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Abstract
In this study, a decentralized power dispatch in a charging station serving electric vehicles
(EVs) is discussed. The power dispatch problem is solved through a Stackelberg game in
real time. In this game, the leader is the EV charging station (EVCS) while the followers
are EVs. The preferences of the EVCS are designed as being self‐sufficient, providing
charging services to the EVs, and maintaining the energy level of the battery energy
storage system (BESS), which are described through different utility functions. In
addition, the preferences of followers are to maximize their EV charging powers. The
learning algorithm utilizes the consensus network to reach the generalized Stackelberg
equilibrium as the power dispatch among EVs in an iterative decentralized manner. Both
the static and dynamic case studies in the simulation verify the successful implementation
of the proposed strategy, the flexibility to uncertainties and the re‐configurability to the
number of EVs. It also has an excellent performance compared with the centralized
benchmark strategy with criteria, that is, the average EV charging time, the number of
charge and discharge rate of the BESS and energy exchange to the grid. Finally, a down‐
scaled experiment implementation is set up to validate the functionality and the effec-
tiveness of the game theory‐based strategy.

1 | INTRODUCTION

With the interests in the distributed renewable energy sources
and the concerns on air pollution, electric vehicles (EVs) have
been intensively investigated in recent years [1, 2]. As a
promising solution for the urban transportation, EVs have
been widely applied in both public buses [3] and private pas-
senger cars [4]. Considering the limited capacities of the bat-
teries in EVs, EVs have to be charged at the service stations if
the energy levels of the batteries are below the allowed ones.
To this end, developing public EV charging station (EVCS)s is
becoming an important demand for these concerns [5]. On the
other hand, an EVCS itself can be a potential threat for the
stability of the main grid because of the irregular charging
schedules of EVs, that is, charging EVs simultaneously [6].
One of the possible solutions to stabilize the power flow of the
charging stations is to utilize renewable energy such as
photovoltaic (PV) energy to support charging EVs, namely, a
PV‐based EVCS [7]. Usually, the PVs are utilized together
with battery energy storage systems (BESSs) because of the

unpredictable solar irradiation. The BESS here can smoothen
the PV power, provide a continuous charging service to EVs,
and be the backup energy source. With the help of PVs and
BESSs, the EVCS may work under the islanded state, that is,
the main grid does not need to provide energy to the EVCS
until it becomes a necessity. One of the questions here is, the
sizing and placement design problem of an EVCS, which have
been widely discussed [8–10]. In an EVCS, numbers of het-
erogeneous energy sources, with different preferences, are
required to support the EV charging together where un-
certainties in PVs and system configuration may exist. These
concerns indicate that a comprehensive and flexible strategy
should be designed to fulfil the above requirements.

The existing EV charging systems can be categorized into
three levels [11], that is, slow charging (the charging power is
lower than 3.7 kW, quick charging (the charging power ranges
between 3.7 kW and 22 kW), and fast charging (the charging
power is higher than 22 kW) [12]. Due to the public charging
requirement, only the quick and the fast charging is considered
in this study. In addition, the incoming EVs may have different
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battery capacities, state of charges (SoCs), and arriving time.
These uncertainties are all related to the satisfaction levels of
the EVs and thus designing a strategy becomes a critical
problem. The present strategies can be categorized into
centralized and decentralized ones. Centralized strategies in
EVCSs are popular and can be classified into rule‐based stra-
tegies and prediction based ones. For the rule‐based strategies,
a classical rule‐based strategy implemented in an EVCS focuses
on reducing the battery switch time and provide battery switch
service in all working hours [13]. [13] designs a strategy with
pre‐defined rule where heuristic structure is utilized. The
objective is designed to minimize the threat to the main grid.
Similarly, [14] provides an online scheduling strategy with the
same objective, that is, minimizing the threat to the main grid.
For the prediction‐based strategy, [15] gives a cooperative
strategy among EVs.

