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1. ONE-DIMENSIONAL MAPPING OPERATOR

Pk,M∆ ptµiu
k
i“1q P arg min

tµ̂iu
k
i“1ĂRM

dpptµiu
k
i“1, tµ̂iu

k
i“1q

s.t. }µ̂i ´ µ̂j}2 ě ∆, @1 ď i ‰ j ď k (1)

Theorem 1. The on-grid mapping P̃k,1∆,δ in Algorithm 2 is op-
timal in the sense of (1) when both µ, µ̂ P Rk are restricted
on the grid. With grid size δ, the number of arithmetic opera-
tions of P̃k,1∆,δ is upper bounded by 3kpk ´ 1qr∆

δ s.

Proof. (Main Idea of Algorithm 2)
In Algorithm 2, from line 1 to 5, we first set the range of

the result that t̂i P rgmin, gmaxs. Then each ti is normalized
as qi fi pti ´ gminq{δ P N. We denote the total number of
grids to be considered as N , qi P r0, N ´ 1s, and convert
∆-separated constraint (|ti ´ tj | ě ∆, @i ‰ j) into s-grid-
separation (|qi ´ qj | ě s).

Afterwards, we find one projection q̂ such that

q̂ “ arg min
q̂
dppq, q̂q s.t. q̂i`1 ´ q̂i ě s, i “ 1, ..., k ´ 1

q̂ may not be unique, and the algorithm obtains one of them.
Then the corresponding t̂ is recovered. Since q and q̂ are
normalizations of t and t̂, the optimality in Theorem 1 can be
proved, if s-separated q, q̂ P Nk are optimal in the sense of
(1), which is shown below.

(Optimality for On-Grid Mapping)
The dynamic program determines an auxiliary matrix

Fpk,Nq, where N is the number of grids we consider and
Fpr, nq is defined for 1 ď r ď k and 0 ď n ď N ´ 1 by

Fpr, nq :“ min

#

r
ÿ

i“1

|qi ´ q̂i|
p

ˇ

ˇ

ˇ

ˇ

ˇ

q̂r ď n

+

(2)

We claim that, for 2 ď r ď k and spr ´ 1q ď n ď N ´ 1,

Fpr, nq “ min

"

Fpr ´ 1, n´ sq ` |qr ´ n|
p,

Fpr, n´ 1q.
(3)

The relation is straightforward, as it distinguishes whether
the last entry of the minimizer for Fpr, nq is equal to or less
than n. To be specific, we establish the estimate on Fpr, nq by
considering the minimizer q̂r1:rs P Rr for Fpr, nq: if q̂r ă n,
q̂r ď n ´ 1, so Fpr, nq “ Fpr, n ´ 1q by the definition (2);
if q̂r “ n, so that q̂r´1 ď n ´ s, then Fpr, nq “

řr´1
i“1 |qi ´

q̂i|
p`|qr´q̂r|

p “ Fpr´1, n´sq`|qr´n|
p. With the relation

(2) now fully justified, table F can be filled with initial values

Fp1, nq “ min

"

|q1 ´ n|
p, if n ă q1

0, otherwise.

Fpr, nq “ 8, 2 ď r ď k, 0 ď n ă spr ´ 1q

In the former relation where r “ 1, if n ě q1, we have
q̂1 “ q1, so Fp1, nq “ 0; if n ă q1, the minimizer is q̂1 “ n,
so Fp1, nq “ |q1 ´ n|p. The latter relation reflects the non
existence of r-length s-separated vector within spr´1q grids.

(Complexity)
According to (2), F contains kN entries. Since only the

optimal projections do matter, it is not necessary to compute
all entries. Specifically, when determining Fpr, ¨qs for a fixed
r, we narrow the range of optimal q̂r to rqr ´ pk ´ rqs, qr `
pr ´ 1qss instead of r0, N ´ 1s. The reason is that if q̂r ą
qr `pr´ 1qs, then we can construct s-separated q̂1 with q̂1i “
minpqr ` pi ´ 1qs, q̂iq for i “ 1, ..., r and q̂1j “ q̂j for j “
r ` 1, ..., k, which satisfies dppq̂

1, qq ă dppq̂, qq. Similarly,
if q̂r ă qr ´ pk ´ rqs, then we can construct s-separated q̂1

with q̂1i “ q̂i for i “ 1, ..., r and q̂1j “ maxpqr ´ pj ´ rqs, q̂jq

for j “ r ` 1, ..., k, which satisfies dppq̂
1, qq ă dppq̂, qq.

