# SUPPLEMENTARY MATERIALS FOR "ON SUPER-RESOLUTION WITH SEPARATION PRIOR" 

Xingyun Mao and Heng Qiao

University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China<br>E-mail: mxy123@sjtu.edu.cn, heng.qiao@sjtu.edu.cn

In this file, we provide all the proofs, complete algorithms and examples in companion with the main body paper.

## 1. ONE-DIMENSIONAL MAPPING OPERATOR

$$
\begin{align*}
& \mathcal{P}_{\Delta}^{k, M}\left(\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}\right) \in \arg \min _{\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k} \subset \mathbb{R}^{M}} d_{p}\left(\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k},\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k}\right) \\
& \text { s.t. } \quad\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2} \geqslant \Delta, \quad \forall 1 \leqslant i \neq j \leqslant k \tag{1}
\end{align*}
$$

Theorem 1. The on-grid mapping $\tilde{\mathcal{P}}_{\Delta, \delta}^{k, 1}$ in Algorithm 2 is optimal in the sense of (1) when both $\boldsymbol{\mu}, \hat{\boldsymbol{\mu}} \in \mathbb{R}^{k}$ are restricted on the grid. With grid size $\delta$, the number of arithmetic operations of $\tilde{\mathcal{P}}_{\Delta, \delta}^{k, 1}$ is upper bounded by $3 k(k-1)\left\lceil\frac{\Delta}{\delta}\right\rceil$.

## Proof. (Main Idea of Algorithm 2)

In Algorithm 2, from line 1 to 5, we first set the range of the result that $\hat{t}_{i} \in\left[g_{\text {min }}, g_{\text {max }}\right]$. Then each $t_{i}$ is normalized as $q_{i} \triangleq\left(t_{i}-g_{\text {min }}\right) / \delta \in \mathbb{N}$. We denote the total number of grids to be considered as $N, q_{i} \in[0, N-1]$, and convert $\Delta$-separated constraint $\left(\left|t_{i}-t_{j}\right| \geqslant \Delta, \quad \forall i \neq j\right)$ into $s$-gridseparation $\left(\left|q_{i}-q_{j}\right| \geqslant s\right)$.

Afterwards, we find one projection $\hat{\boldsymbol{q}}$ such that
$\hat{\boldsymbol{q}}=\arg \min _{\hat{\boldsymbol{q}}} d_{p}(\boldsymbol{q}, \hat{\boldsymbol{q}}) \quad$ s.t. $\quad \hat{q}_{i+1}-\hat{q}_{i} \geqslant s, i=1, \ldots, k-1$
$\hat{\boldsymbol{q}}$ may not be unique, and the algorithm obtains one of them. Then the corresponding $\hat{\boldsymbol{t}}$ is recovered. Since $\boldsymbol{q}$ and $\hat{\boldsymbol{q}}$ are normalizations of $\boldsymbol{t}$ and $\hat{\boldsymbol{t}}$, the optimality in Theorem 1 can be proved, if $s$-separated $\boldsymbol{q}, \hat{\boldsymbol{q}} \in \mathbb{N}^{k}$ are optimal in the sense of (1), which is shown below.

## (Optimality for On-Grid Mapping)

The dynamic program determines an auxiliary matrix $\mathbf{F}(k, N)$, where $N$ is the number of grids we consider and $\mathbf{F}(r, n)$ is defined for $1 \leqslant r \leqslant k$ and $0 \leqslant n \leqslant N-1$ by

$$
\begin{equation*}
\mathbf{F}(r, n):=\min \left\{\sum_{i=1}^{r}\left|q_{i}-\hat{q}_{i}\right|^{p} \mid \hat{q}_{r} \leqslant n\right\} \tag{2}
\end{equation*}
$$

We claim that, for $2 \leqslant r \leqslant k$ and $s(r-1) \leqslant n \leqslant N-1$,

$$
\mathbf{F}(r, n)=\min \left\{\begin{array}{l}
\mathbf{F}(r-1, n-s)+\left|q_{r}-n\right|^{p}  \tag{3}\\
\mathbf{F}(r, n-1)
\end{array}\right.
$$

