SUPPLEMENTARY MATERIALS FOR "ON SUPER-RESOLUTION WITH SEPARATION PRIOR"

Xingyun Mao and Heng Qiao

University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China E-mail: mxy123@sjtu.edu.cn, heng.qiao@sjtu.edu.cn

In this file, we provide all the proofs, complete algorithms and examples in companion with the main body paper.

1. ONE-DIMENSIONAL MAPPING OPERATOR

$$\mathcal{P}^{k,M}_{\Delta}(\{\boldsymbol{\mu}_i\}_{i=1}^k) \in \arg\min_{\{\hat{\boldsymbol{\mu}}_i\}_{i=1}^k \subset \mathbb{R}^M} d_p(\{\boldsymbol{\mu}_i\}_{i=1}^k, \{\hat{\boldsymbol{\mu}}_i\}_{i=1}^k)$$

s.t. $\|\hat{\boldsymbol{\mu}}_i - \hat{\boldsymbol{\mu}}_j\|_2 \ge \Delta, \quad \forall 1 \le i \ne j \le k$ (1)

Theorem 1. The on-grid mapping $\tilde{\mathcal{P}}_{\Delta,\delta}^{k,1}$ in Algorithm 2 is optimal in the sense of (1) when both $\mu, \hat{\mu} \in \mathbb{R}^k$ are restricted on the grid. With grid size δ , the number of arithmetic operations of $\tilde{\mathcal{P}}_{\Delta,\delta}^{k,1}$ is upper bounded by $3k(k-1)\left\lceil\frac{\Delta}{\delta}\right\rceil$.

Proof. (Main Idea of Algorithm 2)

In Algorithm 2, from line 1 to 5, we first set the range of the result that $\hat{t}_i \in [g_{\min}, g_{\max}]$. Then each t_i is normalized as $q_i \triangleq (t_i - g_{\min})/\delta \in \mathbb{N}$. We denote the total number of grids to be considered as $N, q_i \in [0, N-1]$, and convert Δ -separated constraint $(|t_i - t_j| \ge \Delta, \forall i \ne j)$ into *s*-gridseparation $(|q_i - q_j| \ge s)$.

Afterwards, we find one projection \hat{q} such that

$$\hat{\boldsymbol{q}} = \arg\min_{\hat{\boldsymbol{q}}} d_p(\boldsymbol{q}, \hat{\boldsymbol{q}}) \quad \text{s.t.} \quad \hat{q}_{i+1} - \hat{q}_i \ge s, \ i = 1, ..., k-1$$

 \hat{q} may not be unique, and the algorithm obtains one of them. Then the corresponding \hat{t} is recovered. Since q and \hat{q} are normalizations of t and \hat{t} , the optimality in Theorem 1 can be proved, if *s*-separated $q, \hat{q} \in \mathbb{N}^k$ are optimal in the sense of (1), which is shown below.

(Optimality for On-Grid Mapping)

The dynamic program determines an auxiliary matrix $\mathbf{F}(k, N)$, where N is the number of grids we consider and $\mathbf{F}(r, n)$ is defined for $1 \le r \le k$ and $0 \le n \le N - 1$ by

$$\mathbf{F}(r,n) := \min\left\{\sum_{i=1}^{r} |q_i - \hat{q}_i|^p \ \middle| \ \hat{q}_r \leqslant n\right\}$$
(2)

We claim that, for $2 \leq r \leq k$ and $s(r-1) \leq n \leq N-1$,

$$\mathbf{F}(r,n) = \min \begin{cases} \mathbf{F}(r-1,n-s) + |q_r - n|^p, \\ \mathbf{F}(r,n-1). \end{cases}$$
(3)