Hence, we can replace the conditions in line 7 and 15 in
Algorithm 2 and get Algorithm 3. In this way, for each r,
at most pk ´ 1qs entries of F will be computed with each
entry requiring three basic arithmetic operations in (3) - one
addition, one subtraction and one exponentiation. The total
complexity is upper bounded by 3kpk´ 1qr∆

δ s arithmetic op-
erations. When k is large, this is an improvement compared
with Opk3.5 log

`

1
δ

˘

q for the quadratic programming strategy
of [1].

(Example)
As for the best projection itself, we need to back track

the case producing F. The process is fully specified in Al-



gorithm 4. Table 1 displays an example of q “ r6, 7, 8, 9sT ,
s “ 2 and p “ 2 with corresponding F, where one of the
best projections is q̂ “ r4, 6, 8, 10sT . To acquire one best
projection, we follow the path of arrows starting from the
pk,N ´ 1qth box until r “ 1: if an arrow points northwest
from the pr, nqth box, then the grid n is selected for the entry
of the best approximation, and if r “ 1, the pointed grid is se-
lected. Once one best projection q̂ is determined in this way,
its corresponding t̂ is recovered as return value.

q

-
-
-
-
-

q1 “ 6
q2 “ 7
q3 “ 8
q4 “ 9

-
-
-
-
-
-
-

Fpr, nq r “ 1 r “ 2 r “ 3 r “ 4

n “ 0 36 ‹ ‹ ‹

n “ 1 25 ‹ ‹ ‹

n “ 2 16 ‹ ‹ ‹

n “ 3 9 41 ‹ ‹

n “ 4 4 25 ‹ ‹

n “ 5 1 13 ‹ ‹

n “ 6 0 5 29 ‹

n “ 7 ‹ 1 14 ‹

n “ 8 ‹ 1 5 ‹

n “ 9 ‹ 1 2 14
n “ 10 ‹ ‹ 2 6
n “ 11 ‹ ‹ 2 6
n “ 12 ‹ ‹ 2 6
n “ 13 ‹ ‹ ‹ 6
n “ 14 ‹ ‹ ‹ 6
n “ 15 ‹ ‹ ‹ 6

Table 1: Sketch of the dynamic program computing the best
s-separated projections of q “ r6, 7, 8, 9sT with s “ 2 and
p “ 2. ”‹” means the entry is not required to be considered.

Lemma 1. The one-dimensional transportation distance in
`p norm (p ě 1) satisfies triangle inequalities as follows

d1{p
p pa, bq ` d1{p

p pb, cq ě d1{p
p pa, cq

where a, b, c P Rk are sorted.

Proof. When a, b are sorted, dppa, bq “
řk
i“1 |ai ´ bi|

p “

||a ´ b||pp. The relation can be acquired through Minkowski
inequality

d1{p
p pa, bq ` d1{p

p pb, cq “ ||a´ b||p ` ||b´ c||p

ě ||a´ c||p “ d1{p
p pa, cq

Theorem 2. Let µ‹ be one gridless optimal solution of (1)
and µ# “ Pk,1∆ pµq. If ∆

δ “ m P N “ t0, 1, ¨ ¨ ¨ u, then we
have

d1{p
p pµ#,µq ď d1{p

p pµ‹,µq ` 1.5δk1{p

Proof. We obtain the on-grid approximations t and t‹ of µ
and µ‹ respectively as Step 1 in Algorithm 1. Let µi “ ti`εi
and µ‹i “ t‹i `ε

‹
i . It is obvious that´0.5δ ď εi, ε

‹
i ă 0.5δ for

i “ 1, ..., k, which implies dppµ, tq, dppµ‹, t‹q ď p0.5δqpk.
As the ground-truth µ‹ is ∆-separated, we have

|µ‹i`1 ´ µ
‹
i | “ |t

‹
i`1 ´ t

‹
i ` ε

‹
i`1 ´ ε

‹
i |

ď |t‹i`1 ´ t
‹
i | ` |ε

‹
i`1 ´ ε

‹
i |

ă |t‹i`1 ´ t
‹
i | ` δ

which indicates |t‹i`1 ´ t
‹
i | ą ∆´ δ “ pm´ 1qδ. Since t‹ is

on grid and ∆{δ P N, we must have |t‹i`1 ´ t‹i | ě mδ “ ∆.
Next, we can apply the triangle inequality and have