The relation is straightforward, as it distinguishes whether the last entry of the minimizer for $\mathbf{F}(r, n)$ is equal to or less than $n$. To be specific, we establish the estimate on $\mathbf{F}(r, n)$ by considering the minimizer $\hat{\boldsymbol{q}}_{[1: r]} \in \mathbb{R}^{r}$ for $\mathbf{F}(r, n)$ : if $\hat{q}_{r}<n$, $\hat{q}_{r} \leqslant n-1$, so $\mathbf{F}(r, n)=\mathbf{F}(r, n-1)$ by the definition (2); if $\hat{q}_{r}=n$, so that $\hat{q}_{r-1} \leqslant n-s$, then $\mathbf{F}(r, n)=\sum_{i=1}^{r-1} \mid q_{i}-$ $\left.\hat{q}_{i}\right|^{p}+\left|q_{r}-\hat{q}_{r}\right|^{p}=\mathbf{F}(r-1, n-s)+\left|q_{r}-n\right|^{p}$. With the relation (2) now fully justified, table $\mathbf{F}$ can be filled with initial values

$$
\begin{gathered}
\mathbf{F}(1, n)=\min \left\{\begin{array}{lc}
\left|q_{1}-n\right|^{p}, & \text { if } n<q_{1} \\
0, & \text { otherwise }
\end{array}\right. \\
\mathbf{F}(r, n)=\infty, \quad 2 \leqslant r \leqslant k, \quad 0 \leqslant n<s(r-1)
\end{gathered}
$$

In the former relation where $r=1$, if $n \geqslant q_{1}$, we have $\hat{q}_{1}=q_{1}$, so $\mathbf{F}(1, n)=0$; if $n<q_{1}$, the minimizer is $\hat{q}_{1}=n$, so $\mathbf{F}(1, n)=\left|q_{1}-n\right|^{p}$. The latter relation reflects the non existence of $r$-length $s$-separated vector within $s(r-1)$ grids.

## (Complexity)

According to (2), F contains $k N$ entries. Since only the optimal projections do matter, it is not necessary to compute all entries. Specifically, when determining $\mathbf{F}(r, \cdot)$ s for a fixed $r$, we narrow the range of optimal $\hat{q}_{r}$ to $\left[q_{r}-(k-r) s, q_{r}+\right.$ $(r-1) s]$ instead of $[0, N-1]$. The reason is that if $\hat{q}_{r}>$ $q_{r}+(r-1) s$, then we can construct $s$-separated $\hat{\boldsymbol{q}}^{\prime}$ with $\hat{q}_{i}^{\prime}=$ $\min \left(q_{r}+(i-1) s, \hat{q}_{i}\right)$ for $i=1, \ldots, r$ and $\hat{q}_{j}^{\prime}=\hat{q}_{j}$ for $j=$ $r+1, \ldots, k$, which satisfies $d_{p}\left(\hat{\boldsymbol{q}}^{\prime}, \boldsymbol{q}\right)<d_{p}(\hat{\boldsymbol{q}}, \boldsymbol{q})$. Similarly, if $\hat{q}_{r}<q_{r}-(k-r) s$, then we can construct $s$-separated $\hat{\boldsymbol{q}}^{\prime}$ with $\hat{q}_{i}^{\prime}=\hat{q}_{i}$ for $i=1, \ldots, r$ and $\hat{q}_{j}^{\prime}=\max \left(q_{r}-(j-r) s, \hat{q}_{j}\right)$ for $j=r+1, \ldots, k$, which satisfies $d_{p}\left(\hat{\boldsymbol{q}}^{\prime}, \boldsymbol{q}\right)<d_{p}(\hat{\boldsymbol{q}}, \boldsymbol{q})$.

Hence, we can replace the conditions in line 7 and 15 in Algorithm 2 and get Algorithm 3. In this way, for each $r$, at most $(k-1) s$ entries of $\mathbf{F}$ will be computed with each entry requiring three basic arithmetic operations in (3) - one addition, one subtraction and one exponentiation. The total complexity is upper bounded by $3 k(k-1)\left\lceil\frac{\Delta}{\delta}\right\rceil$ arithmetic operations. When $k$ is large, this is an improvement compared with $\mathcal{O}\left(k^{3.5} \log \left(\frac{1}{\delta}\right)\right)$ for the quadratic programming strategy of [1].

