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The optimized structure, chemical bonding characteristics, elastic and thermal properties of Fe6W6C are
investigated by the first principle calculations with and without dispersion-corrected methods combined
with the quasi-harmonic approximation. The bonding behaviors of Fe6W6C are discussed by the density
of states and Mulliken population analysis. Anisotropy of shear and Young’s moduli are characterized by
three-dimensional surface contours and the planar projections on different planes. Anisotropy of the min-
imum thermal conductivity of Fe6W6C is discussed based on Cahill’s model and Clarke’s model and the
values are 1.38 and 1.26 W m�1 K�1 predicted by these two models. Moreover, the 3D representation
of the anisotropic thermal conductivity of Fe6W6C is obtained based on the Clarke’s model and anisotro-
pic Young’s modulus.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The tungsten-containing g-carbides Fe3W3C, Co3W3C, Co6W6C
and Fe6W6C, etc. possess interesting properties as refractory and
hard materials, and recently as potential catalysts. These phases
could occur at the interfaces in heterogeneous composite materi-
als, i.e., the interfaces between WC and transition metals (or their
alloys) or tungsten-containing steels as secondary phases [1,2].
These compounds can also be prepared using special synthetic
routes such as mechanical alloying [3]. Among the several phases,
Fe6W6C is an important one and has attracted much attention to be
investigated. Waki et al. systematically studied electronic proper-
ties of the g-carbide-type compounds, synthesized the Fe6W6C
compounds and measured its magnetic susceptibility [4]. Suetin
et al. investigated the structural, electronic, magnetic properties
and stability of g carbides by first-principles FLAPW-GGA calcula-
tions [5]. Liu et al. explored the stability, electronic and mechanical
properties of Fe–W–C system [6]. But as a common phase in the
interface region of WC/Fe composites, a good understanding on
thermodynamic and elastic properties of Fe6W6C is important to
better control and improve the properties of the composites. In this
paper, both the density functional theory and quasi-harmonic
approximation are employed to obtain the anisotropic elastic and
thermal properties of Fe6W6C.
2. Methods and details

The first-principles calculations based on the density functional
theory (DFT) are implemented in Cambridge Serial Total Energy
Package (CASTEP) code, with a plane-wave cutoff energy of
400 eV and a 6 � 6 � 6 Monkhorst–Pack k-point grid. Ultra-soft
pseudo potentials (USPPs) are used to represent the interactions
between ionic cores and valence electrons. The Broydene–Fletche
re–Goldarbe–Shanno (BFGS) method is applied to optimize the
crystal structure until the total energy changes are converged to
1 � 10�6 eV and the forces per atom are less than 0.02 eV/Å [7].
In this work, generalized gradient approximation (GGA) within
two different functional is used for exchange–correlation energy
calculations. One is the Perdew, Burke and Ernzerhof approach
[8] and the other one is the Perdew and Wang parameterization
(PW91) combined with the OBS method for the calculations of dis-
persion interactions such as the Van Der Waals (VDW) interactions
[9]. The elastic properties are determined using the stress–strain
relations by deforming the unit cell. The density functional theory
(DFT) method combined with the quasi-harmonic approximation
(QHA) and Debye model is used to calculate the thermodynamic

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2015.06.037&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2015.06.037
mailto:jiangyehua@kmust.edu.cn
mailto:jfeng@seas.harvard.edu
http://dx.doi.org/10.1016/j.commatsci.2015.06.037
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


Fig. 1. Crystal structure of Fe6W6C. The large orange ball, medium green ball and small blue ball represent the tungsten atom, carbon atom and iron atom, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

206 X. Chong et al. / Computational Materials Science 108 (2015) 205–211
properties of Fe6W6C at finite temperatures. The studied crystal
structure of Fe6W6C is shown in Fig. 1. The type of lattice of
Fe6W6C belongs to the complex cubic structure and the space
group is FD�3M. The unit cell contains 48 iron atoms, 48 tungsten
atoms and 8 carbon atoms, in which the C atoms occupy the octa-
hedral interstice of W atoms and the strong W–C bonds surround
the Fe atoms.