The relation is straightforward, as it distinguishes whether the last entry of the minimizer for $\mathbf{F}(r, n)$ is equal to or less than n. To be specific, we establish the estimate on $\mathbf{F}(r, n)$ by considering the minimizer $\hat{q}_{[1:r]} \in \mathbb{R}^r$ for $\mathbf{F}(r, n)$: if $\hat{q}_r < n$, $\hat{q}_r \leq n-1$, so $\mathbf{F}(r, n) = \mathbf{F}(r, n-1)$ by the definition (2); if $\hat{q}_r = n$, so that $\hat{q}_{r-1} \leq n-s$, then $\mathbf{F}(r, n) = \sum_{i=1}^{r-1} |q_i - \hat{q}_i|^p + |q_r - \hat{q}_r|^p = \mathbf{F}(r-1, n-s) + |q_r - n|^p$. With the relation (2) now fully justified, table \mathbf{F} can be filled with initial values

$$\mathbf{F}(1,n) = \min \begin{cases} |q_1 - n|^p, & \text{if } n < q_1\\ 0, & \text{otherwise.} \end{cases}$$
$$\mathbf{F}(r,n) = \infty, \quad 2 \leqslant r \leqslant k, \quad 0 \leqslant n < s(r-1)$$

In the former relation where r = 1, if $n \ge q_1$, we have $\hat{q}_1 = q_1$, so $\mathbf{F}(1, n) = 0$; if $n < q_1$, the minimizer is $\hat{q}_1 = n$, so $\mathbf{F}(1, n) = |q_1 - n|^p$. The latter relation reflects the non existence of *r*-length *s*-separated vector within s(r-1) grids.

(Complexity)

According to (2), **F** contains kN entries. Since only the optimal projections do matter, it is not necessary to compute all entries. Specifically, when determining $\mathbf{F}(r, \cdot)$ s for a fixed r, we narrow the range of optimal \hat{q}_r to $[q_r - (k - r)s, q_r + (r - 1)s]$ instead of [0, N - 1]. The reason is that if $\hat{q}_r > q_r + (r - 1)s$, then we can construct s-separated \hat{q}' with $\hat{q}'_i = \min(q_r + (i - 1)s, \hat{q}_i)$ for i = 1, ..., r and $\hat{q}'_j = \hat{q}_j$ for j = r + 1, ..., k, which satisfies $d_p(\hat{q}', q) < d_p(\hat{q}, q)$. Similarly, if $\hat{q}_r < q_r - (k - r)s$, then we can construct s-separated \hat{q}' with $\hat{q}'_i = r + 1, ..., k$, which satisfies $d_p(\hat{q}', q) < d_p(\hat{q}, q)$.

Hence, we can replace the conditions in line 7 and 15 in Algorithm 2 and get Algorithm 3. In this way, for each r, at most (k - 1)s entries of **F** will be computed with each entry requiring three basic arithmetic operations in (3) - one addition, one subtraction and one exponentiation. The total complexity is upper bounded by $3k(k-1)\left[\frac{\Delta}{\delta}\right]$ arithmetic operations. When k is large, this is an improvement compared with $\mathcal{O}(k^{3.5}\log\left(\frac{1}{\delta}\right))$ for the quadratic programming strategy of [1].

(Example)

As for the best projection itself, we need to back track the case producing \mathbf{F} . The process is fully specified in Algorithm 4. Table 1 displays an example of $\boldsymbol{q} = [6, 7, 8, 9]^T$, s = 2 and p = 2 with corresponding **F**, where one of the best projections is $\hat{\boldsymbol{q}} = [4, 6, 8, 10]^T$. To acquire one best projection, we follow the path of arrows starting from the (k, N - 1)th box until r = 1: if an arrow points northwest from the (r, n)th box, then the grid n is selected for the entry of the best approximation, and if r = 1, the pointed grid is selected. Once one best projection $\hat{\boldsymbol{q}}$ is determined in this way, its corresponding $\hat{\boldsymbol{t}}$ is recovered as return value.

q]	$\mathbf{F}(r,n)$	$\underline{r=1}$	r = 2	r = 3	r=4
-		n = 0	36	*	*	*
-	1	n = 1	25	*	*	*
-		n=2	16	*	*	*
-		n = 3	9	41	*	*
-		n = 4	4 5	25	*	*
$q_1 = 6$		n = 5	1	13	*	*
$q_2 = 7$		n = 6	0	5 5	29	*
$q_3 = 8$		n = 7	*	1	14	*
$q_4 = 9$		n = 8	*	1	5 5	*
-		n = 9	*	1	2	14
-		n = 10	*	*	2	$\left \begin{array}{c} \\ \end{array} \right 6$
-		n = 11	*	*	2	<u></u> 6
-		n = 12	*	*	2	<u></u> 6
-		n = 13	*	*	*	<u></u> 6
-		n = 14	*	*	*	<u></u> 6
-		n = 15	*	*	*	6

Table 1: Sketch of the dynamic program computing the best *s*-separated projections of $q = [6, 7, 8, 9]^T$ with s = 2 and p = 2. " \star " means the entry is not required to be considered.

