]. Thus, for a case of covalent bonding where the main
interaction is between the FMOs, the FF, (f (r)), and local softness (s(r)) may
be considered equivalent from the viewpoint of local reactivity, as the FFs quan-
tify the tendency of a molecular species to accept (or donate) electrons from (to)
another chemical system [16, 62]. So for a soft–soft, covalent, frontier-controlled
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interaction [74], an increase in the f (r) value for a particular reactive site of a
molecular system results in a corresponding increase in the corresponding local
softness (s(r)). The local softness [43] (s(r)) is expressed as

s(r) =
(

∂ρ(r)
∂μ

)
υ(r)

. (7.32)

The global softness (S) is a summation of the individual local softness values
for all the reactive sites over the entire molecule. Thus S and s(r) are related
through a normalization condition

S =
∫

s(r)dr, (7.33)

which stems from the fact that f (r) is normalized [1] to unity.
The local softness s(r) is related to the FFs f (r) through a chain rule as

s(r) =
(

∂ρ(r)
∂μ

)
υ(r)

=
(

∂ρ(r)
∂N

)
υ(r)

·
(

∂N

∂μ

)
υ(r)

= f (r) · S. (7.34)

It should, however, be mentioned that while the FF (f (r)) seems to assess the
reactivity pattern of the different local active sites of the same molecule, thereby
behaving as an intramolecular reactivity descriptor, the local softness (s(r)) com-
pares and correlates the propensity of a pair of interacting molecular neighbors
toward chemical attack and hence, unlike f (r), serves as an intermolecular reac-
tivity descriptor.

The idea of local hardness (η(r)) was introduced by Berkowitz et al. [75, 76] in
the same spirit as that of local softness to describe the lack of propensity toward
chemical reactivity of an atom or group in a molecule. However, the definition
of η(r), unlike s(r), is not so simple and neither can η(r) be normalized to η.
η(r) is expressed in a different and a slightly more complex manner as

η(r) = 1

N

∫
δ2F [ρ(r)]
δρ(r)δρ(r′)

ρ(r′)dr′, (7.35)

where F [ρ(r)] is the Hohenberg–Kohn universal functional. Local hardness is
also defined [75, 76] in another way at par with global hardness (η) by replacing
the number of electrons (N) with electron density (ρ(r)). Thus η(r) can also be
expressed as

η(r) =
(

δμ

δρ(r)

)
υ(r)

. (7.36)

This definition for η(r) as expressed in Equation 7.36 is ambiguous, because of
the interdependence of ρ(r) and υ(r), and therefore, it cannot be considered as
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a basic definition for η(r). Thus, unlike η and S, η(r) and s(r) do not even have
a reciprocal relationship and are interconnected by∫

η(r)s(r)dr = 1. (7.37)

A clear definition of local hardness and subsequent identification of the hard
reactive sites in a molecule is wanting [74,77–82]. The “minimum FF rule” pre-
scribed by Li and Evans [79] asserts that, hard reactions unlike softer ones, prefer
sites with minimum FF values. Wide applications [83–85] of this rule and subse-
quent criticisms owing to its over simplicity [81, 86] have been reported. The fact
that hard–hard interactions are electrostatic and charge-controlled, where the role
of frontier orbitals is quite irrelevant, cannot be corroborated from the “minimum
FF rule.” The basic problem of this rule is that although it justifies the insignifi-
cance of the frontier orbitals, it misses the role of electrostatic interactions, which
is a trademark of hard–hard interactions [81, 82, 86].

In a recent article, it has been shown that, for polyatomic systems, the FF is
the best option to obtain reliable local hardness profiles [87].

A mathematical correlation between local hardness (η(r)) and FF (f (r)) may
be drawn on the basis of Equations 7.34 and 7.37, which is

η =
∫

η(r) f (r)dr. (7.38)

Furthermore, in an attempt to draw a physical rationale between local softness
(s(r)) and local hardness (η(r)), it has been suggested that s(r) being a measure
of electronic fluctuations [43] should be considered as an electronic reactivity
index, η(r), on the other hand should be considered as a nuclear reactivity index
[88]. Torrent-Sucarrat et al. [89] recently interpreted local softness (s(r)) and
local hardness (η(r)) as mathematical functions that are pointwise measures of
the “local abundance” or “concentration” of their corresponding global quantities.
Further vital applications of this new approach toward understanding η(r) and
s(r) and its implications for the HSAB theory have recently been reported [90].

7.2.2.5 Philicity (ωα(r)) and Group Philicity (ωα
g) The unique concept of

philicity (ωα(r)) was introduced [91, 92] via resolution of the identity, which
presumes that the local electro- (or nucleo-) philicity at a particular reactive site
in a molecule may be increased (or decreased) on electronic interactions, without
rendering any change in the overall philicity values. The local electrophilicity
(ω(r)), along the lines of local softness (s(r)) and FF (f (r)), may be normalized
to global electrophilicity (ω) as

ω = ω

∫
f (r)dr or, ω =

∫
ωf (r)dr =

∫
ω(r)dr thus, ω(r) = ωf (r).

(7.39)



REACTIVITY DESCRIPTORS 171

It is interesting to note that ω(r) contains information about both ω and f (r) but
f (r) alone cannot provide any information regarding ω(r) without the knowledge
of ω. Further calculations invoked three different types of ω(r) similar to that
of the three different condensed-to-atom FF (f α

k (r)) variants. Thus ω(r), better
symbolized as ωα(r), was termed “philicity” as it takes care of all types of
reactions depending on the sign of α, that is, for α = +,−, and 0 represent
nucleophilic, electrophilic, and radical attacks, respectively. Thus

ωα(r) = ω · f α(r) or, ωα
k = ω · f α

k , (7.40)

where ωk
α refers to the condensed-to-atom local philicity variants for the kth

atomic site in a molecule. Local philicity (ωk
α) has proved to be a more powerful

quantity than its global counterpart because ωk
α , besides providing information

regarding electrophilicity (ω), also decides the site selectivity of a molecule
toward electrophilic, nucleophilic, or radical attacks. The propensity of a par-
ticular atomic site toward electrophilic, nucleophilic, or radical attack may be
enhanced with a proportionate decrease in the other surrounding sites by keep-
ing the global electrophilicity (ω) conserved. Furthermore, for a pair of different
reactants having different electrophilicity values, the appropriate local atomic
sites for electronic interactions can be fruitfully determined in terms of philicity
rather than the FF, as the former has been shown to be more informative than
the latter. Local philicity (ωk

α) with the aid of electronegativity (χ) is able to
provide information on s(r), S, and η as well.

The group philicity concept [93] (ωg
α) is applicable in correlating the reactivity

of an atomic assembly or a group, which is generally expressed as a sum of the
individual condensed-to-atom philicities (ωk

α) over all the relevant atoms. So

ωα
g =

n∑
k=1

ωα
k , (7.41)

where n denotes the number of atoms present in the reacting group and α = +,−,
and 0 refers to nucleophilic, electrophilic, and radical attacks, respectively. The
additive behavior of local philicity as described above for a reactive group, goes
hand-in-hand with similar trends exhibited by f (r) and s(r), in a conceptual
scheme.

7.2.2.6 Nucleophilicity Excess (�ω
∓
g ) and Electrophilicity Excess (�ω±

g ) On
the basis of the group concept, a nucleophile in a molecule should possess greater
group philicity to electrophilic attack than to nucleophilic attack. This difference,
named nucleophilicity excess (�ω∓

g ) [94], was expressed at par with the dual
descriptor [95] as

�ω∓
g = ω−

g − ω+
g = ω(f −

g − f +
g ), (7.42)
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where ω−
g (≡

n∑
k=1

ω−
k , k = 1 to n) and ω+

g (≡
n∑

k=1
ω+

k , k = 1 to n) refer to the

group philicities of the nucleophile in the molecule toward electrophilic and
nucleophilic attacks, respectively. It is quite obvious to expect a positive value
of the nucleophilicity excess (�ω∓

g ) for a nucleophile while the same shall turn
negative for an electrophile in a molecule.

Correspondingly, the electrophilicity excess (�ω±
g ) for an electrophile in a

molecule reflects greater group philicity to nucleophilic attack than to elec-
trophilic attack. The electrophilicity excess (�ω±

g ) for an electrophile can be
expressed as the negative of nucleophilicity excess (�ω∓

g )

�ω∓
g = −�ω∓

g = −(ω−
g − ω+

g ) = ω+
g − ω−

g = ω(f +
g − f −

g ), (7.43)

where ωg
+ and ωg

− as usual define the group philicities of the electrophile in the
molecule due to nucleophilic and electrophilic attacks, respectively. The sign of
the electrophilicity excess (�ω±

g ) for an electrophile is expected to be positive,
whereas it is negative for a nucleophile in a molecule.

Furthermore, for a molecular system with only two distinct units, the nucle-
ophilicity excess (�ω∓

g ) of the nucleophile should be equal to the electrophilicity
excess (�ωg

±) of the electrophile, as expected from the conservation of FF and
philicity, that is

�ω∓
g (Nucleophile) = �ω±

g (Electrophile). (7.44)

7.2.2.7 Quantum Dissimilarity (�ωij ) During the interaction of two differ-
ent molecular systems, the quantum dissimilarity (�ωij ) refers to the minimum
squared difference in philicity and may be defined [96] as

�ωij = [ωmax(i)
+(electrophile) − ωmax(j)

−(nucleophile)]2, (7.45)

where ωmax
+ and ωmax

− refer to the maximum philicity values at any atomic site
due to nucleophilic and electrophilic attack, respectively.

7.3 MOLECULAR ELECTRONIC STRUCTURE PRINCIPLES

It is now quite obvious that the various CDFT-based global and local reactivity
descriptors play a significant role in describing a reaction mechanism. The manner
in which these reactivity parameters influence the reaction behavior of molecules
can be understood through associated electronic structure principles, which are
discussed in the following sections.
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7.3.1 Electronegativity Equalization Principle

Electronegativity (χ) of an atom or molecule plays a vital role in determining
its tendency to react with other atoms or molecules during a chemical combina-
tion. As chemical reactions are nothing but electronic interactions, it is obvious
that between two systems having different χ values, the electrons will face a
spontaneous drift from the system with lower electronegativity to the one with
higher electronegativity, that is, electron drift between two systems occurs only
when there exists an electronegativity gradient between them, a condition quite
analogous to that of heat flow (temperature gradient) or of matter flow (chemical
potential gradient) in macroscopic thermodynamics. Therefore, electronegativity
(χ) in comparison with the temperature (T ) in thermodynamics can be attributed
to the electronic condition of an atom or molecule that dictates the direction of
electron flow during chemical interactions, just as T being assigned as the thermal
condition of a body in macroscopic thermodynamics determines the direction of
heat flow between two systems at different temperatures. The well-known “princi-
ple of calorimetry” for macrosystems might have therefore influenced Sanderson
[24, 25] to postulate an “electronegativity equalization principle,” which seemed
to dictate quite successfully the direction and extent of electron flow in the
microdomain. The principle of electronegativity equalization states that “When
two or more atoms initially different in electronegativity combine chemically, they
adjust to have the same intermediate electronegativity within the compound .”
This intermediate electronegativity (χGM) is given by the geometric mean of the
individual electronegativities of the isolated component atoms [97–99] and is
expressed as

χGM ≈
(

P∏
k=1

χk

)1/P

, (7.46)

where the molecule contains P atoms (same or different) and {χk, k = 1, 2,

. . . , P } signify their isolated atom electronegativities.
In other words, the electron density will flow from the more electropositive

atom to the more electronegative atom, creating a partial positive charge on the
former and a partial negative charge on the latter. As the positive charge on the
electropositive atom increases, its effective nuclear charge increases, hence its
electronegativity increases. The same trend happens in the opposite direction for
the more electronegative atom, until the two have the same electronegativity.
Thus, the equalization of electronegativity occurs through the adjustment of the
bond polarities.

7.3.2 Electrophilicity Equalization Principle

On the basis of the fact [100] that the ratio between hardness (η) and elec-
tronegativity (χ) is approximately a constant value for atoms that belong to the
same periodic group [101] and similar molecules, and by using Equation 7.46,
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an equalization principle for hardness similar to that for electronegativity may
be derived as [102–104]

ηGM ≈
(

P∏
k=1

ηk

)1/P

, (7.47)

where {ηk, k = 1, 2, . . . , P } correspond to the associated isolated atom hardness
values. The idea of electrophilicity equalization proposed recently [105] finds
its basis in Equations 7.46 and 7.47; the equalized electrophilicity (ωGM) is the
consequence of the electronegativity and hardness equalization phenomena. Thus,
ωGM is expressed as [105]

ωGM = χGM
2

2ηGM
=

(
P∏

k=1

ωk

)1/P

, (7.48)

where ωk = χ2
k

ηk
, (k = 1, 2, . . . , P ) are the electrophilicities of the isolated atoms.

The final equalized electrophilicity (conceptually in the same spirit of elec-
tronegativity) may be conceived to be the geometric mean of the corresponding
isolated atom values.

The model of equalized electrophilicity (ωGM) further requires that its local
variant [91, 106, 107] be constant everywhere throughout the system and equal
to the global electrophilicity.

7.3.3 Hard–Soft Acid–Base (HSAB) Principle

The inception of the idea of assigning molecules as “hard” and “soft” by Pearson
[33–39] and the subsequent classification of acids and bases as hard or soft has
already been discussed briefly in Section 7.2.1.3, in connection with chemical
hardness and softness. That a hard species prefers a hard one and a soft one desires
another soft moiety for binding, popularly known as the HSAB principle [40], is
considered one of the most useful concepts in chemical bonding theory for acids
and bases. This principle has been employed to study a large number of acid–base
reactions [41]. The essence of the HSAB theory is based on a CT process between
a pair of donor (Lewis base) and acceptor (Lewis acid) molecules. Although the
theory justifies the formation of a coordination linkage between a pair of donor
and acceptor moieties and even determines the direction of electron transfer, its
basis was nevertheless merely qualitative, lacking a rigorous mathematical proof.
The CDFT-based reactivity descriptors were employed by Parr and Pearson [10]
to quantify the so-called CT phenomenon between donors and acceptors. They
set up a simple model of electron transfer between a Lewis base B (donor)
and a Lewis acid A (acceptor), exploiting the concept of absolute hardness. The
driving force behind the transfer of electrons from B to A is essentially due to
an electronic chemical potential gradient or electronegativity gradient that exists
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between the two interacting systems. Thus, the CT process in the HSAB theory
is directly linked with the principles of electronegativity equalization or chemical
potential equalization. The total amount of electronic charge (�N) transferred
and subsequent energy change (�E) between A and B on the formation of the
adduct A:B was expressed as [10]

�N = χ0
A − χ0

B

2(ηA + ηB)
, (7.49)

�E = − (χ0
A − χ0

B)2

4(ηA + ηB)
. (7.50)

Thus, the gradual lowering of energy on electron transfer may be explained
from the corresponding electronegativity (χ) and hardness (η) values of A
and B. It is also quite relevant that the electronegativity difference drives the
electron transfer, while the sum of the absolute hardness values hinders the
same.

In another approach, Pearson [108] showed that the inherent acid–base
strengths (σ ) can be correlated with the softness (S) and stability constant (K)
of a reaction through the four-parameter relation

log K = SASB + σAσB, (7.51)

where σA, σB and SA, SB signify the inherent strengths and softness factors of
acid (A) and base (B), respectively. The σA and σB are expected to correlate
with the corresponding χA, χB values.

Among other significant articles [78, 79, 109–113] that accentuate a theoretical
understanding of the HSAB principle, the article by Chattaraj et al. [110] deserves
special mention. On the basis of the “maximum hardness principle” or “minimum
softness principle” [40, 114] (as described later), these authors established that
“among potential partners of a given electronegativity, hard likes hard and soft
likes soft.” Thus, they showed that the HSAB principle in chemistry mimics
the well-known Pareto principle in economics, which states that “Efficiency is
the highest when partners are both well satisfied” [115]. On the basis of an
approximate expression of the total interaction energy (E) between two reacting
acid–base pairs A and B, Gázquez [116] provided additional quantitative support
for a better understanding of the HSAB principle. The total energy (E) in terms
of chemical potential (μ) and hardness (η) is given by

E[ρ] = Neμ − 1

2
N2

e η + Ecore[ρ], (7.52)

where Ne represents an effective number of valence electrons and Ecore[ρ] signi-
fies the core contribution to the total energy. It was further revealed that interac-
tion between species having closely comparable softness values is energetically
favorable relative to those whose softness differs significantly. This alternative
approach was quite at par with the earlier theoretical justification [110].
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7.3.4 Principle of Maximum Hardness

From the preceding discussions on the concepts of local hardness (η(r)), local
softness (s(r)), and the HSAB principle, it can now be concluded with certainty
that the favorable “hard–hard” interactions are electrostatic in nature and hence
charge-controlled, whereas “soft–soft” interactions are covalent and frontier-
controlled in nature. The above-mentioned principles and directives can be more
lucidly explained when one considers the molecular orbitals (MOs) of the inter-
acting molecules. A plot of the MOs of different molecules as a function of
their energies demonstrates that, for a hard species, the energy gap between the
corresponding frontier orbitals, the highest occupied molecular orbital (HOMO),
and the lowest unoccupied molecular orbital (LUMO) is quite high as compared
to a softer molecule. A large HOMO–LUMO gap for a hard species thus cor-
responds to a large energy gap between the ground state and the corresponding
manifold of excited states of same multiplicity, thereby minimizing the mixing
of electron density ρ between the two frontier levels, which results in a minimal
response to perturbation of the electron cloud on chemical attack. Thus, harder
systems tend to show a natural reluctance toward changes in ρ unlike softer
moieties. So, harder systems tend to show lower reactivity and greater stability,
unlike the softer ones that readily undergo changes in electron density ρ dur-
ing chemical response. This qualitative trend of reactivity patterns of harder and
softer molecules was dictated by Pearson [40, 117, 118] as a statement popularly
known as the principle of maximum hardness (PMH), which states that “there
seems to be a rule of nature that molecules arrange themselves so as to be as
hard as possible.” The use of statistical mechanics and DFT provides a rigorous
and general proof of this maximum hardness principle [114]. The validity of the
proof, however, depends on the constancy of temperature and chemical potential
[119–121]. Thus, the PMH implies that chemical systems at equilibrium have a
propensity to remain “as hard as possible.” Therefore, the PMH sometimes serves
as a fair guideline to interpret the correct wave function for a molecular system.

7.3.5 Minimum Polarizability Principle

The inverse relationship between polarizability (α) and chemical hardness (η)
(see Section 7.2.1.5 for details) has already established the fact that a stable
atomic system or an atomic assembly is characterized by a high value of η and a
low value of α. Furthermore, the PMH [40, 114, 117, 118] provides a corollary
statement for a minimization of the polarizability [122–124] from a dynamical
perspective. The minimum polarizability principle (MPP) states that “the natural
direction of evolution of any system is toward a state of minimum polarizability.”
Thus, the criteria of maximum hardness and minimum polarizability describe the
ground state of a chemical system and also complement the minimum energy
condition for stability. In a recent article highlighting the changes in polarizabil-
ity (α) and chemical hardness (η) of molecules during the course of chemical
reactions of various types, viz., dissociation, exchange, or isomerization, Ghanty
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and Ghosh [52] also observed that a condition of minimum polarizability is
achieved with maximization of the hardness, which eventually accounts for an
energetically more stable situation.

7.3.6 Minimum Electrophilicity Principle

The term electrophilicity (ω), also envisioned as the electron-attracting power
for a molecular system, plays a pivotal role in determining reaction pathways. A
system with a high ω value will naturally be more prone to accepting electrons
and thus be highly reactive. But in the course of a chemical interaction as the
reactants gradually transform themselves to form stable products through bond
dissociation and bond formation, their reactivity decreases, with a consequential
drop in the ω values. Chamorro et al. [107] studied the variation of the elec-
trophilicity (ω) as a function of reaction coordinates for some isomerization and
rearrangement reactions and showed that a maximum or a minimum in the ω

value can be obtained during the course of a reaction. While the transition state
(TS) in a reaction profile is characterized by the existence of the interacting sys-
tems in their most excited states, ω turns out to be the maximum. Similarly, the
formation of products characterizes a stable state, a condition where ω shows its
minimum value. Thus, a stable condition for a system is described with a min-
imization of the energy as well as electrophilicity (ω) values. So in accordance
with the PMH [40, 114, 117, 118] for a stable state, there will also be a minimum
electrophilicity principle (MEP).

7.3.7 Minimum Magnetizability Principle

The magnetizability of a molecular system can be segregated into its diamagnetic
component (ξdm) and paramagnetic component (ξpm), of which the former is
negative.

ξtotal = ξdm + ξpm. (7.53)

On the basis of the already established fact that an energetically stable system
attains a state of maximum hardness and minimum polarizability and that the
polarizability (α) of the system varies linearly with its magnetizability, Tanwar
et al. [125] proposed an electronic structure principle that correlates the stability
of a molecule with its magnetizability and asserted that “a stable configura-
tion/conformation of a molecule or a favorable chemical process is associated
with a minimum value of the magnetizability,” better known as the minimum
magnetizability principle (MMP). Thus the total magnetizability (ξtotal) of a chem-
ical system reaches its minimum value at the equilibrium geometry.

7.4 CONCEPTUAL DFT AS A USEFUL TOOL TOWARDS
ANALYZING CHEMICAL REACTIVITY

DFT falls within the broad domain of quantum chemistry and, with the gradual
evolution of the latter, has turned out to become a very constructive theoretical
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paradigm toward providing innovative ideas in determining molecular reactivity.
CDFT [1–4] derives its basic mathematical formalism from DFT and is attributed
primarily to Robert G Parr, who once said that “to calculate a molecule is not to
understand it.” The various global and local reactivity descriptors and the different
molecular electronic structure principles associated with chemical reactivity that
have been discussed in the preceding sections basically build the “road map” for
molecular interactions and provide a clear idea to ascertain reaction pathways
from a theorist’s standpoint.

Applications of CDFT in molecular reaction mechanism are so widespread that
it is a daunting task to summarize them all in one chapter. Here, we thus opt for
a survey of the applications of conceptual DFT toward a realistic understanding
of the structure, bonding, stability, and aromaticity of a selection of all-metal and
nonmetal cluster assemblies. Furthermore, we also discuss the toxic effects of dif-
ferent hazardous compounds through suitable quantitative structure toxicity rela-
tionship (QSTR)-based models with the aid of conceptual DFT. Last but not the
least, the trapping of hydrogen (atomic as well as molecular) onto suitable storage
materials and their plausible use in industry as an alternative future fuel reserve to
combat the probable energy crisis is also discussed within the CDFT framework.

7.4.1 Computational Details

All computations presented here have been performed at several higher levels
of theory (B3LYP, MP2) at various basis sets (cc-pvdz, 6-31G, 6-31+G(d), 6-
311+G(d), and 6-311+G(d,p)) by utilizing the GAUSSIAN 03 [126] program
package. The choice for the level of theory and basis set, however, varies with
the system under study. All the structures reported were fully optimized and their
number of imaginary frequencies (NIMAG) was zero, thereby confirming their
existence at positions of minima (global or local) on the potential energy surface
(PES). The ionization potential (IP) and electron affinity (EA) values were either
calculated with the aid of Koopmans theorem [34] or by using a �SCF technique.
The atomic charges [15] (Qk) and FFs [16] (f (r)) were computed from the MPA
[70] scheme.

7.4.2 Structure, Bonding, Reactivity, and Aromaticity in Cluster Assemblies

Metal clusters [127–129] serve as a bridge between coordination chemistry and
solid-state chemistry. The applications of metal clusters are so enormous that it
has spawned a new branch of chemistry known as cluster chemistry . The bond-
ing and stability aspects of such cluster moieties are generally judged from the
perspective of a strong metal–metal bond formation along with the coordination
behavior of the metals with different ligands.

CDFT armed with its powerful global and local reactivity descriptors serves
as a promising approach to achieve a realistic understanding of the structure,
bonding, and stability of various metal clusters from a theoretical standpoint. On
the basis of the discovery of ferrocene [130–133], a unique sandwich complex,
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the further design, and the study of several multidecker sandwich compounds
or metallocenes have been performed both experimentally [134–136] and theo-
retically [137, 138]. Great progress in the study of such cluster assemblies was
achieved when Boldyrev et al. [139] extended the novel concept of aromaticity
[140–142], used hitherto only by organic chemists to account for an extra stabil-
ity of cyclic, planar, and conjugated (4n + 2)π (Hückel’s rule) electron systems,
to an “all-metallic” system, [Al4]2− (Fig. 7.1).

Subsequently, they introduced a new term—“all-metal aromaticity.” This
unique idea of all-metal aromaticity, veeringly away as it does from the
traditional ideas of bonding, helped in elucidating the stability of various metal
clusters. The Al4

2− ring possesses a perfect square-planar geometry with two
π electrons delocalized through the entire all-metal σ -framework. Widespread
applications [143–146] of Boldyrev’s concept of all-metal aromaticity are
partly due to the fact that the square-planar Al4

2− system is considered to be
both π-aromatic and doubly σ -aromatic [139] owing to the conspicuous σ -
and π-electron delocalization. The stabilities of these diverse cluster moieties
in terms of the aromaticity criterion have been quantitatively assessed from
the nucleus-independent chemical shift (NICS) values, which are in turn
computed through the explicit procedure of Schleyer et al. [147]. The idea of
all-metal aromaticity introduced by the Boldyrev group [139] and its subsequent
quantitative evaluation by exploiting Schleyer’s [147] procedure prompted many
enthusiasts to devise a variety of all-metal and nonmetal clusters [148–167].

Attempts have been made [150–174] toward analyzing the bonding and asso-
ciated structural changes of varied cluster molecules during chemical interactions.
It was also established quite unequivocally that the aromaticity criterion for these
all-metal clusters has a direct bearing on their reactivity patterns. The existence
and reactivity of ferrocene-type sandwich complexes consisting of many of those
aromatic [Al4]2− units, for example, MAl4TiMAl4 (M = Li, Na, K) [150, 171]
have been widely studied. The stability, reactivity, and aromaticity of many such
all-metal systems along with the organic [151] and inorganic [155, 171–173]
moieties have been assessed under the paradigm of CDFT [1–4]. Effective
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Figure 7.1 Optimized geometries of Al4
2− (a) delocalized (singlet) and (b) localized

(triplet) molecules.
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Figure 7.2 Optimized geometries of [Be3]q−, [Mg3]q−, and [Ca3]q− (q = 1, 2).

inroads have been made toward predicting the reactivity and establishing the
existence of exclusive π-aromaticity in trigonal [X3]n− (X = Be, Mg, Ca; n = 1,
2) systems [159, 160, 166, 167] (Fig. 7.2).

The results are found to corroborate nicely with other parallel theoretical and
experimental findings [174–178]. As the anionic all-metal trigonal clusters con-
tain an excess of electrons, the metal centers in spite of being electropositive
in nature, bear some negative charge that requires to be stabilized by coupling
with suitable counterions. Thus, the trigonal anionic [X3]n− (X = Be, Mg, Ca;
n = 1, 2) systems on binding with another suitable metal counter-cation serves
as the building blocks to produce double [161, 162] and multidecker [163] metal
clusters.

The formation of a stable M–M (M = metal) bond is actually the essence
of cluster chemistry. Resa et al. [179] in their landmark article proved the very
existence of a direct Zn–Zn linkage stabilized in a sandwiched form on coor-
dination with a [C5Me5]− group. Inspired by the work of Resa et al. [179] the
aromatic ([Be3]2−) [159] and ([Zn3]2−) [180] units have been adopted [161, 165]
to stabilize the Zn–Zn linkage (Fig. 7.3).

Subsequent substitution of all the Zn atoms by Be atoms yielded the double-
decker [Be3-Be-Be-Be3]2− [Be8]2−, which showed that the aromatic [Be3]2−
is also capable of stabilizing a direct Be–Be linkage [161]. The [Zn3]2− unit
[180] has already been established to exhibit π-delocalization throughout the
trigonal ring. Using the [Zn3]2− unit as the base and coupling it with another
Zn2+ counter-cation, a number of anionic “all-zinc” chain clusters have been
theoretically conceived [165] (Fig. 7.4).

It was found that the aromatic [Zn3]2− trigonal units are capable of holding a
Zn chain of up to four Zn atoms. The stability of such large all-zinc clusters is
mainly attributed to the existence of an aromaticity criterion in the [Zn3]2− units
that hold the metal chain. Further stabilization of the Zn–Zn linkage with the
aromatic, nonmetallic [C5H5]−, and another all-metal pentagonal [Be5]− rings
has also been performed [165] (Fig. 7.5).

