A Multi-Receiver MHz WPT System with Hybrid Coupler

Yaoxia Shao¹, Ming Liu², Chengbin Ma¹

¹University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China
²School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
yaoxiashao@sjtu.edu.cn, mingliu@sjtu.edu.cn, chbma@sjtu.edu.cn

Abstract—The megahertz (MHz) operating frequency increases the spatial freedom, making it more suitable for multi-receiver wireless power transfer (WPT) scenarios. Generally, in a single-receiver WPT system, similar shapes (e.g. spiral) of the transmitting coil and the receiving coil help to improve the cross coupling. However, in multi-receiver cases, traditional spiral receiving coils limit the maximum number of receivers, and the coil coupling varies obviously as position changes. This paper proposes a hybrid coupler of a spiral transmitting (Tx) coil and solenoid receiving (Rx) coils, which can effectively increase the upper limit of the number of receivers, and is also suitable for some receivers with special shapes (e.g. tubular). In addition, a new design method for the impedance matching network (IMN) of MHz WPT systems, which improves the robustness of the systems when the number of receivers varies, is also proposed.

Index Terms—Solenoid, multi-receiver, MHz, wireless power transfer (WPT), impedance matching.

I. INTRODUCTION

Wireless power transfer (WPT) through magnetic coupling has a profound impact on both consumer electronics and industrial applications [1]. Compared with traditional plug-in systems, WPT systems are free of cables, providing users with a more convenient, safe and efficient experience [2]. Currently, most of commercialized WPT systems operate in kHz band, such as at several hundreds kHz [3]. It is mainly because this frequency band provides a richer selection of power electronics components. However, the kHz operation requires large-size coupling coils and ferrite to achieve enough mutual inductance.

WPT systems with higher operation frequency, such as several MHz, own the potential to be lighter and more compact [4]. Meanwhile, increasing the frequency brings a higher level of spacial freedom [5], which is beneficial to realize multi-receiver WPT systems. There are few researches on the design and optimization for multi-receiver MHz WPT systems [6]–[8]. The existing multi-receiving system is faced with defects such as poor robustness and low capacity of receiving coils. This paper proposes a new hybrid coupler with a spiral transmitting (Tx) coil and solenoid receiving (Rx) coils, increasing the arrangement density of the receivers. Meanwhile, this design reduces the restrictions on the shape of the receivers, such as tubular and spherical appliances can also be charged. Furthermore, the concept of wireless outlets can be extended from the hybrid coupler. Fig. 1 illustrates the conventional outlet with the wired plug and the wireless outlet realized by the hybrid coupler. This concept offers an alternative to more convenient, safe and reliable power supply method, which also has application prospect in smart home, consumer electronic products and other fields.

Multi-receiver MHz WPT systems are also faced with unique technical challenges, one of them is potentially higher switching loss due to high-frequency operation [9]. Class E PAs and rectifiers are promising candidate to solve this issue, thanks to their soft-switching property [10]. As such, this paper use single-end Class E PA and full-wave current-driven Class E rectifier as power conversion stages for the transmitter and receivers.

Another challenge for such a system is the dynamic reflected impedance seen by the PA, caused by changes in the number of receivers. And the Class E PA is naturally not robust against pure-resistive load change. To solve this, a novel method to explicitly design impedance matching networks (IMN) for MHz WPT systems is proposed, based on mathematical modeling and simplification.

Section II gives the derivation of the method to design the IMNs. System configuration and parameter design process is introduced in Section III. The hybrid coupler is proposed in Section IV. In Section V, an experimental system is built for verification. Finally, Section VI concludes the paper.

