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Abstract—User behavior has attracted growing attention recent
years in electric vehicles (EVs) charging coordination problems.
This paper proposes a spatial EV fleet charging coordination
system considering charging station distribution and user be-
havior. Firstly, the configuration of the coordination system is
introduced and private information protection is highlighted in
this system. Traffic uncertainty model, charging station charging
pole schedule algorithm (CPSA) and EV mobility model are
designed to reflect the spatial interaction of the system. Then,
an user behavior based EV coordination algorithm is proposed
to maximize upcoming EV user’s satisfaction level. Detailed
simulation results are presented to verify the effectiveness of
proposed EV coordination system. It shows that this system
increases EV user’s satisfaction level in charging coordination
process and spatially shifts the overload of charging stations.

Index Terms—spatial charging coordination, user behavior,
mobility uncertainty, electric vehicle (EV), charging station

I. INTRODUCTION

Electric vehicles (EVs) have been widely promoted world-
wide, and expected to consistently increase rapidly in coming
decades [1]. However, due to the low energy density of battery,
EV users face the problem that they need to charge their
EVs frequently and have to bear longer charge time than
traditional vehicles. This may influence user’s travel plan and
decrease user’s satisfaction level. Besides, due to the high
charging power load of EV, disorderly charging will increase
load burden on power grid and the power system may break
down [2]. So, it is important to schedule EV charging not
only for charging service quality of users, but also for proper
operation of power suppliers and charging stations (CSs).

EV charging coordination can be divided into two domains,
temporal coordination problem and spatial coordination prob-
lem [3]. For temporal charing problem, the EVs here are
considered to be existing in their charging sites, stations, and
plugged in for charging. The aim here is to distribute the EV
charging load over time, i.e., shift the charging load to different
time like in [4] and [5]. For spatial charing problem, the EVs
here are out of the charging sites and seeking to select a proper
one among them for charging. The aim here is to distribute the
EV charging load over location, i.e., shift the charging load to
different locations like in [6] and [7].
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Spatial coordination addressed importance in the mobility
of EVs. A potential charging hot spot may happen when many
EVs select the same charing station and move toward it [8].
A previous work [9] proposed the charing station reservation
algorithm based on the expected arrival time of EV, however,
traffic condition increases the uncertainty of EV’s arrival time
to CS, making fluctuation in the reservation system. Some
works like [6] and [8]use information updated approach to
dynamically planning best CS based on current situation.

Users’ satisfaction level is important in spatial coordination
problem because users have their unique trip planning and
preferences. However it is still the main trend to treat EV users
to have homogeneous response in EV coordination problems
[4]. EV users have unique charging and driving behaviors
in real world, and their preferences to charging coordination
criteria like minimum distance or waiting time can influence
satisfaction level of charging service. It is becoming important
to consider the unique user behaviors in EV coordination
problem to realize a refined energy management [10] [11].

In this paper, we propose a user behavior-based spatial
charging coordination system for EV Fleet. The main con-
tributions are listed as follows:

• The proposed spatial EV charging coordination system
considers selection among multiple CSs. Private infor-
mation protection is ensured in this system. A simulation
platform is built to model mobility uncertainty and verify
coordination performance.

• This work considers various users’ preferences in terms
of criteria like travel time, travel distance, and waiting
time. Spatial coordination is combined with users’ unique
travel plans, which will maximum user’s satisfaction level
in charging service.

The remainder of this paper is organized as follows. In
Section II, we present the System configuration and model,
followed by Section III in which we introduce EV coordination
algorithm including user behavior based criterion. Simulation
results and analysis are evaluated in Section IV, followed by
the conclusion made in Section V.



II. SYSTEM CONFIGURATION AND MODELLING

A. System configuration
The purposed EV charging coordination system considers

the interaction among EVs, CSs, coordination information
center (CIC), traffic network and power grid as shown in
Fig. 1. CIC is a platform that provide navigation service for
EVs and work as an agent to share information between EVs
and CSs. Navigation service can be performed securely by
means of navigation service provider. EVs are divided into
three states: upcoming EVs, namely EVs that have charging
need and are traveling on road, waiting EVs, namely EVs that
already arrived at CS but are still waiting for charging, and
charging EVs, namely EVs that are charging in CS. The CS
selection for upcoming EVs is according to a user behavior
based CS selection algorithm that is further illustrated in
chapter III. CS has limited power capacity, which influences
the maximum number of charging poles at different times
in one day, namely capacity profile. Based on this capacity
profile, charging poles are arranged according to Charging
Poles Schedule Algorithm (CPSA) that is further illustrated
in section II.C.