It was observed that unlike the [Zn3]2− and [C5H5]− units, the slightly aro-
matic [Be5]− ring on complexation with Zn turns antiaromatic and hence confers
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(See insert for color representation of the figure.)

some instability to the [Be5]− bound chain clusters. This fact is also quite appar-
ent from the corresponding reaction enthalpy (�H ) and reaction electrophilicity
(�ω) values of some probable substitution reactions.

Therefore, the existence of an aromaticity criterion in the [C5H5]− and all-
metal [Zn3]2− systems is supposed to be the driving force behind the above-
mentioned thermodynamically spontaneous reactions. The design of unique mul-
tidecker [163] sandwich complexes utilizing the aromatic [Be3]2− and [Mg3]2−
units as the base and their subsequent plausible substitution reactions has also
been studied [163] (Fig. 7.6).

The stability of these large all-metal clusters is also attributed to the exis-
tence of an all-metal aromaticity in the basal, trigonal rings. The corresponding
reactions are also thermodynamically feasible. A detailed documentation of a
spectacular range of some all-metal as well as nonmetallic sandwiched, chairlike
as well as flanked clusters has already been reported [164, 169].
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7.4.3 Bond-Stretch Isomerism

Bond-stretch isomerism [181–190] may be defined as the phenomenon whereby
molecules of similar spins lying on the same PES, differ only in the length of one
or several bonds. In contrast to exhibiting a single minimum on the PES for the
stretching of a bond, the existence of bond-stretch isomers requires the presence
of a double minimum, with a barrier between the two minima (Fig. 7.7).

The phenomenon of “bond-stretch isomerism” has been observed for a variety
of metal cluster assemblies [164, 168, 191] (Fig. 7.8).

E

d(X–Y)

(a)

E

d(X–Y)

(b)

Figure 7.7 Potential energy surfaces for (a) a normal X–Y bond and (b) a pair of X–Y
bond-stretch isomers.
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A comparative study of the molecular conformations, ground-state energy
(E, au), and the allied global reactivity parameters of the bond-stretch isomers
shows that for any unique pair, the ground-state energy differences are very low,
which indicates that the corresponding molecular structures are easily intercon-
vertible and one geometric form can be converted to another by simple stretching
or flipping. The similar magnitudes of the ground-state energy (E, au) for each
isomeric pair lends evidence in favor of a low barrier height for conversion
from one conformation to another. Thus a relatively fleeting existence [192] of
the bond-stretched isomeric pairs at the local minima on the PES seems to be
quite feasible. The PES profiles of bond-stretch isomeric pairs therefore roughly
resemble a double well, the structures being kinetically stable.

7.4.4 Analysis of the Toxic Effects of Different Molecules through
QSAR/QSTR-Based Model

Quantitative structure–activity relationship (QSAR) is a method that mathe-
matically correlates the electronic structures of several compounds with their
chemical reactivity. Suitable one-parameter and multi-parameter regression
models are developed by correlating the important chemical properties such as
biological activity and toxicity as a function of several DFT-based reactivity
descriptors. A recent study [193] assessed the toxic effects of some halogen,
sulfur, and chlorinated aromatic compounds using quantitative structure–toxicity
relationship (QSTR)-based models. In this QSTR study, the toxicities of the
various halogen, sulfur, and chlorinated aromatic compounds were correlated
with the different CDFT-based global reactivity descriptors viz., electrophilicity
index (ω), chemical potential (μ), and the newly proposed net electrophilicity
[47] (�ω±). Two sets of compounds, containing mainly halogen and sulfur
inorganic compounds in the first set and chlorinated aromatic compounds in the
second set, were considered for investigation (Figs. 7.9 and 7.10).

The corresponding R2, R2
CV, and R2

adj values as listed in Table 7.1 (Table 7.2)
and the experimental versus calculated log (LC50) plots utilizing the one-
parameter regression equations for sets 7.1 and 7.2 in Figures 7.11 and 7.12,
respectively, reveal that in the case of the first set, the newly proposed net
electrophilicity descriptor [47] (�ω±) provides the best result, whereas, for
the second set, both electrophilicity index (ω) as well as net electrophilicity
index (�ω±) show comparable results. Thus, the newly proposed descriptor,
net electrophilicity index (�ω±) shows potential for constructing effective
regression models suitable for QSAR/QSTR studies.

In a recent communication [194], it has been explained that suitable
QSAR-based regression models are quite capable of explaining the toxicity
trends of several alkali metal ions and various arsenic compounds. A suitable
three-parameter-based regression model consisting of electrophilicity (ω),
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TABLE 7.1 Some Plausible Substitution Reactions Involving the Replacement
of the Marginally Aromatic [Be5]− or Fairly Aromatic [C5H5]− with the
Corresponding All-Metal Systems

�H �ω

No. Reactions (kcal/mole) (eV)

1. Be5-Zn-Zn-Be5 + 2Zn3
2− = [Zn3-Zn-Zn-Zn3]2− + 2Be5

− −149.28 −15.925
2. Be5-Zn-Zn-Zn-Be5 + 2Zn3

2− = [Zn3-Zn-Zn-Zn-Zn3]2− + 2Be5
− −154.33 −16.545

3. Be5-Zn-Zn-Zn-Zn-Be5 + 2Zn3
2− =

[Zn3-Zn-Zn-Zn-Zn-Zn3]2− + 2Be5
−

−159.53 −16.994

4. C5H5-Zn-C5H5 + 2Zn3
2− = [Zn3-Zn-Zn3]2− + 2C5H−

5 −144.51 −11.308
5. C5H5-Zn-Zn-C5H5 + 2Zn3

2− = [Zn3-Zn-Zn-Zn3]2− + 2C5H5
− −138.85 −12.007

6. C5H5-Zn-Zn-Zn-C5H5 + 2Zn3
2− =

[Zn3-Zn-Zn-Zn-Zn3]2− + 2C5H5
−

−144.30 −12.808

7. Be5-Zn-Zn-Be5 + 2C5H5
− = C5H5-Zn-Zn-C5H5 + 2Be5

− −10.43 −3.917
8. Be5-Zn-Zn-Zn-Be5 + 2C5H5

− = C5H5-Zn-Zn-Zn-
C5H5 + 2Be5

−
−10.03 −3.737



188 AN UNDERSTANDING OF THE ORIGIN OF CHEMICAL REACTIVITY

TABLE 7.2 Regression Models and Various Coefficients of Determination with the
Various Combinations of μ, ω, �ω±a , and �ω±b for the Set 7.1 and Set 7.2

Regression Model R2 R2
CV R2

adj

Set 7.1 (halogen and sulfur compounds)

Log LC50 = (0.521 × μ) + 6.60 0.694 0.618 0.673
Log LC50 = (−0.417 × ω) + 4.64 0.686 0.618 0.662
Log LC50 = (−0.2341 × �ω±a) + 6.33 0.745 0.713 0.742
Log LC50 = (−0.233 × �ω±b) + 6.33 0.728 0.696 0.727

Set 7.2 (chlorinated aromatic compounds)

Log LC50 = (−2.95 × μ) − 7.89 0.729 0.549 0.691
Log LC50 = (2.66 × ω) − 0.4 0.872 0.798 0.854
Log LC50 = (1.74 × �ω± a∗) −10.3 0.686 0.449 0.641
Log LC50 = (1.43 × �ω±b†) −2.50 0.844 0.751 0.822

aCalculated as per Equations 7.16 and 7.17.
bCalculated as per Equations 7.18 and 7.19.
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Figure 7.11 (a) Experimental versus Calculated Toxicity (Log(LC50)) values for com-
pounds containing F and S, using (a) chemical potential, (μ); (b) electrophilicity index,
(ω); (c) net electrophilicity (�ω±) from Equations 7.16, 7.17, and 7.20; (d) �ω± from
Equations 7.18–7.20.
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Figure 7.12 Experimental versus Calculated Toxicity (Log(LC50)) values for chlorinated
aromatic compounds, using (a) chemical potential (μ); (b) electrophilicity index; (ω);
(c) net electrophilicity (�ω±) from equations (7.16), (7.17), and (7.20); (d) �ω± from
equations (7.18–7.20).

philicity (ω+
As), and atomic charge (QAs) has been found to be quite effective

in predicting the toxicity of the arsenic compounds.

7.4.5 CDFT as a Novel Tool toward Designing Suitable Storage Materials
for Trapping Hydrogen

Hydrogen, the third most abundant and ubiquitous element on the earth’s surface
[195], is found everywhere, in rocks, soil, air, and particularly in water. It is
conceived as an important energy source in this century with the potential to
combat the energy crisis. Hydrogen as a future fuel in transportation engines
shows the promise of substantially cleaner emissions as compared to the existing
oil-powered combustion engines. This offers the advantage of hydrogen being an
environmentally benign fuel and an efficient energy carrier. Hydrogen has a high
gravimetric energy content of 120.7 MJ/kg, which is the highest for any known
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fuel. However, its volumetric energy content is rather low. This poses challenges
for developing safe and effective capacities for storage and transportation of
hydrogen, thus limiting its extensive use in practice, as compared to fossil fuels.
Thus there is a need for effective trapping materials that can bind hydrogen either
in its atomic or molecular form, thereby functioning as latent storage for fuel. A
recent article [196] has demonstrated with the aid of CDFT [1–4] and its various
global and local reactivity variants that the trapping of noble gases (He–Kr) onto
trigonal and aromatic H3

+ and Li3
+ moieties is a favorable process (Figs. 7.13

and 7.14).
The stability of the noble-gas-trapped cationic clusters has been attributed

to the presence of an “aromaticity criterion,” which was theoretically justified
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from NICS [147] calculations. Several materials such as AlN nanostructures
[197], transition-metal-doped BN systems [198], alkali-metal-doped benzenoid
[199] and fullerene clusters [200], bare as well as light metal- and transition-
metal-coated boron buckyballs, B80 [201], and magnesium clusters [202] have
been effectively implemented experimentally and theoretically shown to be capa-
ble of hydrogen storage. Likewise, MgH2 has proved to be very effective as a
hydrogen-storage material. Mg clusters doped with H2 molecule have been the-
oretically investigated and found to be weakly stable or metastable depending
on the cluster size [203]. By exploiting the useful tools [204] of CDFT, an
attempt has been made to utilize the cagelike all-metal Mg clusters predicted
by McNelles and Naumkin [203] and similar Ca analogs of those Mg cages
and some novel trigonal, aromatic Li3

+ and Na3
+ units as potential traps for

hydrogen (Figs. 7.15–7.17).
An in-depth study of the different hydrogen-trapped metal cluster units reveals

that on gradual increase in the amount of hydrogen being trapped accompanied
by a cluster growth, the energy (E), hardness (η), and electrophilicity (ω) of the
poly-hydrogen-bound metal complexes suggest a gradual increment in stability.
The NICS(0,1) for the upper and lower rings of the H2-bound Mgn and Can(n =
8 − 10) cages as well as the NICSzz(0) values of the free and hydrogen-trapped
Li3

+ and Na3
+ rings are negative. Thus the presence of an all-metal aromaticity
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in the different cages and rings is verified. The stability of the hydrogen-trapped
complexes also receives some support with regard to the thermodynamic aspects
from the negative reaction energy (�E) values for the gradual stepwise binding
of H2 by the aromatic Li3

+ and Na3
+ clusters. These all-metal cages and rings

can therefore be fruitfully employed as trapping materials for hydrogen, a future
fuel reserve. Further work employing various molecular assemblies as potential
traps for hydrogen is in progress.
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7.5 CONCLUDING REMARKS

CDFT, born from the ideas of Hohenberg and Kohn and later developed by
Parr et al. has established itself as a unique and dominant theory for predicting
chemical reactivity. CDFT along with its various allied global and local reactiv-
ity descriptors, in conjunction with the associated important molecular electronic
structure principles, has indeed revolutionized chemical thinking and has now
become a very useful approach to rationalize the structure, bonding, and reactiv-
ity patterns of molecular systems. The preceding discussions have demonstrated
that DFT is a very effective mathematical tool to study the chemical reactivity
patterns of several different metal clusters. The stability of such cluster assemblies
using the concept of all-metal aromaticity has been given a firm footing through
the paradigm of CDFT. The role of CDFT in building useful structure–activity
relationship-based regression models for analyzing the toxicity trends of dif-
ferent alkali metals—arsenic as well as that of some sulfur and halogenated
inorganic and benzenoid compounds—further affirms the effectiveness of theory
in predicting chemical behavior. The usefulness of DFT in designing appropriate
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molecular materials for the storage of hydrogen, conceived as a future alterna-
tive fuel source, adds further support to the potential of DFT in modern chemical
reactivity theory.
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8
ELECTRON DENSITY
AND MOLECULAR SIMILARITY

N. Sukumar

8.1 THE MOLECULAR SIMILARITY PRINCIPLE IN DRUG DESIGN

The importance of molecular similarity measures [1] for drug design is
summarized in the similarity principle, which states that similar molecules
should exhibit a corresponding similarity in their biological effects [2, 3].
In other words, chemically similar molecules should exhibit similar patterns
of activity toward protein targets [2]. The molecular similarity principle is
a fundamental assumption implicit in most quantitative structure–activity
relationship (QSAR) modeling. Such correlations have indeed been observed for
many simple physicochemical properties, but owing to the complex nature of
the activity landscape associated with biological assays, many deviations from
the similarity principle have also been observed [2, 3], leading very similar
molecules to exhibit very different activities in some assays. Such regions of the
structure–activity landscape have been termed activity cliffs [3] and represent
the most interesting regions of the structure–activity relationship for purposes of
drug design. While similar molecules may not always exhibit similar activities
in individual biological assays, similar molecules do display similar broad
patterns of biological activities across a range of related targets [4, 5].

Changes in biological activities resulting from changes in molecular structure
are described by chemists through structure–activity relationships. The classical
QSAR approach, based on physicochemical characterizations of molecules, was
pioneered by Hammett [6, 7] and developed by Hansch et al. [8], Taft [9], and
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others. Hammett introduced numerical descriptors to represent substituent groups
R on a molecular scaffold in the context of a linear free energy relationship

log(K/K0) = σρ. (8.1)

where K is an equilibrium constant and K0 the equilibrium constant for the refer-
ence reaction with R = H, σ is the substituent constant characteristic of meta- or
para-substitution and depends only on R, and ρ is the reaction constant charac-
teristic of the given reaction. Systematic study with different R groups led to the
explanation of both equilibrium and kinetic substituent effects, such as acidity
and reaction rates. Nowadays, empirically observed correlations between molec-
ular structures and biological activities are supplemented by statistically discov-
ered quantitative correlations (QSAR) through the aid of sophisticated machine
learning methods. All correlations between molecular structure and chemical or
biological properties are ultimately based on the dependence of the property in
question on the molecular electron density distribution. The detailed nature of
this dependence is in general unknown, but the existence of a relationship can be
justified by recourse to the Hohenberg–Kohn theorem. Structure–activity rela-
tionships are of great value in drug discovery. While the introduction of a new
drug has often come about after a lengthy process of laboratory experimenta-
tion, lead compound discovery, animal testing, and preclinical and clinical trials,
this process can take over a decade before a viable drug is ready for marketing.
With the availability of large quantities of experimental data through automated
high throughput screening techniques and the availability of cheap computational
power, virtual high throughput screening (VHTS) and QSAR modeling offer an
attractive strategy for accelerating the process of drug discovery. Furthermore,
since nearly 90% of promising drug leads fail, often at an advanced stage of
development, on account of unfavorable absorption, distribution, metabolism,
elimination, and toxicity (ADMET) effects in the human body, virtual screening
using ADMET filters are often also employed to weed out compounds likely
to exhibit adverse side effects, thereby identifying the “losers” early. The most
promising compounds that survive this “fail early, fail cheap” strategy are then
selected for laboratory synthesis and preclinical testing.

The quantitative characterization of molecular structure as a set of numerical
(analog or boolean) descriptors enables the computational implementation of
pattern recognition or data mining schemes to search for compounds with
specific properties or to search for molecules most similar to a given query
molecule. This immediately brings up the question of how molecular similarity
is to be assessed [10, 11]. There is no unique answer to this question and thus no
ideal similarity measure. Chemical similarity includes constitutional similarity
(similarity of atoms in the molecule), structural similarity (similarity of substruc-
tures comprising the molecule), similarity of three-dimensional shape, similarity
of chemical properties, or similarity of effects on the human (or animal) body
owing to binding to similar proteins. The concept of molecular similarity can
be illustrated through the eastern parable of the six blind men and the elephant.
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As the tale goes, six blind men went to feel an elephant and then described the
experiences to each other. The first approached the broad side of the elephant
and claimed that the elephant was similar to a wall. The second man felt the
tusk and declared that the elephant was like a spear. To the third, who took the
squirming trunk in his hands, the elephant was like a snake. The fourth man felt
about the knee of the beast and said it was similar to a tree. The fifth chanced to
touch the ear, and swore that the elephant most resembled a fan. Finally, the sixth
man seized the swinging tail and said the animal was similar to a rope. None of
these descriptions can be faulted. All are correct in their own way, but none is a
complete or unique characterization. Any two (or more) molecules may likewise
be similar in some ways, but not in others. The most appropriate similarity
measure in any given situation is thus very much a domain-specific problem.

Structure–activity or structure–property relationships are commonly envi-
sioned in an abstract high dimensional space of numerical descriptors or Boolean
fingerprints. This space, commonly referred to as chemistry space, is often used
to cluster molecules into similarity classes. It is the combinatorial and configura-
tional space spanned by all possible molecules (i.e., those combinations of atoms
allowed by the rules of valence in energetically stable spatial arrangements). It is
estimated that the total number of possible small organic molecules populating
chemistry space could exceed 1060 —a number that exceeds the total number of
atoms in the known universe and is vastly greater than the number of molecules
that have actually been isolated or synthesized. The choice of descriptors or
fingerprints defining coordinates within chemistry space and the choice of the
similarity metric determine the partitioning of the space into regions correspond-
ing to local structural similarity. These are the regions (known as domains of
applicability [12]) most likely to be successfully modeled by a structure–activity
relationship. Any characterization of similarity thus depends both on the chem-
ical space (molecular descriptor/fingerprint) representation and on the similarity
assessment metric employed within that space.

While there are numerous ways of assessing molecular similarity, all are
derived in some way or other from the electron density, since the electron density
determines all molecular properties, by virtue of the Hohenberg–Kohn theorem
(Chapter 5). Similar molecules must have similar electron density distributions.
Some of the most theoretically satisfying molecular similarity measures are thus
those that are derived directly from the molecular electron density distributions,
but they often suffer from the disadvantage of requiring more intensive computa-
tional effort for their determination than some of the simpler similarity measures.
In this chapter, we are only concerned with molecular similarity measures and
molecular descriptors directly derived from the electron density. Similarity
measures based on the integration of the total electron density or electron-
density-derived properties over at points in space will be the subject matter of the
next section. Thereafter (Section 8.3), we will treat similarity measures generated
from the electron density at some special points in space, namely, the bond
critical points between nuclei of Bader’s theory of atoms in molecules (Chapter
4). Section 8.4 deals with electron-density-derived properties on the molecular
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van der Waals surface. It has been argued [13, 14] that the use of molecular
descriptors and similarity measures based on local surface properties, such as
those derived from the electron density, are likely to provide more generalizable
QSAR models, applicable across diverse regions of chemistry space (a feature
known as scaffold hopping), even though such descriptors do not encode the
chemical constitution directly. In Section 8.5, we discuss some high throughput
algorithms to encode molecular shape and electronic properties into compact
signatures for similarity comparisons. The progression of concepts through
the successive sections of this chapter proceeds from the most rigorous and
computationally expensive to faster, cheaper, and high throughput techniques,
while trying to preserve the most relevant chemical information. We conclude
the chapter with the construction of network graphs from molecular similarity
analysis.

8.2 ELECTRON-DENSITY-BASED ATOMIC AND MOLECULAR
SIMILARITY ANALYSIS

From the realization that similar molecules must have similar electron density
distributions, Carbó and coworkers pioneered the use of the electron density for
the development of molecular quantum similarity measures (MQSM) for drug
design and for pharmacological and toxicological modeling. MQSM encapsu-
late the principle that the more similar the electron distributions of any pair
of molecules, the more similar will their properties be [2, 11, 12]. The sim-
plest electron-density-based quantum similarity measure between two systems A
and B is obtained from the superposition of the respective density distributions
integrated over all space

ZAB =
∫

ρA(r)ρB(r)dr. (8.2)

This measure is related to the Cartesian distance between the electron densities
of A and B, since

∫
|ρA(r) − ρB(r)|2dr =

∫
ρ2

A(r)dr +
∫

ρ2
B(r)dr − 2

∫
ρA(r)ρB(r)dr. (8.3)

Thus, the electron density functions are more similar when the overlap integral
ZAB between them is maximized. In general, a similarity measure can be cons-
tructed from a convolution of the electron density distributions using any positive
definite similarity kernel �(r1, r2), also called a separation operator

ZAB(�) =
∫

dr1

∫
dr2ρA(r1) �(r1, r2) ρB(r2). (8.4)
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The overlap form (Eq. 8.2) is obtained from the choice of the Dirac delta function
�(r1, r2) = δ(r1 − r2) as the similarity kernel in Equation (8.4). Other popular
choices include the Coulomb operator r−1

12

ZAB(Coul) =
∫

dr1

∫
dr2

ρA(r1)ρB(r2)

|r1 − r2|
. (8.5)

These similarity measures are normalized to provide a Carbó similarity index
ranging between 0 and 1

CAB = ZAB√
ZAAZBB

. (8.6)

Values of the Carbó similarity index closer to 1 indicate higher similarity. Using
the shape function

σA(r) = ρA(r)
NA

, (8.7)

and Equations 8.2 and 8.6, the overlap Carbó similarity index can be rewritten
in a form independent of NA and NB

CAB =
∫

σA(r)σB(r)dr√∫
σ 2

A(r)dr
∫

σ 2
B(r)dr

, (8.8)

showing that this index depends only on the shapes of the electron density distri-
butions and not on the number of electrons. Hodgkin and Richards [15] defined
an alternative index

HAB = 2
∫

ρA(r)ρB(r)dr∫
ρ2

A(r)dr + ∫
ρ2

B(r)dr
= 2ZAB

ZAA + ZBB
, (8.9)

which, in contrast to the Carbó index, depends on both the shapes and the extent
of the electron density distributions.

Of course, the electron density ρ(r) determines the external potential and
all hence the energy and all molecular electronic properties (Hohenberg–Kohn
theorem). In 2000, Ayers [16] proved a remarkable result that for a Coulombic
system, the shape function σ (r) determines the external potential and the total
number of electrons and hence contains all the information contained in the
electron density function. We can thus write

E = E[σ(r)], (8.10)

analogous to Equation 5.2. We also saw in Chapter 5 how through the holo-
graphic electron density theorem of Riess and Münch [17] and Mezey [18, 19],
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the ground-state density of any finite volume or subdomain uniquely determines
the ground-state properties of this or any other subdomain of the system (or of the
whole system). Combining this insight with that of Ayers, we can conclude that
knowledge of the shape function in a finite but otherwise arbitrary subdomain
of a Coulombic system suffices to determine all properties of the system. This
result has been termed the holographic shape theorem [19].

When applied to Hartree-Fock atomic densities across the periodic table (with
spherically averaged densities in the case of incompletely filled atomic subshells),
the Carbó atomic quantum similarity indices were highest for atom pairs closest
to each other in the periodic table [20, 21]. Atomic quantum similarity indices
mask periodicity information. However, the shape function can be used to define
an information discrimination or entropy deficiency function

�SA(r) =
∫

drσA(r) log
σA(r)

σ 0
A(r)

, (8.11)

where σA(r) is the shape function of atom A and σ 0
A(r) that of the noble gas in

the preceding row in the periodic table. This information discrimination function
reveals periodicity information [21], as shown in Figure 8.1.

Quantum similarity measures in momentum space [22–29] may be defined in
an analogous way using momentum space densities

ZAB(p) =
∫

πA(p)πB(p)dp. (8.12)

800
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Figure 8.1 Information discrimination or entropy deficiency function versus atomic
number for atomic densities with the noble gas of the previous row as reference [21].
(Reproduced with permission from Borgoo A, Godefroid M, Sen KD, De Proft F,
Geerlings P. Chem Phys Lett 2004;399:363–367, Copyright 2004 Elsevier.)
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Figure 8.2 Momentum space similarity indices reveal periodicity trends for atoms [30].
(Reproduced with permission from Angulo JC, Antolı́n J. J Chem Phys 2007;126:044106,
Copyright 2007 American Institute of Physics.)

As shown in Figure 8.2, the momentum space similarity indices (and the corre-
sponding phase space quantities) reveal periodicity trends for atoms, in contrast
to the position space Carbó indices [30].

It is also possible to use other quantities besides the density to define similarity
measures. For instance, the molecular electrostatic potential (MEP)

ve(r) =
∑

α

Zα

|r − Rα| −
∫

ρ(r′)dr′

|r − r′| , (8.13)

has long been used as a descriptor of chemical reactivity [31–36] and a molecular
similarity measure [15]. Equation (8.13) is the solution of the Poisson equation
for the electron density ρ(r); the first term on the right-hand side is the external
potential v(r) due to the nuclei, while the second term is the interelectronic
Coulomb repulsion. Since v(r) is uniquely mapped to the electron density ρ(r)
by the Hohenberg–Kohn theorem, so is the MEP ve(r). Both ρ(r) and ve(r) are
experimentally accessible from high resolution X-ray diffraction data (Chapter 3).

MEP is also a principal ingredient in the popular comparative molecular field
analysis (CoMFA) method [37] for virtual screening. In addition to the electro-
static fields, CoMFA also employs steric fields generated by a probe atom or
group of atoms, on a grid of points around the set of molecules to be compared.
The molecules are aligned in 3D space by maximizing the steric and electrostatic
overlap between them. CoMFA is used to identify chemical features favoring
or disfavoring a biological activity. These features are then employed in a 3D
QSAR equation to build a partial least squares (PLS) model for the biological
activity of interest. A set of molecules whose activities have been experimen-
tally determined form the training set. MEP computed from molecular mechanics
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force fields, rather than those from the electron density, are generally sufficient
for the purpose when dealing with biological activities that depend primarily
on noncovalent interaction. The predictive quality of a CoMFA model depends
critically on the quality of alignment between the molecules. Such field analysis
techniques are useful in comparing molecules that have a common molecular
scaffold. Molecules with very low similarity, that is, lacking a common skeleton,
cannot be meaningfully superimposed. Silverman and Platt [38] have proposed a
variant of the method, termed comparative molecular moment analysis (CoMMA)
that uses moments of the mass and charge distributions, eliminating the need for
molecular alignment.

Girones et al. [39] developed a kinetic energy-density-based MQSM

ZAB(KE) =
∫

KA(r)KB(r)dr, (8.14)

where KA(r) and KB(r) are the kinetic energy densities of the molecules A
and B, respectively. A hardness-based similarity index has also been introduced
using the chain rule relation between the hardness [40] (Chapter 5) and the Fukui
function [40–45]

η =
[

∂2E

∂N2

]
v(r)

=
∫

dr
∫

dr′ δ2E[ρ(r)]
δρ(r)δρ(r′)

[
∂ρ(r)
∂N

]
v(r′)

[
∂ρ(r′)
∂N

]
v(r′)

=
∫

dr
∫

dr′f (r)η(r, r′)f (r′), (8.15)

where η(r, r′) is the hardness kernel [46, 47]

η(r, r′) = δ2F [ρ(r)]
δρ(r)δρ(r′)

, (8.16)

f (r) =
[
∂ρ(r)
∂N

]
v(r′)

(8.17)

is the Fukui function and F [ρ(r)] is the Hohenberg–Kohn universal density
functional (Chapter 5)

F [ρ(r)] = T [ρ(r)] + J [ρ(r)] + Exc[ρ(r)], (8.18)

Equation (8.15) may be interpreted as a self-similarity of the Fukui function with
the hardness kernel η(r, r′) as the corresponding separation operator. Simple
models for the hardness kernel, such as the Dirac delta form η(r, r′) ≈ (δr − r ′)
and the Coulomb form η(r, r′) ≈ |r − r′|−1, have been shown to give good
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approximations for the global hardness and reasonable trends for the quantum
similarities of atoms and molecules [48–50]. The Coulomb form is, in fact, the
leading contribution to the hardness kernel, arising from the dominant, classical
Coulomb repulsion term J [ρ(r)] in the expression (Eq. 8.18) for F [ρ(r)]

J [ρ(r)] = 1/2
ρ(r)ρ(r′)
|r − r′| . (8.19)

Boon et al. [51] introduced a similarity index based on the local softness

S(r) =
[
∂ρ(r)
∂N

]
v(r)

[
∂N

∂μ

]
v(r)

, (8.20)

where

S =
[
∂N

∂μ

]
v(r)

(8.21)

is the global softness (Chapter 5). This gives a Carbó-type similarity index

CS
AB =

∫
sA(r)sB(r) dr√∫

s2
A(r) dr

∫
s2

B(r) dr
, (8.22)

=
∫

fA(r)fB(r) dr√∫
f 2

A(r) dr
∫

f 2
B(r) dr

, (8.23)

which depends only on the Fukui functions. The corresponding Hodgkin and
Richards-type similarity index

HAB
S = 2

∫
sA(r)sB(r) dr∫

s2
A(r) dr + ∫

s2
B(r) dr

, (8.24)

depends on both the Fukui functions and the global softness. These reactivity-
based similarity indices capture different and complementary information to that
based on the electron densities alone. Further applications of reactivity-based
indices are described in Chapter 7.