3. Results and discussions

3.1. Equilibrium crystal parameters and mechanical modulus

The calculated equilibrium lattice parameters are shown in
Table 1, together with the experimental and other theoretical results
[5,10]. From Table 1, it is clearly seen that the calculated results are
close to experimental ones. The lattice constants calculated using
PW91 functional combined with the dispersion-corrected method
are a little smaller than the results obtained from other methods.
The tiny difference between experimental and theoretical results
can be attributed to the thermodynamic effects on the crystal and
the lattice defect. The obtained elastic constants and mechanical
modulus evaluated within Viogt–Reuss–Hill approximation are
summarized in Table 2. It is obvious that the mechanical parameters
estimated using PW91 functional and OBS method are larger than
that obtained with PBE functional. Furthermore, the bulk (B) and
shear modulus (G) of Fe6W6C are all smaller than that of h-WC
(393.0 and 286.2 GPa), but equivalent to h-W2C (330.6 and
190.6 GPa) [11]. The value of B/G and Poisson’s ratio (r) are calcu-
lated within the common expression [12], which are all larger than
the critical value (1.75 and 0.26), indicating Fe6W6C is more ductile
than other transition metal carbides ceramic such as h-WC (1.37 and
0.21) [11], VC (1.53 and 0.23) [12] and TiC (1.22 and 0.18) [13]. The
transverse and longitudinal sound velocities (vt and vl), mean sound
velocity (vm), Debye temperature (HD) are also evaluated in this
work using the following relations in order to calculate the thermal
conductivity in the next part.

HD ¼
h
kB

3n
4p

NAq
M

� �� �1=3

vm ð1Þ
Table 1
Lattice parameters of the studied Fe6W6C structure determined both by experiment and t

Method Lattice constants (Å) Lattice a

a b c a

GGA-PW91 + OBS 10.81 10.81 10.81 90
GGA-PBE 10.87 10.87 10.87 90
EOS 10.87 10.87 10.87 90
FLAPW-GGA-PBE 10.90 10.90 10.90 90
Experiment 10.93 10.93 10.93 90
vm ¼
1
3

2
v3

t
þ 1

v3
l

� �� ��1=3

ð2Þ

v l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþ ð4=3ÞGÞ

q

s
ð3Þ

v t ¼

ffiffiffiffi
G
q

s
ð4Þ

here h is the Planck’s constant, kB is the Boltzmann constant, NA is
the Avagadro’s constant, n is the number of atoms per formula, M
is the molecular weight, q is the theoretical density of the com-
pound. The calculated results are shown in Table 2. Moreover, the
lattice parameters and bulk modulus as the function of temperature
are obtained from the fitting of the Birch–Murnaghan equation of
state [14] and QHA approximation, which is presented in Fig. 2.
The effects of thermal energies on the lattice parameter and bulk
modulus are caused mainly by lattice vibrations or phonons. With
the temperature increasing from 0 K to 1200 K, the lattice parame-
ter rises from 10.871 to 10.886 Å and the bulk modulus decreases
from 327.8 to 326.7 GPa, suggesting the strong thermal stability
for Fe6W6C.
3.2. Heat capacity and thermal expansion coefficient

In order to study the thermal properties of Fe6W6C, the volume
dependence of total energy is obtained by the DFT calculations. The
heat capacity at constant pressure (Cp) can be achieved by analyz-
ing the phonon frequencies of the crystal structure and the Debye
model is applied to evaluate the heat capacity at constant volume
(CV) [15]. Then the calculated difference between the two heat
capacities can be correlated to thermal expansion and temperature
through CPðTÞ � CV ðTÞ ¼ b2VðTÞTB0ðTÞ [16], where b is volumetric
thermal expansion coefficient; V(T) is the equilibrium cell volume
at temperature T obtained from lattice parameter and B0(T) is the
isothermal bulk modulus which have been calculated in the previ-
ous part. For cubic crystal class, the linear expansion coefficient (a)
heoretical calculation.