## (Example)

As for the best projection itself, we need to back track the case producing $\mathbf{F}$. The process is fully specified in Al-
gorithm 4. Table 1 displays an example of $\boldsymbol{q}=[6,7,8,9]^{T}$, $s=2$ and $p=2$ with corresponding $\mathbf{F}$, where one of the best projections is $\hat{\boldsymbol{q}}=[4,6,8,10]^{T}$. To acquire one best projection, we follow the path of arrows starting from the $(k, N-1)$ th box until $r=1$ : if an arrow points northwest from the $(r, n)$ th box, then the grid $n$ is selected for the entry of the best approximation, and if $r=1$, the pointed grid is selected. Once one best projection $\hat{\boldsymbol{q}}$ is determined in this way, its corresponding $\hat{\boldsymbol{t}}$ is recovered as return value.

| $\boldsymbol{q}$ |
| :---: |
| - |
| - |
| - |
| - |
| - |
| $q_{1}=6$ |
| $q_{2}=7$ |
| $q_{3}=8$ |
| $q_{4}=9$ |
| - |
| - |
| - |
| - |
| - |
| - |
| - |


| $\mathbf{F}(r, n)$ | $\underline{r=1}$ | $r=2$ | $r=3$ | $r=4$ |
| :---: | :---: | :---: | :---: | :---: |
| $n=0$ | 36 | $\star$ | $\star$ | $\star$ |
| $n=1$ | 25 | $\star$ | $\star$ | $\star$ |
| $n=2$ | 16 | $\star$ | $\star$ | $\star$ |
| $n=3$ | 9 | 41 | $\star$ | $\star$ |
| $n=4$ | 4 | 25 | $\star$ | $\star$ |
| $n=5$ | 1 | 13 | $\star$ | $\star$ |
| $n=6$ | 0 | 5 | 29 | $\star$ |
| $n=7$ | $\star$ | 1 | 14 | $\star$ |
| $n=8$ | $\star$ | 1 | 5 | $\star$ |
| $n=9$ | $\star$ | 1 | 2 | 14 |
| $n=10$ | $\star$ | $\star$ | 2 | $\uparrow 6$ |
| $n=11$ | $\star$ | $\star$ | 2 | $\uparrow 6$ |
| $n=12$ | $\star$ | $\star$ | 2 | $\uparrow 6$ |
| $n=13$ | $\star$ | $\star$ | $\star$ | $\uparrow 6$ |
| $n=14$ | $\star$ | $\star$ | $\star$ | $\uparrow 6$ |
| $n=15$ | $\star$ | $\star$ | $\star$ | 6 |

Table 1: Sketch of the dynamic program computing the best $s$-separated projections of $\boldsymbol{q}=[6,7,8,9]^{T}$ with $s=2$ and $p=2$. " $\star$ " means the entry is not required to be considered.

Lemma 1. The one-dimensional transportation distance in $\ell_{p}$ norm ( $p \geqslant 1$ ) satisfies triangle inequalities as follows

$$
d_{p}^{1 / p}(\boldsymbol{a}, \boldsymbol{b})+d_{p}^{1 / p}(\boldsymbol{b}, \boldsymbol{c}) \geqslant d_{p}^{1 / p}(\boldsymbol{a}, \boldsymbol{c})
$$

where $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{k}$ are sorted.
Proof. When $\boldsymbol{a}, \boldsymbol{b}$ are sorted, $d_{p}(\boldsymbol{a}, \boldsymbol{b})=\sum_{i=1}^{k}\left|a_{i}-b_{i}\right|^{p}=$ $\|\boldsymbol{a}-\boldsymbol{b}\|_{p}^{p}$. The relation can be acquired through Minkowski inequality

$$
\begin{aligned}
d_{p}^{1 / p}(\boldsymbol{a}, \boldsymbol{b})+d_{p}^{1 / p}(\boldsymbol{b}, \boldsymbol{c}) & =\|\boldsymbol{a}-\boldsymbol{b}\|_{p}+\|\boldsymbol{b}-\boldsymbol{c}\|_{p} \\
& \geqslant\|\boldsymbol{a}-\boldsymbol{c}\|_{p}=d_{p}^{1 / p}(\boldsymbol{a}, \boldsymbol{c})
\end{aligned}
$$