All these molecular quantum similarity measures depend on the relative posi-
tions and orientations of the molecules in three-dimensional space. The problem
of molecular alignment thus requires serious consideration in molecular similar-
ity assessment. The molecular alignment protocol is not only arbitrary, algorithm
dependent, and thus not unique, but also computationally intensive for all but
the smallest of molecules. The simplest commonly used protocols include super-
position of the center of charge, or for small molecules, superimposing only the
heavy atoms. The algorithm dependence of the molecular quantum similarity
measures can be illustrated for the case of similarity analysis of the (R)- and (S)-
enantiomers of CHFClBr, as given in Table 8.1. Superimposing different atoms
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TABLE 8.1 Global Similarity Analysis of R and S Enantiomers of
CHFClBr Using the Hirshfeld Partitioning Schemea

Superimposed Atoms Carbó Index CRS

Cl, C, Br 0.990
F, C, Br 0.915
H, C, Br 0.906
F, C, Cl 0.098
H, C, Cl 0.089
H, C, F 0.054

Superimposing different atoms leads to different similarity measures, with the
highest global similarity obtained when the atoms with the most electrons (Cl and
Br) are superimposed.
aAdapted from References 20 and 53.

leads to very different similarity measures, with the highest global similarity
obtained when the atoms with the most electrons (Cl and Br) are superimposed
[52, 53]. Alignment based on a structural motif or pharmacophore (a 3D descrip-
tor designed to represent a spatial combination of features responsible for a drug’s
geometry-dependent biological activity), such as the topogeometrical superposi-
tion algorithm [54], is useful for systems with a common functional group or
substructure. None of these alignment schemes is more “correct” than another,
just as no similarity index is more “correct” than another. It is important to
choose an alignment protocol based on the goals of the analysis. Since electron
densities are heavily concentrated around the nuclei, similarity indices based on
the density can give exaggerated weight to small mismatches in regions of space
with high electron density, for example, in the vicinity of nuclei, when comparing
molecules with slightly different geometries. Bultinck et al. [55] introduced the
QSSA algorithm that aligns molecules by maximizing their quantum similarity
measure. This method gives internally consistent, globally maximal similarities,
but this is achieved by superimposing the heaviest atoms and not necessarily the
most similar functional groups.

Spatial autocorrelation functions [56] can be used to circumvent the need for
molecular alignment, thus eliminating one of the major computational bottlenecks
in molecular quantum similarity analysis

A(Rxy) = (1/n)�x,yPxPy, (8.25)

where Px and Py are properties of points x and y on the molecular van der Waals
surface, binned by the distance Rxy between them. Alternatively, topological
autocorrelation functions [57] can be defined through the relation

A(d) = �iPiPi+d, (8.26)

where Pi and Pi+d are atomic properties of two atoms i and i + d separated by
d bonds. Boon et al. [58] studied both types of autocorrelation functions using



ELECTRON-DENSITY-BASED SIMILARITY ANALYSIS 213

the electron density ρ(r), the MEP ve(r), and the local softness s(r). Similarity
measures may be constructed from these autocorrelation functions either by
computing the Euclidean distance D between a pair of molecules

DAB =
√∑

d
[AA(d) − AB(d)]2 (8.27)

or by constructing Carbó or Hodgkin-Richards-type similarity indices from them

C ′
AB = �dAA(d)AB (d)√

�dA
2
A (d)�dA

2
B (d)

, (8.28)

H ′
AB = 2�dAA(d)AB(d)

�dA
2
A(d) + �dA

2
B(d)

. (8.29)

In many applications in chemistry and biology, it is the similarity of certain
parts of the molecules, rather than their global similarity, that is of interest.
Since information on the global electron density is contained in any finite
subdomain �, one can define local similarity indices, such as the local Carbó
overlap similarity index

CAB
(�) =

∫
�ρA(r)ρB(r) dr√∫

�ρ2
A(r) dr

∫
�ρ2

B(r) dr
. (8.30)

Investigation of CAB
(�) for the (R)- and (S)-enantiomers of CHFClBr [52, 53]

with Hirshfeld atomic subdomains (Chapter 4) reveals that the local electron
density is not superimposable (CAB

(�) �= 1), even in atomic regions other
than the asymmetric carbon. Information about chirality can thus be obtained
from the electron density in any arbitrary finite subdomain, as required by the
holographic electron density theorem.

Girones and Ponec [59] used the domain-averaged Fermi hole density g�(r)
[60, 61]:

g�(r1) = N�ρ(r1)—2
∫

�

ρ(r1, r2)dr2, (8.31)

where N(�) =
∫

�

ρA(r)dr (8.32)

is the mean number of electrons in the domain � and ρA(r1,r2) is the pair density,
to define the fragment molecular quantum self-similarity measure for fragment A

ZAA
(�) =

∫
�

gA
�(r)gA

�(r)dr, (8.33)
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Matta [62] proposed using the integral of the Laplacian of the electron density
(chapter 4) to define a similarity index for a pharmacophore that reflects
the reactivity of the molecule without being biased by small nuclear cusp
mismatches:

R�∪�′ =

∫

�∪�′
∇2ρ(r)≥0

∇2ρ�∇2ρ ′
�dv

√√√√√√
∫

�

∇2ρ(r)≥0

∇2ρ�′dv

∫

�′
∇2ρ(r)≥0

∇2ρ�dv

. (8.34)

8.3 MOLECULAR SIMILARITY MEASURES FROM CRITICAL
POINTS OF THE ELECTRON DENSITY

Determination of similarity indices by superposition of densities (or density-
derived properties) at all points in space is computationally expensive. Further-
more, as discussed above, such superposition is arbitrary, not uniquely defined
and severely biased by the density contributions from the atomic core regions.
Paul Popelier [63, 64] proposed a molecular similarity measure based on the
topology of the electron density field. Popelier’s scheme, called quantum topolog-
ical molecular similarity (QTMS) [65, 66], utilizes properties (such as the electron
density ρb, Laplacian ∇2ρb, bond ellipticity εb, and kinetic energy Kb) of the bond
critical points of the electron density, thereby avoiding both the computationally
intensive spatial integrations and molecular alignment problems of Carbó-type
similarity indices; it is also not dominated by contributions from the core den-
sities. These bond critical point properties can be used to compute a Cartesian
distance measure between any pair of critical points (and thus between any pair of
molecules sharing a common skeleton) in an abstract bond critical point space [63,
64] or utilized as descriptors in a PLS regression equation [65, 66] to construct
a QSAR model for the property of interest. Popelier’s first analysis [63] simply
mapped all the critical points in a set of molecules onto an abstract 3D Cartesian
space, called the BCP space (Fig. 8.3), the axes of which were the bond critical
point properties ρb,∇2ρb, and εb. It was demonstrated that a simple Cartesian dis-
tance measure in this BCP space yielded a good regression for the Hammett [6, 7]
σ parameter of para-substituted benzoic acids. In subsequent analyses, Popelier et
al. used the PLS method [67–69] to construct latent variables from the bond crit-
ical point descriptors that maximize the variance in the set of data. These latent
variables were then regressed against the molecular property to be predicted, such
as the Hammett σ parameter [65], the bond dissociation energy [66], the acid dis-
sociation constant pKa [70], or the proton affinity pKb [71]. This method, termed
QTMS [65], is also successful at identifying a molecular fragment containing the
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Figure 8.3 The critical points in a set of molecules mapped onto the BCP space [63].
(Reproduced with permission from Popelier PA. J Phys Chem A 1999;103:2883–2890,
Copyright 1999 American Chemical Society.)

active center responsible for the QSAR. In other words, the molecular fragment
responsible for a given biological activity is not determined beforehand but is
obtained from the ranking of features in the PLS analysis. For instance, Figure 8.4
shows a variable importance plot of features from a PLS analysis for the Hammett
σ parameter of trisubstituted benzoic acids [65]—the most important features
arise from the BCP descriptors of bonds in the carboxyl group. Similarity metrics
employing BCP properties are most useful when the molecules to be com-
pared have a common structural core containing a common number of critical
points.

It should be reiterated that critical points obtained from experimental elec-
tron density distributions depend on the level of crystallographic resolution.
Topological analysis of molecular electron density maps at atomic resolution
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Figure 8.4 Variable importance plot of features from a PLS analysis for the
Hammett σ parameter of trisubstituted benzoic acids [65]. (Reproduced with permission
from O’Brien SE, Popelier PA. J Chem Inf Model 2001;41:764–775, Copyright 2001
American Chemical Society.)

shows peaks and [3, −1] saddle points at the positions of atomic nuclei and
chemical bonds, respectively (Chapter 4). At lower crystallographic resolutions,
as commonly obtained from X-ray diffraction data for biological macromolecules,
these critical points can merge and the critical points seen can be representative
of groups of atoms rather than the atoms themselves. For example, Figure 8.5
shows the critical point graphs obtained from topological analysis at (a) 2.5 Å and
(b) 3.0 Å resolution maps of the electron density for four benzodiazepine-type
molecules. Leherte et al. [72] developed a method for similarity comparison of
molecular electron density distributions at various levels of crystallographic reso-
lution from critical point analysis. In this method, the critical points are converted
to fully connected graphs and each graph represented by a 2D matrix, whose diag-
onal elements are the electron density values at the critical points (both peaks
and saddle points, with different kinds of critical points appropriately weighted)
and the off-diagonal elements are the Cartesian distances between pairs of crit-
ical points. The root mean squared deviation between these matrices for each
pair of molecules is then minimized, using either genetic algorithms or Monte
Carlo simulated annealing, to determine the best alignment. They found that at
3.0 Å resolution, molecules with similar affinities to a biological receptor adopt
a similar topology of their pharmacophore elements, leading to the conclusion
that recognition of a ligand by a receptor is a medium resolution phenomenon.
Molecules capable of binding to a receptor present common topological features
at various levels of resolution.
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Figure 8.5 The critical point graphs obtained from topological analysis at (a) 2.5 Å and
(b) 3.0 Å resolution maps of the electron density for four benzodiazepine-type molecules
[72]. (Reproduced with permission from Leherte L, Meurice N, Vercauteren DP. J Chem
Inf Comput Sci 2000; 40: 816–832, Copyright 2000 American Chemical Society.)

8.4 ELECTRON-DENSITY-DERIVED MOLECULAR SURFACE
DESCRIPTORS

The primary drawback of molecular descriptors and similarity indices derived
from electron density distributions is the intensive computational effort
required to generate them through ab initio quantum chemical calculations.
The transferable atom equivalent (TAE) method [73–75] circumvents this
computational bottleneck through the use of Bader’s Atoms in Molecules
formalism [76] (Chapter 4). By precomputing an extensive library of transferable
atomic fragment densities (the TAE library) from ab initio wave functions,
the RECON algorithm [74, 75] exploits the theory of atoms in molecules for
rapid, high throughput computation of molecular electronic properties from the
atomic charge density fragments stored in the TAE library. Recall that atomic
fragments that satisfy Bader’s virial partitioning prescription have well-defined
properties that are approximately additive and transferable from one molecule
to another. Molecular descriptors can be constructed in most cases by simple
arithmetic operations on the respective atomic descriptors stored in the TAE
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library, making the method well suited for virtual high throughput screening
applications.

Rather than using the density itself for molecular comparisons, TAE descrip-
tors encode the distributions of electron-density-based molecular properties, such
as kinetic energy densities [76], local average ionization potentials [77–80], elec-
trostatic potentials [31–36], Fukui functions [40–45], electron density gradients,
and second derivatives or Laplacian distributions [76]. These density-derived
properties are much more sensitive indicators of the local chemical environment
than is the density itself. For applications involving biomolecular recognition and
other noncovalent interactions, it is most useful to employ descriptors mapped
onto the van der Waals surface of the molecule. In computational applications, the
van der Waals surface is well approximated by an electron density isosurface with
ρ(r) = 0.2 electrons per cubic Bohr. Surface integrals, extrema, and histogram
bins of density-derived surface properties have been employed as descriptors.
In addition, integrated atomic properties (integrated over the atomic basins) are
also employed, often as autocorrelation functions (see below). TAE descriptors
are generally used in conjunction with modern machine learning (classification
or regression) techniques [69, 81–90], a training set of molecules with known
activity, feature selection algorithms [91, 92], and rigorous validation protocols
[93–96] to generate predictive models within a well-defined domain of appli-
cability [12, 97]. Applications to the prediction of small molecule toxicity [75],
polymer glass-transition temperatures [75], chromatographic column retention
times and selectivity [98–102], antibody binding sites on antibiotics [36], tran-
scription factor binding sites on DNA sequences [103], and classification of
odorants [104] have been reported.

One of the most commonly used and well-known electron-density-derived
descriptors is the MEP (Eq. 8.8). The van der Waals surface integrals, extrema,
and histogram bins of ve(r) have been commonly employed as descriptors
[32–36, 83, 84, 98–102]. Quantitative correlations of the values of electrostatic
potential minima with the carcinogenic activity of molecules [31] showed
the promise of this descriptor for biological and environmental applications
and paved the way for its extensive use [33] in QSAR and drug design.
Histogram bins of ve(r) also map the polar and hydrophobic regions of a
molecule. Electropositive and electronegative regions of the molecular surface
are represented by the high and low histogram bins of MEP, respectively, while
the middle bins correspond to hydrophobic regions. The electrostatic potential is
associated with many other molecular and intermolecular phenomena, including
acid–base interactions, solvation behavior, and pKa correlations [33–35], as
well as protein–ligand and protein–DNA binding.

Perhaps the simplest electron-density-derived descriptor, besides the density
itself, is the gradient of the electron density normal to the molecular van der
Waals surface (∇ρ·n, where n is the surface normal). ∇ρ·n has been employed
to distinguish soft, polarizable regions of the electron density from regions where
the electron density is more tightly bound. The values of ∇ρ·n are much smaller
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over electron-rich π systems and aromatic rings than over polarized or electron-
deficient alkyl carbons. Since ρ(r) decreases away from the attractors, ∇ρ·n is
always negative; large negative values of ∇ρ·n indicate that the electron density
of the underlying molecular region is more tightly held and less likely to extend
very far from the molecule.

In Chapter 4, we have seen that the electronic kinetic energy density distribu-
tion can be represented in either the gradient form

G(r) = −∇ψ∗ · ∇ψ, (8.35)

or the Schrödinger form

K(r) = −(ψ∗∇2ψ + ψ∇2ψ∗). (8.36)

Either or both of these quantities may be employed as molecular descriptors.
Imbalance between K and G is responsible for nonzero values of the Laplacian
(∇2ρ), the trace of the second-derivative matrix of the electron density at any
point in space

L(r) = −1

4
∇2ρ(r) = K(r) − G(r). (8.37)

The Laplacian has been extensively studied by Bader et al. [76], who identi-
fied this quantity as a useful descriptor in quantifying donor/acceptor interac-
tions and selectivity toward electrophilic aromatic substitution [76, 105]. Since
the Laplacian reflects overall normalization of the molecular electron density
(
∫

L(r)dr = 0), Laplacian peaks in the outer core and valence regions are often
matched by “shadows” of these internal Laplacian extrema, of opposite sign,
on the molecular van der Waals surface. Thus, less negative regions of surface
values of K often indicate the presence of Brönsted bases. The rate of change
of the electronic kinetic energy density normal to and away from the molecular
surface (∇Kn) has also been used to describe differences in the polarizability
and hydrophobicity of molecular regions [76, 106, 107].

We have already encountered the application of the Fukui reactivity indices
(Eq. 8.17 above and Chapter 7) to molecular similarity analysis. Since the number
of electrons N can vary in integer increments, the derivative in Equation (8.17)
is discontinuous and thus not uniquely defined. One can define three different
Fukui indices depending on whether one takes the limit as δN → 0+, δN → 0−
or the average of the two limiting expressions. Using the Koopmans theorem,
these indices may be approximated as

f −(r) =
[
∂ρ(r)
∂N

]
v(r); δN→0−

≈ ρHOMO(r), (8.38)

f +(r) =
[
∂ρ(r)
∂N

]
v(r); δN→0+

≈ ρLUMO(r), (8.39)
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and
f 0(r) ≈ 1/2[ρHOMO(r) + ρLUMO(r)], (8.40)

which describe reactivity toward electrophilic, nucleophilic, and radical attack,
respectively.

One of the most interesting descriptors derived from the electron density is
the local average ionization potential, I , of Politzer et al. [77–80]:

I (r) =
∑

i

ρi(r)|εi |
ρ(r)

, (8.41)

where the summation runs over the occupied orbitals, εi are the orbital energies,
and the molecular surface is thus encoded with energy-weighted orbital densities
ρi. I (r) identifies hard regions of the electron density (represented by maxima or
high bins of local average ionization potential on the molecular surface) and soft,
electron-donor, or hydrogen-bond-acceptor regions (corresponding to minima or
low bins of I (r) on the surface). I (r) has been found to be important in describing
differential solubility, donor/acceptor, and hydrophobic/hydrophilic interaction
tendencies, as well as intermolecular binding modes, such as induced-dipole and
protein–DNA interactions. In a variant of the TAE method, I (r) and MEP have
been employed to reconstruct the chemical properties of DNA sequences through
electron density characterization of DNA fragments consisting of three stacked
base pairs [103]. Ab initio electronic structure calculations were first performed
on all possible sets of three stacked base pairs, with the central base pair residing
in the electronic environment of the flanking base pairs. The local electronic
environments induced by neighboring base pairs were observed to have a strong
influence on electronic properties, such as ve(r) and I (r). The surface electron
density properties of the central base pair of each triplet constituted a library of
base pairs (with their local electronic environment), which was then employed
to reconstruct the properties of any arbitrary DNA sequence. Figure 8.6 shows
a rectangular grid of pixels on the major groove surface of DNA (the “Dixel”
representation), colored by discretized values of I (r) and MEP.

In a similar manner to the local ionization potential, the local electron affinity
may be defined as

E(r) = − ∑N
i=LUMO ρi(r)|εi |∑N
i=LUMO ρi(r)

(8.42)

This and other descriptors from conceptual DFT (Chapter 7), such as the elec-
tronegativity

χ(r) ≈ 1/2[I (r) + E(r)], (8.43)
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Figure 8.6 The “Dixel” representation: a rectangular grid of pixels on the major groove
surface of DNA, colored by discretized values of I (r) and MEP [103]. (Reproduced
with permission from Sukumar N, Krein M, Breneman CM. Curr Opin Drug Discov Dev
2008;11(3):311–319, Copyright 2008 Thomson.) See insert for color representation of the
figure.

local hardness

η(r) ≈ 1/2[I (r) − E(r)], (8.44)

and local polarizability

α(r) = − ∑N
i=1 ρ ′

i (r)qiai(r)∑N
i=1 ρ ′

i (r)qi

, (8.45)

have been employed within the framework of semiempirical MO theory [13,
14]. Ehresmann found that the local electron affinity, local hardness, and local
polarizability showed little correlation with other descriptors in common use and
thus these descriptors effectively extend the variance of the descriptor set [13, 14].
The use of such local electron-density-derived descriptors increases the likelihood
of scaffold hopping (i.e., switching from one structural type to another) in QSAR
and virtual screening applications and can thus lead to more robust and general
QSPR models.
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8.5 ALIGNMENT-FREE MOLECULAR SHAPE AND ELECTRONIC
PROPERTY DESCRIPTORS

Histogram distributions of molecular surface properties generated by TAE recon-
struction from fragments are insensitive to molecular conformation, while the
corresponding properties from ab initio methods are much more computationally
intensive to generate. Molecular interaction fields are not only computationally
intensive but also alignment dependent. Three-dimensional shape information
can, however, be incorporated within the TAE RECON formalism in a com-
putationally inexpensive implementation (RECON Autocorrelation Descriptors)
[75] through property autocorrelation functions of the type (Eq. 8.25), where
Px and Py are atomic properties of atoms x and y, binned by the distance Rxy

between them for each TAE property P. An analogous scheme using autocorrela-
tion functions of sequence-derived properties has also been employed for amino
acid sequences characterizing proteins [108], employing Equation (8.26), where
Pi and Pi+d are the values of a particular property for a pair of amino acids i

and i + d separated by d residues along the protein sequence. Autocorrelation
descriptors measure the correlation of a property with itself measured along the
sequence (topological, conformation-insensitive autocorrelations) or through 3D
space (spatial, conformation-sensitive autocorrelations).

Constructing a shape signature of electron-density-derived properties on the
molecular surface is another means of retaining conformation and shape sensi-
tivity without the need for molecular alignment. The Zauhar shape signatures
method [109, 110] uses a ray-tracing procedure within the interior of the molec-
ular envelope (defined by either the van der Waals or solvent-accessible surface).
Ray-length and angle-of-reflection information are recorded at each point of inter-
section of the ray with the surface (Fig. 8.7). This encoding of molecular shape
through the distribution of ray lengths rapidly generates a compact fingerprint
(shape signature) for each molecule without computationally intensive 3D align-
ments between molecules. The property-encoded surface translator (PEST) [111]
method extends this formalism by recording TAE surface property information
at each point of intersection of the ray with the molecular surface. Descrip-
tors are encoded as two-dimensional histograms and wavelet coefficients [112]
and used directly in machine learning algorithms for both similarity assessment
and QSAR/QSPR. Descriptors incorporating both shape and electronic property
information may thus be generated not only for whole molecules but also for
molecular fragments and binding pockets. Property-encoded shape distributions
(PESD) [113–115] have been used to compare similarities in shape and property
distributions on the surfaces of protein binding sites in a sequence and fold-
independent manner. Shapes and electronic properties of protein binding sites
are often conserved without significant conservation of the amino acid residues
in the sequence. PESD signatures (Fig. 8.8) employed MEP and MLP (molecular
lipophlicity potential) to find binding sites of high similarity even in the absence
of sequence similarity and to predict the binding affinities of protein–ligand
complexes.



ALIGNMENT-FREE MOLECULAR DESCRIPTORS 223

Figure 8.7 PEST ray trace showing ray length and angle-of-reflection information
recorded at each point of intersection of the rays with the molecular surface [111]. (Repro-
duced with permission from Breneman CM, Sundling CM, Sukumar N, Shen L, Katt WP,
Embrechts MJ. J Comput Aided Mol Des 2003;17:231–240, Copyright 2003 Springer.)
See insert for color representation of the figure.

Property moments may also be used to define descriptors combining shape
and electronic property information [75]. The ultrafast shape recognition (USR)
similarity search tool developed by Ballester and Richards [116–118] employs
molecular shape moments with respect to a small set of well-defined points
within a molecule: namely the centroid (ctd ), the closest atom to the ctd (cst),
the farthest atom from the ctd (fct), and the farthest atom from the fct (ftf ). The
USR algorithm is also alignment-free and extremely fast, well suited for high
throughput applications and has been shown to perform well at shape classifica-
tion [118]. Combining electrostatic information with shape recognition methods
[75, 119, 120] incorporates electrostatic complementarity into the description of
molecular interactions. In RECON [75], TAE property moments with respect to
ctd, cst, fct , and ftf

USPmk =
∑

i

PiR
m
ik (8.46)

are computed for each TAE property P, where the summation i runs over all
atoms in the molecule, m = 1, 2, 3 (corresponding to first, second, and third
moments), and k = ctd, cst, fct, ftf , thereby generating rapid shape-electronic-
property hybrid descriptors for high throughput screening applications. Adding
both chirality and electrostatic complementarity to USR has been shown to result
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Figure 8.8 Construction of PESD signatures employing MEP and MLP [114]. (Repro-
duced with permission from Das S, Krein MP, Breneman CM. J Chem Inf Model 2010;
50 (2): 298–308, Copyright 2010 American Chemical Society.) See insert for color rep-
resentation of the figure.

in significant enrichment in virtual screens [119, 120]. The ability to distinguish
enantiomers is thus of utmost importance in the study of biomolecule interactions
and in drug design. Nine of the top ten drugs on the market today have chiral
active ingredients. There are several drugs (such as the β-blocker Propanolol),
where one enantiomer is several orders of magnitude more potent than the other,
and even some drugs (such as L-Dopa, used to treat Parkinson’s disease) where
the enanctiomer (R-Dopa) is toxic! Armstrong’s chiral shape recognition (CSR)
method builds on USR without significant computational overhead by includ-
ing moments with respect to a fourth centroid, defined through a cross product
operation: parity inversion changes the signs of all coordinates except that of
the fourth centroid, so that the moments with respect to this fourth centroid are
different for any chiral molecule and its enantiomer.

8.6 NETWORK GRAPHS FROM MOLECULAR SIMILARITY

Let us conclude this chapter by bringing the discussion back to where we started,
namely the molecular similarity principle in drug design, which provides much
of the motivation for the study of molecular similarity. As we have seen, the
enormous size of chemistry space makes its thorough exploration impossible.
Therefore, a key consideration in drug design is devising strategies to optimally
direct research efforts toward regions of chemistry space that are most likely to
contain molecules with useful biological activity. The regions of chemistry space
that have been explored through experimental investigations—or even through
detailed computations—are extremely limited and constitute an obviously
biased sample. Chemists isolate, synthesize, and study molecules for a variety
of intellectual, sociological, and practical reasons. Thus it is not even clear
whether different regions of chemistry space or chemistry spaces constructed
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using different descriptors or different similarity metrics need have any common
characteristics or whether the network topology of chemistry spaces should
resemble that of biological networks or of social networks.

Any of the molecular similarity measures discussed in this chapter can be
employed to construct a network representation of chemistry space, where each
molecule is a node of the network and a discretized similarity measure is used
to define the edges. The degree distribution P(k) of a network is the probability
that a given node in a network has exactly k links or connections to other nodes.
Investigations of a number of chemistry space networks using a variety of similar-
ity measures, including electron-density-based ones with the TAE method [121],
reveal a heavy tail degree distribution [121–123] characteristic of a small-world
network, where the probability that a node has k links approximates a power-law
degree distribution P(k) ∼ k−γ . Such distributions appear linear on a plot of log
P(k) versus log k (Fig. 8.9), and nodes whose degrees deviate significantly from
the average degree are extremely rare. The properties of such a scale-free net-
work are often determined by a relatively small number of highly connected nodes
(called hubs). Hubs in chemistry space are represented by molecules with high

0

6 7 8

Log number of connections (log k)

ZINC database, Atomtyper level 1 scaling

9 10

2

4

6

Lo
g 

nu
m

be
r 

of
 n

od
es

 w
ith

 k
 c

on
ne

ct
io

ns

8

10

12

Figure 8.9 The probability that a node of a chemical space network has k links approx-
imates a power-law degree distribution P(k) ∼ k−γ , as shown by the linear plot of log
P(k) versus log k [121]. (Reproduced with permission from Krein MP, Sukumar N.
J Phys Chem A 2011;11:6, Copyright 2011 American Chemical Society.)
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leverage in structure–activity relationship models. Such molecules are important
for maintaining the diversity of a chemical library and for ensuring good predic-
tive performance of structure–activity relationship models across a wide domain
of applicability. This ability to identify diverse structures spanning very different
bond frameworks or structural scaffolds with similar activities (scaffold hopping)
is of great importance for drug design.

Relating chemical similarity to similarity in biological activity produced by
the molecules introduces another level of complication [124]. The similarity
principle, that similar molecules should exhibit similar activities in biological
assays, is a fundamental assumption implicit in QSAR studies. Deviations from
the similarity principle [2] lead to the failure of QSAR models [125]. Maggiora
[3] postulated that such deviations arise on account of the complex nature of
the activity landscape associated with biological assays, and he coined the term
“activity cliffs” to characterize such regions of the structure–activity landscape.
In Maggiora’s topographical metaphor, smooth regions of the structure–activity
landscape (either flat, like Kansas, or like the rolling hills of England) are those
that best satisfy the similarity principle. Activity cliffs may be characterized using
measures such as the structure–activity landscape index (SALI) [126, 127]

SALIi,j = |Ai − Aj |
{1 − sim(i, j)} , (8.47)

where Ai and Aj are the activities of the ith and the j th molecules and sim(i, j )
is the similarity coefficient between the two molecules. This quantifies the change
in biological activity produced by a given change in chemical structure. Utilizing
a cutoff value of the index, one can represent sets of molecules through network
graphs that highlight abrupt changes in biological activity associated with the
steepest cliffs. Steep activity cliffs (Bryce canyonlike regions), associated with
high SALI values, represent the most challenging regions of a structure–activity
relationship to model with a QSAR, but they are also the most interesting regions
for purposes of drug design because small structural modifications in a molecule
can lead to a drug with vastly improved potency (a process known as lead
optimization).