II. A NOVEL METHOD TO DESIGN IMPEDANCE MATCHING NETWORKS FOR MHZ WPT SYSTEMS

Well-designed IMNs predispose MHz WPT systems to more useful characteristics, such as LIO, high tolerance to coil misalignment, and high robustness in multi-receiver scenarios.
We start the derivation by supposing the IMN to be the T-network in Fig. 2. Thus the transformed impedance, i.e., the input impedance of the IMN, can be calculated as:

\[
Z_{\text{net}} = R_{\text{net}} + jX_{\text{net}} = \frac{Z_{\text{T}1} + (Z_{\text{load}} + Z_{\text{T}2})}{//Z_{\text{T}3}}
\]

\[
= \frac{jX_{\text{T}1} + (jX_{\text{T}3}(R_{\text{load}} + jX_{\text{load}} + jX_{\text{T}2})}{R_{\text{load}} + jX_{\text{load}} + jX_{\text{T}2} + jX_{\text{T}3}}
\]

where \(Z_{\text{load}}\) represents the impedance seen by the IMN, and \(X_{\text{T}1}\sim X_{\text{T}3}\) represent the reactance of \(Z_{\text{T}1}\sim Z_{\text{T}3}\).

\[f = \sqrt{(R_{\text{loadA}} + R_{\text{loadB}})^2 + (X_{\text{loadA}} - X_{\text{loadB}})^2 + 4R_{\text{loadA}}R_{\text{loadB}} \tan^2 \theta_{\text{ref}} \sqrt{(R_{\text{loadA}} - R_{\text{loadB}})^2 + (X_{\text{loadA}} - X_{\text{loadB}})^2}}
\]

\[b = \frac{R_{\text{loadB}}^2}{R_{\text{loadA}}^2} + 2 + \frac{2 \tan^2 \theta_{\text{ref}}}{R_{\text{loadA}}[R_{\text{loadB}}(1 + \frac{\tan^2 \theta_{\text{ref}}}{\tan \theta_{\text{ref}}(X_{\text{loadB}} - X_{\text{loadA}})\tan \theta_{\text{ref}}}]}
\]

\[c = \frac{R_{\text{loadA}} - R_{\text{loadB}}(X_{\text{loadA}} - X_{\text{loadB}})^2 + 2R_{\text{loadA}}(X_{\text{loadA}} - X_{\text{loadB})}}{2R_{\text{loadA}}} \tan \theta_{\text{ref}}
\]

\[d = \frac{R_{\text{loadA}} - R_{\text{loadB}}(X_{\text{loadA}} - X_{\text{loadB}})^2 + 2R_{\text{loadA}}(X_{\text{loadA}} - X_{\text{loadB})}}{2R_{\text{loadA}}} \tan \theta_{\text{ref}}
\]

\[e = (R_{\text{loadA}} - R_{\text{loadB}})^2 + (X_{\text{loadA}} - X_{\text{loadB}})^2
\]

\[f = (R_{\text{loadA}} - R_{\text{loadB}})^2 + (X_{\text{loadA}} - X_{\text{loadB}})^2
\]
2-port IMN, but there are still other strategies to establish equations.

III. PARAMETER DESIGN

A. System Configuration

Fig. 3 illustrates the configuration of the proposed multi-receiver MHz WPT system, which is composed of a PA, an IMN of T-network, a transmitting (Tx) coil and several receiving (Rx) coils connected with corresponding rectifiers. In this system, Class E typology is applied in both the PA and the rectifier, due to its zero voltage switching (ZVS) and zero voltage derivative switching (ZVDS) characteristics. In the figure, $M_{1}\sim M_{n}$ are the mutual inductance between the Tx coil and different Rx coils, with the cross coupling between the Rx coils ignored. L_{tx} is inductance of the Tx coil and $L_{rx1}\sim L_{rxn}$ are the inductances of Rx coils. Their parasitic resistors and compensation capacitors are also shown in the figure.