Theorem 2. Let $\boldsymbol{\mu}^{\star}$ be one gridless optimal solution of (1) and $\boldsymbol{\mu}^{\#}=\mathcal{P}_{\Delta}^{k, 1}(\boldsymbol{\mu})$. If $\frac{\Delta}{\delta}=m \in \mathbb{N}=\{0,1, \cdots\}$, then we have

$$
d_{p}^{1 / p}\left(\boldsymbol{\mu}^{\#}, \boldsymbol{\mu}\right) \leqslant d_{p}^{1 / p}\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\mu}\right)+1.5 \delta k^{1 / p}
$$

Proof. We obtain the on-grid approximations $\boldsymbol{t}$ and $\boldsymbol{t}^{\star}$ of $\boldsymbol{\mu}$ and $\boldsymbol{\mu}^{\star}$ respectively as Step 1 in Algorithm 1. Let $\mu_{i}=t_{i}+\epsilon_{i}$ and $\mu_{i}^{\star}=t_{i}^{\star}+\epsilon_{i}^{\star}$. It is obvious that $-0.5 \delta \leqslant \epsilon_{i}, \epsilon_{i}^{\star}<0.5 \delta$ for $i=1, \ldots, k$, which implies $d_{p}(\boldsymbol{\mu}, \boldsymbol{t}), d_{p}\left(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}\right) \leqslant(0.5 \delta)^{p} k$.

As the ground-truth $\mu^{\star}$ is $\Delta$-separated, we have

$$
\begin{aligned}
\left|\mu_{i+1}^{\star}-\mu_{i}^{\star}\right| & =\left|t_{i+1}^{\star}-t_{i}^{\star}+\epsilon_{i+1}^{\star}-\epsilon_{i}^{\star}\right| \\
& \leqslant\left|t_{i+1}^{\star}-t_{i}^{\star}\right|+\left|\epsilon_{i+1}^{\star}-\epsilon_{i}^{\star}\right| \\
& <\left|t_{i+1}^{\star}-t_{i}^{\star}\right|+\delta
\end{aligned}
$$

which indicates $\left|t_{i+1}^{\star}-t_{i}^{\star}\right|>\Delta-\delta=(m-1) \delta$. Since $t^{\star}$ is on grid and $\Delta / \delta \in \mathbb{N}$, we must have $\left|t_{i+1}^{\star}-t_{i}^{\star}\right| \geqslant m \delta=\Delta$. Next, we can apply the triangle inequality and have

$$
\begin{aligned}
d_{p}^{1 / p}\left(\boldsymbol{\mu}, \boldsymbol{\mu}^{\star}\right) & \geqslant d_{p}^{1 / p}\left(\boldsymbol{\mu}, \boldsymbol{t}^{\star}\right)-d_{p}^{1 / p}\left(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}\right) \\
& \geqslant d_{p}^{1 / p}\left(\boldsymbol{t}, \boldsymbol{t}^{\star}\right)-d_{p}^{1 / p}(\boldsymbol{\mu}, \boldsymbol{t})-d_{p}^{1 / p}\left(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}\right) \\
& \geqslant d_{p}^{1 / p}\left(\boldsymbol{t}, \boldsymbol{\mu}^{\#}\right)-d_{p}^{1 / p}(\boldsymbol{\mu}, \boldsymbol{t})-d_{p}^{1 / p}\left(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}\right) \\
& \geqslant d_{p}^{1 / p}\left(\boldsymbol{\mu}, \boldsymbol{\mu}^{\#}\right)-2 d_{p}^{1 / p}(\boldsymbol{\mu}, \boldsymbol{t})-d_{p}^{1 / p}\left(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}\right) \\
& \geqslant d_{p}^{1 / p}\left(\boldsymbol{\mu}, \boldsymbol{\mu}^{\#}\right)-1.5 \delta k^{1 / p}
\end{aligned}
$$

where the first, second and fourth steps use the inequality in Lemma 1 and the third step uses the optimality in Theorem 1 that $d_{p}\left(\boldsymbol{t}^{\star}, \boldsymbol{t}\right) \geqslant d_{p}\left(\boldsymbol{\mu}^{\#}, \boldsymbol{t}\right)$.

```
Algorithm 1 One-Dimensional Mapping Operator \(\mathcal{P}_{\Delta}^{k, 1}\)
Input: grids \(\mathcal{G}=\{g \pm i \delta \mid i \in \mathbb{Z}, g, \delta \in \mathbb{R}\} ; \boldsymbol{\mu} \in \mathbb{R}^{k}, \Delta\);
Output: \(\Delta\)-separated approximation \(\hat{\boldsymbol{\mu}}\) on \(\mathcal{G}\);
    \(\boldsymbol{t} \leftarrow \arg \min _{g_{i} \in \mathcal{G}}\|\boldsymbol{g}-\boldsymbol{\mu}\|_{2}\)
    \(\hat{\boldsymbol{\mu}} \leftarrow \tilde{\mathcal{P}}_{\Delta, \delta}^{k, 1}(\boldsymbol{t})\)
    return \(\hat{\boldsymbol{\mu}}\)
```