In the meantime, decentralized strategies are considered as
another possible solution toward the strategy problem in the
EVCSs. In real applications, there could be unpredictable and
changing number of the EVs in an EVCS. The types and the
characteristics of EVs may also be quite different. Synergy,
flexibility, and scalability are required when discussing a proper
power dispatch strategy for the EVCS. This further adds dif-
ficulty in the power dispatch problem among EVCS and EVs.
In this case, comparing with centralized strategies, decentral-
ized strategies are more flexible in communication, reconfig-
urable in system topology, and robust to single point of failure.
Due to the uncertainties existed in the EVCS system, decen-
tralized control can fulfil the satisfaction level of EVs better.
[12] provides a decentralized strategy to achieve efficient
charging services through regulating the voltage of the direct
current (dc) link. [16] utilizes a decentralized fuzzy logic con-
trol to the keep a stable power balance between EVs and
EVCS. To the best knowledge of the authors, there is no
literature modelling the EVs to be selfish, that is, maximize its
preference without caring other EVs, and taking the non‐
cooperative characteristics into EVs charging strategy. In terms
of decentralized decision‐making, game theory is a well‐known
way to deal with the non‐cooperative situations among selfish
agents [17]. This aspect is, especially, useful to autonomously
update the strategy when a system is reconfigured. In the game
theory, the Stackelberg game is one of the famous games where
one of the player is the ‘leader’ and others are the ‘followers’.
This aspect well matches the decentralized nature of the pre-
sent power dispatch problem among EVCS and EVs. In this
regard, a Stackelberg game is utilized to model the power
dispatch problem among EVCS and EVs and then solves the
power dispatch problem through reaching the Stackelberg
equilibrium in a decentralized manner.

This study solves the power dispatch problem through a
decentralized strategy utilizing game theory. This strategy
should be fully decentralized and be adapted to uncertainties,
that is, various EV capacities, SoCs, arriving times, and weather
conditions. In this study, an EVCS with 20 charging places has
been discussed in simulation and EVCS with three places in a
down‐scaled experimental real‐world implementation. In
addition, the power dispatch problem is represented as a

Stackelberg game, in which the EVCS and EVs are treated as
players. Since players are treated as selfish and individual ones,
each player maximizes its utility function. Based on the
learning algorithm, the players will communicate and negotiate
with each other and then finalize to a Stackelberg equilibrium
utilizing consensus network. This can be utilized as a solution
for the power dispatch problem. This equilibrium can be
reached under different uncertainties and system typologies.
Finally, the performance and functionality of the proposed
strategy is validated through both simulations and experiments.

� The strategy is fully decentralized and thus can avoid single
point of failure

� The strategy can reserve player's local information, for
example, SoC of EV battery

� The strategy is flexible to uncertainties and reconfigurable to
the system topology

� The strategy is compared with centralized strategy to verify
the performance

� The strategy has been validated in a down‐scaled real‐time
experiment test bench

2 | COMPONENTS AND
PREFERENCES

2.1 | EV charging station

As an extension of the previous work, [17], in this study, an
EVCS possessing N charging places (N ¼ 20) is utilized as an
example to facilitate the following discussions. The EVCS
shown in Figure 1 consists of PV panels, a BESS, a commercial
load, and multiple EVs. There is a shared dc link connecting all
the major sub‐systems. For security enhancement, a power
management system can reach the power flows and voltages
while the private data of the EVs, such as SoCs of their on‐board
batteries are not available. Applying the proposed strategy, it
sends commands to the converters and inverters to implement
the power management, namely a real‐time power dispatch.

� PV panels: The PV panels can work in one of the three
modes, current control mode, voltage control mode, or
standby mode. They are the main power sources for the
present example EVCS. Therefore, the PV panels are
designed to work in the current control mode during day-
time. The well‐known maximum power point tracking is
usually applied through the dc‐dc converter control. It
should be, especially, noted that the power generation from
them highly depends on weather conditions, namely a
source of uncertainty in the system

� BESS: Similar to the PV panels, the BESS can work in either
current control mode, voltage control mode, or standby
mode. Except when its SoC is too low or high, the BESS is
expected to mostly work in the voltage control mode in
order to stabilize the dc‐link voltage and smoothen the
active power generated by PV panels. With this BESS
control mode, the EVCS will be under islanded state. If the
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SoC of the BESS reaches its lower limit, the BESS will
switch to the standby mode or current control mode for
being charged by the main grid. On the other hand, with this
BESS control mode, the EVCS will be under grid connected
state

� Main grid: The EVCS is expected to mostly operate under
its islanded state. However, the EVCS can be reconnected
back to the main grid. With well‐designed sizing and proper
power dispatch strategy, the EVCS can be in a standby mode
in most cases, while, as a backup generator, it can switch to
current control mode or voltage control mode

� Commercial load: A typical office load is considered to be a
typical commercial company profile in this study. The sta-
tion load, here, only receives power according to the load
profile and thus no control variable is designed for the load