ngles (�) q (g/cm3) V (Å3) Reference

b c

90 90 15.24 1264.5 This work
90 90 15.00 1284.0 This work
90 90 15.00 1284.7 This work
90 90 14.87 1295.2 [5]
90 90 14.73 1307.2 [11]



Table 2
Elastic constants (GPa), mechanical modulus (GPa), Poisson’s ratio, acoustic velocities and Debye temperature for Fe6W6C.

Method Cij B G E B/G r vl vt vm HD

C11 C44 C12

GGA-PW91+OBS 609.6 173.7 204.8 339.8 184.7 469.0 1.84 0.27 6201 3481 3874 501.5
GGA-PBE 593.5 168.0 203.9 333.8 178.3 454.0 1.87 0.27 6172 3447 3838 494.2
EOS 327.8

0 200 400 600 800 1000 1200

10.872

10.876

10.880

10.884

10.888
Lattice parameter
Bulk modulus

Temperature (K)

La
tti

ce
 p

ar
am

et
er

 (1
0-1

0 m
)

326.6

326.8

327.0

327.2

327.4

327.6

327.8

B
ul

k 
m

od
ul

us

Fig. 2. Temperature dependence of lattice parameter and bulk modulus of Fe6W6C.
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and volumetric coefficient are related by b = 3a [16]. All the results
can be found in Fig. 3. From Fig. 3(b) and (c), we can clearly find
that the CV and Cp of Fe6W6C increase sharply below the Debye
temperature (501.5 K), but above the Debye temperature, CV and
Cp increase linearly as a function of temperature and the CV

approaches to a constant which is well described by the classic
Dulong–Petti rule, i.e., 3NR, at very high temperature. For
Fe6W6C, the value is 324.25 J mol�1 K�1.

The thermal expansion characterizes the anharmonic lattice
vibrations of a crystal. The calculated linear expansion coefficient
(a) is shown in Fig. 3(d), which exhibits similar variation tendency
as CV and Cp. The propensity of increment of a becomes very mod-
erate at high temperature, which means that a changes slowly and
increases linearly with respect to temperature. For Fe6W6C, the a
value approach 7.53 � 10�6 K�1 at 1200 K, indicating that it is ther-
mal expansion coefficient is low compared with the steel and iron
materials.
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3.3. Electronic structure

In order to reveal the electronic origin of the calculated proper-
ties of Fe6W6C, the density of states (DOS) and electron density dis-
tribution maps are calculated and plotted in Figs. 4 and 5,
respectively. From Fig. 4, we can clearly see that Fe6W6C is an insu-
lator. The d bands of metal atoms dominate the Fermi level.
Furthermore, the 3d band of Fe and 5d band of W are overlapped
with the 2p band of C near Fermi level, implying the covalent inter-
actions between the C and metal atoms by p–d hybridization and
the metallic bonding between metal atoms. So the bonding behav-
iors of Fe6W6C are the combinations of covalent and metallic
bonds. Another evidence can be found in Fig. 5(a), in which the
core regions for all the W, Fe and C have large values and smaller
in interstitial area. Covalent bond features can be seen clearly in
the picture between W and C atoms, and interactions of metallic
bonds between Fe and W are also evidence. More details can be
found from electron density difference distribution in Fig. 5(b).
Some electrons are delocalized and distributed through the matrix
map in the area between Fe and W atoms, suggesting the charac-
teristics of metallic bonding. The electrons in the blue color area
are effectively localized around the C atoms and strong polarized
covalent bonds can be concluded between W and C atoms. The
large mechanical modulus and low thermal expansion coefficient
can be attributed to the strong bonding between W and C atoms.