Molecular similarity analysis is thus of central importance in understanding
the chemistry of materials and in drug design. The electron density determines all
molecular properties by virtue of the Hohenberg–Kohn and holographic electron
density theorems and it is thus the key determinant of molecular similarity. The
density may be used directly in molecular similarity analysis by means of Carbó-
type similarity indices or indirectly through electron-density-derived descriptors
employed in classification or regression analyses to predict the properties of
molecules yet to be synthesized. Such descriptors may also be used to map out
the topology of chemistry space and to concentrate research efforts in the search
for molecules with specific properties or specific biological activities. Further
examples of the application of electron-density-based descriptors from conceptual
DFT in QSAR were encountered in Chapter 7.
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20. Robert D, Carbó-Dorca R. Int J Quantum Chem 2000;77:685–692.

21. Borgoo A, Godefroid M, Sen KD, De Proft F, Geerlings P. Chem Phys Lett 2004;
399:363–367.

22. Cooper DL, Allen NL. J Am Chem Soc 1992;114:4773–4776.

23. Allen NL, Cooper DL. J Chem Inf Comput Sci 1992;32:587–590.

24. Allen NL, Cooper DL. In: Sen KD, editor. Volume 173, Molecular Similarity , Topics
in Current Chemistry . Berlin, New York: Springer,; 1995. p 86–111.
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9
ELECTROSTATIC POTENTIALS
AND LOCAL IONIZATION ENERGIES
IN NANOMATERIAL APPLICATIONS

Peter Politzer, Felipe A. Bulat, James Burgess,
Jeffrey W. Baldwin, and Jane S. Murray

9.1 THE ELECTRONIC DENSITY

The fundamental importance of the electronic density ρ(r) is well established, for
example, by the famous Hohenberg–Kohn theorem [1]. In terms of understanding
and predicting chemical reactive behavior, however, the total electronic density
is not very informative. A two-dimensional plot of ρ(r) for a molecule typically
shows merging circular isodensity contours centered on the nuclei. This is because
the molecular electronic density differs only slightly (but crucially) from the
superimposed atomic densities. See, for instance, Hazelrigg and Politzer [2] and
Iwasaki and Saito [3].

More interesting is the density difference �ρ(r), obtained by subtracting from
the ρ(r) of the molecule the electronic densities of its constituent atoms, placed
at the same positions as they occupy in the molecule. A plot of �ρ(r) shows very
clearly the electronic charge buildup in certain regions and depletion in others that
accompanies the formation of the molecule, and emphasizes the subtlety of these
changes. The study of �ρ(r) was at one time an area of considerable activity
[2, 4, 5], and �ρ(r) continues to be used in crystallography [3, 6]. There is
an element of ambiguity, however, in deciding whether to subtract the densities
of the atoms in their ground states or in their valence states. This ambiguity
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can be avoided by looking at the Laplacian of ρ(r), ∇2ρ(r), which also reveals
electronic charge buildup and depletion [7, 8].

However, any attempt to analyze and predict chemical reactivity from the
electronic density alone is ignoring the role of the positively charged nuclei.
A reactant A that approaches a molecule B encounters not only the negative
electrostatic effect of the electrons of B but also the positive one of its nuclei.
Both need to be explicitly taken into account in making predictions.

In this chapter, brief overviews of two complementary molecular properties
that provide, together, a realistic basis for understanding molecular reactivity
are presented. These are the electrostatic potential V(r) and the average local
ionization energy I (r). As shall be seen, both are formally related to ρ(r), but
they go beyond ρ(r) in terms of insight into the electrostatics and the energetics
of reactive behavior.

9.2 THE ELECTROSTATIC POTENTIAL

According to Coulomb’s law, a stationary point charge Q1 creates a potential
V (R) at any distance R that is given simply by

V (R) = 1

4πε0

Q1

R
, (9.1)

where ε0 is the permittivity of free space, a constant. V (R) can be regarded
as the “potential” of Q1 to interact with another point charge Q2 placed at the
distance R. Their interaction energy would be

�E = 1

4πε0

Q1Q2

R
. (9.2)

If Q1 and Q2 have the same sign, whether positive or negative, �E is positive
and the interaction is repulsive, and thus destabilizing. If they have opposite
signs, �E is negative and the interaction is attractive, and thus stabilizing.

Equation 9.1 can easily be extended to atoms and molecules. Invoking the
Born–Oppenheimer approximation, the nuclei can be treated as stationary point
charges, and Equation 9.1 can be summed over each one. The electrons are
not stationary, but the electron density function ρ(r) gives the average number
of them in each volume element dr, and Equation 9.1 can be applied again,
but now integrating (rather than summing) over the infinite number of volume
elements dr. Thus, the potential created at any point r by the nuclei and electrons
of the molecule is given by

V (r) = 1

4πε0

[∑
A

ZAe

|RA − r| − e

∫
ρ(r′)dr′

|r′ − r|

]
. (9.3)
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In Equation 9.3, ZA is the atomic number of nucleus A and e is the magnitude
of the charge on an electron or proton. Thus, ZAe is the charge on nucleus A,
located at RA and |RA − r| is its distance from the point r. The quantity eρ(r ′)dr′
is the amount of electronic charge in the volume element dr′, at a distance |r′ − r|
from r.

For convenience, V (r) is typically written in terms of atomic units (au). It
then takes the form

V (r) =
∑

A

ZA

|RA − r| −
∫

ρ(r′)dr′

|r′ − r| . (9.4)

Going back to Equations 9.1 and 9.2, it is seen that the potential at R has the
same sign and magnitude as would the interaction energy with a unit positive
point charge. This is true as well for Equation 9.4; V (r) can be viewed as the
interaction energy with a +1 point charge placed at r. For this reason, V (r) is
customarily quoted in units of energy rather than potential. One atomic unit of
energy = 1 hartree = 27.21 eV = 627.5 kcal/mol; 1 kcal/mol = 4.184 kJ/mol.

The sign of V (r) in any region depends on whether the positive contribution
of the nuclei or the negative one of the electrons is dominant there. Note that
Equation 9.4 can be applied to atoms as well as molecules; the summation will
then be over just the one nucleus.

An important feature of the electrostatic potential is that it is a real physi-
cal property, an observable. It can be determined experimentally, by diffraction
techniques [9, 10], as well as computationally. This is in marked contrast to arbi-
trarily defined properties such as atomic charges, for which there is no rigorous
physical basis. They depend very much on the procedure used to assign them.
For instance, six different proposed atomic charge definitions predict the carbon
in CH3NO2 to have charges ranging from −0.478 to +0.564 [11]!

Molecular electrostatic potentials can be presented in various formats, for
instance, as two-dimensional plots in selected molecular planes. In the context
of reactivity, however, an effective approach is to compute V (r) on a molecu-
lar surface, as defined by an outer contour of the molecule’s electronic density
ρ(r) [12]. The ρ(r) = 0.001 au (electrons/bohr3) contour is commonly used for
this purpose; it generally encompasses at least 96% of the molecule’s electronic
charge [12]. Taking a contour of ρ(r) to define the surface has the significant
advantage that it reflects features specific to that molecule, for example, lone
pairs, π electrons, strained bonds, etc. The 0.001 au contour is normally beyond
the van der Waals radii of the constituent atoms (except for hydrogen) [13],
and the V (r) on this surface shows realistically what another entity “sees” as it
approaches the molecule.

The electrostatic potential on a 0.001 au molecular surface is denoted VS(r).
Its most positive and most negative values (maxima and minima) are labeled
VS, max and VS, min; there may be several of each on a given molecular surface.
(Note that while the only maxima in V (r) occur at the nuclei [14], there can exist
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Figure 9.1 Color-coded diagram of the electrostatic potential on the molecular surface
of 4-hydroxy-1,3-thiazole computed at the B3PW91/6-31G(d,p) level. The locations of
the atomic nuclei are visible through the surface; sulfur is at the top, and nitrogen is at
the lower right. Color ranges, in kilocalories per mole, are red > 15.0 > yellow > 0.0 >

green > − 8.0 > blue. (See insert for color representation of the figure.)

maxima in VS(r) because it is defined on the molecular surface, a two-dimensional
subdomain of three-dimensional real space.)

Our experience has been that most organic molecules have weakly positive
potentials over much of their surfaces, becoming stronger in the vicinities of
acidic hydrogens. Negative VS(r) values are associated primarily with lone pairs,
π electrons of unsaturated molecules, and strained C–C bonds [15]. To illustrate,
Figure 9.1 displays VS(r) on the 0.001 au surface of 4-hydroxy-1,3-thiazole,
1, computed at the density functional B3PW91/6-31G(d,p) level [16] with the
WFA-Surface Analysis Suite [17].
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Figure 9.1 shows strongly negative potentials associated with the nitrogen and
oxygen lone pairs and with the π electrons. Their VS, min, are, respectively, −24.8,
−24.4, and −11.4 kcal/mol. The nitrogen lone pair would normally have a more
negative VS, min, but it is partially neutralized by the proximity of the hydroxyl
hydrogen. The most positive regions are near the hydrogens, the strongest being
due to the hydroxyl hydrogen, VS, max = 47.9 kcal/mol. It is to be noted that the
sulfur has both positive and negative potentials on its surface. This exemplifies
the fallacy, discussed in detail elsewhere [18, 19], of treating atoms in molecules
as having only positive or only negative charges.

While the emphasis in this chapter is on chemical reactivity, the electrostatic
potential is of much greater and more fundamental significance. For example,
the energies of atoms and molecules can be expressed rigorously in terms of
their electrostatic potentials, specifically at the positions of the nuclei [20, 21].
Realistic covalent radii can be determined from the minimum of V (r) along the
internuclear axis of two bonded atoms [22, 23]. These and other aspects of atomic
and molecular electrostatic potentials are discussed in detail in several reviews
[19, 20, 24].

9.3 THE AVERAGE LOCAL IONIZATION ENERGY

The energy Ii required to remove an electron i from an atom or molecule is
a global property of the atom or molecule as a whole and is often associated
with a particular atomic or molecular orbital ϕi . However chemical reactivity
is local and site specific. For analyzing and understanding reactive behavior, it
would therefore be useful to be able to identify and rank particular sites where
the electrons are least strongly held, where they are most available, as well as
where they are tightly bound. The average local ionization energy, I (r), serves
this purpose. It focuses on the point in the space of the atom or molecule, rather
than on a particular orbital.

How can one formulate a local ionization energy? Within the framework of
Hartree–Fock theory, the ionization energy of an electron i in orbital ϕi of a
molecule X is given by

Ii = E(Xi
+) + E(e−) − E(X), (9.5)

where E (X) and E (Xi
+) are the energies of X and the positive ion formed from

X by loss of an electron from orbital ϕi . From Equation 9.5 and the Hartree–Fock
expressions for E (X) and E (X+

i ), it readily follows that

Ii = |εi |, (9.6)

where εi is the energy of an electron in ϕi . Equation 9.6 is based on a major
assumption, which is that the occupied orbitals of X are unaffected by the loss of
electron i . This assumption finds some support in Koopmans’ theorem [25, 26]
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and also benefits from a fortuitous partial cancellation of errors; this has been
discussed in detail by Politzer et al. [27]. In practice, Equation 9.6 has been
found to be reasonably accurate at the Hartree–Fock level for estimating the first
ionization energy of an atom or molecule, that is, when φi is the highest occupied
orbital, but less effective for the lower ones [27].

If ρi(r) is the electron density corresponding to Hartree–Fock orbital ϕi(r),
and ρ(r) is the total electronic density, then the average orbital energy ε(r) at a
point r is

ε(r) =

∑
i

ρi(r)εi

ρ(r)
, (9.7)

the summation being over all occupied orbitals. Then if Equation 9.6 is assumed
to be valid, Equation 9.7 can be rewritten as

I (r) =

∑
i

ρi(r)|εi |
ρ(r)

. (9.8)

Equation 9.8 defines the average local ionization energy at point r. It was
originally introduced, in the Hartree–Fock framework, by Sjoberg et al. [28]; its
relationship to Equation 9.7 was pointed out later by Nagy et al. [29, 30].

Can the formula for I (r), Equation 9.8, be applied within the context of
Kohn–Sham density functional theory, which is now the dominant approach
in molecular electronic structure calculations? Various aspects of this question
are discussed by Politzer et al. [27], but the general answer has been yes. The
magnitudes of Kohn–Sham orbital energies usually underestimate experimental
ionization energies, while the Hartree–Fock energies overestimate them.

|εi |, Kohn–Sham < Ii, experimental < |εi |, Hartree–Fock (9.9)

However, the key point is that the relative values and the trends, in both the
Hartree-Fock and the Kohn-Sham I (r), have been found to be physically mean-
ingful; see, for example, Sjoberg et al. [28], Murray et al. [31], and Politzer et al.
[32, 33]. Exchange-only Kohn–Sham I (r) has been compared to Hartree–Fock
I (r), both theoretically [34] and computationally [34, 35]. It was found that the
difference is given approximately by the response portion of the Kohn–Sham
potential [34]. Furthermore, for all atoms H through Kr, the difference was
shown to be very small when computed with nearly exact spherically symmetric
wavefunctions [35].

Just as with the electrostatic potential, when analyzing reactivity, we normally
compute I (r) on the 0.001 au molecular surface, yielding I s(r) [17]. This is
shown in Figure 9.2 for 4-hydroxy-1,3-thiazole, 1, computed with the B3PW91/6-
31G(d,p) procedure. In Figure 9.2, our primary interest is in the regions having
the lowest I s(r), that is, the minima IS,min. These indicate the locations of the
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Figure 9.2 Color-coded diagram of the average local ionization energy on the molec-
ular surface of 4-hydroxy-1,3-thiazole computed at the B3PW91/6-31G(d,p) level. The
locations of the atomic nuclei are visible through the surface; sulfur is at the top, and
nitrogen is at the lower right. Color ranges, in electron volts, are red > 14.0 >yellow >

12.0 >green > 10.0 >blue. (See insert for color representation of the figure.)

least tightly held, most reactive electrons. In 1, these are the π electrons (IS,min =
8.7 eV) and the nitrogen lone pair (IS,min = 9.0 eV). It may be surprising that the
oxygen lone pair, despite having a significantly negative VS, min, has a relatively
high IS,min of 10.77 eV. This is just one of many examples showing that I s(r)
and VS(r) do not necessarily show the same trends.

As with the electrostatic potential, the fundamental significance of the
average local ionization energy goes well beyond chemical reactivity. It is
linked to local kinetic energy density, atomic shell structure, electronegativity,
local polarizability/hardness, etc. For overviews of these aspects of I (r), see
Politzer et al. [27, 36].

9.4 REACTIVITY

9.4.1 Overview

Both the electrostatic potential and the average local ionization energy have been
used extensively in analyzing and predicting reactive behavior. This work has
been reviewed elsewhere, both for V (r) [19, 20, 24] and for I (r) [27, 36]. Hence,
we now limit ourselves to a brief overview and then proceed to discuss three
specific areas in greater detail.
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With respect to V (r), the first point to consider is that it is computed using
the average electronic density ρ(r) of the molecule X. The close approach of a
reactant Y will necessarily perturb the ρ(r) of X, and so the V (r) obtained for
isolated X will no longer be valid. This effect can be minimized by determining
V (r) on the 0.001 au surface of X, that is, VS(r), since this lies beyond the van der
Waals radii of the constituent atoms of X (except hydrogen) [13]. However, this
means that V (r) is the most useful, as VS(r), at relatively large X—Y separations,
that is, noncovalent interactions or the early stages of covalent ones.

Thus, strongly positive hydrogen VS, max identify good hydrogen bond donors,
while strongly negative VS, min indicate potential acceptors. Hydrogen VS, max
and basic site VS, min have indeed been demonstrated to correlate well with
hydrogen-bond-donating and hydrogen-bond-accepting tendencies [37]. Another
electrostatically driven interaction is σ -hole bonding, which involves a region
of positive VS(r) on a covalently bonded Group IV–VII atom interacting with a
negative VS(r) site [18, 38, 39]. The importance of σ -hole bonding is increasingly
being recognized.

In some areas, as in pharmacology, patterns of positive and negative surface
potentials that appear to promote or inhibit a particular type of activity may
provide insight into the early stages of large systems “recognizing” each other
[10, 40–42]. Drug–receptor and enzyme–substrate interactions can sometimes
be elucidated in this manner. However, the electrostatic potential on a molecular
surface contains a great deal of information beyond its general pattern of pos-
itive and negative regions and its maxima and minima [17]. Some of this can
be extracted by characterizing VS(r) in terms of quantities such as its average
deviation, positive and negative average values, positive and negative variances,
etc. It has been found that a variety of condensed phase physical properties that
depend on noncovalent interactions can be represented analytically in terms of
subsets of these quantities [43, 44]. These properties include heats of phase tran-
sitions, boiling points and critical constants, solubilities and solvation energies,
partition coefficients, viscosities, diffusion coefficients, surface tensions, etc.

VS(r) can be a very useful guide to noncovalent interactions. However it is not
reliable, except as an adjunct, for processes involving the formation of a covalent
bond. It was already pointed out, in Figures 9.1 and 9.2, that the strengths of
negative potentials do not necessarily correlate with the reactivities of electrons.
The latter requires I s(r); its lowest values, the IS, min, reveal the sites of the
most readily available electrons. For example, in benzene derivatives such as
phenol, the most negative VS, min is generally associated with the substituent. Yet
electrophilic substitution occurs on the aromatic ring. This is correctly predicted
by the minima of I s(r), the IS,min, as is the directing effect (ortho/para or meta)
and whether the substituent activates or deactivates the ring [27, 28, 31–33].

VS(r) and I s(r) can thus be viewed as complementing each other. Indeed,
the regions of negative potential sometimes provide long-range guidance of an
approaching electrophile toward locations of low I s(r) where reaction can occur.
This is illustrated by protonation [45], and by electrophilic attack on furan and
pyrrole [33].
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The IS,min locate the most reactive electrons, and hence the positions most
vulnerable to electrophiles or free radicals. IS,min have also been found to char-
acterize free radical sites, localized multiple bonds, and strained C–C bonds. Such
applications have been summarized by Politzer et al. [27, 36]. Do the IS,max show
where nucleophilic attack is favored? There are some indications that this may
be so [17], but it has not been confirmed.

9.4.2 Noncovalent Interactions: Chemical Vapor Sensing

As mentioned earlier, the molecular electrostatic potential is a reliable guide to
noncovalent interactions [17, 20, 33, 41–45]. In this section, we discuss how the
potential computed on molecular surfaces can be utilized in exploring possible
interactions between gas-phase analytes and sorbent groups in chemical sensing
[46]. The sorbent groups responsible for selectivity are chemically bound to the
surface of a nanoelectromechanical resonator. In particular, low-cost complemen-
tary metal oxide semiconductor (CMOS) nanomechanical resonators have been
functionalized to attract analytes of interest by Baldwin et al. [47–49]. Their
extremely small masses and high surface/volume ratios have demonstrated fem-
togram (10−15 g) sensitivity and such functionalized nanomechanical resonators
emerge as a competitive and complementary method for vapor sensing applica-
tions. These types of low-power chemical microsensors have an important role in
helping to counter, reduce, and eliminate the threats and effects of chemical and
biological agents and high-yield explosives. Note, by way of comparison, that
the canine nose—the most successful detector used at present for vapor sensing
of explosives—has detection limits of 10−12 –10−13 g [50].

Figure 9.3 shows a typical CMOS-integrated bridge resonator with an approx-
imate length of 5 μm, with all-electrical actuation and readout. The shaded area
was chemically functionalized with sorbent monolayers that interact favorably
(and selectively) with analyte molecules in the gas phase. The adsorption of
these molecules onto the surface changes the effective mass of the resonator, and
hence its resonant frequency. Such frequency shifts can then be used to determine
the amount of mass that was added and thus the concentration of the analyte in
the gas phase.

The sensitivity and selectivity toward individual analytes in these microsensors
is dictated by specific molecular interactions that determine sorption thermody-
namics and kinetics [46, 51]. Chemical functionalization with highly selective
sorbent groups is the basis for sensor technology involving nanomechanical res-
onators [47–49]. A key issue to address is the problem of designing functional
sorbent groups to favor the adsorption of target molecules in preference to inter-
ferents present in the environment (e.g., water and vehicle exhaust.). The choices
of functional groups of interest can be narrowed through a detailed understand-
ing of the different types of possible interactions (e.g., acid-base, π –π , hydrogen
bonding, and σ -hole bonding). Weak interactions (in the 2–20 kcal/mol range)
between the functionalized surface and the analyte result in reversible binding,
so that exposure to the analyte vapor produces a measurable frequency response,
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Figure 9.3 (a) Chemically functionalized CMOS nanomechanical resonator (shaded
bridge) with electrical actuation and transduction. (b) Exposure of CMOS nanomechani-
cal resonator to nitrobenzene (analyte), water (interferent), and cyclohexane (interferent)
shows the selectivity of sensor. On the abscissa, f = frequency. (See insert for color
representation of the figure.)
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as seen in Figure 9.3. Reversibility ensures that a fast purge cycle or a quick
heat pulse would be sufficient to release the analyte, thus resetting the sensor
for the next vapor exposure. The functionalized resonator response (calculated
as � frequency/mass delivered) differs for water, cyclohexane, and nitrobenzene
(Fig. 9.3). Note in Figure 9.3 that the resonator response is much greater for
nitrobenzene (a simulant of TNT, 2,4,6-trinitrotoluene) than for the other ana-
lytes. The interaction with nitrobenzene is in fact so strong that it requires a
heating cycle to initiate desorption from the surface.

In this section, we show how the molecular electrostatic potential can be a
valuable tool for elucidating the molecular interactions between sorbent groups
on the resonator surface and the analytes and/or interferents of interest. In partic-
ular, we focus on a specific sorbent group used to functionalize nanomechanical
resonator surfaces: an aliphatic chain that is chemically bonded to the silicon
resonator surface and is terminated by a hexafluoroisopropanol (HFIPA) group
(Fig. 9.4). In our calculations, we simply use HFIPA, 2 to model this sorbent.
We consider its interactions with 2,4-dinitrotoluene (DNT, 3), TNT, 4, and tri-
ethylamine (TEA, 5). DNT, a decomposition product of TNT, is often found in
the headspace over explosives [52].
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Figure 9.4 Schematic view of the interaction of molecules containing nitro groups with
a silicon surface functionalized with HFIPA.
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(a) (b)

Figure 9.5 Calculated molecular electrostatic potentials on the 0.001 au molecular sur-
faces of HFIPA (a) and DNT (b), from B3LYP/6-311G(d,p) wavefunctions. In HFIPA,
the hydroxyl group is at the top; in DNT, the methyl group is at the right. Color ranges,
in kilocalories per mole, are (a, HFIPA) red > 30 > yellow > 17.0 > green > 0.0 >

blue, and (b, DNT) red > 20 > yellow > 13.0 > green > 0.0 > blue. (See insert for
color representation of the figure.)

We have computed the electrostatic potentials VS(r) on the molecular surfaces
of HFIPA, DNT, TNT, and TEA; these surfaces are defined as the 0.001 au
contours of the molecules’ electronic densities. Optimized geometries and their
corresponding wavefunctions were obtained with the Gaussian 09 Suite [16] using
density functional methods: the B3LYP [53–55] energy functional and a triple-
zeta basis set augmented with polarization functions, 6-311G(d,p). We performed
frequency calculations at the same level to confirm that the optimized structures
do indeed correspond to energy minima. The wavefunctions were then utilized to
compute electrostatic potentials VS(r) on the molecular surfaces and to determine
the surface minima/maxima using the WFA Suite [17].

The surface potentials of HFIPA and DNT are shown in Figure 9.5, color-
coded according to the values of VS(r). HFIPA displays a very positive region
(>30 kcal/mol) associated with the hydroxyl hydrogen atom and negative regions
due to the electronegative fluorines in the fluoromethyl groups as well as the
hydroxyl oxygen (in the background). The remainder of the aliphatic backbone
(not shown) is weakly positive. DNT has a positive potential over most of the
aromatic ring, indicating that the ring is deactivated because of the electron-
withdrawing nature of the NO2 groups. Negative VS(r) regions are due to the
nitro oxygens, and weakly positive ones (although stronger than over the aromatic
ring) are around the aromatic and aliphatic hydrogen atoms.

The features outlined above confirm a very obvious interaction possibility
between HFIPA and DNT (Fig. 9.4), which is through the hydrogen bond facil-
itated by the positive VS(r) of the HFIPA hydroxyl hydrogen and the negative
VS(r) regions around the nitro oxygens in DNT. Interestingly, another attractive
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interaction might be between the positive potentials of the methyl or aromatic
hydrogens and the negative regions of the fluorines in HFIPA. These would not
be typical hydrogen bonds because the hydrogens involved are not bonded to
electronegative atoms such as oxygen or nitrogen, although clearly the deac-
tivated aromatic ring plays an equivalent role. We provide evidence that such
C-H—F satellite interactions assist the formation of stable complexes between
HFIPA and DNT, complementing the primary O-H—-O hydrogen bonds.

In order to verify that the sorbent group HFIPA and the analyte DNT inter-
act as described earlier, we have optimized the geometries of several possible
supramolecular HFIPA–DNT complexes. We chose different starting geometries
in optimizing their structures in order to probe various possibilities without bias-
ing the results toward a specific one. Figure 9.6 shows the five most stable
HFIPA–DNT complexes that were found. The most stable is S1DNT-A, with
a calculated binding energy of 7.7 kcal/mol. This complex clearly exhibits an
O-H—O hydrogen bond, but we also observe relatively close contacts between
methyl hydrogens and fluorine atoms, representing weaker C-H—F hydrogen
bonds. The computed H—O and H—F separations in Figure 9.6 are less than
or approximately equal to the sums of the van der Waals radii of the respective
atoms, which are 2.7 Å for both the H–O and H–F pairs [56]. Analogous inter-
actions are observed in S1DNT-B (binding energy = 4.9 kcal/mol); however,
the satellite C-H—F contacts are through a less positive aromatic hydrogen,
which helps to explain the less favorable interaction. S1DNT-C (binding energy
= 3.8 kcal/mol) and S1DNT-D (binding energy = 2.9 kcal/mol) involve only
C-H—F interactions. S1DNT-E shows that when the negative potential around
the fluorines points toward the center of the aromatic ring, which is moderately
positive, some stabilization does take place and results in a rather weakly bound
complex (1.8 kcal/mol). The structures in Figure 9.6 demonstrate the significant
stabilizing effect that can be provided by C-H—F interactions.

The interactions of TNT with HFIPA display features very similar, as expected,
to those described above for DNT and HFIPA. The electrostatic potential on the
molecular surface of TNT, shown by Politzer et al. [57], has features analogous
to that of DNT, taking into account that there is an additional nitro group present.
The most stable HFIPA–TNT complex has a slightly lower binding energy of
6.9 kcal/mol. TEA, on the other hand, interacts significantly less strongly with
HFIPA, binding energy = 4.2 kcal/mol. While TEA does form an O-H—N
hydrogen bond, it does not have the possibility of further stabilization through
C-H—F contacts. Finally, we mention that the interaction of HFIPA with cyclo-
hexane is found to display an even lower stabilization of 2.1 kcal/mol, evidently
because of the absence of any strong hydrogen bonding. More details on these
HFIPA–analyte complexes can be found elsewhere [46].

9.4.3 Covalent Interactions: Graphene

Graphene is a single sheet of carbon atoms having sp2 hybridization that
form a lattice of fused six-membered rings, a conjugated and conducting
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Figure 9.6 Various stable complexes formed between HFIPA and DNT, with binding
energies ranging from 7.7 kcal/mol to 1.8 kcal/mol at the B3LYP/6-311G(d,p) level.
Some key structural elements (distances between closest contacts) are shown. (See insert
for color representation of the figure.)

two-dimensional material that has attracted considerable attention since first
knowingly isolated by Geim et al. [58–60]. Owing to its peculiar band
structure, with a linear dispersion relation around the Fermi level, graphene is a
semimetal or a zero-bandgap semiconductor [61]. Chemical modifications, for
example, oxidation, hydrogenation, and fluorination, are promising routes to
fully exploiting applications of graphene in a wide variety of fields [62–66].
We show here that the average local ionization energy is a valuable tool for
predicting and understanding the reactivity of graphene.
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We take the central ring of coronene (C24H12, 6) as a model for the
six-membered rings of graphene. This model has recently been used to study
the interactions between graphenic-type surfaces and two hydrogen atoms on
the same or opposite sides of the graphene plane [67]. We fully optimized the
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molecular structures of coronene (6) and the 1-H-coronene radical (C24H13,
7), which has a doublet spin state, at the B3PW91/6-311G(d,p) level using
the Gaussian 09 suite [16]. The vibrational frequencies confirmed that the
geometries correspond to energy minima, and molecular wavefunctions were
obtained for these structures. The latter were then utilized to compute the
average local ionization energy I s(r) on the 0.001 au surfaces and to determine
the local minima/maxima using the WFA-Surface Analysis Suite [17].