For the power management in the EVCS, its major pur-
poses are to

1. Be self‐sufficient within an EVCS
2. Meet the charging needs from EVs
3. Maintain a proper SoC of the BESS

In this study, the EVCS is modelled as one single player. Its
first objective is to be self‐sufficient, i.e. to minimize the power
flow between the EVCS and the main grid. The reasons for this
objective is: (1) to fully utilize the renewable energy, and thus
realize a ‘green energy’ based EVCS, and (2) to reduce the dy-
namic power influence from the renewable energy sources to the
main grid. The second objective is to provide EV charging ser-
vices asmuch aspossiblewhich is thebasic functionof theEVCS.
At last, the third objective is to keep the BESS SoC in a proper
range in order to provide the EV charging services when there is
no PV power. Thus, the utility function of the EVCS, namely a
quantification of its preference, can be defined as follows:

usðjÞ ¼ � | ptotal;j � ∑
n

i¼1
pev;i;j|; ð1Þ

and

0 ≤ ptotal;j ≤ ppv;j þ pb;j þ pg;j � pl; j; ð2Þ

where, ptotal;j is the total available charging power for EVs at
time j. The symbols, ppv;j , pb;j , and pg;j are the supplied powers
from the PV panels, BESS, and main grid, respectively; pl;j is
the power consumed by the commercial load; n is the current
EVs count in charging places. Note that pg;j is expected to be
zero in the most cases. It could also become negative when the
BESS SoC reaches the upper limit.

2.2 | Electric vehicles

As discussed above, there is usually a constraint on the total
available charging power, ptotal;j . It may be imposed by the
system sizing, unfavourable weather conditions, and capacity of
the main grid connection. Therefore, in the present EVCS,
each EV may not be charged following its preferred charging
profile. Compromises must be made to properly share the
limited total charging power among all the plugged in EVs,
which may have different capacities and SoCs of the on‐board
batteries. For an effective charging power management, it is
important to quantify the preferences of plugged in EVs. The
satisfaction level for charging could be enhanced by improving
battery cycle life [18,19], saving charging cost [20], and
increasing the sum of battery SoCs of all the plugged in ve-
hicles. In this study, the utility functions of the EVs are defined
to maximize their distributed charging power and be weighted
by SoCs and capacities of the on‐board batteries:

ui;j ¼
P*i
SoCi;j

ln
�
pi;j þ 1

�
; ð3Þ

and

∑
n

i¼1
pi;j ≤ ptotal;j; ð4Þ

0 ≤ pi;j ≤ P*i ; ð5Þ

where, P*i is the maximum charging power determined by
battery type and capacity of the i‐th EV. The lower and upper
bounds of ptotal;j are pmin;s ¼ CmaxV busN and
pmax;s ¼ 2CmaxV busN , respectively. Cmax is the maximum

F I GURE 1 System configuration of an example
EVCS with multiple EVs; EV, electric vehicle; EVCS,
EV charging station; PV, photovoltaic
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allowed EV battery capacity while Vbus is the nominal voltage
of the EV battery.

3 | PROBLEM FORMULATION AND
SOLUTION

3.1 | A leader‐follower game

The two types of players, that is, the EVCS and EVs, have
quite different utility functions (i.e. preferences) to maximize
[refer to Equations (1) and (3)]. The EVCS is the single pro-
vider of the charging power, namely a dominant role. Thus, in
this study, the EVCS is treated as the leader in the game while
the EVs are designated to be the followers. The power dispatch
problem then becomes a leader‐follower game, that is, the
Stackelberg game [21]. The solution of the charging power
distribution is divided into two stages:

1. The first stage: The EVCS determines a virtual limitation on
the total available charging power, ptotal;j , which is a com-
mon constraint for the EVs [refer to Equation (4)];

2. The second stage: The plugged in EVs negotiate to deter-
mine a balanced charging power dispatch, that is, pi;j 's, in a
decentralized manner.