d1{p
p pµ,µ‹q ě d1{p

p pµ, t‹q ´ d1{p
p pµ‹, t‹q

ě d1{p
p pt, t‹q ´ d1{p

p pµ, tq ´ d1{p
p pµ‹, t‹q

ě d1{p
p pt,µ#q ´ d1{p

p pµ, tq ´ d1{p
p pµ‹, t‹q

ě d1{p
p pµ,µ#q ´ 2d1{p

p pµ, tq ´ d1{p
p pµ‹, t‹q

ě d1{p
p pµ,µ#q ´ 1.5δk1{p

where the first, second and fourth steps use the inequality in
Lemma 1 and the third step uses the optimality in Theorem 1
that dppt‹, tq ě dppµ

#, tq.

Algorithm 1 One-Dimensional Mapping Operator Pk,1∆

Input: grids G “ tg ˘ iδ | i P Z, g, δ P Ru; µ P Rk, ∆;
Output: ∆-separated approximation µ̂ on G;
1: tÐ arg mingiPG ||g ´ µ||2
2: µ̂Ð P̃k,1∆,δptq
3: return µ̂

2. TWO DIMENSIONAL MAPPING OPERATOR

Theorem 3. The output tµ̂iu
k
i“1 in Algorithm 5 is ∆-

separated and there exists π P Πk such that

k
ÿ

i“1

}µπpiq ´ µ̂i}2 ď
kpk ´ 1q∆

2
(4)

max
1ďiďk

}µπpiq ´ µ̂i}2 ď pk ´ 1q∆ (5)

Proof. (Main Idea of Algorithm 5)
In Algorithm 5, all tµiu

k
i“1 are moved away from c iter-

atively, such that the distance between each two points will
increase and exceed ∆. Specifically, at the i-th iteration, we
set µ̂i as the closest point to c among tµ̂lu

k
l“i and fix it while

moving each µ̂j (j ą i) away from c to ensure ||µ̂i´µ̂j ||2 ě
∆ for all j ą i. One example with k “ 5 and ∆ “ 1 is given
in Fig. 1a.



Algorithm 2 On-Grid Mapping Operator P̃k,1∆,δ

Input: t P Rk
Output: ∆-separated approximation t̂ on G;
1: sÐ r∆{δs
2: gmin Ð t1 ´ pk ´ 1qsδ
3: gmax Ð tk ` pk ´ 1qsδ
4: q Ð pt´ gminq{δ
5: N Ð pgmax ´ gminq{δ ` 1
6: FÐ matrix with size kˆN and all elements equal to8
7: for n “ 0 Ñ N ´ 1 do
8: if n ă q1 then
9: Fp1, nq Ð |q1 ´ n|

p

10: else
11: Fp1, nq Ð 0
12: end if
13: end for
14: for r “ 2 Ñ k do
15: for n “ spr ´ 1q Ñ N ´ 1 do
16: Fpr, nq Ð minpFpr ´ 1, n´ sq ` |qr ´ n|

p,
17: Fpr, n´ 1qq
18: end for
19: end for
20: q̂ Ð BackTracking(F)
21: t̂Ð q̂δ ` gmin

22: return t̂

For the moving distance of µ̂j at the i-th iteration (j ą i),
we take it as small as possible, which means only if ||µ̂i ´
µ̂j ||2 ă ∆, µ̂j is moved along the direction (µ̂j ´ c) until
||µ̂i ´ µ̂j ||2 “ ∆. The position of µ̂j after moving is deter-
mined with cosine theorem, as is shown in Fig. 1b. Denote
that µ̂j is moved to µ̂1j . We have

cospϕq “
||µ̂i ´ c||

2
2 ` ||µ̂j ´ c||

2
2 ´ ||µ̂i ´ µ̂j ||

2
2

2||µ̂i ´ c||2||µ̂j ´ c||2

“
||µ̂i ´ c||

2
2 ` ||µ̂

1
j ´ c||

2
2 ´ ||µ̂i ´ µ̂

1
j ||

2
2

2||µ̂i ´ c||2||µ̂
1
j ´ c||2

where ||µ̂i ´ µ̂
1
j ||

2 “ ∆. The equation is simplified as line 6
and 7 in Algorithm 5.