I s(r) for coronene (6) is shown in Figure 9.7. There are IS,min associated with
each carbon in the central ring, 9.85 eV (above and below the molecular plane),
and also with the six carbons linked to these (e.g., C5 and C8), 9.83 eV. However
the lowest IS,min, 8.88 eV, are near the midpoints of the outermost bonds on the
periphery of 6, for example, C6–C7. This indicates that these outer bonds have
some double bond character [68, 69], which is confirmed by their shorter lengths
(1.37 A) compared to the other C–C bonds in 6, which range from 1.41 A to
1.42 A.

Our present focus is on the central ring exclusively, since this is intended to be
a reduced model for graphenic materials. It has been found to be quite reliable
for this purpose [67]; trends observed for the central atoms of coronene have
been seen to be equivalent to those obtained with much larger models, such as
circumpyrene, C42H16. The carbon atoms in the central ring of 6 are all equivalent
to each other by symmetry, which is of course broken when a hydrogen atom is
added to one of these carbons (labeled C1) to form the 1-H-coronene radical (7).
This creates a radical site at C9.

The I s(r) plots for 7 on both sides of the molecular plane shown are in
Figure 9.8. On the side opposite to the hydrogen atom (a), the ortho and para
positions on the central ring are favored for electrophilic attack, as indicated by
the IS,min above C4 and the two equivalent C2 positions. The values of the IS,min
at the ortho carbons are the lowest associated with the central ring, 9.04 eV, a
significant ∼0.8 eV less than the corresponding IS,min of coronene. The IS,min
at the para position is 9.75 eV, and we found no IS,min near the meta carbons.
These observations correlate very well with recently reported binding energies
for a second hydrogen atom reacting at these sites [67], which indicates that the
ortho and para are greatly favored; the binding energies are 2.89 eV and 1.74 eV,
respectively, significantly stronger than at the meta positions (0.86 eV).

The reactivity of the 1-H-coronene radical on the side of the hydrogen atom
(Fig. 9.8b) is obscured by its presence. (It bonds perpendicularly to the molecular
plane.) There is an IS, min at the para position, with a magnitude of 9.45 eV, and
a second one in the general region of the hydrogen and the two ortho carbons,
9.44 eV. The similarity of these IS, min is consistent with those of the reported
binding energies of a second hydrogen atom at the para and ortho sites, 2.04 and
2.16 eV, respectively [67]. The meta positions display higher IS, min, 9.78 eV, and
they are not favored for reaction, with binding energies of 0.76 eV. Hydrogenation
as well as fluorination of graphene modeled by coronene and by periodic systems
is further discussed elsewhere [70].
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Figure 9.7 Diagram of the average local ionization energy on the molecular surface of
coronene, computed at the B3PW91/6-311 G(d,p) level. Color ranges, in electron volts, are
red >12 > yellow > 10 > green > 9 > blue. The light blue circles indicate the positions
of the local minima found in the central ring. (See insert for color representation of the
figure.)

(a) (b)

Figure 9.8 Diagram of the average local ionization energy on the 0.001 au molecular
surface of the 1-H-coronene radical computed at the B3PW91/6-31G(d,p) level. The added
hydrogen atom is in (b), coming out of the plane of the figure, in the lower portion of
it. Color ranges, in electron volts, are red > 12 > yellow >10 > green >9 > blue. The
light blue circles indicate the positions of the local minima found in the central ring and
that associated with C9 (a). (See insert for color representation of the figure.)
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9.4.4 Carbon Nanotubes

Carbon nanotubes share many structural, chemical, and electronic features with
graphene. They can be thought of as rolled-up graphene sheets [71, 72], with the
diameters of the resulting tubes and the orientations of their axes with respect
to graphene’s lattice dictating many of their properties through the effects of
electronic confinement [73]. A very good approximation to their electronic band
structure is obtained by “zone folding” the two-dimensional band structure of
graphene, which gives reasonable predictions of the types of tubes that have
metallic and semiconducting character [71]. The one-dimensional sub-bands
obtained by the zone folding technique correspond to “cuts” through graphene’s
Brillouin zone, the orientation and spacing of which is dictated by the alignment
of the tube’s axis and diameter, respectively. This is because only specific
values of the wave vector in the direction perpendicular to the tube’s axis are
allowed. Metallic tubes are obtained when the sub-bands intersect the K-points
in the two-dimensional Brillouin zone of graphene. Semiconducting tubes result
when none of these sub-bands cross the K-point, and a finite band gap is thus
created. The gap is inversely proportional to the tube’s diameter, since with
greater diameters, more sub-bands must cut through the Brillouin zone.

Carbon nanotubes, first observed by Iijima [74], have spawned remarkable
interest because of their potential significance in many areas. Their general prop-
erties (electrical, mechanical, chemical, thermal, optical, etc.) have been exten-
sively studied experimentally and computationally [71–75]. They have found
applications as chemical and biochemical sensors [76–78], reinforcement for
nanocomposites [79], acoustic projectors (loudspeakers) [80, 81], mechanical sen-
sors [82, 83], nonlinear optical materials [84–87], hydrogen storage [88, 89], etc.
For many of these purposes, pristine carbon nanotubes are highly desirable, while
for others, the presence of defects is critical and even the basis of their activi-
ties. Chemical modification, for example, fluorination [90], can alter and enhance
many nanotube properties, such as electrical conductivity and chemical reactivity.

We will show that the electrostatic potential and the average local ionization
energy are valuable tools for understanding and predicting nanotube behavior.
They can offer insight into the notable features of charge delocalization in carbon
nanotubes of certain types, and into the effects on their reactivities when defects
disrupt the carbon networks. We shall begin by analyzing the general charac-
teristics of the electrostatic potentials of model carbon nanotubes and emphasize
some remarkable properties of (n,0) tubes that display notably more facile charge
delocalization than other types. We shall then examine defective nanotubes using
the average local ionization energy, which, as for graphene (discussed above), is
a reliable indicator of the relative reactivities of different sites.

The electrostatic potentials of carbon nanotubes on their 0.001 au outer sur-
faces are usually quite uniform [72, 91], with little variation in comparison to
typical organic molecules. For hydrogen-terminated carbon nanotubes, the most
significant variations of their surface potentials occur at the ends, whereas for
capped tubes, they are in the regions of greatest curvature, that is, at the caps
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Figure 9.9 Diagram of the electrostatic potential on the 0.001 au surface of an NH2-end-
substituted (6,0) carbon nanotube, at the HF/STO-4G level. The NH2 group is at the right.
The tube is otherwise terminated with hydrogens. Color ranges, in kilocalories per mole,
are red >20 > yellow >0 > green > −20 > blue. (See insert for color representation of
the figure.)

themselves [72, 91, 92]. The lateral surfaces generally show weakly positive
(capped tubes) or weakly negative (hydrogen-terminated tubes) potentials, the
latter as a consequence of electron withdrawal from the hydrogen atoms [91].

Figure 9.9 shows the surface potential of a hydrogen-terminated (6,0) tube,
that has an NH2 group substituted at one end. Instead of the bland and weak
potentials normally found along a tube surface (Fig. 9.10a), Figure 9.9 reveals
a striking and unexpected feature: there is a marked gradation of the potential
from strongly positive at one end to strongly negative at the other. This
remarkable ability to distribute charge along the entire tube length seems to
be a feature of (n,0) nanotubes [72, 84, 85]; these are characterized by a large
number of C–C bonds that are parallel to the tube axis. Gradations of surface
potentials have also been observed in other end-substituted (n,0) tubes [84].
Other types of tubes, such as (5,5) and (n,1), show more localized responses
to end substitution [84]. These features suggest that (n,0) carbon nanotubes
could be used as “conjugated bridges” in donor-bridge-acceptor systems to yield
materials with large nonlinear optical responses [84]. It was found, however,
that a novel donor-nanotube paradigm [85] yields even larger nonlinear optical
responses than typical donor-nanotube-acceptor systems. It has been further
proposed that donor-nanotube-donor motifs may yield yet greater responses
[86]. A notable consequence of these observations is the recognition that carbon
nanotubes of the (n,0) type can act as reliable charge acceptors, perhaps because
of their ability to delocalize the charge throughout their lengths.

Defects are important in nanotube chemistry because they enhance reactivity
locally around the defect site, significantly activating the rather unreactive nan-
otube surface. This is important for the functionalization of carbon nanotubes
[93]. Defects have also been instrumental in chemical sensing with nanotubes
[77, 78], since adsorption at defect sites produces large electronic responses that
increase the sensitivities of the devices [77]. An important type of defect is the
so-called Stone–Wales [77, 94], in which four fused six-membered rings are
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(a) (b)

Figure 9.10 Diagram of the electrostatic potential on the 0.001 au surface of a pristine
(a) and a Stone–Wales defective (b) (5,5) carbon nanotube, at the HF/STO-4G level. Both
tubes are terminated with hydrogens. The defect is in the central portion of the tube facing
the reader (b). Color ranges, in kilocalories per mole, are red > 9 > yellow > 0 > green
> −5 > blue. (See insert for color representation of the figure.)

replaced by two five-membered and two seven-membered rings, following the
rotation by 90◦ of the central bond:

8 9

1 2

3

3

4

4

The electrostatic potentials for pristine and Stone–Wales defective (5,5) carbon
nanotubes are shown in Figure 9.10. The surface potential for the pristine tube
displays the general weakness (lateral sides) that typifies all-carbon or hydrogen-
terminated systems. The tube with the Stone–Wales defect has some qualitative
changes in the distribution of the most negative potentials around the rings
involved in the defect; the bonds on its periphery become more negative. How-
ever the effects of the defect on VS(r) are extremely localized, and the potential
on the remainder of the nanotube surface (including the other side, not shown in
the figure) seems to be unaffected by its presence.

The average local ionization energy on the outer surface of the tube
(Fig. 9.11) will provide a better understanding of the changes brought about by
the Stone–Wales defect. The I s(r) of a pristine (5,5) nanotube indicates that
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(a) (b)

Figure 9.11 Diagram of the average local ionization energy on the 0.001 au surface of
a pristine (a) and a Stone–Wales defective (b) (5,5) carbon nanotube at the HF/STO-4G
level. Both tubes are terminated with hydrogens. The defect is in the central portion of
the tube facing the reader (b). Color ranges, in electron volts, are red > 18.0 > yellow
> 16.0 > green > 14.5 > blue. (See insert for color representation of the figure.)

all carbons are roughly equivalent, with IS, min in the 13.6–13.9 eV range. For
the nanotube containing a Stone–Wales defect, on the other hand, the carbon
atoms involved in the defect show quite different reactivities, as can be seen
from the values of the IS,min associated with them. C3, which is simultaneously
part of five-, six-, and seven-membered rings, has the lowest IS, min, ∼13.2 eV.
C4, which is a part of both five- and six-membered rings, displays the second
lowest IS, min at ∼13.4 eV. C1 and C2, which form the bond common to the
two seven-membered rings, have the highest IS, min found for any carbon atom
in either the pristine or the defective tubes (∼14.6 eV). Thus, the center of the
Stone–Wales defect (C1 and C2) seems to be quite unreactive compared to its
periphery. One explanation for this is in terms of the lower curvature at the
center of the defect; this results in less local strain, less negative potentials, and
diminished reactivity [95].

As pointed out by Dinadayalane et al. [95], the values of the IS, min on the outer
surface of a (5,5) carbon nanotube containing a Stone–Wales defect correlate very
well with hydrogen and fluorine chemisorption energies. The lower the IS, min
associated with each carbon, the more negative is the chemisorption interaction
energy [95]. These observations emphasize the effectiveness of I s(r) in predicting
site reactivity. In this context, it should be noted that a single calculation produces
all the IS, min on the surface [17], whereas direct computation of interaction
energies must be done separately at each site [67, 95].

9.5 SUMMARY

With the development of density functional methodology and ever-increasing
processing capabilities, meaningful computational analyses of nanomaterials are
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now a realistic possibility. For instance, nanotubes with more than 70 carbons
have been treated at levels that include electron correlation [82, 85, 95, 96].
In this chapter, we focused on two site-specific surface properties, the electro-
static potential VS(r) and the average local ionization energy I s(r). These provide
complementary insights into reactive behavior. VS(r) reflects the charge distri-
bution, both nuclear and electronic, and thus is especially useful with respect to
electrostatically driven noncovalent interactions; I s(r) deals with the energetics
of electron availability, for example, in covalent bond formation. An important
feature, particularly for extended systems such as nanomaterials, is that a single
calculation of VS(r) and I s(r) will identify and rank all likely sites for nonco-
valent, electrophilic, and free radical reactions, without the need to compute the
interaction energies at the various possible sites. We have given three examples
of the applications of VS(r) and I s(r) to nanomaterials. There will be many more
in the future.
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10
PROBING ELECTRON DYNAMICS
WITH THE LAPLACIAN
OF THE MOMENTUM DENSITY

Preston J. MacDougall and M. Creon Levit

“And now, for something completely different.”

10.1 INTRODUCTION

The density concept is at once fundamentally important to all of physical science,
and, perhaps subconsciously, already familiar to students who are just beginning
to explore it. This is why one of the first experiments done in a physical science
course, such as general chemistry, often involves measuring the mass density of
an unknown. Building on familiar ground, when quantum mechanical models of
the atom are introduced, and necessarily abstract entities such as atomic orbitals
are presented, a key concept that is skipped at the instructor’s peril is the electron
density cloud. While the probabilistic nature of the atom is initially uncomfortable
for many students, the familiarity of the density concept, combined with fuzzy
clouds, helps the medicine go down.

Subsequently, and unfortunately, the simplicity and familiarity of the density
concept often serves as a faulty crutch when yet more abstract and convoluted
concepts are introduced. For instance, almost all organic chemistry textbooks
now contain numerous and colorful electrostatic potential energy maps of oddly
shaped organic molecules. Students are almost invariably told that “red areas
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are regions of high electron density and blue areas are regions of low electron
density.” Still later in the undergraduate chemistry curriculum, during a physical
chemistry course, students may learn how to calculate local electron densities and
how to integrate electrostatic potential energies, thus understanding the difference
between these physical quantities, but by then the damage is done. Like a scalpel,
a physical concept is most useful when it is sharply defined and used with
precision.

Several other chapters in this book, which is dedicated to sharply defining and
precisely applying the numerous facets of the density concept, have explored the
rich vein of topological analysis of the total electronic charge density in position-
space—denoted by ρ(r). Instead of considering physicochemical information
contained in the distribution of the total electron density as a function of the
position of an electron (regardless of spin, binding energy, or momentum), this
chapter considers physicochemical information contained in the distribution of
the total electron density as a function of the (linear) momentum of an electron
(regardless of spin, binding energy, or position)—denoted by �(p).

It is important to note that while a 3n-dimensional n-electron wavefunction
in position-space (neglecting spin) is directly related to its corresponding n-
electron wavefunction in momentum-space, by a 6n-dimensional Fourier–Dirac
transformation [1], no transformation exists between the corresponding three-
dimensional densities in position- and momentum-space. Indeed, by virtue of
the Heisenberg uncertainty principle, knowledge of the probability density at a
precisely defined point, r , necessitates correspondingly high uncertainty in the
value of the momentum, p, of the located electrons. Similarly, knowledge of the
probability density at the resolution in p that is presented here, necessitates that
the uncertainty in the location of the electrons is larger than the entire van der
Waals volume of the molecules studied.

In other words, in the figures presented below, the speed and direction of the
electrons that give rise to the topological features observed is precisely known, but
we do not know where in the molecule those electrons have a high probability
of being located. Often, by comparing topological properties from chemically
similar molecules, but with a single chemical substitution, the (dis)appearance
of a feature may be inferred to have arisen from the part of the molecules in
which the substitution was made. Even then, however, there is uncertainty as the
effect of chemical substitution can be short and/or long range. The analysis of
six-dimensional Husimi functions is also of interest and allows the simultaneous
analysis of “fuzzy” probability distributions of both position and momentum
densities [2], but the trade-off is loss of sharply defined topological features as
well as the necessity to visualize six-dimensional functions instead of the more
manageable three.

With regard to the nature of the physicochemical information that can be
expected to be gleaned from analysis of the electron momentum density, it should
correspondingly be exclusive of the type of information that has been demon-
strated as recoverable from the more familiar face of the electron density, ρ(r).
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As has been shown in other chapters in this book, and a large body of inter-
disciplinary literature, the concepts of atoms, molecular structure, and sites of
potential chemical reactivity, which intuitively depend on where electrons are,
can be derived via topological analysis of ρ(r) and its Laplacian, ∇2ρ(r) [3]. In
cases of near perfect transferability, such as a homologous series of hydrocarbons
[4], or the side chains of the naturally occurring amino acids [5], there is very
high fidelity between the corresponding transferable properties that are predicted
by the quantum theory of atoms in molecules, and those that are at the core of
the canon of experimental chemistry.

In highly resolved regions in momentum-space, we do not know where the
electrons are, rather we know which way they are going and how quickly or
slowly. The atomicity of molecules and matter is completely lost in momentum-
space! It is, therefore, the electron transport properties of molecules and matter
that are most directly probed in momentum-space. The new question is, are there
definable features in the computed or measured electron momentum densities
that can be correlated with the substance’s electron transport properties, such as
electrical conductivity and its anisotropy?

It would be reasonable to be skeptical of an affirmative answer. After all,
electrical conductivity is a response function, conventionally explained within
the context of solid-state (band) theory as resulting from excitation of a mul-
titude of electrons within and/or into the conduction band. Prediction of such
collective behavior, based on properties of a single-particle probability density,
for a system in a stationary state, especially the ground state, seems too good to
be true and is a difficult proposition to swallow. However, the reader has presum-
ably already accepted an analogous proposition above, which has been effectively
applied elsewhere in this book, and in a large body of interdisciplinary literature
[3]. The topological properties of the Laplacian of the total electron density in
position-space, ∇2ρ(r), have been shown, both empirically [6] and formally [7],
to reflect the number and arrangement of pairwise aggregations of electrons that
were first postulated by Lewis in 1916 [8] and later expanded upon by Gillespie
in his VSEPR model of molecular geometry [9]. These studies have demonstrated
that while the coarse structure of the total single-particle probability density (in
position-space) faithfully recovers the atomicity of matter, a result of the dom-
inant electron–nuclear attractions, it gives no direct indication of the important
electron correlations that are crucial to even a qualitative understanding of the
electronic structure of matter. However, by accentuating the barely perceptible
local fluctuations in the total density, resulting from more subtle factors, such as
the exceedingly complex correlations in electron–electron interactions that arise
from ensuring antisymmetry of the many-electron wavefunction, the topology
of ∇2ρ(r), which is still a single-particle property density, has a structure that
surprisingly bears the imprint of collective behavior. The reflected correlations
can range from the partial organization of the octet of valence electrons in the
oxygen atom in water molecule into two bonding and two nonbonding pairs of
electrons, to the pairwise aggregation of a multitude of valence electrons of the
thousands of carbon atoms in a long chain of polyethylene.



260 PROBING ELECTRON DYNAMICS

In addition to partially reflecting the many-electron correlations in molecules
and matter, the topology of ∇2ρ(r) also displays “lumps and holes” that predict
potential sites of chemical reactivity [3, 6, 10]. In essence, since the interactions
of a molecule to approaching reactants is a response function, this proven utility
of the Laplacian analysis of computed or measured single-particle probability
densities, for molecules or matter in their stationary and ground states, is an
example of a proposition that had earlier sounded too good to be true.

In this chapter, we briefly summarize previously published evidence, and
present new computational support for the hypothesis that Laplacian analysis
of the total electron density in momentum-space (referred to as the momentum
density) is a simple and practical tool for probing, classifying, and predicting a
wide range of electron transport properties of molecules and matter. Figure 10.1
is like déjà vu all over again. The appearance of the total electron density in
position-space is very pedestrian, displaying a topology that reflects the domi-
nant physical force in molecules. A tremendous amount of chemical insight is
revealed by analysis of its Laplacian. In the free-electron theory of metals, all
metals have basically the same total momentum distribution—a spherical step
function with a rounded edge at the Fermi momentum. Again, the Laplacian
analysis reveals much more structure. But how do we interpret it?

10.2 COMPUTATIONAL METHODS

All molecular computations reported or discussed in this chapter were obtained
via ab initio calculations using Gaussian at the Hartree–Fock level of theory
(6-311g** basis set) [11]. All geometries were fully optimized at this level,
except when certain geometrical parameters were modified, as noted in the cor-
responding discussion. Selected calculations were repeated with second order
Møller–Plesset perturbation theory, and there were no discernable differences
in the topological properties of ∇2� reported here. Following calculation of
the orbital-based wavefunctions, Fourier–Dirac transformations and a sum over
orbital densities were executed to generate cubic grids of total momentum density
at 0.02 au intervals, out to momenta of ±1.0 au in each direction. For each of
these grids, values of ∇2� were computed numerically using FAST, the Flow
Analysis Software Toolkit developed for classical fluid dynamics by the NASA
Ames Research Center [12].

10.3 A POSTULATE AND ITS EXISTING SUPPORT

In previous work, we have shown, with a single simple postulate, that the topolog-
ical properties of the Laplacian of the electron momentum density, ∇2�(p), can
be interpreted as a probe of the electron dynamics of atoms, molecules, or macro-
scopic systems [13]. On the basis of intuitive dynamical models, it is postulated
that the only electron–electron interactions that are resistive (hinder electrical
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Hexalithium, D3h

Li

Li Li

LiLi

Li

Figure 10.1 The contour plot is for �(p) calculated in one of the σv planes of symmetry
of the hexalithium cluster. The data can be described as a plateau with a fluted and
steep rim. The lower image is an isovalue surface for ∇2� in the same cluster. The
vertical axis corresponds to the component of an electron’s momentum perpendicular to
the plane of the nuclei. All momenta coordinates inside the envelope are momenta for
which the electron dynamics are locally laminar (∇2� < 0). The doughnut in the center is
a momentum concentration at the origin in momentum-space. The momentum coordinates
in both images extend out to ±1.0 au.
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conductivity) are those between electrons whose momenta are simultaneously
within the same small sphere in momentum-space but are not equal [13].

The intuitive foundation of this postulate can be illustrated with an abstract
example. Imagine an infinite one-dimensional chain of jellium (electrons embed-
ded in a continuum of positive charge) with a Boltzmann distribution of electron
momenta in either direction. No matter where they are, electrons that have exactly
the same momentum have not collided in the immediate past and will not collide
in the immediate future. For electrons that have greatly differing momenta, if and
when they collide, they will do so with a very short interaction time, effectively
an elastic collision. For electrons that differ only slightly in momentum, if they
collide, they will do so with a long interaction time, which we term a resistive
interaction . Maxwell’s interpretation of the Laplacian of a scalar field [14], when
applied to the Laplacian of the total electron momentum density (Eq. 10.1), helps
make the connection between the intuitive model and the electron dynamics of
a three-dimensional many-electron system.

∏
(p)−∏

ave=− 1
10 p2∇2 ∏

(p)+O(p4). (10.1)

In Equation 10.1, �(p) is the value of the total electron momentum density
at a point p in momentum-space and integrated over all possible electron posi-
tions. The average value of the momentum density within a small sphere (with
radius p), which is centered at p, is denoted �ave. If the sampling sphere is small,
then the remaining terms in the expansion, beginning with a term including p4,
are negligible. In the case of interpreting ∇2ρ(r), the local minima and maxima
in the Laplacian correspond to lumps and holes, respectively, and the connection
to sites of chemical reactivity was intuitive. From Equation 10.1, it is evident
that regions in momentum-space where the Laplacian is negative (local concen-
trations) correspond to places in momentum-space where electrons, which can
be anywhere in the molecule, are more likely to have the same momenta than to
have slightly different momenta. The opposite is true for regions in momentum-
space where the Laplacian is positive: electrons are less likely to have the same
momenta than to have slightly different momenta. Also, the larger the magnitude
of the Laplacian, the greater is the disparity between the probabilities of same
momenta versus slightly different momenta.

Invoking the postulate above, when most of the electrons in a small sphere
in momentum-space have the same momenta (regions where ∇2� < 0), these
electrons will experience few resistive interactions and the electron dynamics
can be described as locally laminar. The situation is reversed when a small
fraction of electrons have the same momenta (regions where ∇2� > 0), and the
electron dynamics can be described as locally nonlaminar or locally turbulent.
Note that in this context, “locally” does not refer to a portion of a molecule but
to a small region of momentum-space. We can therefore see that with a single,
simple postulate, which is easily implemented on computed or measured data,
all momentum-space is partitioned into regions where the electron dynamics are,
to varying degrees, either locally laminar or locally turbulent. In addition, these
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regions balance out, since the overall integration of the Laplacian for a smooth,
well-behaved function must be zero.

Under the influence of an external electric field, however, it is very clear that
the overall electron dynamics of most forms of matter do not balance out. In
fact, few physical properties of matter vary over as many orders of magnitude
as does electrical conductivity. The additional factor that must be considered,
in addition to whether electrons are locally laminar or turbulent, is whether or
not they are weakly or strongly bound. Sagar et al. have reported shell structure
in ∇2� for spherically averaged atoms and ions, much like that found for ∇2ρ

[15]. Alternating shells of momentum concentration and depletion are found for
each quantum shell, including the core. Thus, core electrons have regions in
momentum-space where they are locally laminar, but they will not contribute
significantly to the electrical conductivity of a substance.

As one might expect since core electrons have greater binding energies, Sagar
et al. reported that electrons in core orbitals contribute disproportionately to
the shells of momentum concentration at higher momentum values. Conversely,
valence electrons contribute disproportionately to the slow regime, which is
approximately up to 0.5 au of momentum. We can relate the Laplacian probe
of electron dynamics discussed above to the electron transport properties of
molecules and matter by recognizing that primarily valence electrons contribute
to electrical conductivity in the presence of an external electric field. Conse-
quently, a substance that has very negative values of ∇2� in the slow regime
will behave as a metal since its least tightly bound electrons have laminar dynam-
ics. On the other hand, a substance that has very positive values of ∇2� in the
slow regime will behave as an insulator since its least tightly bound electrons
have turbulent dynamics. Semiconductors are anticipated to be substances whose
slow electron dynamics transition from turbulent to laminar (∇2� at low values
of p goes from positive to negative) in the presence of an external electric field.

The original computational support for the physical validity of the postulate,
and the resulting relationship between the topology of ∇2� and the electron
transport properties of molecules and matter, was heuristic [13]. The values of
∇2� at the origin in momentum-space, electrons with zero momentum, can be
computed from MacLauren expansions of the spherically averaged total electron
momentum density that have been tabulated by Thakkar et al. for ground state
atoms of elements from H to U [16]. It was found that, with few exceptions,
atoms of metallic elements had laminar slow electron dynamics, sometimes highly
so, whereas atoms of nonmetallic elements had slightly turbulent slow electron
dynamics. It is interesting to note that, of all the elements, an atom of silicon
had slow electron dynamics that were nonlaminar, but the least so on a per
electron basis (i.e., ∇2�/� at the origin in momentum-space). In other words,
assuming the validity of the postulate, the semiconducting nature of silicon’s
valence electrons is an intrinsic property of the element [13].

An essential property of semiconductor devices is that their electron transport
properties be switchable, preferably with the application of a modest electric field.
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So-called Tour wires are small conjugated organic molecules that can be function-
alized and assembled into larger electronic devices that may eventually constitute
carbon-based molecular electronics [17, 18]. The veracity of the postulate, and
the utility of the Laplacian analysis for predicting electronic transport proper-
ties of molecules and matter in conditions relevant to electronic applications,
has been successfully tested for molecules that have been proposed as molec-
ular diodes, with both rectifying and resonant tunneling behavior [18]. Tolane,
which contains two phenyl rings linked by an alkyne group, is the prototypical
Tour wire. At around 0.5 au of momentum, there are several local concentra-
tions of momentum density, but the slowest electrons (nearest the origin) are
turbulent. This topology of ∇2� is consistent with the expectations of a semi-
conductor. When the molecule is embedded in a uniform external electric field of
0.05 au (2.6 × 1010 V/m), the moderately fast momentum concentrations shrink
in size but remain. However, there is a topological transition in the slow regime.
The momentum depletion at the origin dramatically switches to a pronounced
momentum concentration. In other words, our model predicts that the slow elec-
tron dynamics of the tolane molecule suddenly switches from semiconducting to
metallic behavior in the presence of an external electric field.