B. Rectifier and Compensation of Coils

The configuration of full-wave current-driven Class E rectifier is shown in Fig. 4. The rectifier of i-th receiver consists of 2 diodes D_{r}, 2 parallel capacitors C_{ri}, 2 filter inductors L_{r}, a filter capacitor C_{f}, and a dc load R_{dc}. The input resistance and reactivity of the Class E full-wave reactance can be calculated as:

$$R_{reci} = \frac{1}{2\pi\omega C_{ri}} \left[4 - 4\cos (2\pi D_{r}) - \cos (2\phi_{i} + 4\pi D_{r}) + \cos 2\phi_{i} + 8\pi (1 - D_{r})\sin (\phi_{i} + 2\pi D_{r})\cos \phi_{i} \right],$$

$$X_{reci} = \frac{1}{2\pi\omega C_{ri}} \left[\sin (2\phi_{i} + 4\pi D_{r}) - 4\sin (2\pi D_{r}) - \sin \phi_{i} + 4\pi (D_{r} - 1)(1 + 2\sin (\phi_{i} + 2\pi D_{r}))\sin \phi_{i} \right],$$

where ω is the operating frequency, D_{r} is the duty cycle of the diodes, and ϕ_{i} is the initial phase angle of the rectifier current. The compensation capacitor of the Rx coil, C_{rxi}, is designed to eliminate the reactance of the receiver, which caused by the inductance of Rx coil and the input reactance of the rectifier:

$$X_{reci} + \omega L_{rx1} - \frac{1}{\omega C_{rx1}} = 0. \quad (8)$$

Therefore, the input impedance of the Tx coil, Z_{coil}, can be calculated as the sum of r_{tx} and the reflect impedance:

$$Z_{coil} = r_{tx} + Z_{rft} = r_{tx} + \sum_{i=1}^{n} \frac{\omega^{2}M_{i}^{2}}{R_{reci} + r_{rx1}}. \quad (9)$$

Note that C_{tx} is designed to be resonant with L_{tx} at ω, thus Z_{coil} is pure resistive.

C. Power Amplifier and Impedance Matching Network

Load-pull is an effective technique to portray the overall characteristics of a PA as the load changes. Fig. 5 shows the load-pull simulation results of the single-end Class E PA when L_{0} is resonant with C_{0}, and $C_{s} = 287$ pF. A well-known RF simulation software, advanced design system (ADS) from Agilent is used. In the Smith Chart, the contours represent the normalized output power and efficiency of PAs under different load impedances. The normalized output power of the PA is defined as:

$$P_{net, norm} = \frac{P_{net}}{V_{dc}^{2}}, \quad (10)$$

where P_{net}, V_{dc} are the input power of the T-network and the dc supply voltage of the PA, respectively.

Suppose there are 1~3 same receivers put on the Tx coil, each of them bring 9 Ω pure resistive reflect impedance (same with the experimental setting in section V), which is calculated by (9). Then, if the parasitic resistance of the coil, r_{tx} is ignored, the input impedance of the coil Z_{coil} varies between 9~27 Ω, as shown by the red line in Fig. 5. It is reasonable to equate the high-efficiency region in the Smith Chart with “soft-switching region”. Therefore, the primary function of the IMN is to transform the Z_{coil} curve into the high efficiency region, bounded by 95 % PA efficiency contour. Moreover, the PA output power is supposed to be proportional to the number of receivers, to ensure constant voltage outputs. To meet the above 2 conditions, the reference line is set as shown by the purple line in the figure. The
Fig. 5. Load-pull results of single-end Class E PA and impedance matching of multi-receiver WPT system \((L_0)\) is resonant with \(C_0\) at \(\omega\), \(C_s = 287 \text{ pF}\).