## 2. TWO DIMENSIONAL MAPPING OPERATOR

Theorem 3. The output $\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k}$ in Algorithm 5 is $\Delta$ separated and there exists $\pi \in \Pi_{k}$ such that

$$
\begin{align*}
& \sum_{i=1}^{k}\left\|\boldsymbol{\mu}_{\pi(i)}-\hat{\boldsymbol{\mu}}_{i}\right\|_{2} \leqslant \frac{k(k-1) \Delta}{2}  \tag{4}\\
& \max _{1 \leqslant i \leqslant k}\left\|\boldsymbol{\mu}_{\pi(i)}-\hat{\boldsymbol{\mu}}_{i}\right\|_{2} \leqslant(k-1) \Delta \tag{5}
\end{align*}
$$

## Proof. (Main Idea of Algorithm 5)

In Algorithm 5, all $\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}$ are moved away from $\boldsymbol{c}$ iteratively, such that the distance between each two points will increase and exceed $\Delta$. Specifically, at the $i$-th iteration, we set $\hat{\boldsymbol{\mu}}_{i}$ as the closest point to $\boldsymbol{c}$ among $\left\{\hat{\boldsymbol{\mu}}_{l}\right\}_{l=i}^{k}$ and fix it while moving each $\hat{\boldsymbol{\mu}}_{j}(j>i)$ away from $\boldsymbol{c}$ to ensure $\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2} \geqslant$ $\Delta$ for all $j>i$. One example with $k=5$ and $\Delta=1$ is given in Fig. 1a.

```
Algorithm 2 On-Grid Mapping Operator \(\tilde{\mathcal{P}}_{\Delta, \delta}^{k, 1}\)
Input: \(\boldsymbol{t} \in \mathbb{R}^{k}\)
Output: \(\Delta\)-separated approximation \(\hat{\boldsymbol{t}}\) on \(\mathcal{G}\);
    \(s \leftarrow\lceil\Delta / \delta\rceil\)
    \(g_{\text {min }} \leftarrow t_{1}-(k-1) s \delta\)
    \(g_{\max } \leftarrow t_{k}+(k-1) s \delta\)
    \(\boldsymbol{q} \leftarrow\left(\boldsymbol{t}-g_{\min }\right) / \delta\)
    \(N \leftarrow\left(g_{\text {max }}-g_{\text {min }}\right) / \delta+1\)
    \(\mathbf{F} \leftarrow\) matrix with size \(k \times N\) and all elements equal to \(\infty\)
    for \(n=0 \rightarrow N-1\) do
        if \(n<q_{1}\) then
            \(\mathbf{F}(1, n) \leftarrow\left|q_{1}-n\right|^{p}\)
        else
            \(\mathbf{F}(1, n) \leftarrow 0\)
        end if
    end for
    for \(r=2 \rightarrow k\) do
        for \(n=s(r-1) \rightarrow N-1\) do
            \(\mathbf{F}(r, n) \leftarrow \min \left(\mathbf{F}(r-1, n-s)+\left|q_{r}-n\right|^{p}\right.\),
                \(\mathbf{F}(r, n-1))\)
        end for
    end for
    \(\hat{\boldsymbol{q}} \leftarrow \operatorname{BackTracking}(\mathbf{F})\)
    \(\hat{\boldsymbol{t}} \leftarrow \hat{\boldsymbol{q}} \delta+g_{\text {min }}\)
    return \(\hat{\boldsymbol{t}}\)
```