Lemma 1. The one-dimensional transportation distance in ℓ_p norm $(p \ge 1)$ satisfies triangle inequalities as follows

$$d_p^{1/p}(\boldsymbol{a}, \boldsymbol{b}) + d_p^{1/p}(\boldsymbol{b}, \boldsymbol{c}) \geqslant d_p^{1/p}(\boldsymbol{a}, \boldsymbol{c})$$

where $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^k$ are sorted.

Proof. When a, b are sorted, $d_p(a, b) = \sum_{i=1}^k |a_i - b_i|^p = ||a - b||_p^p$. The relation can be acquired through Minkowski inequality

$$egin{aligned} d_p^{1/p}(m{a},m{b}) + d_p^{1/p}(m{b},m{c}) &= ||m{a} - m{b}||_p + ||m{b} - m{c}||_p \ &\geqslant ||m{a} - m{c}||_p = d_p^{1/p}(m{a},m{c}) \end{aligned}$$

Theorem 2. Let μ^* be one gridless optimal solution of (1) and $\mu^{\#} = \mathcal{P}^{k,1}_{\Delta}(\mu)$. If $\frac{\Delta}{\delta} = m \in \mathbb{N} = \{0, 1, \dots\}$, then we have

$$d_p^{1/p}(\boldsymbol{\mu}^{\#}, \boldsymbol{\mu}) \leq d_p^{1/p}(\boldsymbol{\mu}^{\star}, \boldsymbol{\mu}) + 1.5\delta k^{1/p}$$

Proof. We obtain the on-grid approximations t and t^* of μ and μ^* respectively as Step 1 in Algorithm 1. Let $\mu_i = t_i + \epsilon_i$ and $\mu_i^* = t_i^* + \epsilon_i^*$. It is obvious that $-0.5\delta \leq \epsilon_i, \epsilon_i^* < 0.5\delta$ for i = 1, ..., k, which implies $d_p(\mu, t), d_p(\mu^*, t^*) \leq (0.5\delta)^p k$.

As the ground-truth μ^* is Δ -separated, we have

$$\begin{aligned} \mu_{i+1}^{\star} - \mu_{i}^{\star}| &= |t_{i+1}^{\star} - t_{i}^{\star} + \epsilon_{i+1}^{\star} - \epsilon_{i}^{\star}| \\ &\leq |t_{i+1}^{\star} - t_{i}^{\star}| + |\epsilon_{i+1}^{\star} - \epsilon_{i}^{\star}| \\ &< |t_{i+1}^{\star} - t_{i}^{\star}| + \delta \end{aligned}$$

which indicates $|t_{i+1}^{\star} - t_i^{\star}| > \Delta - \delta = (m-1)\delta$. Since t^{\star} is on grid and $\Delta/\delta \in \mathbb{N}$, we must have $|t_{i+1}^{\star} - t_i^{\star}| \ge m\delta = \Delta$. Next, we can apply the triangle inequality and have

$$\begin{split} d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{\mu}^{\star}) &\geq d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{t}^{\star}) - d_p^{1/p}(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}) \\ &\geq d_p^{1/p}(\boldsymbol{t}, \boldsymbol{t}^{\star}) - d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{t}) - d_p^{1/p}(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}) \\ &\geq d_p^{1/p}(\boldsymbol{t}, \boldsymbol{\mu}^{\#}) - d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{t}) - d_p^{1/p}(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}) \\ &\geq d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{\mu}^{\#}) - 2d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{t}) - d_p^{1/p}(\boldsymbol{\mu}^{\star}, \boldsymbol{t}^{\star}) \\ &\geq d_p^{1/p}(\boldsymbol{\mu}, \boldsymbol{\mu}^{\#}) - 1.5\delta k^{1/p} \end{split}$$

where the first, second and fourth steps use the inequality in Lemma 1 and the third step uses the optimality in Theorem 1 that $d_p(t^*, t) \ge d_p(\mu^{\#}, t)$.