(Validity of output and Proof of (4) and (5))
The i-th iteration will guarantee that }µ̂i ´ µ̂j}2 ě ∆

for all j ą i. To prove the validity of Algorithm 5, we need
to show that any l-th iteration with l ą i will still ensure
||µ̂i ´ µ̂j ||2 ě ∆ for j ą i. Indeed, as illustrated in Fig.
1(b), assume that µ̂j is moved to µ̂1j at some l-th iteration for
j ą l ą i, we have }µ̂i ´ c||2 ď ||µ̂j ´ c}2 which implies
=β ă π

2 and }µ̂i ´ µ̂
1
j}2 ą }µ̂i ´ µ̂j}2 ě ∆ as expected.

As for (4) and (5), we construct π by setting πpiq “ i
for i “ 1, ..., k at first and swapping πpiq and πplq at i-th
iteration according to line 3 in Algorithm 5 to ensure one-to-
one correspondence of tµiu

k
i“1 and tµ̂iu

k
i“1.

Algorithm 3 On-grid Mapping Operator P̃k,1∆,δ

Input: t P Rk
Output: ∆-separated approximation t̂ on G;
1: sÐ r∆{δs
2: gmin Ð t1 ´ pk ´ 1qsδ
3: gmax Ð tk ` pk ´ 1qsδ
4: q Ð pt´ gminq{δ
5: N Ð pgmax ´ gminq{δ ` 1
6: FÐ matrix with size kˆN and all elements equal to8
7: for n “ 0 Ñ q1 do
8: Fp1, nq Ð |q1 ´ n|

p

9: end for
10: for r “ 2 Ñ k do
11: for n “ maxpspr´1q, qr´pk´rqsq Ñ qr`pr´1qs

do
12: Fpr, nq Ð minpFpr ´ 1, n´ sq ` |qr ´ n|

p,
13: Fpr, n´ 1qq
14: end for
15: end for
16: q̂ Ð BackTracking(F)
17: t̂Ð q̂δ ` gmin

18: return t̂

In this way, the left hand side of (4) is the total sum of
moving distance. Since there are at most kpk´1qmovements
of points with each movement distance ||µ̂1j´µ̂j ||2 ď ∆ as in
Fig.1b, the total sum is no larger than kpk´1q∆

2 . Similarly, the
(5) follows from the fact that any given point µ̂ can be moved
at most k ´ 1 times, so its maximum movement distance is
pk ´ 1q∆.

(Extreme instance of (4) and (5))
Let tµiu

k
i“1 “ trpi ´ 1qε, 0suki“1 for ε ą 0 and c “

r0, 0s. According to Algorithm 5, the output tµ̂iu
k
i“1 “

trpi ´ 1q∆, 0suki“1, which implies
řk
i“1 }µi ´ µ̂i}2 “

kpk´1qp∆´εq
2 ă

kpk´1q∆
2 . Similarly, }µk ´ µ̂k}2 “ pk ´

1qp∆ ´ εq ă pk ´ 1q∆. As ε Ñ 0, both bounds are nearly

Algorithm 4 BackTracking

Input: F P RkˆN
Output: q̂ P Rk;
1: r Ð k; nÐ N ´ 1
2: while r ą 0 do
3: if Fpr, nq “ Fpr, n´ 1q then
4: nÐ n´ 1
5: else
6: q̂r Ð n
7: nÐ n´ s; r Ð r ´ 1
8: end if
9: end while

10: return q̂



Algorithm 5 Two-Dimensional Mapping Operator Pk,2∆

Input: tµiuki“1 Ď Rk, ∆, c;
Output: ∆-separated gridless approximation tµ̂iu

k
i“1;

1: tµ̂iu
k
i“1 Ð tµiu

k
i“1

2: for i “ 1 Ñ k ´ 1 do
3: lÐ arg minlěi ||µ̂l ´ c||2, swap(µ̂i, µ̂l)
4: for j “ i` 1 Ñ k do
5: if ||µ̂i ´ µ̂j ||2 ă ∆ then

6: λÐ
pµ̂i´cq

T
pµ̂j´cq`∆||µ̂j´c||2
||µ̂j´c||

2
2

7: µ̂j Ð µ̂1j fi c` λpµ̂j ´ cq
8: end if
9: end for

10: end for
11: return tµ̂iu

k
i“1

(a) (b)

Fig. 1: (a) An instance of Algorithm 5 with k “ 5 and ∆ “ 1.
All tµiu

k
i“1 are moved away from c iteratively satisfying the

∆-separation constraint. (b) A sample move of µ̂j to µ̂1j with
respect to µ̂i, i ă j.

tight.
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