For the moving distance of $\hat{\boldsymbol{\mu}}_{j}$ at the $i$-th iteration $(j>i)$, we take it as small as possible, which means only if $\| \hat{\boldsymbol{\mu}}_{i}-$ $\hat{\boldsymbol{\mu}}_{j} \|_{2}<\Delta, \hat{\boldsymbol{\mu}}_{j}$ is moved along the direction $\left(\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right)$ until $\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2}=\Delta$. The position of $\hat{\boldsymbol{\mu}}_{j}$ after moving is determined with cosine theorem, as is shown in Fig. 1b. Denote that $\hat{\boldsymbol{\mu}}_{j}$ is moved to $\hat{\boldsymbol{\mu}}_{j}^{\prime}$. We have

$$
\begin{aligned}
\cos (\boldsymbol{\varphi}) & =\frac{\left\|\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{c}\right\|_{2}^{2}+\left\|\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right\|_{2}^{2}-\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2}^{2}}{2\left\|\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{c}\right\|_{2}\left\|\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right\|_{2}} \\
& =\frac{\left\|\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{c}\right\|_{2}^{2}+\left\|\hat{\boldsymbol{\mu}}_{j}^{\prime}-\boldsymbol{c}\right\|_{2}^{2}-\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}^{\prime}\right\|_{2}^{2}}{2\left\|\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{c}\right\|_{2}\left\|\hat{\boldsymbol{\mu}}_{j}^{\prime}-\boldsymbol{c}\right\|_{2}}
\end{aligned}
$$

where $\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}^{\prime}\right\|^{2}=\Delta$. The equation is simplified as line 6 and 7 in Algorithm 5.
(Validity of output and Proof of (4) and (5))
The $i$-th iteration will guarantee that $\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2} \geqslant \Delta$ for all $j>i$. To prove the validity of Algorithm 5, we need to show that any $l$-th iteration with $l>i$ will still ensure $\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2} \geqslant \Delta$ for $j>i$. Indeed, as illustrated in Fig. 1(b), assume that $\hat{\boldsymbol{\mu}}_{j}$ is moved to $\hat{\boldsymbol{\mu}}_{j}^{\prime}$ at some $l$-th iteration for $j>l>i$, we have $\left\|\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{c}\right\|_{2} \leqslant\left\|\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right\|_{2}$ which implies $\angle \beta<\frac{\pi}{2}$ and $\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}^{\prime}\right\|_{2}>\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2} \geqslant \Delta$ as expected.

As for (4) and (5), we construct $\pi$ by setting $\pi(i)=i$ for $i=1, \ldots, k$ at first and swapping $\pi(i)$ and $\pi(l)$ at $i$-th iteration according to line 3 in Algorithm 5 to ensure one-toone correspondence of $\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}$ and $\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k}$.

```
Algorithm 3 On-grid Mapping Operator \(\tilde{\mathcal{P}}_{\Delta, \delta}^{k, 1}\)
Input: \(t \in \mathbb{R}^{k}\)
Output: \(\Delta\)-separated approximation \(\hat{\boldsymbol{t}}\) on \(\mathcal{G}\);
    \(s \leftarrow\lceil\Delta / \delta\rceil\)
    \(g_{\text {min }} \leftarrow t_{1}-(k-1) s \delta\)
    \(g_{\max } \leftarrow t_{k}+(k-1) s \delta\)
    \(\boldsymbol{q} \leftarrow\left(\boldsymbol{t}-g_{\text {min }}\right) / \delta\)
    \(N \leftarrow\left(g_{\text {max }}-g_{\text {min }}\right) / \delta+1\)
    \(\mathbf{F} \leftarrow\) matrix with size \(k \times N\) and all elements equal to \(\infty\)
    for \(n=0 \rightarrow q_{1}\) do
        \(\mathbf{F}(1, n) \leftarrow\left|q_{1}-n\right|^{p}\)
    end for
    for \(r=2 \rightarrow k\) do
        for \(n=\max \left(s(r-1), q_{r}-(k-r) s\right) \rightarrow q_{r}+(r-1) s\)
        do
            \(\mathbf{F}(r, n) \leftarrow \min \left(\mathbf{F}(r-1, n-s)+\left|q_{r}-n\right|^{p}\right.\),
                                    \(\mathbf{F}(r, n-1))\)
        end for
    end for
    \(\hat{\boldsymbol{q}} \leftarrow \operatorname{BackTracking}(\mathbf{F})\)
    \(\hat{\boldsymbol{t}} \leftarrow \hat{\boldsymbol{q}} \delta+g_{\text {min }}\)
    return \(\hat{\boldsymbol{t}}\)
```