In the EVCS stage, the EVCS would first check the
SoCb;j . If the SoCb;j is out of the boundary, the EVCS will
reconnect to the main grid. Otherwise, the EVCS will work
under islanded state. Note that the EVCS would work under
Islanded state for most of the time in order to satisfy the first
objective of the EVCS. Then, the ptotal;j can be determined
based on the current SoC of the BESS. This is because the
second objective of the EVCS is designed to give charging
power services to the EVs and the third objective is to keep
the SoC of the BESS in a proper range. Meanwhile, the
ptotal;j is utilized to reflect the current SoC status of the
BESS. If the ptotal;j is large, it means the EVCS has enough
energy so that it can provide more energy to the charging
services, and vice versa. To this end, a rule‐based strategy,
that is, ptotal;j is proportional to SoCb;j , that is, the SoC of the
BESS, is applied as follows,

ptotal;j ¼
�
þ∞; SoCb;j < SoCb;min or > SoCb;max
pmin;s

�
1þ SoCb;j

�
; otherwise ð6Þ

where, maximum number of the charging places is represented
as N. Cmax is the upper boundary of the C rate among
batteries of EVs allowed in this EVCS. SoCb;min and SoCb;max
are the minimum and maximum boundary of the SoC of the
BESS.

Once ptotal;j is determined, the EVs start to seek a
balanced power dispatch at the second stage. Through Karush‐
Kuhn‐Tucker (KKT) conditions, the solution that maximizes
the ui;j can be found [22]. Combining ui;j and constraint in
Equation (4) gives Lagrangian function Li;j ,

Li;jðpi;j; λi;jÞ ¼ ui;j þ λi;jGðpi;j; p� i;jÞ; ð7Þ

where,

Gðpi;j; p� i;jÞ ¼ ∑
n

i¼1
pi;j � ptotal;j: ð8Þ

p� i;j represents the power dispatch of the other followers'
decision variables. λi;j is the Lagrange multiplier. Note that the
constraint (5) will be reflected in the following consensus
network approach. Because of the concavity of (7), the exis-
tence and uniqueness of the so‐called generalized Nash equi-
librium is proofed by the KKT conditions. At the Nash
equilibrium, no single player can benefit from unilaterally
changing its decision while the other players maintain their
previous decisions [18]. The KKT conditions of the i‐th EV
can be written as follows:

∂Li;j
∂pi;j
¼

ai;j
pi;j þ 1

þ λi;j ¼ 0; ð9Þ

ai;j ¼
P*i

SOCi;j
; ð10Þ

Gð pi;j; p� i;jÞ ≤ 0: ð11Þ

It is known that for the most socially stable generalized
Nash equilibrium, the KKT conditions should satisfy the
below relationship among the Lagrange multipliers [20, 23],

λ1;j : ¼λ2;j : ¼ … : ¼λn;j : ¼λj: ð12Þ

3.2 | Consensus network approach

FromEquation (9), it can be seen that each EV needs a common
λj to determine its shared charging power. In the conventional
centralized control scheme, there is a controller to collect all
the necessary information, both local (P*i and SOCi;j) and
global ones (ptotal;j , pi;j , and n), and calculate the optimized
charging power distribution under the KKT conditions.

However, in real applications, it is usually advantageous to
protect the local information and provide flexibility and scal-
ability when operating in a dynamic environment. Consensus
network is applied to determine the common λj in a decentral-
ized manner [24]. As shown in the Algorithm 1 below, this
approach only requires global information. In order to protect
the privacy and avoid single point failure, a consensus network
technology is applied into learning algorithm. Thus, through
utilizing λj , the local charging power solution can be assigned. To
this end, the consensus variable is suggested to be λi;j for the ith
EV through which the EV can access the global information. λi;j
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will be shared with nearby players based on consensus network
learning algorithm. Due to the common constraint (4), another
consensus variable, that is, δpj , is utilized to guarantee that each
player will follow the constraint. Note that due to the leader–
follower relationship, the pi;js are available to the EVCS and thus
δpj can be directly sent to each follower.

Algorithm 1 Learning Algorithm

1. Initialization
λi;jð0Þ ¼

ai;j
P*i þ1

Δpjð0Þ ¼∑pi;jð0Þ � ptotal;j
2. Consensus phase

while maxð|λx;jðkÞ � λy;jðkÞ|Þ > ε2; ∀x; y ∈ n
δpjðkÞ ¼∑n

i¼1pi;jðkÞ � ptotal;j
λi;jðkÞ ¼ λi;jðkÞ þ∑n

m¼1wim;j½λm;jðkÞ � λi;jðkÞ� þ ηδpjðkÞ
pi;jðkÞ ¼

ai;j
λi;jðkÞ � 1

pi;jðkÞ ¼minfmax½pi;jðkÞ; P
*
i �; 0g

end while
3. Check phase

if|δpjðkÞ | <ϵ then
Terminate

else
Continue kþþ

end if
4. Go back to step 2

The proposed consensus algorithm is shown in Algo-
rithm 1. In the initialization phase, λi;jð0Þs and Δpjð0Þ are
determined as,