The proposed EV charging coordination system works as
the following steps. Power grid will announce power constrain
for each CS before a day based on historical data, then
CS will calculate its capacity profile. For upcoming EVs,
firstly they send their location and SoC information to CIC
as shown in step 1. Then based on traffic data and available
CSs’ location, CIC will provide navigation service and send
navigation information including travel distance and travel
time to EVs as shown in step 2. At the same time, CIC
will also send anonymous expected arrival time and required
SoC information to candidate CSs. Expected waiting time is
queried and send back to CIC and then send to upcoming
EVs as shown in step 3. Then user behavior based CS
selection is performed based on travel distance, travel time
and waiting time as shown in step 4. This procedure is carried
out periodically to keep track of the dynamic variation of
traffic network, upcoming EV states and CS states. When EVs
arrive at selected CS, direct information change is available
between EVs and CS, then charging coordination is performed
by means of CPSA as shown in step 5.

Private information protection is highlighted here when EV
and CS are spatially separated. Only anonymous information
of upcoming EVs like arrival time and required SoC and public
information of CSs like CS location and waiting time query
result are shared between EVs and CSs. Private information
like location and user behavior of upcoming EVs and oper-
ational information like number of EVs in CS are protected.
when EVs arrive at CS, EVs and CS can change information
locally, and hence their private information is also protected.

The model of traffic uncertainty, CS and EV are introduced
as follows.

B. Traffic Uncertainty Model
Fig. 2 shows a simplified model of geographical system

with meshed road network. EV will follow the segments of

Fig. 1. The proposed EV coordination system

Fig. 2. Illustration of meshed road network

roads when travels in this area. The width of these segments
represents the road condition while the color represents traffic
condition. The average speed on each segment vis determined
by (1).

v = V × Ei
t × Ei

r (1)

where V is the maximum speed limit in urban area. Ei
t is

coefficient of traffic jam degree and Ei
r is the coefficient

of road condition, they are all range from [0,1], which will
decrease the actual speed. Due to the uncertainty of traffic,
Ei

t will change following Possion distribution.

C. Charging Station Model

CSs are assumed to locate in the some junctions of roads and
hence can be reached from any initial location on road. CSs
are assigned power constrain pc,t by power grid. We assume
each charging pole has constant charging power pc, then the
maximum available pole Mt at any time can be calculated
according to (2).

Mt = bpc,t/pcc (2)



The current number of charging EV in CS is mt. When EV
arrives at CS, it will charge immediately at a constant power
pc if there are available charging poles (mt < Mt). Otherwise
it will wait in a waiting queue with current queue length nt
and maximum capacity N , when some EV finish charging and
leave available charging poles, EVs in the waiting queue will
charge following the first come first serve rules.

In this paper, charging schedule is based on CPSA, and it is
divided into two phase as illustrated in Algorithm 1 and 2. In
EV arrival phase, EV has arrived at selected CS. EV will be
assigned to the earliest available pole according to its arrival
time tr and required SoC based on line 1 to 4. Where T free

i

is the earliest free time in pole i, T shift
i is maximum pole

number shift time for pole i, Tp is candidate starting charing
time set for EV. The earliest candidate starting charing time tp
that satisfies pole constrain will be assigned to this EV. In EV
query phase, EV hasn’t selected CS or hasn’t arrived at CS.
EV needs to query expected waiting time in CS for decision.
Based on line 1 to 6, EV is virtually scheduled in the waiting
queue and the expected waiting time is calculated.

Algorithm 1 CPSA EV arrival phase
Require: tr, requiredSoC

1: Tp ← [T free
i , T shift

i ] for i in total poles
2: Rank Tp in Ascending order
3: for tp in Tp do
4: Virtually append new EV at tp
5: if m < M then
6: Arrange EV to poles, Update poles, Return
7: end if
8: end for
9: Refuse EV, Return

Algorithm 2 CPSA EV query phase
Require: tr, requiredSoC

1: Tp ← [T free
i , T shift

i ] for i in total poles
2: Rank Tp in Ascending order
3: for tp in Tp do
4: Virtually append new EV at tp
5: if m < M then
6: Expected waiting time ← (tp − tr)
7: Return expected waiting time
8: end if
9: end for

10: Refuse EV, Return

By CPSA, early arrival EVs will keep their charing power
in the presence of later arrival EVs. This is more fair for early
arrival EV users comparing with the vary power method in [6],
where the charging power of early arrival EVs may decrease
due to later arrived EVs. Besides, CPSA provides a flexible
way in practice considering traffic mobility uncertainty. The
periodically update mechanism will keep waiting time updated
for CS selection decisions.