TABLE I

<table>
<thead>
<tr>
<th>TARGET SETTING AND CALCULATED PARAMETERS OF THE IMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Impedances</td>
</tr>
<tr>
<td>(Z_{\text{loadA}} \ (Z_{\text{coilA}})) : 27+0j (\Omega)</td>
</tr>
<tr>
<td>(Z_{\text{loadB}} \ (Z_{\text{coilB}})) : 9+0j (\Omega)</td>
</tr>
<tr>
<td>Target Setting</td>
</tr>
<tr>
<td>(Z_{\text{ref}}) : 14.7+12.3j (\Omega)</td>
</tr>
<tr>
<td>(\theta_{\text{ref}}) : -88°</td>
</tr>
<tr>
<td>Calculated T-net</td>
</tr>
<tr>
<td>(Z_{T1}) : 26.7j (\Omega)</td>
</tr>
<tr>
<td>(Z_{T1}) : 7j (\Omega)</td>
</tr>
<tr>
<td>(Z_{T1}) : -23.4j (\Omega)</td>
</tr>
</tbody>
</table>

variables to quantify the original loads, the reference line and the IMN calculated by (3)\(\sim\)(4) are listed in Table I. The settings in the Table ensure that the \(Z_{\text{coil}}\) corresponding to more receivers is transformed to \(Z_{\text{net}}\) corresponding to higher PA output power.

IV. HYBRID COUPLING COILS

For multi-receiver WPT systems, a new hybrid coupler is proposed, with a spiral Tx coil and a solenoid Rx coil. Fig. 6 compares the proposed hybrid coupler and the conventional ones. The essential difference between the 2 couplers is that the former uses the radial component of the magnetic field generated by the Tx coil while the latter uses the axial one. As shown in Fig. 7, the radial magnetic flux density performs better homogeneity than the axial one. In another word, the change of cross coupling caused by the movement of the Rx coil is reduced with the new coupler. Moreover, when the trace spacing of the Tx coil is high enough, the high magnetic flux density area of the radial magnetic field is larger than that of the axial one.

Based on the above factors and the preliminary simulations, the hybrid coupler has the following 4 advantages:

- Higher receiver capacity: Due to the larger area of high magnetic flux density and tubular shape of Rx coils, the same charging area can accommodate more receivers;
- Suitable for those receivers with special shapes: The Rx coil can be attached to the surface of the appliances;
- High tolerance to the change of relative position of the coils: The radial magnetic field has better homogeneity;
- Higher mutual inductance increment brought by ferrite sheet: The ferrite has greater gain on the magnetic field parallel to it, i.e., the radial component of magnetic field.

V. EXPERIMENTAL VERIFICATION

A demo multi-receiver MHz WPT system with the proposed hybrid coupler is shown in Fig. 8. 12V, 5W LED strips are used as the loads of the receivers. Each receiver is compensated to be pure resistive by (8), bringing 9 \(\Omega\) reflect impedance. Therefore, the optimal parameters of the IMN is already given in Table I. In order not to hide the light of the LED strips, ferrite sheets only cover the the lower surface of the LED tubes. Moreover, an acrylic plate with grooves
is attached to the Tx coil, which steers the receivers in the radial direction.

![Fig. 8. Experimental setup of the multi-receiver MHz WPT system.](image)

It is worthy noting that Z_{T1} and Z_{T2} of the IMN can be combined to the PA and the Tx coil, respectively, as shown in Fig. 9. "@" indicates the the value of corresponding component changes after combination. Therefore, the T-network only requires one additional component (C_{T3}), which benefits the compactness of the transmitter. Parameters of the experimental system are listed in Table II.

![Fig. 9. Circuit of the transmitter after component combination.](image)

To validate the robustness of the systems when the number of receivers varies, V_{ds} waveforms with different number of receivers are tested (Fig. 10), where the blue curves are original and the red curves are after de-noising. It can be clearly seen that the soft switching property is maintained well, thanks to the proposed IMN design method. The system efficiency is maintained between 79 %~84 % as number of the receivers varies between 1~3.

![Fig. 10. Drain-source voltage V_{ds} of the Class E PA under different number of receivers.](image)

VI. CONCLUSIONS

A multi-receiver MHz WPT system with hybrid coupler is proposed. This system has the potential to broaden the application scenarios of multi-receiver WPT technology. Issues such as IMN design are solved and detailed parameter design method is given. Subsequent research will focus on more complicated conditions such as variations of dc load and mutual-inductance.

REFERENCES