λi;jð0Þ ¼ �
ai;j

P*i þ 1
; ð13Þ

Δpjð0Þ ¼∑pi;jð0Þ � ptotal;jð0Þ: ð14Þ

Note that only λi;jð0Þ, instead of P*i and SoCi;j , is being
publicized among the players, that is, the EVs. The second step
is the consensus phase where the EVCS and each EV updates
δpj and λi;j following the rules,

δpjðkÞ ¼∑pi;jðkÞ � ptotal;jðkÞ; ð15Þ

λi;jðkÞ ¼ λi;jðkÞ þ ∑
n

m¼1
wim;j

�
λm;jðkÞ � λi;jðkÞ

�
þ ηδpjðkÞ;

ð16Þ

where wim;js are connectivity strengths and η is the step size
for the δpjðkÞs. In order to guarantee that δpj and λi;j can
converge to the average values of all the nodes, wim;js are
designed as 1=n. Note that the communication network among
EVCS and EVs are assumed to be a group in which any two
players are connected with a bidirectional path. Firstly, the
EVCS will tune its δpjðkÞ according to the difference between
the ∑pi;jðkÞ and ptotal;jðkÞ, shown in Equation (15). Then EVs
will update λiðkÞ according to Equation (16) with which
pi;jðkÞs can be calculated as follows:

pi;jðkÞ ¼
ai;jðkÞ
λi;jðkÞ

� 1; ð17Þ

pi;min ≤ pi;jðkÞ ≤ pi;max: ð18Þ

where, pi;min and pi;max are lower and upper boundaries of the
EV charging powers. pi;jðkÞs will be bounded according to
pi;min and pi;max. Finally, it returns to the beginning of step two
unless the variation of λi;jðkÞs is less than a user‐defined
threshold value.

The third step is the check phase, it would check whether
the ∑pi;jðkÞs are close enough to the ptotal;jðkÞ. If ∑pi;jðkÞs
and ptotal;jðkÞ satisfy the terminating condition, the algorithm
would stop and each EV can update its charging power based
on the λi;jðkÞ and its charging power boundaries. Otherwise,
the algorithm would jump back to step 2 and continue.

Note that if the charging power reached in Equation (17) is
larger or smaller than the boundary values, the EVs will choose
the boundary value as the solutions. The proposed strategy will
determine the power dispatch once any EV joins or leaves the
EVCS. If there is no EV joining or leaving the EVCS, the
strategy will start every 10 min.

4 | SIMULATION RESULTS

4.1 | Example scenario

Here, a scenario with 20 charging places is taken as an example.
A proper sizing is the base for discussing any strategy scheme.
As listed in Table 1, since the EVCS is designed to work under
islanded state, the size of the BESS and the PV panel system is
designed based on the number of total incoming EVs, average
capacity and SoCs of the EV battery. As shown in Table 2, the
uncertainties of both EVs and PV panels are given. Here battery
capacities of EVs follow normal distributions ranging from 65
to 83 kWh considering the ageing issue of the batteries. Again,
the SoC of the EV batteries when the EVs stop at the charging
place are designed as normal distributions with boundary from
0.2 to 0.5 and EVs will leave the EVCS when their BESSs are
fully charged. The total number of the EVs which will stop at the
charging station in a working day is designed as 100 to 130
depending on different scenarios. In addition, the EV charging
power is determined from 1 C to 2 C since a quick or fast
charging technology is utilized, where C is the charging current
rate to fully charge the battery in 1 h. The incoming EVs are
assumed to join the EVCS following Poisson distributions

TABLE 1 Specifications of the electric vehicle charging station

Parameters Value

Capacity of the battery energy storage system 3000 kWh

Maximum power of PV panel system 1200 kWh

Rated power of the grid‐connected system 1 MW

Maximum number of charging places 20
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considering a 12 h EVCS working time and the total incoming
EVs number. Note that the proposed game theory‐based
strategy can be implemented with any sizing of the EVCS. The
selected EVCS specification can be treated as an example. In
addition, the PVoutput power profile is calculated based on the
PV irradiation data from [25] and model from [13]. Then the
profile is scaled with the maximum power of the PV panel
system listed in Table 1. The uncertainties of the PV panel
system are modelled by the white noise to emulate the sampling
errors and weather uncertainties. Two example summer day and
winter day PV output power profiles are shown in Figure 2.