In addition to switches, electronic devices must also possess logic gates,
through which the current can be induced to flow in one way only. By replacing
only one of the para hydrogens in tolane with sulfur, an internal bias is intro-
duced in the molecule. Relative to tolane, the tolane thiolate anion has several
conserved features, as well as a few additional momentum concentrations, in the
moderately fast regime. However, it also has turbulent slow electron dynamics, as
a semiconductor would. As for tolane, the application of a weak electric field of
0.01 au, in either direction, causes no noticeable change in the topology of ∇2�.
However, when the field strength in the reverse bias direction is increased to a
moderate 0.025 au, the slow-regime transition observed in tolane is not seen. The
slow electron dynamics remain turbulent. Amazingly, when a moderate external
field is directed with a forward bias, the slow electrons in tolane thiolate again
undergo a sudden transition to laminar! [18]

10.4 STRUCTURE OF MOTION, TRANSFERABILITY,
AND ANISOTROPY

A cornerstone of the quantum theory of atoms in molecules, according to its
primary architect, is that “The constancy in the properties of an atom of theory,
including its contribution to the total energy of a system, is observed to be directly
determined by the corresponding constancy in its distribution of charge” [19].
When atomicity is lost, is transferability absent as well?

Figures 10.2 and 10.3 illustrate what we refer to as the structure of motion
(electronic) in models of important examples of carbon-based electronic materi-
als. Just as key characteristic aspects of the electron dynamics of bulk silicon were
evident in the Laplacian of the momentum density of a single atom of silicon,
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we have probed the slow electron dynamics of a single molecule of naphthalene
as a simple model of single-walled carbon nanotubes. Parameterized computa-
tional methods that separate and model only the π electrons in conjugated organic
molecules, such as the Hückel molecular orbital theory, are surprisingly good at
predicting chemical reactivity trends. Yet, when ab initio methods are used, and
properties of the total electron density are investigated, a strong interdependence
has been found between the σ and π electron subsets [20]. In addition, when
topological properties of either ρ or ∇2ρ are investigated, there is nothing that
by any stretch of the imagination could correspond to the tori of π density that
are depicted above and below aromatic rings in most organic chemistry text-
books [21]. Fundamentally, all methods that put symmetry labels on electrons
are severely limiting, first because (aside from spin) electrons are indistinguish-
able, and second, because most systems with practical interest have little or no
symmetry. Nevertheless, comparison of the images in Figure 10.2 makes clear
that while any anticipated σ/π features were blurred together in the observable
(total) density in position-space, there appear to be separately identifiable topo-
logical features in ∇2�. Naphthalene and azulene, the blue hydrocarbon, have
different σ -bond frameworks (two fused six-member rings in the former, fused
seven- and five-member rings in the latter), whereas the aromaticity of both,
and the anomalously large dipole moment of the latter, are among the physical
properties that lead chemists to assign hextets of π electrons to each ring in
both molecules. The dipole in azulene results from the transfer of one π electron
from the seven-member ring to the five-member ring and is responsible for its
intense blue color. As for tolane and tolane thiolate (in the absence of an electric
field), the slow electron dynamics of naphthalene and azulene are nonlaminar
(∇2� > 0 at the origin). The momentum concentrations depicted in Figure 10.2
are in the moderately fast valence electron regime. We have not yet determined if
the topology of ∇2� is stable or susceptible to external electric fields, although
it would be very interesting to do so.

It is clear that one set of features in Figure 10.2 is not conserved, while
another set is highly conserved. The “snouts” that appear to be almost perfectly
transferable between images (there are two in each image, one coming toward
the viewer and another on the opposite side) correspond to local concentrations
of electron momentum density that we interpret as characteristic of the structure
of motion of the π electrons in these fused aromatic rings. The concentric rings of
charge concentration, which have different forms in the two images, are in the
plane in momentum-space corresponding to electrons whose momenta are in, or
parallel to, the plane containing the nuclei, in other words, the σ plane (Fig. 10.2).
The snouts in Figure 10.2 are not hexagonal because of the lowered symmetry
of the fused rings. (In benzene, the corresponding features must have hexagonal
symmetry, but presumably they would otherwise be similar in form and their
relative location in momentum-space.) The symmetry of fused aromatic rings in
nanotubes is further reduced when planar graphene is rolled into tubes [22]. We
have modeled this distortion by forcing an interplane angle of 20◦ between the
rings in naphthalene and azulene (which models adjacent ring-size defects that
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Naphthalene

(a)

(b)

Azulene

Figure 10.2 Isovalue surfaces for ∇2� = −0.015 au for naphthalene (a) and azulene
(b). All momenta coordinates inside the envelopes are momenta for which the electron
dynamics are locally laminar (∇2� < 0). The vertical axis in both images corresponds
to the component of electron momentum parallel to the direction of the C–C bond that
is shared by both rings. The axis that appears to be coming toward the viewer is the
component of electron momentum that is perpendicular to the plane containing the nuclei
in both molecules. The momentum coordinates in both images extend out to ±1.0 au.
(See insert for color representation of the figure.)
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Tetrathiafulvalenium cation

S

S

S

(a)

(b)

S

+1

Figure 10.3 (a) An isovalue surface for ∇2� = −0.030 au for naphthalene, with the
same axis system shown in Figure 10.2. All momenta inside the envelope, therefore, have
locally more laminar electron dynamics than points on the surface shown in Figure 10.2.
(b) Isovalue surface for which ∇2� is marginally less than zero, computed for the TTF
radical cation. The vertical axis corresponds to the component of electron momentum that
is perpendicular to the plane containing the nuclei. The axis that appears to be coming
toward the viewer corresponds to the component of electron momentum that is parallel to
the central C–C bond. The momentum coordinates in both images extend out to ±1.0 au.
(See insert for color representation of the figure.)
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are frequently found in nanotubes), and in both cases, the topological properties
of ∇2� are unchanged. The snouts of π electron dynamics are imperceptibly
altered (not shown), even though σ/π separability is formally absent.

The electronic transport properties of single-walled carbon nanotubes depend
sensitively on the angle between the axial direction and the C–C bond vector,
as well as the tube diameter [22]. This angle is zero for the so-called armchair
nanotubes, which are always metallic. When the angle is between 0◦ and 30◦,
the nanotube is chiral and may be metallic or semiconducting. Figure 10.3a
shows an interesting and perhaps related anisotropy. For electronic motion in the
valence regime, that is within or parallel to the plane of the aromatic rings in
naphthalene (which would also be required for ballistic electron transport within
graphene or a nanotube), the direction with the highest laminarity is also parallel
to the fused C–C bond vector. To illustrate this property of the structure of
motion in naphthalene, we have simply chosen a higher magnitude contour of
∇2� than that shown in Figure 10.2. The electron momentum concentrations
that most closely correspond to the conducting electrons in armchair nanotubes
are the kidney-bean-shaped features (one is hidden) above and below the snouts
in Figure 10.3. The adjacent depletions indicate the sensitivity of the valence
electron dynamics to the angle between the direction of electron motion and the
fused C–C bond vector.

The topological properties of ∇2� also appear to reflect the unexpected elec-
tron transport anisotropy that is observed for salts of the organosulfur compound
tetrathiafulvalene (TTF) [23]. In these compounds, the direction of highest elec-
trical conductivity is not parallel to the planes of π conjugation, but rather more
closely perpendicular to it, in the direction of π –π stacking interactions. The
tall spikes of momentum concentration that are seen in Figure 10.3b correspond
to laminar valence electron dynamics that have a fixed direction relative to the
π plane of the central C–C bond (motion is parallel to it), but a varying angle
relative to the σ plane of a single molecule of the TTF radical cation. If the
spikes had been along the center axis of the image, it would indicate that motion
exactly perpendicular to the σ plane was the most laminar. The noncentral loca-
tion of the spikes may be related to the herringbone arrangement (instead of like
pancakes) that is observed for the ion stacking in these synthetic metals [23].

10.5 CONCLUSION

The structure of motion for the heterocyclic system in Figure 10.3 is more com-
plex than that seen in Figures 10.1 and 10.2, and we do not doubt that the
topology of ∇2� for systems that include transition metals will add further com-
plexity. Regardless of whether or not our postulate is valid, further investigation
of the topological properties of the Laplacian of the electron momentum density,
both computationally and experimentally, will yield interesting insight into the
structure of electronic motion in molecules and matter. If our postulate is strength-
ened, empirically and/or theoretically, such studies will add significantly to our
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understanding of electron transport properties of matter. Most importantly, this
understanding will come without a priori assumption of a particular independent-
particle model and all the known, as well as hidden, limitations that come with
making that choice.
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11
APPLICATIONS OF MODERN
DENSITY FUNCTIONAL THEORY
TO SURFACES AND INTERFACES

G. Pilania, H. Zhu, and R. Ramprasad

11.1 INTRODUCTION

A surface or an interface provides a doorway through which any solid contacts
and interacts with the external atmosphere or a second solid phase. At a funda-
mental level, surfaces and interfaces present model systems in which physics in
two dimensions can be investigated and chemistry of bond breaking and bond
formation between dissimilar systems can be studied [1, 2]. Understanding of
surfaces and interfaces has not only extended our knowledge of basic physical
and chemical sciences but also played key roles in the successful realization of
many industrial processes [3–5]. For instance, surfaces form the basis of het-
erogeneous catalysis without which the present day chemical industry would not
exist (at least the way we know it). Surface and interface science phenomena are
pervasive in situations involving superlattices, crystal growth control, corrosion
abatement, and nanostructured systems (where the surface or interface to volume
ratio is large). Owing to its interdisciplinary nature, surface/interface science
derives frequent contributions from physical, chemical, and materials sciences.

Density functional theory (DFT) based computations have been used for more
than two decades in the arena of surface/interface science [6]. Several suc-
cess stories of DFT in surface science are already well documented and hence
are not repeated here. Famous examples such as the correct prediction of the
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Si(001)-(2 × 1) [7–12] and Si(111)-(7 × 7) [13, 14] reconstructed surfaces are
now part of standard textbooks in the field [15]. DFT-based methods have not
only evolved into an important tool for analyzing surface geometries and surface
phases at various temperature, pressure, and chemical environments but also been
applied successfully to model real-life heterogeneous surface catalysis [16, 17].
There are numerous examples in which DFT calculations have preceded exper-
imental observations (see e.g., Reference 18). A more recent development that
has contributed to the bridging of the experiment-theory gap is first principles
thermodynamics (FPT) [19–21] which, as we discuss in detail later, involves a
seamless combination of zero-temperature DFT results with statistical mechanics
to provide pressure- and temperature-dependent observable properties that can be
directly compared with experiments.

This chapter attempts to provide examples of some recent contributions made
in the arena of surface/interface science using state-of-the-art DFT-based com-
putations. While this is by no means a comprehensive account (and is highly
colored by the authors’ work and perspectives), materials systems and method-
ologies spanning several application areas including catalysis, crystal growth,
and electronics are explored. Methodological details are provided where appro-
priate, and several references are provided when the scope and length of this
presentation precludes a lengthy exposition of basic concepts.

11.2 THE PREDICTIVE CAPABILITY OF DFT

Among all modern electronic structure methods, DFT [22–26] is seen to offer
the best trade-off between computational cost and accuracy. These methods are
also referred to as “first-principles” or “ab initio” techniques to emphasize that
there are no system-specific fitted parameters utilized during the course of such
calculations. DFT has developed into a popular approach for predicting various
structural and electronic properties of a wide range of materials systems including
molecules, bulk solids, surfaces, and other low-dimensional nanostructures. In
this section, we summarize the level of accuracy that one may expect from
DFT calculations for some of the more basic properties before we plunge into
surface/interface-based discussions.

Within Kohn–Sham DFT [22, 23], the following eigenvalue equation (in
atomic units) is solved:

[− �2 +Veff(r)]�i(r) = εi�i(r), (11.1)

where the first term in brackets represents the electronic kinetic energy (with �
being the gradient operator) and the second term, Veff(r), represents the effective
potential energy seen by an electron. Veff(r) contains all the electron–electron
and electron–nuclear interactions, as well as the potential caused by an external
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electric field. In practice, the quantum mechanical part of the electron–electron
interaction is approximated using (semi)local functionals such as the local density
approximation (LDA) or generalized gradient approximations (GGA), or nonlocal
hybrid functionals. �i(r) and εi represent the spectrum of Kohn–Sham orbital
wave functions and orbital energies, respectively, indexed by i . We note that for
any given set of atomic positions (i.e., for given Veff(r)), the above equation is
solved self-consistently to result in converged charge densities (obtained from the
wave functions of the occupied states), total energies (obtained from the wave
functions and eigenenergies of the occupied states), and atomic forces (obtained
from the first derivative of the total energy with respect to the position of any
given atom). The atomic coordinates are optimized by the requirement that the
total energy of the system is a minimum and that the forces on each atom are
close to zero. Once the geometry is converged, several other properties of interest
may be computed (as described in the rest of this chapter).

Some comments concerning the expected accuracy of DFT predictions are
in order. The greatest strength of DFT is its ability to predict structural details
of materials, typically to within 1% of experimental values. Figure 11.1 shows
the correlation between DFT predictions of structural properties and experimen-
tal data for several classes of systems. Vibrational frequencies of molecules,
phonon frequencies of solids, elastic constants of solids, and relative energies are
predicted to within 2% of experiments by DFT. Figure 11.2a compares DFT pre-
dictions of vibrational frequencies of diatomic molecules with experiments, and
Figure 11.2b shows a similar comparison for bulk and shear moduli for various
solids. Dielectric constants of insulators are typically predicted to within 5% of
experiments, as portrayed in Figure 11.2c for both static and optical dielectric
constants. The larger discrepancy in this case is primarily caused by the lack of
sufficiently accurate single-crystal experimental data.

The greatest deficiency of DFT is its inability to predict band gaps in semi-
conductors and insulators to the same level of accuracy achievable in the case
of the other properties; DFT band gaps are underestimated relative to exper-
imental determinations by up to 50%, as shown in Figure 11.2d. However,
the shape and the width of the bands, and trends in changes in the band gap
(e.g., due to external pressure), are predicted accurately [35]. The above defi-
ciencies are the consequences of the approximations made within DFT such as
the LDA or GGA, which include spurious electron self-interaction effects. Tech-
niques to handle such deficiencies are currently available and include the use of
hybrid functionals that are rising in popularity [36] and quasiparticle GW (note
that GW is not an acronym; here G and W represent the Green function and
screened coulomb interaction, respectively) corrections to the electronic energy
levels (References 34 and 37). Such treatments, although computationally more
expensive than conventional DFT, result in satisfactory agreement of the com-
puted band gaps with experiments as shown in Figure 11.2d for the case of GW
corrections.
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Figure 11.1 Comparison of DFT-computed structural parameters with experiments for
a variety of metals, semiconductors, insulators, polymers, and molecules. ZB and W rep-
resent the zinc blende and wurtzite crystal structures, respectively. Data are from various
sources [27–30]. (Reprinted with permission from R. Ramprasad, N. Shi, and C. Tang.
Modeling the physics and chemistry of interfaces in nanodielectrics. In Dielectric Polymer
Nanocomposites. J. K. Nelson (Ed.), Springer (2010). Copyright 2010 by Springer.)

11.3 SLAB MODELS USED IN SURFACE/INTERFACE STUDIES

At a surface/interface, periodicity and translational symmetry of a bulk crystal
are destroyed. Atoms at these boundaries possess broken bonds and reduced
or altered coordination as compared to their bulk counterparts. To simulate
a surface/interface, either one has to specifically apply two-dimensional
periodic boundary conditions, or one could impose three-dimensional periodic
boundary conditions along with incorporation of a vacuum region normal to the
surface/interface. The latter approach, referred to as the slab supercell model , is
more commonly used (as many DFT codes implicitly involve three-dimensional
periodic boundary conditions). The supercell, when repeated in all three
dimensions, gives rise to a series of stacked slabs of the material separated by
vacuum spaces.
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Figure 11.2 Comparison between DFT predictions (horizontal axes) and experimental
values (vertical axes) [30]. (Reprinted with permission from R. Ramprasad, N. Shi, and
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31–33. Data for GW method in (d) are from Reference 34.

One should always bear in mind that the real surfaces of solids, even when
they have no foreign contaminants, are seldom perfect two-dimensional planes.
Rather, they contain many imperfections (such as surface vacancies and adatoms),
steps, facets, islands, etc., as illustrated schematically in Figure 11.3. To a first
approximation, one can assume that when a perfect crystal is sliced along a plane,
none of the remaining atoms moves from its original location in the crystal and a
perfect crystalline behavior is maintained from the surface throughout the bulk.
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Figure 11.3 A schematic illustration depicting a microscopic view of a surface. In “real-
life” situations, a surface of any material may significantly deviate from its idealistic
bulk-terminated geometry and often contains zero-, one-, and two-dimensional defects;
surface adsorbates; etc. (See insert for color representation of the figure.)

However, this idealized bulk-terminated surface assumption is never true in prac-
tice. In fact, there is no reason that the material near the surface should retain
the same bulk-like interlayer distance, given that the coordination of atoms near
the surface is significantly reduced compared to that in the bulk. It is generally
observed that the interlayer spacing near the surface is always somewhat dif-
ferent from that in the bulk. This phenomenon is known as surface relaxation ,
which results in only a mild deformation of the crystal at the surface with a slight
increase or decrease of the volume per atom near the surface. Relaxation effects
generally affect several atomic layers at the surface. A surface layer exposing
at least two types of atoms on the surface may also rumple, owing to the dif-
ferent strengths of the surface relaxation for the different atoms. Forces acting
at the surface that give rise to surface relaxations and changes in the bonding
and interlayer spacing of the surface atoms to different degrees may result in
more dramatic effects such as the rearrangement of atoms along the surface or
interface plane. Such changes are referred to as surface reconstruction . Surfaces
of metallic solids generally exhibit a much weaker tendency to reconstruct as
reduced coordination on the surface can easily be made up through redistribu-
tion of the delocalized electron gas. However, this phenomenon is much more
pronounced in the case of covalently bonded semiconductor surfaces (e.g., Si,
Ge, CdSe, GaAs, etc.) in which loss of nearest neighbors is rather difficult to
compensate for except through passivation of dangling bonds by rehybridization
of surface atoms followed by rearrangement of these atoms on the surface.

11.4 THE SURFACE ENERGY AND ISSUES WITH POLAR SURFACES

Any theoretical prediction of stable surface orientation, termination, and recon-
struction is made through computation of the Gibb’s surface free energy (γ ),
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Figure 11.4 Comparison of DFT-computed surface energy (in J/m−2) with experiments
for the most stable surface orientations for various materials [38]. (Data collected from
L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollar, Surf. Sci, 1998, 411, 186.)

which can be calculated by subtracting the total Gibbs free energy of a slab
from that of the appropriate bulk reference. However, for a solid state system at
low temperatures and pressures, one can, to a good approximation, replace the
Gibbs free energy with the internal energy of the system, neglecting contribu-
tions from configurational and vibrational entropies. The internal energy can be
directly computed from the first principles electronic structure calculations. For
an elemental system, or for a slab of a compound system containing an integer
number of formula units, the surface energy can be defined as

γ = 1

A
(Eslab − NEbulk), (11.2)

Here, A is the total area for the top and bottom surfaces of the slab, Eslab is the
total energy of the supercell containing the surface model in the slab geometry,
and N stoichiometric units of the bulk (with energy Ebulk) have been used to con-
struct the supercell. This strategy has been used to reliably compute the surface
energy for a variety of elemental slab surfaces, as shown in Figure 11.4. [38]

However, one should note that it is not always possible to construct a sto-
ichiometric as well as a symmetric slab with identical terminations at the top
and bottom of the slab. Usually, in compound materials (containing more than
one constituting element), a stoichiometric slab model may contain nonidentical
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top and bottom surfaces. For example, in a stoichiometric slab model of a (001)
surface in a cubic ABO3 type perovskite structure, the top and bottom surfaces
will have AO- and BO2-terminations. In such situations, the above expression
for the surface energy provides the average surface energy of the top and bottom
surfaces.

Another peculiar problem that arises in the case of an asymmetric periodically
repeated slab is the appearance of an unphysical electric field in the vacuum
region between the slab and its periodic image. To eliminate this artificial electric
field in the vacuum region, one may introduce a dipole layer in the midvacuum
region that exactly cancels out the electric field created by the normal component
of the dipole moment of the slab. Alternatively, one may switch to a symmetric
slab geometry with identical top and bottom surfaces. However, in that case,
the slab will be nonstoichiometric and will require the introduction of a chemical
potential to uniquely define the surface energy of the specific terminating surface.
For such a nonstoichiometric slab system composed of n constituents within
a supercell containing Ni atoms and with a μi chemical potential of the ith
constituent, the surface energy γ can be written as follows:

γ = 1

A
(Eslab −

n∑
i

Niμi) (11.3)

Although the determination of the exact value of μ of each species may be diffi-
cult, following simple thermodynamic stability arguments, one can easily derive
the allowed range for μ for each of the constituent. Also note that the chemical
potential μ of each component depends both on temperature and pressure. We
first deal with zero temperature and pressure conditions. The generalizations to
the finite temperature and pressure situations is discussed in Section 11.7.

The basic aspects of surface relaxations and issues surrounding surface energy
determinations can be understood using a II-VI semiconductor such as CdSe.
The surface facets of wurtzite CdSe can mainly be classified as either polar or
nonpolar, depending on the stoichiometry of the atoms contained in the surface
plane. The nonpolar surfaces are stoichiometric, containing equal numbers of
Cd and Se atoms in each surface plane, and carry a net zero dipole moment
along the surface normal. The three most stable nonpolar surface facets of CdSe,
viz., (1010), (0110), and (1120), are considered for the present illustration. Polar
facets, on the other hand, are composed of nonstoichiometric planes of either
only Cd or only Se atoms and therefore carry a nonzero component of the surface
dipole moment along the slab normal. For a further detailed classification of polar
versus nonpolar facets, the readers are referred to a recent review by Goniakowski
et al. [39].

The unrelaxed bulk-terminated and the DFT-optimized surface geometries for
the polar and nonpolar CdSe facets are shown in Figure 11.5. The relaxation
behavior of these facets can, in general, be understood through the electron count-
ing rules for II-VI semiconductor systems [40]. Since Cd and Se have nominal
valences of 2 and 6, respectively, sp3 hybridization in bulk CdSe requires that
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a Cd atom contributes 1/2 electron to each of its four bonds to Se and an Se
atom contributes 3/2 electrons to each of its four bonds to Cd. Atoms at a surface
display lower coordination, and hence unshared electrons. By suitable relaxation
and reconstruction, a surface attempts to minimize its energy by optimally shar-
ing the electrons at the surface, that is, by rehybridizing, and the extent to which
this is accomplished will depend on the nature of the surface and the number
of unshared electrons. In the case of the nonpolar (0110), (1010), and (1120)
surfaces, significant relaxation is observed. In general, comparison of initial and
relaxed structures shows that surface Cd atoms move inward toward the bulk and
the surface Se atoms tend to move outward, resulting in a tilting of the surface
CdSe bond relative to the horizontal. This tilting of the CdSe bond on relaxation
can be understood in terms of the transfer of electrons from the Cd atoms to the
more electronegative Se atoms at the surface. We note that, in the case of the
(0110) surface, each surface atom displays two dangling bonds, while the (1010)
and (1120) surface atoms display one dangling bond each. Thus, Cd atoms at
(1010) and (1120) surfaces can donate their unshared 1/2 electron to the surface
Se atoms, resulting in a more planar threefold sp2-type configuration around the
surface Cd atom accompanied by the inward movement of surface Cd atoms. The
surface Se atoms, on the other hand, possess a doubly filled dangling bond, which
is preferentially exposed to any incoming electronegative species. A similar, but
more intensified, process occurs at the (0110) surface, as the surface atoms con-
tain two dangling bonds to begin with. Thus, the (0110) surface relaxation is
more pronounced. In the case of the polar (0001)Cd, (0001)Cd, (0001)Se, and
(0001)Se surfaces—the first two being terminated purely by Cd atoms and the
other two by purely Se atoms—no significant relaxation was observed. As these
surfaces have only one type of atomic species (either Cd or Se, with one or three
dangling bonds), transfer of electrons from the dangling bonds is not possible,
and hence there is no clear pathway available for relaxation. Thus, the extent of
surface relaxation for polar facets is found to be significantly smaller than those
of nonpolar facets.

For a CdSe crystal in thermodynamic equilibrium, the sum of the chemical
potential of Cd (μCd) and Se (μSe) atoms should be equal to the chemical potential
of the bulk CdSe (μCdSe). Furthermore, the respective chemical potentials of the
constituents (i.e., Cd or Se) at the surface and in the bulk of the crystal have to
be the same to avoid any macroscopic mass exchange between the bulk and the
surface. Thus, it follows that

μbulk
Cd = μsurface

Cd = μCd

μbulk
Se = μsurface

Se = μSe.
(11.4)

One can further make the important observation that the chemical potential of the
Cd and Se atoms in CdSe should always be less than the chemical potential of
the condensed phases in their respective elemental form (represented as μ

Cd,bulk
Cd

and μ
Se,bulk
Se for Cd and Se, respectively), else the CdSe crystal will become
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thermodynamically unstable against its decomposition into respective bulk phases
of its atomic reservoirs, that is,

μCd < μ
Cd,bulk
Cd

μSe < μ
Se,bulk
Se

(11.5)

However, one should also note that the μ
Cd,bulk
Cd and μ

Se,bulk
Se are related to the

μCdSe through the heat of formation of CdSe crystal (�HCdSe) via

μCdSe = μ
Cd,bulk
Cd + μ

Se,bulk
Se + �HCdSe (11.6)

Combining Equations (11.5) and (11.6), one can obtain the allowed range of
chemical potentials of μCd and μSe in the CdSe crystal as

μ
Cd,bulk
Cd + �HCdSe < μCd < μ

Cd,bulk
Cd

μ
Se,bulk
Se + �HCdSe < μSe < μ

Se,bulk
Se

(11.7)

We define the two extreme values for μCd as those related to a Cd atom in a
“Cd-poor” CdSe crystal (corresponding to minimum μCd or maximum μSe) and
in a “Cd-rich” CdSe crystal (corresponding to maximum μCd or minimum μSe).
We further make a note that although the allowed range of μCd can be properly
defined, identification of the value corresponding to specific chemical conditions
is nontrivial. For instance, based on the Gibbs–Thompson equation one can easily
see that the chemical potential will vary with the size of a nanocrystal [41].

The surface energy of the nonpolar facets can be easily calculated using
Equation 11.2. However, determination of the chemical-potential-dependent sur-
face energies of the four polar facets of the wurtzite CdSe is not straightforward
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because of the absence of inversion symmetry. Note that of the four inequivalent
{0001} polar surface facets of wurtzite CdSe, two (i.e., (0001)Cd and (0001)Se)
can occur exclusively on one side terminated purely by Cd or by Se atoms and the
other two (i.e., (0001)Cd and (0001)Se) on the opposite side in a slab geometry,
again terminated purely by Cd or Se atoms. Furthermore, owing to the inher-
ent asymmetry between the positive and negative c-axes, the (0001)Cd and the
(0001)Se facets have one and three dangling bonds, respectively. On the other
hand, the (0001)Cd and the (0001)Se facets have three and one dangling bonds,
respectively. Therefore, it is possible to construct four different types of slab
geometries, and, in principle, one can calculate the four unknown surface ener-
gies of the polar facets. However, it turns out that such a construction will lead
to only three linearly independent equations, which can be further manipulated to
give rise to the fourth one. Therefore, owing to the lack of inversion symmetry
in the wurtzite crystal structure, the (0001) and (0001) surface energies cannot
be isolated independently using a slab geometry. A similar problem arises for the
polar (111) and (111) surfaces of the zinc blende structure. For this crystal struc-
ture, however, a method of direct calculation of the surface energies has been
developed by Zhang and Wei [42] that requires construction of one-dimensional
wedge-shaped structures for extracting surface energies. This method has also
been applied to CdSe [43, 44] to estimate the surface energy of the polar facets
in the wurtzite phase under the plausible assumption that the (0001) and (0001)
facets of the hexagonal wurtzite structure are atomically identical to the (111)
and (111) facets of the zinc blende structure. Following the technical details
described in Reference 44, surface energies of all the four polar facets can be
calculated.