The Mulliken population analysis on the chemical bonds of
Fe6W6C is conducted by DFT calculations with the GGA-PBE func-
tional, as shown in Fig. 6. The Mulliken populations of W–C bonds
are higher than those of other bonds, indicating high level of cova-
lency of bonds. There is only one type C–W bond in CW6 octahe-
dron, while two different bond lengths and Mulliken populations
exist in Fe–Fe and Fe–W bonds. Moreover, the bond lengths as well
as the Mulliken population of C–W bonds are quite different from
those of Fe–W and Fe–Fe bonds, which demonstrate anisotropic
chemical bonding nature of Fe6W6C. The lengths of metallic bonds
are longer and the Mulliken populations are smaller than those of
C–W bonds, implying that metallic bonds are weaker than C–W
bonds. In general, Fe6W6C show heterogeneous bonding nature
and complex structures. These structural features play an essential
role in the properties and performances of these two materials.
3.4. Anisotropy of mechanical modulus and thermal conductivity

The calculated elastic compliance constants and anisotropic
index are summarized in Table 3. For the universal anisotropic
index (AU) and percent anisotropic index (AB and AG), the large
discrepancies from zero refer to the highly mechanical anisotropic
properties and the values of A1, A2 and A3 should be one for an iso-
tropic crystal [17]. From the AB value we can conclude that the bulk
modulus is isotropic for Fe6W6C. But the Young’s modulus is more
dependent on the direction which is confirmed by AB and AG values.
A1, A2 and A3 values are 0.86 for Fe6W6C, indicating that Fe6W6C
has weak anisotropy of shear modulus.

Another more intuitive and simple way to describe the aniso-
tropic behavior of elastic properties for Fe6W6C is to plot the
three-dimensional (3D) surface contour for mechanical modulus
in spherical coordinates as a function of the crystallographic ori-
entation. For the shear modulus, the shear stress direction and
the shear plane must be considered in the 3D coordinate, which
make it difficult to draw the 3D anisotropic picture of shear mod-
ulus. In this paper, the anisotropy of torsion shear modulus for
Fe6W6C (GT) is discussed to solve the problem. The directional
dependence of torsion shear modulus and Young’s modulus is
given by [18,19]:

1
GT
¼ S44 þ 4 ðS11 � S12Þ �

1
2

S44

� �
ðl2

1l2
2 þ l2

2l2
3 þ l2

1l2
3Þ ð5Þ

1
E
¼ l4

1S11 þ l42S22 þ l4
3S33 þ 2l2

1l2
2S12 þ 2l2

1l2
3S13 þ 2l2

2l23S23

þ l2
1l2

2S66 þ l2
1l2

3S55 þ l2
2l2

3S44 ð6Þ

where Sij is the elastic compliance constants and l1, l2 and l3 are the
directional cosines (l1 = sinhcosu, l2 = sinhsinu, l3 = cosu). The
obtained contour images are shown in Fig. 6(a) and (b). For an iso-
tropic crystal, a sphere is anticipated. As we can see from Fig. 7,
Young’s modulus of Fe6W6C has stronger directional dependence
than shear modulus. Projections of Young’s modulus on the (001)
and (110) planes for Fe6W6C are also shown in Fig. 6(d), which
are all deviated from the regular ellipses. The shapes of planar con-
tours on (001) and (110) planes are alike and show the maximum
Young’s modulus as 506.6 GPa along [010] and [001] directions,
respectively. Moreover, the minimum Young’s modulus for
Fe6W6C on (001) and (110) planes are 459.1 and 445.2 GPa.