Algorithm 1 One-Dimensional Mapping Operator $\mathcal{P}^{k,1}_{\Delta}$					
Input: grids $\mathcal{G} = \{g \pm i\delta \mid i \in \mathbb{Z}, g, \delta \in \mathbb{R}\}; \mu \in \mathbb{R}^k, \Delta;$					
Output: Δ -separated approximation $\hat{\mu}$ on \mathcal{G} ;					
1: $\boldsymbol{t} \leftarrow \arg\min_{g_i \in \mathcal{G}} \boldsymbol{g} - \boldsymbol{\mu} _2$					
2: $\hat{\mu} \leftarrow \tilde{\mathcal{P}}^{k,1}_{\Delta,\delta}(t)$					
3: return $\hat{\mu}$					

2. TWO DIMENSIONAL MAPPING OPERATOR

Theorem 3. The output $\{\hat{\mu}_i\}_{i=1}^k$ in Algorithm 5 is Δ -separated and there exists $\pi \in \Pi_k$ such that

$$\sum_{i=1}^{k} \|\boldsymbol{\mu}_{\pi(i)} - \boldsymbol{\hat{\mu}}_i\|_2 \leqslant \frac{k(k-1)\Delta}{2} \tag{4}$$

$$\max_{1 \le i \le k} \|\boldsymbol{\mu}_{\pi(i)} - \hat{\boldsymbol{\mu}}_i\|_2 \le (k-1)\Delta$$
(5)

Proof. (Main Idea of Algorithm 5)

In Algorithm 5, all $\{\mu_i\}_{i=1}^k$ are moved away from c iteratively, such that the distance between each two points will increase and exceed Δ . Specifically, at the *i*-th iteration, we set $\hat{\mu}_i$ as the closest point to c among $\{\hat{\mu}_l\}_{l=i}^k$ and fix it while moving each $\hat{\mu}_j$ (j > i) away from c to ensure $||\hat{\mu}_i - \hat{\mu}_j||_2 \ge \Delta$ for all j > i. One example with k = 5 and $\Delta = 1$ is given in Fig. 1a.

Algorithm 2 On-Grid Mapping Operator $\tilde{\mathcal{P}}^{k,1}_{\Delta,\delta}$

Input: $t \in \mathbb{R}^k$

Output: Δ -separated approximation \hat{t} on \mathcal{G} ; 1: $s \leftarrow [\Delta/\delta]$ 2: $g_{\min} \leftarrow t_1 - (k-1)s\delta$ 3: $g_{\max} \leftarrow t_k + (k-1)s\delta$ 4: $\boldsymbol{q} \leftarrow (\boldsymbol{t} - g_{\min})/\delta$ 5: $N \leftarrow (g_{\text{max}} - g_{\text{min}})/\delta + 1$ 6: $\mathbf{F} \leftarrow$ matrix with size $k \times N$ and all elements equal to ∞ 7: for $n = 0 \to N - 1$ do if $n < q_1$ then 8: $\mathbf{F}(1,n) \leftarrow |q_1 - n|^p$ 9: 10: else $\mathbf{F}(1,n) \leftarrow 0$ 11: end if 12: 13: end for for $r = 2 \rightarrow k$ do 14: for $n = s(r-1) \rightarrow N-1$ do 15: $\mathbf{F}(r,n) \leftarrow \min(\mathbf{F}(r-1,n-s) + |q_r - n|^p),$ 16: F(r, n-1)) 17: 18. end for 19: end for 20: $\hat{q} \leftarrow \text{BackTracking}(\mathbf{F})$ 21: $t \leftarrow \hat{q}\delta + g_{\min}$ 22: return \hat{t}