The DFT-calculated surface energies of all the relaxed surface facets are plot-
ted in Figure 11.6 over the allowed range of μCd values. As already mentioned,
the surface energies of nonpolar surfaces do not depend on μCd (shown by the
dashed lines) and therefore show up as horizontal lines in the plot. Interestingly,
the two nonpolar surfaces with one dangling bond per surface atom, (1010) and
(1120), have the lowest surface energy, while the surface energy of the (0110)
facet, with two dangling bonds per surface atom, is almost double that of the
latter ones. The surface energy of the polar facets with one and three dangling
bonds is shown as solid and dotted-dashed lines, respectively, in the plot and
is a linear function of μCd. However, note that the average of surface energies
for the two pairs of polar facets, is always constant. Furthermore, the stabil-
ity of the Cd-terminated polar surfaces increases as we move from Cd-poor to
Cd-rich conditions, while the Se-terminated polar surfaces display the opposite
behavior. Comparison of the polar surfaces with three dangling bonds per surface
atom reveals that the (0001)Cd surface is more stable than the (0001)Se surface
throughout the range of chemical potential considered. On the other hand, in the
case of polar surfaces with one dangling bond per surface atom, the (0001)Se
surface is more stable.

We close this section by indicating that reliable DFT-based schemes are avail-
able for computing the surface energies of elemental as well as multicomponent
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Figure 11.6 Surface energies for polar and nonpolar wurtzite CdSe facets as a function
of Cd chemical potential (μCdSe

Cd ). (See insert for color representation of the figure.)

systems. The shape of a crystal is in fact controlled by the anisotropic nature
of the surface energies (i.e., because of different surfaces displaying different
surface energies). The concept of manipulating the shape of crystallites and con-
trolling the growth of nanostructures through modulating the surface energies,
for example, through adsorbates, is discussed in the next section.

11.5 ADSORBATE ON SURFACES—ENERGETICS AND THE WULFF
CONSTRUCTION

Surface adsorption is a phenomenon of key importance in surface science and
dominates many chemical processes. To obtain a microscopic understanding of
the role of adsorbates, it is necessary to know the surface atomic structure. Most of
the early structural studies of surface adsorption assumed implicitly that the sur-
face provided a rigid platform of identical adsorption sites, which did not change
during the course of adsorption, onto which atoms or molecules were adsorbed.
However, it is now well understood that a surface can modify the behavior of
adsorbed species in many direct and indirect ways, for instance, through bond
breakage, charge transfer, long-range ordering effects and adsorbate–adsorbate
lateral interactions. It has also become clear, of course, that the adsorbate also
induces changes in the substrate surface. Surface reconstruction, extent of sur-
face relaxation, and surface rumpling are usually strong functions of the type and
coverage of surface adatoms or molecules.

Adsorbates also affect the morphology of crystallites through alteration of
the surface energies. To understand this, one should note that the equilibrium
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shape of a crystal is determined by the anisotropic surface energies via the Wulff
construction [45, 46]. Determination of the equilibrium shape of crystals that
minimizes the total surface free energy proceeds by the following three steps:
(i) determination of the surface energies for various facets experimentally or
theoretically; (ii) drawing vectors normal to the crystal facets from a common
origin, with the length proportional to the surface energies; and (iii) creating at
the end of each vector a plane perpendicular to the vector. The shape enclosed
by the planes gives the equilibrium shape of the crystal. First principles calcu-
lations are playing an increasingly important role in this field, partly due to the
capability of such methods to accurately determine surface energies and partly
due to the difficulty in quantitatively determining the surface or interface energy
experimentally. Some interesting insights have been achieved in the past. For
example, using DFT calculations, Shi and Stampfl [47] illustrated that the equi-
librium shape of a Au catalyst particle changes with the O2 atmosphere, with
the predominant terminations changing from (111) to (110) with increasing O2
pressure or decreasing temperature.

In the following sections, we illustrate how the crystal shape and morphology
may be controlled through surface energy and surface adsorption using three
specific examples: (i) oxygen adsorption on wurtzite CdSe facets, (ii) hydroxyl
adsorption on the low-index facets of rocksalt MgO, and (iii) metal adsorption
on hexagonal tungsten carbide (WC) surfaces.

11.5.1 CdSe Crystallites

Quantification of the bonding strength of an adsorbate on a substrate is generally
done in terms of binding energy (Eb) as

Eb = (Esurf,Ad − Esurf,clean − nAdμAd,gas)/nAd, (11.8)

where nAd is the number of adsorbate species (atoms or molecules) adsorbed per
surface unit cell and μAd,gas is the chemical potential of adsorbate in the refer-
ence gas phase (usually taken as the DFT total energy of the gaseous adsorbate
molecule). Esurf,Ad and Esurf,clean are the total energies of the surface models with
and without surface adatoms on the surface of interest, respectively.

Knowing the surface energy of the clean surface facet (γclean) from Equation
11.2 or 11.3, the surface energy of the adatom covered-surface (γAd) is
obtained by

γAd = γclean + nAdEb/A, (11.9)

where A is the area of the surface unit cell. It is clear from the above equation
that the surface energy for adsorbate-passivated surface facets (which eventually
determines equilibrium shape and morphology of the growing crystals) is a
function of binding energy, which in turn depends on the temperature, pressure,
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chemical environment, and surface coverage of adatoms. Therefore, by control-
ling the growth environment and selecting appropriate surface adsorbates, one
can control the equilibrium shape of the crystal. This can be particularly impor-
tant for oxygen-containing (or water-vapor-containing) environments, where
the stability of different surface facets of varying stoichiometry may well be
anticipated as a function of oxygen (or hydroxyl groups) in the surrounding gas
phase. The surface energy of CdSe facets was discussed in the previous section.
CdSe is one of the most technologically important II-VI semiconductors. One-
dimensional (1D) nanocrystals of CdSe (i.e., CdSe quantum rods) possess unique
optical properties such as linearly polarized emission and higher Stokes shift
when compared to zero-dimensional nanocrystals such as quantum dots [48, 49].
From a device standpoint, it is more desirable to have a larger aspect ratio of
quantum rods along with the ability to engineer heterojunctions, which renders
1D nanostructures of CdSe more advantageous than the quantum dots [50–54].

An interesting and potentially useful phenomenon observed in wurtzite CdSe
nanocrystals is asymmetric anisotropic growth in the presence of oxygen (cap-
tured schematically in Figure 11.7a). While anisotropic growth in wurtzite sys-
tems refers to preferred growth along one dimension (say, the c-axis) over others,
asymmetric anisotropic growth refers to a strong preference to grow along only
one of the two complementary anisotropic axes (say, along the positive c-axis
rather than along the negative c-axis). As already mentioned, these systems dis-
play four inequivalent {0001} surface facets, exclusively occurring in pairs on
the either side. Note that for any preferential one-dimensional growth, both the
surface facets, that occur in a complementary pair on that side, should have high
surface energy. Therefore, growth along one direction will be controlled by one
pair of surfaces, while growth along the opposite direction will be controlled by
a different pair of surfaces.

Although experimental studies [56] had suggested that oxygen might have a
role in directing the growth of CdSe nanocrystals to quantum rods, the underly-
ing mechanism and various factors controlling the asymmetric growth of wurtzite
nanostructures were discussed in detail by Pilania et al. [44], based on the results
of their ab initio computations. DFT-based surface energy calculations of vari-
ous polar and nonpolar facets of CdSe showed that both ordering and relative
magnitude of these facets change on oxygen adsorption. It was quite crucial to
note that the unidirectional and unidimensional growth along the [0001] direc-
tion can occur only through successive and interconvertible creation of (0001)Cd
and (0001)Se surfaces. Thus, for vigorous growth to occur preferentially along
the (0001) direction, the surface energy of both the (0001)Cd and (0001)Se
surfaces should necessarily be high relative to that of all other surface facets.
Even if one of these two surfaces has a low surface energy, growth along the
(0001) direction will be hindered. In fact, the calculated results revealed that both
the (0001)Cd and (0001)Se surfaces display large positive values of the surface
energy relative to all other surfaces for a large range of allowed Cd chemical
potential values (μCd, which was used to quantify environmental growth condi-
tions), indicating the possibility of preferential growth along the (0001) direction
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Figure 11.7 (a) Schematic illustration depicting the role of oxygen environment on the
growth of wurtzite CdSe nanocrystals. (b) DFT-calculated surface energies for the polar
and nonpolar wurtzite CdSe facets before and after oxygen passivation. (c) High resolution
transmission electron microscopy images of representative CdSe nanocrystals for various
oxygen concentrations. The 5 nm scale bar shown in the leftmost panel applies to all
images [55]. (See insert for color representation of the figure.) (Reprinted with permission
from J. D. Doll, G. Pilania, R. Ramprasad, and F. Papadimitrakopoulos, Nano Lett., 2010,
10, 680. Copyright 2010 American Chemical Society.)
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(c.f. Fig. 11.7b). The theoretical predictions were later confirmed through experi-
ments [55]. Figure 11.7c shows high resolution transmission electron microscopy
(TEM) images of the CdSe nanocrystals in the starting seed as well as the four
grown nanocrystal samples for different levels of oxygen environment (decreas-
ing O2 from left to right). As compared to the starting CdSe seeds, the extent of
the unidimensional growth of the nanocrystals is directly correlated with oxygen
concentration.

11.5.2 MgO Crystallites

We now move on to the second example regarding the shape control of MgO
crystal through exposure to moisture. MgO crystals grown in dry environmen-
tal conditions have cubic shape owing to the stability of (100) crystallographic
orientation as opposed to various other possible surface terminations. However,
in recent high resolution TEM experiments, it was observed that the shape of
highly dispersed MgO nanocrystals (physical dimensions range between 10 and
100 nm) [57, 58] evolves from cubic to octahedral-like when exposed to water.
Furthermore, it is also known that the periclase mineral when grown in wet con-
ditions exposes surfaces that mainly have (111) orientation. In the past several
years, a consensus has been reached regarding the main features of water adsorp-
tion on different terminations of MgO crystals, which results in various surface
structures giving rise to environment-dependent morphology of MgO crystals. A
mixed molecular and dissociative adsorption of water is predicted for (001) MgO
surface facets in both theoretical [59–62] and experimental studies [63], while
more open surface orientations such as (110) or (111) facets indicate only disso-
ciative water adsorption [64–76]. It has now become clear that it is due to the
change in the pressure- and temperature-dependent relative surface energies of
various MgO surface facets that MgO crystals change their shape and morphology
on exposure to moisture. A comprehensive theoretical study that summarizes the
results for a variety of configurations and compares water adsorption on extended
and point defects on various MgO surfaces has recently appeared in the literature
[77], while the effects of the choice of exchange and correlation functionals on
the stability of various MgO facets and hydroxyl adsorption energy are critically
evaluated by Finocchi and Goniakowski [78].

11.5.3 WC crystallites

In this section, we discuss the equilibrium morphology of another important mate-
rial, WC, under different conditions (i.e., various surface adsorbates as well as
carbon concentrations), determined based on DFT results and the Wulff theorem
[79]. As important hard metal components, WC-based cermets (WC crystals
embedded in a secondary binder phase, such as Co) have been widely used in
military and in aerospace, automotive, and marine industries [80]. However, there
is strong evidence showing that the size and shape of WC crystals within the
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the (1010) and (0110) facets represented by solid and dashed lines, respectively. “�”
stands for the threefold rotational symmetry about 〈0001〉 axis. (1010) surface could be
terminated by C with four dangling bonds or W with two dangling bonds. Similarly,
(1010) could be terminated by C with two dangling bonds and W with four dangling
bonds. (c) Schematic representation of the equilibrium shape for a WC particle. The
shape can be characterized by two shape factors, that is, r = ashort/along and k = t/w .
Green (large) and red (small) spheres represent W and C atoms, respectively. (See insert
for color representation of the figure.)

cermets affect the mechanical properties [81]. Hence, a better understanding of
the growth mechanism and equilibrium shape of WC is of great interest.

Similar to CdSe discussed in Section 11.4, WC has a hexagonal structure, and
its unit cell is shown in Figure 11.8a. Because of the threefold rotation symmetry
about the 〈0001〉 axis, the WC crystal has two sets of three equivalent {1010}
planes, namely, (1010) and (0110) surfaces, rather than six equivalent {1010}
planes (Fig. 11.8b) [82]. It is established that the shape of hexagonal WC crystals
in cermets is bounded by prismatic {1010} surfaces and basal {0001} surfaces, as
shown in Figure 11.8c. Two shape factors r and k are normally used to describe
the equilibrium shape, where r is the ratio between the lengths of the short (ashort)
and long (along) prismatic facets and k is the ratio between the thickness along
〈0001〉 direction (t) and the width of the basal plane (w ). Along the 〈0001〉 and
〈1010〉 directions, the stacking sequence of WC consists of alternating W and C
planes. As a result, (0001) plane could be either terminated by W or C with three
dangling bonds (Fig. 11.8a). On the other hand, as indicated in Figure 11.8b,
(1010) surface could be either terminated by C with four dangling bonds or by
W with two dangling bonds and (0110) surface could be terminated with C with
two dangling bonds or W with four dangling bonds. We should note that although
each W (or C) is bonded to six neighboring C (or W) atoms, when projected
onto (0001) plane, half the bonds are on top of the others and thus not shown in
Figure 11.8b.

The energies of these clean surfaces could be computed based on Equation 11.3
with μi = μW and μC by adopting nonstoichiometric supercells. The allowed



288 APPLICATIONS OF MODERN DFT TO SURFACES AND INTERFACES

range of μW and μC for a stable WC to avoid graphite and W2C segregation (the
decarbonization of WC is in the sequence of WC→ W2C →W) is indicated by
the following inequalities:

μC < Egraphite (11.10)

μC + 2μW < EW2C (11.11)

where Egraphite and EW2C represent the DFT energies of graphite and W2C within
its lowest energy form, the ε-Fe2N structure (space group: P-31m) [83]. Equations
11.10 and 11.11 correspond to the so-called “carbon-rich” and “carbon-deficient”
conditions. The corresponding surface energy change in the presence of a metal
binder phase has been explored by placing a metallic atom on top of these WC
surfaces. Co and Ni, as the most common binder materials for WC, have been
already explored as discussed below.

The lowest energies of each of the (0001)-, (1010)- and (0110)-type surfaces
along with Wulff theorem determined the equilibrium crystal shape at differ-
ent conditions in Figure 11.9. Several interesting points are found from this
figure. (i) As expected, the crystal shape and its factors vary with the surface
conditions (i.e., clean WC surface, Co-adsorbed WC surface, and Ni-adsorbed
surface). (ii) At the same surface condition, the chemical potential of carbon
affects the equilibrium shape of WC particles. (iii) Co adsorption under the
carbon-deficient condition promotes the formation of truncated triangular prisms,
whereas Ni adsorption under the carbon-rich condition enhances the formation
of near-hexagonal prisms. (iv) The equilibrium shapes of WC crystals under all
conditions (especially with Co or Ni adsorption) can be described as “bulky”
because their k factors are close to 0.8 or are higher, and thus the thickness of
the truncated triangular prism and the width of its basal plane are similar, which
is far from the platelet geometry.

Figures 11.10a,b show the SEM images for WC–Co powders in the carbon-
rich and carbon-deficient conditions, respectively. Although the shape of large
particles may or may not be the equilibrium morphology of WC particles, depend-
ing on whether the crystal growth is controlled kinetically or thermodynamically,
it is still beneficial to compare the shape of the large particles in the experiments
with the simulation results. Note that the truncated triangular prism has appeared
in both types of powders. However, r factors for the two powders are different.
For the carbon-rich powder (Fig. 11.10a), the short prismatic facets are approx-
imately ∼0.4 times the length of the long prismatic facets, which is close to
the theoretical prediction shown in Fig. 11.9. For the carbon-deficient powder
(Fig. 11.10b), the r factor from the SEM image is in the range of 0.2 ∼ 0.3,
which is also in good agreement with the theoretical value, 0.23 (Fig. 11.9). These
results reveal that the chemical potential of carbon can affect the morphology of
WC particles. However, the ratios of the thickness of the truncated WC prism
to the width of the basal plane, that is, the k factor, in both powders are smaller
than those predicted from the first principles calculation (Fig. 11.9), which may
be caused by the slow growth kinetics along the [0001] direction.
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Figure 11.9 The equilibrium shapes for pure WC, Co-adsorbed WC, and Ni-adsorbed
WC particles in carbon-rich and carbon-deficient conditions. The two factors, k and r ,
are also indicated.

In light of the difficulties in experimentally identifying the correlation between
morphologies and factors such as surface adsorbates, temperature, pressure, and
bulk compositions, etc. DFT-based Wulff construction is becoming a useful tool
in this arena.

11.6 ADSORBATES ON SURFACES—ELECTRONIC STRUCTURE

In the previous section, we discussed applications of DFT-based techniques to
study the structure and energetics of surfaces at the atomistic level. Now, we
discuss the local electronic structure of atomic and molecular adsorbates on the
surface. The properties and reactivity of an adsorbed atom or molecule are deter-
mined by the nature of the surface chemical bond, which in turn is governed
by the newly formed electronic states because of the bonding to the surface.
Interaction of an incoming adsorbate with the surface can vary from being very
weak (i.e., physisorption) to strong enough such that it actually rearranges the
valence levels of the adsorbate (i.e., chemisorption). Discrete and sharp molecu-
lar/atomic orbitals in case of an isolated gaseous adsorbate gradually evolve on
its interaction with the substrate (and also with other neighboring adsorbates)
to produce a new set of electronic states/bands that are usually broadened and
energetically shifted with respect to the gas-phase species. In the following dis-
cussion, we shed some light on how informative and potentially important local
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Carbon rich Carbon deficient

(a) (b)

Figure 11.10 SEM images of the WC–Co powders (a) after heating in Ar at 1400◦C
for 2 h and (b) after H2 treatment at 800◦C and then heating in Ar at 1400◦C for 2 h
[79]. (Reprinted with permission from Y. Zhong, H. Zhu, L. L. Shaw, and R. Ramprasad,
Acta Mater 2011, 59, 3748. Copyright 2011 by Elsevier.)

density of states (LDOS) could be in the case of surface adsorption to probe local
electronic structure. For the sake of illustration, we take a specific example of
atomic oxygen adsorption on various transition metal surfaces with the aim of
understanding trends in oxygen adsorption energies on the metal surfaces.

Figure 11.11a shows DFT-calculated adsorption energies as a function of the
distance of the O atom above the surface for various transition metals in a small
section of the periodic table. The more negative the binding energy, the stronger
is the bond between oxygen adsorbate and the metal surface. The energy per
oxygen atom in a gaseous O2 molecule is shown for comparison. Only metals
in which the minimum in the adsorption energy function is below this value will
be able to dissociate O2 exothermally. It can be seen that O binds most strongly
to the metals to the left in the transition metal series and more strongly to the 3d
metals than to the 4d and 5d metals. It is evident from Figure 11.11a that with
O adatoms, Ru bonds much stronger than Pd and Ag. Au is very noble with a
bond energy per O atom less than that of O2, Ag is just able to dissociate O2
exothermically, and Cu forms quite strong bonds. It is also noted that these DFT-
calculated results are in excellent agreement with the experimental findings [1].

However, before we try to understand this trend in the oxygen adsorption
energy for various transition metal surfaces through LDOS and local electronic
structure, it is important to note that the valence states of the transition metal
surface atoms can be divided up into the free-electron-like s electron states and
the more localized d electron states. Following the Newns–Anderson model [85,
86], the interaction of the adsorbate atom with the delocalized s electrons leads
to a broad resonance, whereas interaction with the narrow band d states leads to
distinct new bonding and antibonding levels (cf. Fig. 11.12).

To simplify, one can imagine this complex coupling between the adsorbate
atomic level to the metal s and d states to be composed of various discrete steps.
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Figure 11.11 (a) DFT-calculated adsorption energy for oxygen adatom as a function of
distance of the O adatom above the surface for a range of close-packed transition metal
surfaces, ordered according to their position in the periodic table. The energy per O atom
in gaseous O2 is also shown in the leftmost box, showing results for Ru for comparison.
(b) The density of states projected onto the d states (gray) of the surface atoms for the
surfaces considered in (a). The oxygen 2px projected density of states (black) for adsorbed
O adatom on the same surfaces are also shown. The formation of bonding and antibonding
states below and above the metal d states is clearly seen [84]. (Adapted with permission
from B. Hammer and J.K. N rskov, Adv. Catal., 2000, 45, 71. Copyright 2000 Elsevier.)

First, let us consider coupling of the adsorbate atomic levels with the metal’s s
states, and in the next step, we switch on the coupling to the metal d states as
well. The coupling to the broad s band in the first step leads to a broadening and
shift of the adsorbate state (Fig. 11.13). Usually there are only small differences
in this interaction going from one transition metal to the other, owing to the
fact that all the transition metals have a half-filled considerably broad s band
in the metallic state. Therefore, the differences between the different transition
metals must be associated primarily with the d states. The interaction of the
adsorbate states with localized d states will give rise to the formation of separate
bonding and antibonding states, as shown in the bottom of Figure 11.13. In such
a picture, bonding strength of an adsorbates depends on the relative occupancy
of bonding and antibonding states. The strength of the bond will be maximum
when the bonding states are completely occupied and all the antibonding states
are empty, whereas if the antibonding states also start getting filled, the bond
gradually becomes weaker.
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Figure 11.12 Schematic diagram depicting evolution of the projected density of states
of an adsorbate as it gets adsorbed onto a surface within the Newns–Anderson model
[85, 86] in two limiting cases: when the band width is large (top) and when the band
width is small (bottom).

To understand the variations in the binding energy of oxygen adatom, let us
look at the variations in the electronic structure of the oxygen adsorbed on the
different transition metals (Fig. 11.11b). Since the energy of the d states relative
to the Fermi level varies substantially from one metal to the next, the number of
antibonding states that are above the Fermi level, and thus empty, will depend
on the transition metal under consideration. It can be seen that the antibonding
states for oxygen adatom get filled gradually as we move from Ru to Pd to Ag,
explaining why the bonding becomes weaker in that order. However, the above
picture is not sufficient to understand why 3d metals bond stronger than 4d and
5d metals. More extensive models have been developed to explain these effects
and to extend this theory for more complex systems [84, 87].

11.7 SURFACE PHASE DIAGRAMS: FIRST PRINCIPLES
THERMODYNAMICS

From the above discussion, it is clear that first principles computational tech-
niques can provide an adequate description (in terms of geometrical and electronic
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Figure 11.13 Schematic illustration of the formation of a chemical bond between an
adsorbate valence level and the s and d states of a transition metal surface [84]. (Adapted
with permission from B. Hammer and J.K. N rskov, Adv. Catal., 2000, 45, 71. Copyright
2000 Elsevier.)

structure, energetics, etc.) of various individual microscopic processes taking
place on a surface such as adsorption, desorption, surface dissociation, etc.
However, this knowledge is not sufficient to predict the behavior of a real-life
macroscopic-scale system for several reasons. First, the behavior of a macroscopic
system of any technological relevance is usually governed by a large number of
distinct atomic scale processes. Therefore, in addition to the precise description of
elementary processes involved, any predictive modeling of a macroscopic system
would also require information regarding statistical interplay of a large number of
such possible microscopic processes. In other words, we are interested not only
in each individual elementary process taking place in isolation but also in what
happens when a large number of such processes are allowed to take place simul-
taneously. Second, in the microscopic regime, electronic excitations and lattice
vibrations in a material take place on time scales of femtoseconds and picosec-
onds, respectively, while bond breaking and bond formation occur at a length
scale of several angstroms. On the other hand, in the macroscopic regime, relevant
times are of the order of 10−3 to several hundreds of seconds and the relevant
length scales can vary from 10−6 to several meters. To obtain macroscopically
observable system properties and functions from electronic structure theories such
as DFT, a gap of several orders of magnitude in both time and length scales will
have to be overcome. Finally, in the electronic structure calculations, the pres-
sure and temperature effects are not included. Therefore, to actually describe the
situations of finite temperatures and pressures, first principles calculations have
to be used as an input for further thermodynamic considerations. In the following
paragraphs, we discuss how such a description, appropriate for the macroscopic
regime, can be achieved by combining the results of ab initio DFT with concepts
from statistical mechanics and thermodynamics.

The primary aim of the first principles atomistic thermodynamics approach
is to use information pertaining to the potential energy surface calculated at the
level of electronic structure theory, for a system in equilibrium (or in a meta
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stable state), to calculate an appropriate thermodynamic potential function such
as the Gibbs free energy G . The Gibbs free energy of any system decomposed
in terms of various contributing factors can be given as follows:

G(T , P ) = EDFT + Fv − T Sc + PV. (11.12)

In this equation, the leading term EDFT represents the internal energy of the sys-
tem and can be obtained directly from electronic structure theory calculations.
The second term represents the vibrational free energy, which contains contri-
butions due to both the zero point energy EZPE and the vibrational entropy.
The third term is the configurational free energy arising from the configurational
entropy Sc. T , P , and V are the temperature, pressure, and volume, respectively.
Once this pressure- and temperature-dependent Gibbs free energy is known, one
is immediately in a position to calculate all the macroscopic properties of the
system of interest. Although this concept is quite general and applicable to a
broad range of problems, here we find it instructive to illustrate the approach by
taking a specific example of a metal surface in equilibrium with the surrounding
oxygen environment.

As already mentioned, in an ab initio atomistic thermodynamic approach, we
are interested only in the equilibrium state (or metastable state) of the system
and not in the information as to how the system has evolved to reach that state.
Therefore, the first task of the present thermodynamic approach would natu-
rally be to identify a number of known (based on the experimental information
available in the literature) and unknown but possibly relevant (based on the com-
putational screening) oxygen-containing surface structures along with the clean
and bulk oxide surface structures. Once the time-consuming electronic structure
calculations are done, the next step is to evaluate which of the considered sur-
face structures are most stable and at what environmental conditions (i.e., the
temperature and partial pressure of O2). Therefore, much of the remaining dis-
cussion in the present section is based on a nonzero T and P generalization of
Equation 11.3.

For a two-components system composed of metal M and oxygen, the (T ,P )-
dependent surface free energy γ is a function of the chemical potential of the
metal (μM) and oxygen (μO)

γ (T , P ) = 1

A
[Gsurf(T , P,NM, NO) − NMμM(T , P ) − NOμO(T , P )], (11.13)

where NM and NO are the number of metal and oxygen atoms in the finite
supercell of the system that repeats to a produce 2D infinite slab. The chemical
potentials of the metal at the surface and in the bulk of the crystal have to
be same to avoid any macroscopic mass exchange between the bulk and the
surface, and therefore, for a sufficiently thick metallic slab, it is fixed to the
corresponding bulk value, μM = μbulk

M . Oxygen chemical potential on the other
hand is a variable that can cover a range of values and plays a decisive role in
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stabilizing a particular surface structure. Under ultrahigh vacuum, when oxygen
chemical potential μO is very low, the clean metal surface prevails, and this
situation is known as O-poor limit. On the other hand, O-rich limit is defined
by μO = 1/2EDFT

O2
, with EDFT

O2
being the DFT-calculated total energy of an O2

molecule in the gas phase. If μO exceeds this critical limit, condensation of the
O2 molecule from the gas phase to the surface will take place. Furthermore,
when considering a metal surface in contact with O2, a complete conversion of
the metal into a bulk oxide phase is also a thermodynamic possibility that should
be taken into account. Therefore, the stability of the corresponding bulk oxide (let
us say MxOy) has to be evaluated with respect to the various other surface oxide
adlayer-containing structures. In the bulk oxide phase, the chemical potential of
the metal and oxygen do not remain independent any more and are related to the
Gibbs free energy of the bulk oxide (gbulk

MxOy
) as

xμM(T , P ) + yμO(T , P ) = gbulk
MxOy

(T , P ). (11.14)

Furthermore, thermodynamic stability of the oxide phase requires that
μM(T , p) ≤ gbulk

M (T , P ); otherwise, the surface oxide will decompose back into
the solid metal and the oxygen gas phases. Using this constraint along with
Equation 11.14 and taking T = 0 K and P = 0 atm limit for the bulk phase
energies, we can find the minimum oxygen chemical potential min[μO(T , P )] at
which formation of the bulk oxide phase will indeed become thermodynamically
favorable, as

min[μO(T , P )] = 1

y
[gbulk

MxOy
(0, 0) − xgbulk

M (0, 0)]. (11.15)

So far, we have seen how the surface free energy and therefore, the thermo-
dynamic stability of various surface structures varies as a function of oxygen
chemical potential for a metallic surface in equilibrium with oxygen reservoir.
Furthermore, we have also established the bounds on the valid range of the oxy-
gen chemical potential based on thermodynamic stability arguments. However,
a quantitative evaluation of surface free energy requires evaluation of each and
every component of the Gibbs free energy, as described in Equation 11.12. As
already mentioned, the leading term in the Gibbs free energy expression is the
total energy Etot, which has to be evaluated directly from the electronic structure
theory calculations. The remaining terms in the expression (viz., the vibrational
term, the configurational entropy, and the PV-term) are discussed below.