4.2 | Static power dispatch

The static case study validates the performance of the proposed
strategy and learning algorithm in a static case. A static case
where there are six EVs in the EVCS is selected as an example,
that is, j ¼ 30 (min). As shown in Figure 3, with a given ptotal;j
from the EVCS, the λi;js from EVs can converge after several
iterations which validate the efficiency of the learning algorithm.
After the λi;js stabilize, charging places are able to charge their
connected EVs with the charging power given by (17) and (18).
The example power dispatch for six EVs case is listed in Table 3.
Since the existing EVs need to determine the power dispatch
within ptotal;j and the PV output power is not sufficient, all EVs
are charged according to their current SoC and P*i . In addition,
the simulation results also suggest that the EV with highest
capacity is able to have the largest charging power, that is, EV 5.

4.3 | Dynamic power dispatch

Further to the static case study, a complete procedure of the
charging responses in a sunny summer day is presented here.
According to the PV profiles, no radiation can be observed after
7 PM, the EVCS will stop acquiring power from PVafter 7 PM.
The power supply can only be acquired from BESS and grid.

As designed in Table 1, there are totally 100 incoming EVs,
the entire power dispatch is over complicated and the dynamic
responses are also over complicated to be shown in one figure.
In this case, the entire power dispatch during charging of the
first five EVs are picked up to verify the performance of the
proposed strategy.

TABLE 2 Uncertainty models in EVs
and PV panel system

Uncertainty Model Mean Standard deviation

EV arriving time Poisson distribution 12:28 PM 209.58 (min)

SoC of EV battery Normal distribution 0.35 0.075

Capacity of EV battery Normal distribution 75 (kWh) 5 (kWh)

PV output power Scaled profile and white noise 181.97 (kW) 258.69 (kW)

Abbreviations: EV, electric vehicle; PV, photovoltaic; SoC, state of charge.

F I GURE 2 A typical summer day (left) and a typical winter day (right)

F I GURE 3 λi;30 map at 30 (min); EV, electric vehicle
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It can be observed in Figure 4a that when EVs come in or
leave the EVCS, the power dispatch will be re‐arranged ac-
cording to the preferences of the existing EVs in the EVCS
like the example given in static case study. This result verifies

that the proposed game theory‐based strategy can be imple-
mented with different system topology and uncertainties. In
addition, with different initial EV SoC, all EVs will be fully
charged before leaving the EVCS.

The power dispatch and SoC response of the BESS in the
EVCS is shown in Figure 4b. During the entire simulation, the
BESS has absorbed most of the dynamic power while the SoC
of the BESS stays within the defined working range. This
verifies that the utility function of the EVCS is well fulfilled
and the capacity of the BESS is well designed. In addition, the
ptotal;j , is proportional to SoCb, following the pre‐defined so-
lution of the EVCS. Besides, Figure 4b also verifies that the
existing EVs in the EVCS can be any number less than 20 (the
number of the charging places), which verifies that the dy-
namic case study has covered different cases including the
EVCS has empty charging place and non‐empty charging
place cases.

4.4 | Comparison with centralized‐based
strategy

In order to verify the performance of the proposed game the-
ory‐based strategy, the proposed strategy is compared with an
strategy that only maximizes the charging power of EVs, that is,
pi ¼ P

*
i . This comparison is designed to verify that the GT‐

based strategy can provide a balanced EV charging power so-
lution. The criteria in this comparison are Egrid , that is, the en-
ergy exchange from the main grid, nrate, that is, the number of
rate change from charge to discharge and from discharge to
charge, pb;charg, that is, the average charge power of the BESS,
pb;discharg, that is, the average discharge power of the BESS, and
tEV , that is, the average charging time for EVs, shown as follows,

Egrid ¼ ∑
T

j¼1

 

pb;j þ pPV ;j þ ∑
n

i¼1
pi;j þ pl;j

!

; ð19Þ

pb;charg ¼ � ∑
T

j¼1
pb;j; for pb;j < 0 ð20Þ

pb;discharg ¼ ∑
T

j¼1
pb;j; for pb;j > 0 ð21Þ

tEV ¼
∑tEV ;i
n

; ð22Þ

TABLE 3 The power dispatch at 30 (min)
Time (min) p1 (kW) p2 (kW) p3 (kW) p4 (kW) p5 (kW) p6 (kW)
30 154 141 153 160 156 144

pb (kW) SoC1 SoC2 SoC3 SoC4 SoC5 SoC6

704 0.52 0.37 0.52 0.29 0.30 0.32

ptotal (kW) C1 (kWh) C2 (kWh) C3 (kWh) C4 (kWh) C5 (kWh) C6 (kWh)

908 76.9 70.4 76.7 80.1 78.1 71.9

Abbreviation: SoC, state of charge.