D. EV Model

EV model including its location, speed, SoC dynamic and
navigation model, the main features of EV are explained as
follows:

1) EV SoC Dynamic: Based on EV driving and charging
states, two different models to calculate SoC dynamic are used
here:

• EV driving model for calculation of SoC is derived as
follows. The EV dynamical power related to speed can
be approximated by quadratic form [12]:

Ptotal = C1v
2 + C2v + C3 (3)

where C1, C2, C3 are positive numbers. Then the SoC
consumption when EV is driving can be expressed by:

SoCpresent = SoCprevious − Ptotal∆t/Cbattery (4)

• EV charging model for calculation of SoC is derived
based on the charging energy:

SoCpresent = SoCprevious + ηPcharge∆t/Cbattery (5)

where η is power conversion efficiency.
2) EV mobility navigation: EV mobility refers to EV daily

travel activities. EV has a charging demand when its SoC is
low (e.g., lower than 0.3), and it has to be charged to continue
its travel. EV needs to choose a proper CS to travel to it,
and to recharge itself. When EV is fully charged in CS, it
will continue to travel to its planned destination. The above
EV travel mobility divid can be represented by the following
flowchart in Fig. 3.

III. USER BEHAVIOR BASED CS SELECTION

A. Selection Criteria of candidate CSs

As EV travels and loses energy, it needs to be charged to be
able to continue traveling. EV users can decide which CS to
choose and hence the satisfaction level of users will be more
important in Spatial Coordination Problem. EV travel distance,
EV travel time and EV waiting time are used to measure the
satisfaction level of users, and they are introduced as follows.

1) EV travel distance to CS: This reflects an energy con-
sumption reservation of EV users. The distance form EV
number n to CS i is expressed by dn,i, and it can be calculated
by shortest distance route.

2) EV travel time to CS: This reflects the traffic conve-
nience of EV and it is influenced by the mobility uncertainty.
EV travel time from EV number n to CS i is expressed by
trn,i, and it can be calculated by the sum of travel times in
each segment of selected route.

3) EV waiting time in CS: This reflects the available
capacity of CS and can influence the anxiety of EV charging
process. The expected waiting time for EV number n in CS i is
expressed by twn,i , and it can be calculated by CPSA proposed
in section II.
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Fig. 3. EV navigation model

B. User Behavior Based CS Selection Model

The concern of user behavior based selection is to select
the proper CS for charging EV and get maximum satisfaction
level based on information on location and traffic conditions.
Thus, after considering the geographical distribution of the CS
locations, EV user will select only one CS. This CS selection
decision can be represented by a binary value xn,i as below
(6)

xn,i =

{
0, EVn does not select CSi

1, EVn selects CSi

(6)

where i is the index of the CS out of the existing number Ncs

and n indicates for the EV out of the existing number Nev .
Travel distance, travel time, waiting time are normalized

and used as the criterion for users’ satisfaction level (7).

Wn,i = ω1

dn,i − dn
dn − dn

+ ω2

trn,i − trn
trn − trn

+ ω3

twn,i − twn
twn − twn

(7)

Fn = 1−
Ncs∑
i=1

xn,iWn,i (8)

where dn, dn, trn, trn, twn , and twn are the maximum and
minimum values of travel distance, travel time and waiting
time in CSs respectively. Then the satisfaction level of EV user
n can be expressed by (8). We assume EV user n will select

and travel to the CS that maximizes his/her satisfaction level.
(7) expresses criteria in a normalized form so that these criteria
can be added together to measure users’ satisfaction level.
And ω1, ω2, ω3 are weight factors that represent the degree
of sensitivity among energy consumption reservation , traffic
convenience on mobility uncertainty and anxiety on charging
process. For normalization purposes and to constrain the
behavior range it is assumed that ω1 +ω2 +ω3 = 1. Different
weight combinations reflect different EV user’s behavior.

IV. SIMULATION RESULTS AND ANALYSIS

The simulation is carried out on animation based platform
programed by python. Firstly, charging poles schedule result
in a single CS is presented to show the effectiveness of CPSA.
Then a cases study is simulated to show the performance of
proposed EV coordination system.

A. EV coordination in single CS

The example CS is assumed to have 4 charging poles. Due
to power constrain, the maximum available poles in a period
that last 20 hours is shown in Fig. 4 (a). 8 EVs arrival this CS
during this period and their arrival order and arrival time at CS
are marked on time axis. EV will be assigned to a charging
pole and charge if there is available charging pole according
to EV arrival phase in CPSA. Charging pole schedule result
is shown in Fig. 4 (b). Color bars and numbers represent that
some EV is charging at a specific charging pole (P1, P2, P3
or P4) in the time interval that a bar cover.

The result shows that EV (0, 1, 2, 5, 7) charge immediately
when they arrive at the CS, and EV (3, 4, 7) will wait until
there is available charging poles. The total number of charging
poles used at any time is within the constrain of maximum
available poles, namely the capacity in CS.

(a)

(b)

Fig. 4. Charging poles schedule result. (a) EV arrival time and maximum
capacity of CS. (b) Sequential charging poles schedule arrangement.