Calculation of the configurational entropy is quite involved and very much
system specific. To explicitly treat the configuration contribution to the total free
energy, one has to sample the configurational space of all ordered and disordered
structures using modern statistical methods such as Monte Carlo simulations.
However, when dealing with highly crystalline structures such as metals or
metal oxides with moderately disordered surfaces, the configurational entropic
contributions are usually quite small and can be estimated as follows.
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Let us assume that the system under consideration has N surface sites with n
identical defects or adsorbate sites. Then the total number of ways in which the
surface can be configured is given by ω = (N+n)!

N !n! . From statistical mechanics,
the configurational entropy of such a system is given by

Sc = kB ln ω = kB ln
(N + n)!

N!n!
, (11.16)

where kB is the Boltzmann constant. Now, in addition to using the Sterling
approximation (ln(n!) = nln(n) − n, n 
 1), we estimate the total surface area
A by summing up the areas of all surface sites (NAsite), assuming only a small
concentration of defects. Then the configurational entropic contribution per unit
area is given by

T Sc

A
= kBT

Asite

[
ln

(
1 + n

N

)
+ n

N
ln

(
1 + N

n

)]
. (11.17)

Assuming that for a moderately disordered surface the ratio of (n/N) remains
with in 5%, Equation 11.17 gives

T Sc

A
≤ 0.20

kBT

Asite
. (11.18)

For temperatures as high as 1000 K and surface areas per site of about 16 Å2,
the configurational entropy will not contribute more than about 1 meV/Å2 to
the surface free energy, and therefore, to a first approximation, this contribution
is often neglected. However, it is important to note that for highly disordered
systems as well as for various phase boundaries, this contribution to the Gibbs
free energy of the surface will not be negligible, and in such cases, the exact
contribution has to be calculated using Monte Carlo simulations.

The vibrational contribution is typically computed at the harmonic level (with
the quasiharmonic and anharmonic contributions generally ignored). Even the
harmonic contribution is rather expensive to compute for large systems. What is
determined is the phonon density of states (DOS) σ(ω) for the bulk and relevant
surface structures. Once the harmonic phonon DOS is known, the vibrational
contribution to the Gibbs free energy can be written as

F v =
∫

σ(ω)

[
1

2
�ω + kBT ln(1 − e−�ω/kBT)

]
dω. (11.19)

However, it is often useful to first obtain an estimation of magnitude of the vibra-
tional contribution to the surface Gibbs free energy before calculating the cum-
bersome full phonon DOS. In the calculation of the surface free energy, the term
F v contains the change in the vibrational modes of the surface atoms or surface
adsorbates with respect to their bulk counterparts. As the vibrational modes of
atoms in the interior of the surface are not expected to change much because of
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the formation of surface or surface adsorption or defect formation, the term F v

can usually be safely estimated by considering only the change in the vibrational
modes of atoms in the topmost layer of the slab and the surface adsorbates with
respect to the bulk within the Einstein model of harmonic approximation.

The contribution to the Gibbs free energy due to the last term (i.e., the PV
term) in Equation 11.12 is in general negligible for solids. It is easy to see through
a simple dimensional analysis that the term PV/A (atm Å3/Å2) ∼ 10−3 meV/Å2.
Even at very high pressures such as 100 atm, the PV term contributes only 0.1
meV/Å2, which can be safely neglected in comparison with the total surface free
energy term, which is usually of the order of 100 meV/Å2.

An example plot of the surface energy γ as a function of the chemical
potential of the surrounding gas phase conveniently defined in terms of �μO =
μO(T , P ) − 1/2EDFT

O2
is shown in Figure 11.14a, while Figure 11.14b shows

the schematics of various stable thermodynamic phases for a metal surface in
equilibrium with O2 reservoir, as the oxygen chemical potential varies from a
very low to a very high value within allowed bounds. The surface free energy
of a clean metal surface will be independent of the gas-phase chemical potential
and shows up as a horizontal line on the plot. As one can easily guess, at the
lower end of the oxygen chemical potential, the clean metal surface will be the
most favored thermodynamic phase, and therefore have the lowest surface free
energy. As the oxygen chemical potential gradually increases, more and more
oxygen would get adsorbed on the surface. As the oxygen content of the surface
increases, the slope of the γ v/s �μO curve gets more and more negative, leading
to the formation of stable surface phases I and II and eventually, at the critical
oxygen chemical potential (cf. Eq. 11.15), formation of the bulk oxide phase
takes place. Increasing the oxygen chemical potential even further would finally
lead to oxygen condensation onto the oxidized metal surface (at μO = 1/2Etot

O2
).

We also note that the width of the thermodynamic stability range of the bulk
oxide phase on the oxygen chemical potential axis is given by the heat of for-
mation of the bulk oxide (min[μO(T , P )]-1/2 Etot

O2
= 1

y
�Gf

MxOy
(0, 0)); in other

words, the width is equal to the stability of the bulk oxide per oxygen atom.

11.8 INTERFACE PHASE DIAGRAMS: FIRST PRINCIPLES
THERMODYNAMICS

The determination of the surface phase diagrams when systems are in equilibrium
with appropriate gas phase molecules using FPT constitutes a reasonably mature
computational methodology in materials research as discussed in the previous
sections. In following paragraphs, we discuss the usefulness of this methodol-
ogy to predict the interface phase diagram using Si-HfO2 and Pt-HfO2 interfaces
as examples. These two types of interfaces—-found in the sub-45 nm comple-
mentary metal oxide semiconductor (CMOS) technology, based on high dielectric
constant (or “high-k”) oxides and metal electrodes—present a set of issues related
to the interface oxidation, morphology, and defect chemistry [88, 89].
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Figure 11.14 Example plot of Gibbs surface free energy (γ ) versus oxygen chemical
potential (�μO = μO(T , P ) − 1/2EDFT

O2
) for a surface in equilibrium with a surrounding

gas phase. The surface energy of the clean metal surface serves as a zero reference in the
plot. Adsorption of an O adatom will become favorable on the metal surface only if the
Gibbs free energy of the resultant oxygen adatom-covered surface is lower than that of
the clean surface. Also note that as the O content of the surface increases, the slope of the
γ versus �μO plot becomes increasingly negative. With increasing gas-phase chemical
potential, first the clean metal phase is stable, then the first and second adsorbate phases
become stable followed by an oxide phase, and finally, oxygen gas phase condensation
takes place on the surface. (See insert for color representation of the figure.)

In the case of the Si-HfO2 interface, a low-k SiOx or metallic silicide phase
(both of which are undesirable) could form at Si-HfO2 interfaces [88, 90, 91].
In fact, reversible formation of SiOx and silicides at the Si-HfO2 interface by
annealing in oxygen-rich and oxygen-deficient environments, respectively, have
been observed previously [92, 93]. On the other hand, the desired metal elec-
trodes should possess appropriate work functions such that the metal Fermi level
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lines up with either the valence or conduction band edges of the underlying Si
substrate. However, the interfacial chemistries at metal-HfO2 interfaces (in terms
of charge transfer, bond formation, defect accumulation, dipole creation, etc.)
lead to shifts in the work function value from its true vacuum value [94] and
shows a dependence on the processing conditions. Thus, in both cases of Si-HfO2
and metal-HfO2 interfaces, it would be valuable to understand the relationship
between ambient conditions (e.g., temperature and oxygen pressure) and interface
morphologies.

Figure 11.15 shows the standard interface supercells containing an
X-HfO2 (X = Si or Pt) heterostructure and a vacuum region. The interface
oxidation could be modeled by varying the concentration of O at the X-HfO2
interface, which is represented by θO in units of a monolayer (ML). In keeping
with the stoichiometry of HfO2, an ML is defined as two times the number
of Hf atoms in a layer (1 ML of O has 4 O atoms in the specific interface

+ +

× ×Abrupt interface
(q0 = 1 ML)

Abrupt interface
(q0 = 1 ML)

Silica interface
(q0 = 2 ML)

Oxidized interface
(q0 = 2 ML)

Clean interface
(q0 = 0 ML)

Si-HfO2

(a)

Pt-HfO2

(b)

Silicide interface
(q0 = 0 ML)

Figure 11.15 The representative atomic structures of the X-HfO2 heterostructures with
X at the bottom: (a) Si-HfO2 interface and (b) Pt-HfO2 interface. The Hf and O atoms of
the top HfO2 parts in both (a) and (b) are represented by light blue (gray) and red (dark)
spheres, respectively [99]. (See insert for color representation of the figure.) (Reprinted
with permission from H. Zhu, C. Tang, and R. Ramprasad, Phys Rev, 2010, B 82, 235413
and H. Zhu and R. Ramprasad, Phys. Rev,2011, B 83, 081416(R). Copyright 2010 by the
American Physical Society.)
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models considered). The corresponding interface configurations are denoted
by X:θO:HfO2. Three representative interfaces for Si-HfO2 and Pt-HfO2 are
indicated in Figure 11.15a,b. For Si-HfO2, θO = 0 corresponds to an interface
completely depleted of O and is thus composed of primarily Hf-Si bonds;
we refer to this as a “silicide” interface. A well-passivated Si-HfO2 interface
requires a full ML of O, with half of the ML passivating HfO2 and the other half
passivating Si [95]. This situation is referred as an abrupt interface (θO = 1).
θO > 1 represents a situation in which O atoms in excess of 1 ML prefer to
penetrate the Si side of the heterostructure, with the most favorable sites being
between the top two Si layers [96–98]; we refer to this as an oxidized interface.
When θO = 2, the interface is a silica-like interface. Similarly, the three
representative interfaces for Pt-HfO2, Pt:0:HfO2, Pt:1:HfO2, and Pt:2:HfO2 are
referred to as clean, abrupt, and oxidized interfaces , respectively (see 11.15b).

We now describe the approach used to create the interface phase diagrams
based on FPT [99]. The most stable interface is the one with minimum interface
free energy (γθO

), which can be defined as

γθO
= (GθO

− nHfμHf − nOμO − nXμX)/A − σHfO2
− σX (11.20)

where GθO
is the Gibbs free energy for the X:θO:HfO2 heterostructure, A is the

interface area, and nHf, nO, and nX are, respectively, the numbers of Hf, O, and
X atoms in the heterostructure. μHf and μO are the chemical potentials of Hf
and O, respectively, in bulkm-HfO2 and μX is the chemical potential of X in
its stable elemental form, which is the diamond cubic structure for Si and the
face-centered cubic structure for Pt. σHfO2

and σX are the surface energies of the
two free surfaces, which are insensitive to the interface structures, and will drop
out when relative interface energies are considered (as done below).

Moreover, the chemical potentials in the above equation satisfy the following
relationships:

μHf + 2μO = GHfO2

μX = GX,
(11.21)

where GHfO2
and GX are the Gibbs free energies for bulk m-HfO2 and bulk X,

respectively. Substituting Equation 11.21 into Equation 11.20 results in

γθO
= [GθO

− nHfGHfO2
− (nO − 2nHf)μO − nXGX]/A

− σHfO2
− σX.

(11.22)

When θO = 0.5, the whole system is stoichiometric (nHf : nO = 1:2) and the
interface energy is

γ0.5 = (G0.5 − nHfGHfO2
− nXGX)/A − σHfO2

− σX. (11.23)

By using γ 0.5 as a reference, replacing nO − 2nHf by 4 × (θO − 0.5) (four
accounts for the fact that 1 ML of O contains four atoms in the interfaces
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considered here, see Fig. 11.15), substituting Equation 11.12 into Equations
11.22 and 11.23, and assuming that the PV terms for X:θO:HfO2 and X:0.5:HfO2
are roughly equivalent, the relative interface energy can be further defined as

�γθO
= γθO

− γ0.5

= [EDFT
θO

− EDFT
0.5 + F v

θO
− Fv

0.5 + F c
θO

− F c
0.5

− 4(θO − 0.5)μO]/A.

(11.24)

The X:θO:HfO2 heterostructure reaches its equilibrium state at a certain tem-
perature and oxygen pressure by exchanging O atoms with the surrounding
atmosphere. Hence, μO in Equation 11.24 could be replaced with half of the
chemical potential of an oxygen molecule, μO2

, which is a function of tempera-
ture (T ) and oxygen pressure (PO2

), and could be obtained from JANAF tables
or ab initio statistical mechanics [100, 101].

μO2
(T , PO2

) = EDFT
O2

+ �μO2
(T , PO2

), (11.25)

where EDFT
O2

is the DFT energy of an isolated O2 molecule and �μO2
(T , PO2

)

contains the zeropoint vibrational energy (EZPE
O2

) and the T- and P-dependences
of chemical potential. Hence, Equation 11.24 could be written as

�γθO
= {EDFT

θO
− EDFT

0.5 + Fv
θO

− F rmv
0.5 + F c

θO
− F c

0.5 − (2θO − 1)

[EDFT
O2

+ �μO2
(T , PO2

)]}/A
= [�EDFT

θO
+ �F v

θO
+ �F c

θO
− (2θO − 1)�μO2

(T , PO2
)]/A,

(11.26)

where �EDFT
θO

stands for the DFT energy difference between X:θO:HfO2 and
X:0.5:HfO2 + (2θO − 1)O2, that is, �EDFT

θO
= EDFT

θO
− EDFT

0.5 − (2θO − 1)EDFT
O2

,
and may be obtained from normal DFT calculations. Also, �F v

θO
= F v

θO
− F v

0.5
and �F c

θO
= F c

θO
− F c

0.5. Details on how �F v
θO

and �F c
θO

are estimated are dis-
cussed later (also see Eq. 11.17 and 11.19). Prior FPT works on the surface phase
stabilities illustrate that �F v

θO
and �F c

θO
will not qualitatively affect the phase

diagram, although phase transition regions may be smoothed in the presence
of these two terms [102, 103]. Thus, in many treatments, �F v

θO
and �F c

θO
are

dropped in the computation of the surface phase diagram. In such cases, �γθO

is purely a function of �EDFT
θO

and �μO2
(T , PO2

) (referred to here as �γ DFT
θO

).

�γ DFT
θO

= [�EDFT
θO

− (2θO − 1)�μO2
(T , PO2

)]/A. (11.27)

Equation 11.26 or 11.27 forms the basis for the construction of interface phase
diagrams, from which one can compute the interface energy for various interface
structures for given (T , PO2

) combinations. The interface phase diagram is then
obtained by identifying the most stable (i.e., minimum energy) interface as a
function of T and PO2

. In the following paragraphs, we discuss the interface
phase diagram obtained using both Equations 11.26 and 11.27 as well as the
impact of including �F v

θO
and �F c

θO
.
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Figure 11.16 The relative interface free energy as a function of �μO2
for the (a) Si-

HfO2 and (b) Pt-HfO2 interfaces. The inner boundaries represent the lowest interface
energy at each �μO2

value. The corresponding θO value is indicated in the figure. The
vertical dash-dotted lines are boundaries between two different stable interface structures.
The onset �μO2

to form bulk SiO2 and α-PtO2 is indicated by the vertical dotted line in
(a) and (b), respectively [99]. (See insert for color representation of the figure.) (Reprinted
with permission from H. Zhu, C. Tang, and R. Ramprasad, Phys Rev, 2010, B 82, 235413
and H. Zhu and R. Ramprasad, Phys. Rev,2011, B 83, 081416(R). Copyright 2010 by the
American Physical Society.)

11.8.1 Interface Phase Diagrams Not Including Vibrational and
Configurational Energies

We consider the interfaces first with the assumption that the contribution to
the interface energy due to �F v

θO
and �F c

θO
may be ignored, as described by

Equation 11.27. The advantage with considering Equation 11.27 is that all T and
PO2

dependence of �γ DFT
θO

is contained solely within �μO2
. Thus, as shown in

Figure 11.16, a plot of �γ DFT
θO

versus �μO2
yields straight lines, with the slope

and intercept depending, respectively, on the interfacial O content and the value
of �EDFT

θO
. The lower boundary of �μO2

is confined to avoid the segregation of
Hf from bulk HfO2. Lines corresponding to each value of θO ranging from 0 to
2 are shown, and the lowest energy interface at each �μO2

value is identified
along with the corresponding θO value. The critical �μO2

value, above which
formation of the bulk XO2 oxides occurs, is also indicated. At this critical �μO2

,
bulk X is in equilibrium with bulk XO2. The stable forms for bulk Hf, HfO2,
Pt, and PtO2 are the hexagonal, monoclinic, face-centered cubic, and α-PtO2
structures, respectively.

As shown in Figure 11.16a, the stable interface type in Si:θO:HfO2 heterostruc-
ture changes abruptly from θO = 0 to θO = 1 and then to θO = 1.75. Nevertheless,
when 2 > θO > 1.75, the interface changes smoothly. Moreover, bulk SiO2 is
favored at smaller �μO2

values than interfacial silica. This is probably due to
the fact that the oxidation of interfacial silicon is accompanied by strain and
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hence requires more energy. The Pt:θO:HfO2 interface (shown in Fig. 11.16b),
however, changes more smoothly for θO ≤ 1, and then abruptly changes from
θO ∼ 1 to θO = 2. Similar to the Si-HfO2 case (and presumably for the same
reason), the critical �μO2

for an oxidized Pt-HfO2 interface is larger than the
one required to form bulk PtO2.

Since �μO2
is a function of T and PO2

, the information contained in
Figure 11.16 may be used to create (T , PO2

) phase diagrams in which each
�μO2

“turning point” of Figure 11.16 becomes a curve in a T versus PO2
plot,

demarcating boundaries between two different phases. Such phase diagrams are
presented in Figures 11.17a and Fig. 11.18a for Si-HfO2 and Pt-HfO2 interfaces,
respectively, under the assumption that �F v

θO
and �F c

θO
may be ignored.

From Figure 11.17a, we find that (not surprisingly) the interfacial silica phase
prefers high oxygen pressure and low temperature, while the silicide phase is
stable at low oxygen pressure and high temperature. It is however interesting to
note that interfacial silica can occur even at ultrahigh vacuum conditions (PO2

<

10−12 atm) in a wide temperature range, which explains why the interfacial
silica phase is widely observed. The open and solid circles in Figure 11.17a,
respectively, represent experimental conditions at which SiO2 and SiO at Si-
HfO2 interfaces are known to occur [92, 93]. The gray filled circle stands for
the critical point for interfacial SiO2 to decompose to SiO [93]. The (T , PO2

)
boundaries predicted in Figure 11.17a for the decomposition of interfacial silica
is consistent with experiments.

Compared to Si-HfO2, the Pt-HfO2 interface displays a smoother transition
from one level of O coverage to another, especially for θO < 1 (Fig. 11.18a).
Also, this interface can be oxidized only at a very high oxygen pressure and
low temperature. In the ultrahigh vacuum environment, the stable interfacial O
coverage between Pt and HfO2 is 0.5–1 ML. In view of the fact that experimental
data for the Pt-HfO2 interface morphologies is sparse, we compared our phase
diagram with experimental data for Pt surface oxidation. In order to facilitate
such a comparison, we make the following observation. Since 0.5 ML O at
the Pt-HfO2 interface passivates the dangling bonds on the HfO2 side of the
interface (based on the charge counting notions) and has little interaction with
Pt, the net interfacial O strongly bonded to Pt is actually θO − 0.5 ML. Within
this context, the interfacial Pt in Pt:0.5:HfO2 behaves like a clean Pt surface.
The open and solid squares in Figure 11.18a stand for the (T , PO2

) conditions at
which 0.25 ML O-adsorbed (111) Pt and clean (111) Pt surfaces are observed in
experiment, respectively, consistent with our θO − 0.5 ML values of ∼0.25 and
0, respectively, under those same conditions. Another interesting finding of this
work is that the oxidation of Pt at the interface is similar to that of a free (111)
Pt surface. The saturation coverage of the chemically adsorbed O on (111) Pt
surface is 0.25–0.3 ML, after which a layer of PtO2 forms immediately on the
surface [104]. Here, we find that the corresponding θO − 0.5 ML value beyond
which interfacial PtO2 is formed is 0.25–0.5.
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Figure 11.17 (a) The interface phase diagrams for the Si-HfO2 interface, determined
using Equation 11.27), i.e., after neglecting the vibrational and configurational entropic
contributions of the condensed phases to the relative interface free energy. (b) Same as
(a), but with the vibrational entropic contribution (�F v

θO
) included. (c) Same as (a), but

with the configurational entropic contribution (�F c
θO

) included. (d) The interface phase
diagrams determined using Equation 11.26; this is the same as (a), but with both the
vibrational and configurational entropic contributions included. The solid curves indicate
the interface phase boundaries, and the dotted curves represent the onset of formation of
bulk SiO2. The open and solid circles stand for the condition to form SiO2 and SiO at
the Si-HfO2 interfaces in experiments, respectively [92, 93]. The gray filled circle stands
for the critical point for interfacial SiO2 to decompose to SiO [93, 99]. (See insert for
color representation of the figure.) (Reprinted with permission from H. Zhu, C. Tang,
and R. Ramprasad, Phys Rev, 2010, B 82, 235413 and H. Zhu and R. Ramprasad, Phys.
Rev,2011, B 83, 081416(R). Copyright 2010 by the American Physical Society.)

11.8.2 Impact of Other Factors (For Example, the Vibrational and
Configurational Energy Contributions) on Interface Phase Diagrams

Next, we address theoretical aspects left unexplored in the treatment above, for
example, the neglect of �F v

θO
and �F c

θO
(which allowed us to simplify Equation

11.26 to Equation 11.27]. To estimate �F v
θO

, the vibrational DOS, σθO
(w), for

an interface with a certain O coverage and frequency w have been determined
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Figure 11.18 (a) The interface phase diagrams for the Pt-HfO2 interface, determined
using Equation 11.27, that is, after neglecting the vibrational and configurational entropic
contributions of the condensed phases to the relative interface free energy. (b) Same as
(a), but with the vibrational entropic contribution (�F v

θO
) included. (c) Same as (a), but

with the configurational entropic contribution (�F c
θO

) included. (d) The interface phase
diagrams determined using Equation 11.26; this is the same as (a), but with both the
vibrational and configurational entropic contributions included. The solid curves indicate
the interface phase boundaries, and the dotted curves represent the onset of formation of
bulk PtO2. The open and solid squares are the T and PO2

when a 0.25 ML O-adsorbed
(111) Pt surface and a clean (111) Pt surface were observed, respectively [99, 104]. (See
insert for color representation of the figure.) (Reprinted with permission from H. Zhu, C.
Tang, and R. Ramprasad, Phys Rev., 2010, B 82, 235413 and H. Zhu and R. Ramprasad,
Phys. Rev., 2011, B 83, 081416(R). Copyright 2010 by the American Physical Society.)

through harmonic normal mode analysis by allowing only the interfacial O,
Si, Pt, or Hf atoms, as appropriate, to vibrate. The vibrational contribution to
the interface free energy (to be used in Equation 11.26), can be calculated by
Equation 11.19. The vibration of atoms away from the interface for θO and 0.5
are expected to be roughly equivalent and are assumed to cancel out in the com-
putation of �F v

θO
. For clarity, we show �F v

θO
/A for θO values of only 0 and 2 in
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Figure 11.19 The vibrational and configurational contributions (i.e., �Fv
θO

/A and
�F c

θO
/A, respectively) to the relative interface free energy, �γθO

(defined in Equation
11.26], as a function of temperature for the Si-HfO2 and Pt-HfO2 interfaces. Results per-
taining to θO values of 0 and 2 are shown for the vibrational contribution, and those
for 0, 1, and 2 for the configurational contribution. By definition, the �F c

θO
/A values

are identical for the three coverages. The slight difference in the �F c
θO

/A values for the
Si-HfO2 and Pt-HfO2 interfaces are due to the difference in the interface area A for these
two cases.

Figure 11.19 as these two extreme coverages provide an idea of the magnitude of
the vibrational energy contribution. The roughly flat region at low temperatures
is due to zero point vibrations (first term of Equation 11.19]. The temperature-
dependent (second) term of Equation 11.19 contributes to a decrease (increase)
of �F v

θO
with increasing temperature for θO values larger (smaller) than 0.5, and

in all cases going through zero above 500 K. This has the implication that lower
(higher) values of the O coverages are favored at lower (higher) temperatures,
with the vibrational entropic contribution having negligible impact in an interme-
diate temperature range when �F v

θO
goes through zero. Features that reflect these

expectations indeed manifest in the phase diagrams of Figures 11.17b and 11.18b,
which have been created for the Si-HfO2 and Pt-HfO2 interfaces with the explicit
inclusion of �F v

θO
in the determination of the interface free energy (that is, Eq.

11.26 with �F c
θO

= 0). It can be seen that the impact of including �F v
θO

results
in rather minor changes to the features of the phase diagrams (most notably,
the enlargement of the θO ≥ 2 phase region at high temperatures in the Si-HfO2
interface phase diagram, and a shrinking of this region in the Pt-HfO2 interface
phase diagram at low temperatures). While this analysis provides a justification
for the neglect of the vibrational contribution in prior treatments, we note that
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systems involving lighter atoms, for example, H, may require explicit inclusion
of the vibrational contribution to the free energy.

Finally, we estimate the impact of �F c
θO

on the interface phase diagram by
assuming that the O atom sites for θO ∈ [0,1] are equivalent and O atom sites
penetrating X layers are energetically identical. We note that this assumption
constitutes an upper bound to the configurational entropy contribution and is
justified by the lack of dependence of the binding energy per O atom at the
studied interfaces [99]. Thus, using Stirling’s approximation, F c

θO
may be defined

as follows. When 0 < θO < 1, F c
θO

= 4kBT × [θOlnθO + (1 − θO)ln(1 − θO)].
When 1 < θO < 2, F c

θO
= 4kBT × [(θO − 1)ln(θO − 1) + (2 − θO)ln(2 − θO)].

When θO = 0, 1 and 2, F c
θO

= 0. Fig. 11.19 also shows the �F c
θO

contribution
for θO = 0, 1 and 2. Unlike �F v

θO
, �F c

θO
displays a steady rise with temperature.

Moreover, as the variation of �F c
θO

with θO is much smoother, inclusion of
this contribution is expected to eliminate abrupt transitions between phases.
Figures 11.17c and 11.18c show the Si-HfO2 and Pt-HfO2 interface phase
diagrams when �F c

θO
is explicitly included (but �F v

θO
is not included) in the

determination of the interface free energy (i.e., Eq. 11.26 with �F v
θO

= 0).
As expected, the inclusion of the configurational energy makes the transitions
less abrupt and makes some intermediate interfacial phases appear in the phase
diagram, for example, the 0 < θO < 1 and 1 < θO < 1.75 regions. We refer to
1 < θO < 2 as a “SiOx” suboxide region, and note that the presence of this
phase region in the phase diagram brings our predictions for the formation and
decomposition of interfacial silica more in line with experimental observations.
In contrast to the Si-HfO2 case, the interface phase diagrams with and without
�F c

θO
for Pt-HfO2 are very similar to each other. The inclusion of �F c

θO
causes only slight shifts to the phase boundaries, and no new phase regions
appear.

Figures 11.17d and 11.18d display the corresponding phase diagrams when
both the vibrational and configurational energies are included in the treatment
(i.e., when Equation 11.26 is used]. Not surprisingly, simultaneous inclusion
of these two contributions also does not result in significant differences with
respect to the phase diagrams of Figures 11.17a and 11.18a. Nevertheless, these
calculations provide an estimate of errors that may be introduced due to the
neglect of such contributions.

We note that the obtained phase diagrams are in agreement with available
experimental data. While such an agreement with experiments may be viewed
as fortuitous, this may indicate that all the dominant contributions to the
interface free energy have been included in this treatment (even at the
level of Equation 11.27). The unaddressed issues of deficiencies inherent to
approximations within DFT are presumably unimportant in the class of systems
studied here (or may have participated in a fortuitous cancelation of errors).
We do note that FPT studies may benefit from (the relatively inexpensive)
explicit inclusion of configurational entropic contributions to the free energy,
especially when a lack of such inclusion results in abrupt transitions between
phases.
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11.9 OUTLOOK AND CONCLUDING THOUGHTS

This article focused on the practical applications of modern DFT-based compu-
tations in the area of surface and interface science. After a general survey of the
current state-of-the-art of conventional DFT computations, applications of such
methods to the computations of surface energies, optimization of nanostructure
shapes, and the determinations of surface and interface phase diagrams were
explored. Methods for combining traditional zero-temperature DFT results with
statistical mechanics to obtain free energies of processes were also described.

The future prospects for DFT-based computations remains exciting. The spec-
trum of problems that may be addressed using DFT methods is rapidly increasing.
Moreover, methods to deal with some of the remaining fundamental deficien-
cies of DFT—such as predictions of band gaps and gap levels in insulators
[105] and the treatment of secondary bonding interactions (e.g., dispersive van
der Waals interactions) [106]—are becoming available and practical. As we go
to more extreme conditions, such as high temperatures and pressures, the free
energy of the system has to include terms beyond the harmonic approximation
(for the vibrational part). Robust schemes for the proper treatment of such fac-
tors are also beginning to mature [107]. The technologically important topic of
surface/interface science will benefit from these recent and anticipated develop-
ments.
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