The anisotropy of the minimum thermal conductivity for
Fe6W6C is now addressed based on Cahill’s model and Clarke’s
model. Both models can give the lower limit of the thermal con-
ductivity of a crystal. Then the thermal conductivities (j) can be
evaluated as [20,21]:

Clark’s model : jmin¼0:87kBMa
�2=3E1=2q1=6; Ma ¼ ½M=ðm �NAÞ�

ð7Þ

Cahill’s model : jmin ¼
kB

2:48
n2=3ðv l þ v t1 þ v t2Þ ð8Þ

where Ma is the average mass per atom, q is the density, M is the
molar mass, m is the total number of atoms per formula, NA is
Avogadro’s number, kB is Boltzmann’s constant, n is the density of
number of atoms per volume, vl is the longitudinal sound velocity,
vt1 and vt2 are the transverse sound velocity. For the Clark’s model,
we found a simple parameter of Young’s modulus (E) in it. Thus we
replace the simple E with the 3D expression of anisotropy of
Young’s modulus (Eq. (2)) to obtain the directional dependence of
the minimum thermal conductivity. The 3D surface contour of the
minimum thermal conductivity of Fe6W6C is presented in
Fig. 7(c), which can be seen that the shape of the contour is not a
sphere. Furthermore, we can also plot the anisotropic minimum
thermal conductivity of a crystal at different crystal planes. For
Fe6W6C with cubic crystal, the trajectories of the minimum thermal
conductivity at the (001) and (110) crystal planes are given in
spherical coordinates [22]:
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jð0 0 1Þ
min ¼ 0:87kBMa

�2=3q1=6ðS11ðsin4 uþ cos4 uÞ

þ ðS44 þ 2S12Þ cos2 u sin2 uÞ
1=2

ð9Þ
jð1 1 0Þ
min ¼ 0:87kBMa

�2=3q1=6 S11
1
2

sin4 hþ cos4 h

� ��

þ
�
S44 þ 2S12Þ cos2 h sin2 hþ 1

4
sin4 h

� ��1=2

ð10Þ

The results are illustrated in Fig. 7(e) and (f). From the trajectory
images one can clearly see that the minimum thermal conductivity
along the [010] direction is smaller than that along other direc-
tions and the peak value � 1.48 W m�1 K�1 occurs along the
[110] direction at the (001) plane. Furthermore, the minimum
thermal conductivity close to the [1 �11] direction is larger than
that along other directions and the minimum thermal conductivity
as 1.24 W m�1 K�1 along [1 �10] direction is the smallest at the
(110) plane.

For the Cahill’s model, the sound velocities of both longitudinal
and transverse waves along [100], [110] and [111] directions
Table 3
The calculated elastic compliance matrix (Sij), universal anisotropic index (AU), percent an

Method Sij

S11 S44 S12

GGA-PW91+DFT-D 0.0019738 0.0057582 �0.0004964
GGA-PBE 0.0020440 0.0059525 �0.0005227
must be calculated using the following relations [23] to obtain
the minimum thermal conductivities along different directions:

for ½100�ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C11=q

p
; ½010�mt1 ¼ ½001�mt2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
ð11Þ
for ½110�ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 þ C12 þ 2C44Þ=2q

p
; ½1 �10�mt1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 � C12Þ=q

p
; ½001�mt2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
ð12Þ
for ½111�ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 þ 2C12 þ 4C44Þ=3q

p
; ½11 �2�mt1 ¼ mt2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 � C12 þ C44Þ=3q