For the moving distance of $\hat{\mu}_j$ at the *i*-th iteration (j > i), we take it as small as possible, which means only if $||\hat{\mu}_i - \hat{\mu}_j||_2 < \Delta$, $\hat{\mu}_j$ is moved along the direction $(\hat{\mu}_j - c)$ until $||\hat{\mu}_i - \hat{\mu}_j||_2 = \Delta$. The position of $\hat{\mu}_j$ after moving is determined with cosine theorem, as is shown in Fig. 1b. Denote that $\hat{\mu}_j$ is moved to $\hat{\mu}'_j$. We have

$$\begin{aligned} \cos(\boldsymbol{\varphi}) &= \frac{||\hat{\boldsymbol{\mu}}_i - \boldsymbol{c}||_2^2 + ||\hat{\boldsymbol{\mu}}_j - \boldsymbol{c}||_2^2 - ||\hat{\boldsymbol{\mu}}_i - \hat{\boldsymbol{\mu}}_j||_2^2}{2||\hat{\boldsymbol{\mu}}_i - \boldsymbol{c}||_2||\hat{\boldsymbol{\mu}}_j - \boldsymbol{c}||_2} \\ &= \frac{||\hat{\boldsymbol{\mu}}_i - \boldsymbol{c}||_2^2 + ||\hat{\boldsymbol{\mu}}_j' - \boldsymbol{c}||_2^2 - ||\hat{\boldsymbol{\mu}}_i - \hat{\boldsymbol{\mu}}_j'||_2^2}{2||\hat{\boldsymbol{\mu}}_i - \boldsymbol{c}||_2||\hat{\boldsymbol{\mu}}_j' - \boldsymbol{c}||_2} \end{aligned}$$

where $||\hat{\mu}_i - \hat{\mu}'_j||^2 = \Delta$. The equation is simplified as line 6 and 7 in Algorithm 5.

(Validity of output and Proof of (4) and (5))

The *i*-th iteration will guarantee that $\|\hat{\mu}_i - \hat{\mu}_j\|_2 \ge \Delta$ for all j > i. To prove the validity of Algorithm 5, we need to show that any *l*-th iteration with l > i will still ensure $\|\hat{\mu}_i - \hat{\mu}_j\|_2 \ge \Delta$ for j > i. Indeed, as illustrated in Fig. 1(b), assume that $\hat{\mu}_j$ is moved to $\hat{\mu}'_j$ at some *l*-th iteration for j > l > i, we have $\|\hat{\mu}_i - c\|_2 \le \|\hat{\mu}_j - c\|_2$ which implies $\angle \beta < \frac{\pi}{2}$ and $\|\hat{\mu}_i - \hat{\mu}'_j\|_2 > \|\hat{\mu}_i - \hat{\mu}_j\|_2 \ge \Delta$ as expected.

As for (4) and (5), we construct π by setting $\pi(i) = i$ for i = 1, ..., k at first and swapping $\pi(i)$ and $\pi(l)$ at *i*-th iteration according to line 3 in Algorithm 5 to ensure one-toone correspondence of $\{\mu_i\}_{i=1}^k$ and $\{\hat{\mu}_i\}_{i=1}^k$. Algorithm 3 On-grid Mapping Operator $\tilde{\mathcal{P}}^{k,1}_{\Delta,\delta}$

Input: $t \in \mathbb{R}^k$

Output: Δ -separated approximation \tilde{t} on \mathcal{G} ; 1: $s \leftarrow [\Delta/\delta]$ 2: $g_{\min} \leftarrow t_1 - (k-1)s\delta$ 3: $g_{\max} \leftarrow t_k + (k-1)s\delta$ 4: $\boldsymbol{q} \leftarrow (\boldsymbol{t} - g_{\min})/\delta$ 5: $N \leftarrow (g_{\text{max}} - g_{\text{min}})/\delta + 1$ $\mathbf{F} \leftarrow$ matrix with size $k \times N$ and all elements equal to ∞ for $n = 0 \rightarrow q_1$ do 7: $\mathbf{F}(1,n) \leftarrow |q_1 - n|^p$ 8: 9: end for 10: for $r = 2 \rightarrow k$ do for $n = \max(s(r-1), q_r - (k-r)s) \to q_r + (r-1)s$ 11: $\mathbf{F}(r,n) \leftarrow \min(\mathbf{F}(r-1,n-s) + |q_r - n|^p),$ 12: F(r, n-1)13: end for 14: 15: end for $\hat{q} \leftarrow \text{BackTracking}(\mathbf{F})$ 16: 17: $\hat{\boldsymbol{t}} \leftarrow \hat{\boldsymbol{q}}\delta + g_{\min}$ 18: return \hat{t}

In this way, the left hand side of (4) is the total sum of moving distance. Since there are at most k(k-1) movements of points with each movement distance $||\hat{\mu}'_j - \hat{\mu}_j||_2 \leq \Delta$ as in Fig.1b, the total sum is no larger than $\frac{k(k-1)\Delta}{2}$. Similarly, the (5) follows from the fact that any given point $\hat{\mu}$ can be moved at most k-1 times, so its maximum movement distance is $(k-1)\Delta$.