B. EV coordination in multiple CSs

We assume the studied geographical area is a 7Km×4Km
rectangular area with four CSs and meshed road network as
shown in Fig. 2. EVs are assumed to travel in this geographical
area like taxi fleet and will not leave this area. Besides, we
assume that the four CS inside this area will not accept EVs



that are not considered in this coordination system. 80 EVs
are generated following the navigation model in section III.A.
EV users are equally divided into 5 groups in terms of their
preference to travel time, waiting time, and distance as shown
in TABLE 1. The preference here stands for the combination
of three weight factors ω1/ω2/ω3 mentioned in section III.B.

TABLE I
FIVE DRIVER GROUPS AND THEIR PREFERENCES

Groups Driver type Preference
1 Travel distance sensitivity drivers 1/0/0
2 Travel time sensitivity drivers 0/1/0
3 Waiting time sensitivity drivers 0/0/1
4 Time sensitivity drivers 0/0.5/0.5
5 Distance and time moderate drivers 0.4/0.3/0.3

Power constrain for each CS is taken from [6], which is
set in one day between 6:00 and 22:00 considering power
distribution and grid load. EV battery capacity is assumed to be
30kWh. When EV is running on road, its power consumption
has quadratic form with parameter C1, C2, C3 scaled and
taken from [12]. When EV charge in CS, it will charge at
25kW constant power with conversion efficiency η equals to
0.96.

Power constrain for each CS and actual charging power
with and without CPSA in one day is shown in Fig. 5. It
can be seen that in CS A form 14:00 to 18:00, the available
power is in shortage (green curve), the power schedule result
without CPSA result in overload (blue curve), while the power
schedule result with CPSA can avoid overload by shifting EVs
to other CSs which have more available power (orange curve).

Fig. 5. Power constrain and actual power in each CS with/ without pole
schedule

The waiting EV number in CSs with or without coordination
are compared in Fig. 6. Without coordination means upcoming
EV users will simply choose the nearest CS, while with
coordination means EV users will choose CS according to
user based coordination algorithm proposed in section III.B.
The result shows that in the case without coordination, there
is a large number of EVs waiting in CS A due to limit power
constrain form 14:00 to 18:00. However in the case with
coordination, the waiting EV number in CS A decreases and
is shifted to CS B.

Fig. 6. Waiting EV number in each CS with/ without coordination

Different groups of user’s satisfaction level in spatial do-
main are shown in Fig. 7. Black squares represent four CSs
that locate in this studied geographical area, and dots represent
location of EVs when they make their first CS selection
decision. Different colors of dots represent different groups of
EVs that have unique preference. The line that connect dot and
square represents the CS selected by this EV, and the color of
the line represents satisfaction level of this selection based on
(8) and (7). In order to show these lines clearly, only selections
happen from 15:00 to 17:00 in the case study is shown here.
Note that EV is traveling on meshed road network and will
only make decision at cross node. a small vibration is added to
their location so that these dots won’t overlap. In Fig. 8 (a), EV
always chose nearest CS, and it shows that for group3(green
dots) near CS A, they have low satisfaction level because CS
A has long waiting time during this period. In Fig. 8 (b), EV
will choose CS based on preference and try to maximum their
satisfaction level. It shows that some EVs that belong to group
3,4 or 5 will travel further to charge in some CSs that have
shorter waiting time. Hence the overall satisfaction level is
increased.

In order to compare satisfaction level in a whole day,



(a)

(b)

Fig. 7. Compassion of satisfaction level of different groups in spatial domain.
(a) Without coordination. (b) With coordination.

Satisfaction level of different groups of EV users in time
domain is shown in Fig. 8. For group 1 users, the minimum
distance CS selection is the same in cases with or without
coordination, so their satisfaction level don’t change much.
For other groups, satisfaction level of different group of users
have increased due to the behavior based EV coordination
algorithm. In average, the satisfaction level has increased from
88% to 98%.

V. CONCLUSION

In this paper, a spatial EV coordination system is proposed
considering user’s behavior and distribution of CSs. a coor-
dination information center is introduced in this system to
guarantee private information protection. Traffic uncertainty,
CS and EV are modeled considering mobility factors. User
behavior based CS selection model is proposed to maximize
upcoming EV user’s satisfaction level. EV users will choose
the CS based on their preference to travel distance, travel time
and waiting time in CS. EV coordination simulation in single
CS and multiple CSs are present to show the effectiveness
of purposed coordination system. The results show that the
proposed coordination system increases EV user’s satisfaction
level in charging coordination process and spatially shifts the
overload of charging stations. In future work, more detailed
constrains when EV arrive at the CSs will be considered, such
as price for electricity, power limit for CSs.

(a)

(b)

Fig. 8. Compassion of satisfaction level of different groups in temporal
domain. (a) Without coordination. (b) With coordination.
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