(a)

(b)

F I GURE 4 (a) The charging power and SoC responses of five selected
EVs. (b) Power response of the BESS, SoC response of BESS, ptotal;j
response, and number of coming EVs to the EVCS; EV, electric vehicle;
EVCS, EV charging station; PV, photovoltaic; SoC, state of charge
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where tEV ;i is the charging time for ith EV and n is the number
of EV, and T is the total simulation time. Note that these two
criteria are directly related to the utility functions of the EVCS
and EVs, respectively.

The simulation results are shown in Table 4 with different
total incomingEVs cases, i.e.n. Due to the existing uncertainties,
i.e. EV SoC, capacity, and arriving time, the simulation is run
1000 times for each case. After 1000 times of simulation run, tEV
for EVs utilizing the proposed strategy is comparable against the
centralized one while the Egrid is much smaller under n¼ 110,
n¼ 120 and n¼ 130 cases. In addition, the pb;charg for the GT‐
based strategy is almost the same as that for the centralized‐
based strategy while the pb;discharg for the GT‐based strategy is
larger than that for the centralized‐based strategy under all three
cases. These results suggest that (1) the centralized‐based strat-
egy have a larger energy exchange than the GT‐based one which
verifies the result from Egrid ; and (2) with centralized‐based
strategy, the BESS will be out of power earlier than the BESS
with GT‐based strategy. Besides, the nrates for two strategies are
almost the same, which proves the randomness for the un-
certainties of both PVs and EVs. The nrates also increase with
larger n, which means the more EVs come to EVCS the more
frequently the BESS will change from charge to discharge and
vice versa. These comparison results suggest that the GT‐based
strategy provides two benefits against the centralized‐based
strategy: (1) the GT‐based strategy provides a more balanced
solution among the preferences of EVs and EVCS; and (2) the
GT‐based strategy does not share the local information of EVs
to the EVCS through using consensus network approach.

4.5 | Scalability analysis

Because of the decentralized manner of the proposed strategy,
the convergence speed of the learning algorithm with more

and more EVs involved becomes a considerable problem.
Thus, it is necessary to have a scalability analysis for the game
theory based power dispatch strategy. Based on the proposed
the simulation system, the maximum number of EVs is 20. In
the scalability analysis, the number of iterations needed to
converge is recorded with different number of EVs ranged
from 3 to 100. As shown in Figure 5, the computation burden
is proportional to number of EVs. Since there is no expo-
nential increase or other specific increase for the iterations
toward the number of EVs, it can be concluded that when the
number of EVs increases, the proposed power dispatch
strategy is scalable [24].

As shown in Figure 5, the threshold value for the stop
condition of the learning algorithm, that is, q ranges from 0.1
to 0.001. It can be observed that there is a trade‐off between
the convergence accuracy and the number of iterations. The q
can be designed as different value based on the calculation
ability of the controller where the proposed power dispatch
strategy is implemented.

5 | EXPERIMENTAL RESULTS AND
ANALYSIS

Figure 6 and Table 5 show the down‐scaled test bench and
specifications of the experimental system. An EVCS with three
charging places is utilized to verify the functionality and
effectiveness of the proposed game theory‐based strategy.
Note that from the strategy point of view, there is no differ-
ence between an EVCS with three charging places and an
EVCS with 20 charging places. The EVs and charging places
are emulated through three electronic loads and buck con-
verters. Note that the electronic load is working in constant
voltage mode in order to model a real EV battery while the
buck converter is implemented to control the charging power.
The charging power is controlled by an individual National
Instruments (NI)‐myRIO, which samples the charging power

TABLE 4 The simulation comparison results

Cases n¼ 100 n¼ 110 n¼ 120 n¼ 130

[GT‐based:]

Egrid (MJ) 0 0 1932 6403

nrate 30.51 31.81 32.63 32.95

pb;charg (MW) 0.24 0.22 0.21 0.20

pb;discharg (MW) 0.21 0.23 0.24 0.25

tEV (min) 18.56 18.80 18.52 20.02

[Centralized‐based:]