(Extreme instance of (4) and (5))

Let $\{\boldsymbol{\mu}_i\}_{i=1}^k = \{[(i-1)\epsilon, 0]\}_{i=1}^k$ for $\epsilon > 0$ and $\boldsymbol{c} = [0,0]$. According to Algorithm 5, the output $\{\hat{\boldsymbol{\mu}}_i\}_{i=1}^k = \{[(i-1)\Delta, 0]\}_{i=1}^k$, which implies $\sum_{i=1}^k \|\boldsymbol{\mu}_i - \hat{\boldsymbol{\mu}}_i\|_2 = \frac{k(k-1)(\Delta-\epsilon)}{2} < \frac{k(k-1)\Delta}{2}$. Similarly, $\|\boldsymbol{\mu}_k - \hat{\boldsymbol{\mu}}_k\|_2 = (k-1)(\Delta-\epsilon) < (k-1)\Delta$. As $\epsilon \to 0$, both bounds are nearly

Algorithm 4 BackTracking

Input: $\mathbf{F} \in \mathbb{R}^{k \times N}$ **Output:** $\hat{q} \in \mathbb{R}^k$; 1: $r \leftarrow k; n \leftarrow N - 1$ 2: while r > 0 do if $\mathbf{F}(r, n) = \mathbf{F}(r, n-1)$ then 3: $n \leftarrow n - 1$ 4: else 5: 6: $\hat{q}_r \leftarrow n$ 7: $n \leftarrow n - s; r \leftarrow r - 1$ end if 8: 9: end while 10: return \hat{q}

Algorithm 5 Two-Dimensional Mapping Operator $\mathcal{P}^{k,2}_\Delta$

Input: $\{\mu_i\}_{i=1}^k \subseteq \mathbb{R}^k, \Delta, c;$ **Output:** Δ -separated gridless approximation $\{\hat{\mu}_i\}_{i=1}^k$; 1: $\{\hat{\boldsymbol{\mu}}_i\}_{i=1}^k \leftarrow \{\boldsymbol{\mu}_i\}_{i=1}^k$ 2: for $i = 1 \rightarrow k - 1$ do $l \leftarrow \arg\min_{l \ge i} ||\hat{\boldsymbol{\mu}}_l - \boldsymbol{c}||_2, \operatorname{swap}(\hat{\boldsymbol{\mu}}_i, \hat{\boldsymbol{\mu}}_l)$ 3: for $j = i + 1 \rightarrow k$ do 4: if $|| \hat{\mu}_i - \hat{\mu}_j ||_2 < \Delta$ then 5:
$$\begin{split} & \lambda \leftarrow \frac{(\hat{\mu}_i - c)^T (\hat{\mu}_j - c) + \Delta ||\hat{\mu}_j - c||_2}{||\hat{\mu}_j - c||_2^2} \\ & \hat{\mu}_j \leftarrow \hat{\mu}'_j \triangleq c + \lambda (\hat{\mu}_j - c) \end{split}$$
end if 6: 7: 8: end for 9: 10: end for 11: return $\{\hat{\mu}_i\}_{i=1}^k$

Fig. 1: (a) An instance of Algorithm 5 with k = 5 and $\Delta = 1$. All $\{\mu_i\}_{i=1}^k$ are moved away from *c* iteratively satisfying the Δ -separation constraint. (b) A sample move of $\hat{\mu}_j$ to $\hat{\mu}'_j$ with respect to $\hat{\mu}_i, i < j$.

tight.

3. REFERENCES

 S. A. Vavasis, "Complexity theory: quadratic programming", *Encyclopedia of optimization*, Springer, Boston, 2001, pp. 304–307.