p
ð13Þ

The anisotropic sound velocities of h-WC and h-W2C [24] are
also quoted to estimate the thermal conductivities. All the
obtained anisotropic sound velocities of Fe6W6C, h-WC and
h-W2C are shown in Table 4. The minimum thermal conductivities
estimated by Clark’s and Cahill’s models are tabulated in Table 5.
The value obtained by Cahill’s model is 1.38 W m�1 K�1, which
are larger than the value 1.26 W m�1 K�1 predicted by Clark’s
model. The thermal conductivity of the investigated Fe6W6C is
almost as low as that of the thermal insulators Ln2Zr2O7 (1.2–
1.5 W m�1 K�1), which are also evaluated by Cahill’s and Clark’s
model and compared with the experimental results [23]. The rea-
son is that W atom is much heavy and atomic masses and radius
for W, Fe and C atoms vary widely, which may weaken the vibra-
tion of the atom and lead to different vibrational frequency for dif-
ferent atom. So the phonon transmission is hampered resulting in
low conductivity of the crystal. As an important phase in WC/Fe
composite, the thermal conductivity of Fe6W6C is larger than
h-W2C, but smaller than h-WC. Furthermore, the anisotropy of
minimum thermal conductivity calculated within Cahill’s model
is in consistent with that estimated by Clark’s model. For Cahill’s
model, the minimum thermal conductivity along the [110] direc-
tion is the largest among all the calculated values along different
directions, which is in good agreement with the result from
Clark’s model.
isotropic index (AB and AG) and shear anisotropic factors (A1, A2 and A3) for Fe6W6C.

Shear anisotropic factors Anisotropic index

A1 A2 A3 AU AB AG (%)

0.86 0.86 0.86 0.02821 0 0.28
0.86 0.86 0.86 0.02636 0 0.26



Table 4
The calculated anisotropic sound velocities of Fe6W6C, together with the values of h-WC and h-W2C. The unit of velocity is m/s.

Species [100] [010] [001] [110] [111]

vl vt1 vt2 vl vt1 vt2 vl vt1 vt2 vl vt1 vt2 vl vt1 vt2

Fe6W6C 6325 3376 3376 6325 3376 3376 6325 3376 3376 6174 5154 3376 6123 3557 3557
h-WC 4034 6799 4412 4412 7875 4412
h-W2C 3466 5928 3586 3586 5657 3586

Table 5
The thermal conductivity (j) of Fe6W6C, together with the values of h-WC and h-W2C calculated by Clark model and Cahill’s model. The unit of the minimum thermal
conductivity is W m�1 K�1.

Species Model M Ma (10�26) n (1028) [100]jmin [010]jmin [001]jmin [110]jmin [111]jmin [1 �10]jmin [1 �1 1]jmin jmin

Fe6W6C Cahill 8.22 1.38 1.38 1.38 1.55 1.39 1.38
Clark 1449.6 18.52 1.31 1.31 1.31 1.48 1.24 1.47 1.26

h-WC Cahill 9.68 1.79 1.96 1.85
Clark 195.8 16.26 1.68

h-W2C Cahill 7.97 1.34 1.32 1.32
Clark 379.6 21.02 1.19
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the anisotropic thermal conductivities for (001) plane and (110) plane (e) and (f).
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4. Conclusions

In this paper, we find that the lattice constant and bulk modulus
of g phase Fe6W6C change slightly with the temperature increasing
from 0 K and 1200 K. The heat capacity at constant pressure (Cp)
and constant volume (CV) are calculated and the CV approaches
324.25 J mol�1 K�1 for Fe6W6C. The temperature dependence of
linear expansion coefficient (a) for Fe6W6C is calculated and the
value is 7.53 � 10�6 K�1 at 1200 K. The bonding behaviors of
Fe6W6C are the combinations of covalent and metallic bonds. The
3D surface contour of torsion shear modulus and Young’s modulus
are obtained and the anisotropy of Young’s modulus of Fe6W6C is
stronger than shear modulus. Furthermore, the 3D representation
of minimum thermal conductivity of Fe6W6C is evaluated based
on the Clark model. The minimum thermal conductivities at the
(001) and (110) planes are plotted and we found that the direc-
tional dependence of thermal conductivity is determined by the
anisotropy of elasticity of Fe6W6C. On the other hand, the aniso-
tropy of minimum thermal conductivities is also evaluated by
Cahill’s model, which is in good agreement with the result from
Clark’s model. The jmin values estimated by Cahill’s and Clark’s
model are 1.38 and 1.26 W m�1 K�1, respectively.
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