Egrid (MJ) 0 492 2409 8776

nrate 30.4 31.72 32.08 32.51

pb;charg (MW) 0.24 0.22 0.21 0.20

pb;discharg (MW) 0.22 0.23 0.25 0.26

tEV (min) 18.48 18.47 18.45 18.43

F I GURE 5 The relationship between iterations of the learning
algorithm and number of EVs; EV, electric vehicle
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and performs the pulse‐width‐modulation wave to the buck
converter. Three proportional‐integral (PI) controllers are
implemented in the NI‐myRIOs to control the charging
powers. The PV‐panels and station load are emulated through
a power supply and an electronic load programmed by Lab-
VIEW in a host personal computer (PC). Note that the power
supply and electronic loads are connected to the host PC
through RS‐232 port. A NI‐CompactRIO is utilized to sample
the power flow of the BESS. Thus, the NI‐CompactRIO
together with the host PC can be treated as the EVCS strategy
centre. Since the BESS with converter works in voltage mode,
it is emulated through a real battery directly connected to the
dc‐bus for simplicity proposes. Five 0:01 Ω high‐accuracy
sampling resistors are utilized to measure the currents of the
EVs, station load, and PV panels.

Note that the rated power and capacity are also scaled
down to the test bench level. The total incoming EV number is
scaled down to 10 while the total simulation time is scaled
down to 1440 s. Since there is nearly no energy exchange in the
last 440 s, the experimental results only show the responses
within the first 1000 s. The PV power profile will also be scaled
down accordingly. Following the power profile of the PV‐
panels system and station load, the reference power can be
directly sent to the power supply and electronic load. The
communication among EVs and charging station is designed
utilizing shared variables in LabVIEW program through Wifi
communication. Similar to the simulation, the EVs will leave
the EVCS when they are fully charged.

As shown in Figure 7a, the power dispatch of 10 EVs with
three charging places verify the effectiveness of the proposed

TABLE 5 The parameters of EVs

EVi 1 2 3 4 5 6 7 8 9 10

Pi*

(W)

12 12 10.75 11.5 12.75 10.75 10.75 10.75 13.75 13

SoCi 0.34 0.31 0.44 0.23 0.31 0.29 0.21 0.20 0.35 0.41

Abbreviations: EV, electric vehicle; SoC, state of charge.

F I GURE 6 Down‐scaled test bench
(a)

(b)

(c)

F I GURE 7 (a) EV charging power response. (b) EV SoC response.
(c) Battery power response, SoC response of BESS, and ptotal in
experiment; EV, electric vehicle; SoC, state of charge
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strategy, that is, the power dispatch follows the P*i and SoCi
given in Table 6. For example, the charging powers of EV 1 and
EV 2 are higher than the charging power of EV 3 due to the
higher P*i and lower SoCi. When the total available charging
power is sufficient, for example, only two EVs are in the EVCS
and ptotal is high enough at 600 s, EVs can be fully charged.
The fluctuations in the charging power responses are caused by
the sampling errors and response time of the PI current
controllers. It can be observed that EVs come to the EVCS in
sequence following the Poisson distribution. The initial SoCs
of EVs are determined through normal distribution, shown in
Figure 7b and Table 6. All EVs are fully charged when they
leave the charging station. As shown in Figure 7c, the power
response of the BESS shows a similar dynamic response, which
verify the smooth and stabilizing function of the BESS. As
shown in Figure 7c, the SoC response of BESS verifies the
sizing of the EVCS, that is, the BESS has never been over
charged or over discharged. Similar to the simulation results,
the ptotal follows the same track of the SoC response of the
BESS.

6 | CONCLUSIONS

This study designs and develops a decentralized power
dispatch strategy in EVCSs. The power dispatch problem is
converted into a Stackelberg game, in which the EVCS and
EVs are modelled as individual players. Each player possesses a
utility function representing its preference, that is, being self‐
sufficient, providing charging power services to the EVs,
maintaining the SoC of the BESS, and maximizing the EV
charging power. Through a learning algorithm utilizing
consensus network, the generalized Stackelberg equilibrium is
iteratively reached as a solution for the charging power
dispatch problem. The simulations in both static and dynamic

case studies give an improved performance, reconfigurablility,
and scalability with the game theory‐based strategy. Finally, a
down‐scaled real‐world test bench is utilized to validate the
real‐world implementation and the effectiveness of the pro-
posed decentralized strategy.
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