In this way, the left hand side of (4) is the total sum of moving distance. Since there are at most $k(k-1)$ movements of points with each movement distance $\left\|\hat{\boldsymbol{\mu}}_{j}^{\prime}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2} \leqslant \Delta$ as in Fig.1b, the total sum is no larger than $\frac{k(k-1) \Delta}{2}$. Similarly, the (5) follows from the fact that any given point $\hat{\mu}$ can be moved at most $k-1$ times, so its maximum movement distance is $(k-1) \Delta$.
(Extreme instance of (4) and (5))
Let $\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}=\{[(i-1) \epsilon, 0]\}_{i=1}^{k}$ for $\epsilon>0$ and $\boldsymbol{c}=$ $[0,0]$. According to Algorithm 5, the output $\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k}=$ $\{[(i-1) \Delta, 0]\}_{i=1}^{k}$, which implies $\sum_{i=1}^{k}\left\|\boldsymbol{\mu}_{i}-\hat{\boldsymbol{\mu}}_{i}\right\|_{2}=$ $\frac{k(k-1)(\Delta-\epsilon)}{2}<\frac{k(k-1) \Delta}{2}$. Similarly, $\left\|\boldsymbol{\mu}_{k}-\hat{\boldsymbol{\mu}}_{k}\right\|_{2}=(k-$ 1) $(\Delta-\epsilon)<(k-1) \Delta$. As $\epsilon \rightarrow 0$, both bounds are nearly

```
Algorithm 4 BackTracking
Input: \(\mathbf{F} \in \mathbb{R}^{k \times N}\)
Output: \(\hat{\boldsymbol{q}} \in \mathbb{R}^{k}\);
    \(r \leftarrow k ; n \leftarrow N-1\)
    while \(r>0\) do
        if \(\mathbf{F}(r, n)=\mathbf{F}(r, n-1)\) then
            \(n \leftarrow n-1\)
        else
            \(\hat{q}_{r} \leftarrow n\)
            \(n \leftarrow n-s ; r \leftarrow r-1\)
        end if
    end while
    return \(\hat{\boldsymbol{q}}\)
```

```
Algorithm 5 Two-Dimensional Mapping Operator \(\mathcal{P}_{\Delta}^{k, 2}\)
Input: \(\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k} \subseteq \mathbb{R}^{k}, \Delta, \boldsymbol{c}\);
Output: \(\Delta\)-separated gridless approximation \(\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k}\);
    \(\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k} \leftarrow\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}\)
    for \(i=1 \rightarrow k-1\) do
        \(l \leftarrow \arg \min _{l \geqslant i}\left\|\hat{\boldsymbol{\mu}}_{l}-\boldsymbol{c}\right\|_{2}, \operatorname{swap}\left(\hat{\boldsymbol{\mu}}_{i}, \hat{\boldsymbol{\mu}}_{l}\right)\)
        for \(j=i+1 \rightarrow k\) do
            if \(\left\|\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j}\right\|_{2}<\Delta\) then
                \(\lambda \leftarrow \frac{\left(\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{c}\right)^{T}\left(\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right)+\Delta\left\|\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right\|_{2}}{\left\|\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right\|_{2}^{2}}\)
            \(\hat{\boldsymbol{\mu}}_{j} \leftarrow \hat{\boldsymbol{\mu}}_{j}^{\prime} \triangleq \boldsymbol{c}+\lambda\left(\hat{\boldsymbol{\mu}}_{j}-\boldsymbol{c}\right)\)
        end if
        end for
    end for
    return \(\left\{\hat{\boldsymbol{\mu}}_{i}\right\}_{i=1}^{k}\)
```



Fig. 1: (a) An instance of Algorithm 5 with $k=5$ and $\Delta=1$. All $\left\{\boldsymbol{\mu}_{i}\right\}_{i=1}^{k}$ are moved away from $\boldsymbol{c}$ iteratively satisfying the $\Delta$-separation constraint. (b) A sample move of $\hat{\boldsymbol{\mu}}_{j}$ to $\hat{\boldsymbol{\mu}}_{j}^{\prime}$ with respect to $\hat{\boldsymbol{\mu}}_{i}, i<j$.
tight.

## 3. REFERENCES

[1] S. A. Vavasis, "Complexity theory: quadratic programming", Encyclopedia of optimization, Springer, Boston, 2001, pp. 304-307.

