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Abstract—This paper proposes a platform that supports
the electric vehicle (EV) to navigate to a proper station for
charging. This platform considers several important factors,
concerns, that influence the selection of a suitable charging
station. These factors are the energy consumption in driving to
reach the charging station from the EV location, the demanded
charging energy, the parking time to start charging at the
charging station, the extra time in charging due to lowering the
charging power rate at the charging station pole, and the energy
consumption in driving to reach the EV target destination after
charging at the charging station. These factors are represented
by their costs and formulated as a cost function for charging the
EV. This formulation is constructed for each EV to facilitate the
distributed implementation of this charging navigation platform.
The problem is then solved in an optimal way for selecting the
charging station. Several comparison methods are introduced
and the advantage of the proposed strategy is demonstrated to
lower the cost paid by the customer to charge the EV during
his/her travel mobility plan.

Index Terms—Charging navigation, electric vehicle, charging
station, customer concerns, customer behavior, travel mobility.

I. INTRODUCTION

Electrification transportation has obtained an increasing at-
tention due to the growing demand in environmental concerns
and energy. Electric vehicles (EVs) are considered to be
promising automobiles and developing them is an integral
part of future transportation [1]. Therefore, EVs have notably
received a big attraction by industry and government and the
number of EVs on roads is potentially going to increase.
Yet, the limited capacity of their on-board batteries remains
a challenging issue for their spreads. This limitation requires
the EV customers to frequently charge their EVs to satisfy
their charging energy demands [2]. The time for charging the
EV relies on its remaining energy and its customer behavior,
i.e., EV customers charge the EVs periodically or when
the state-of-charge (SoC) of EV is low [3]. Whereas, the
place for charging the EV, i.e., selecting the charging station
(CS), depends on several aspects, including the EV SoC, EV
customer behavior and travel mobility plan, the status of the
CS, and status of the power grid.

Several works in the literature were proposed to address the
selection of CSs for charging, i.e., EV charging navigation,

on the basis of different aspects [4]–[11]. Ref. [4] proposed
route selection and charging navigation model to the EV
users’, customers’, travel costs with care about the load on the
distribution system. Ref. [5] introduced a charging navigation
framework to benefit the power grid and transportation system.
Ref. [6] presented an optimal route scheduling model for
charging EVs during navigation considering specific locations
of CSs as well as features of roads and battery electric
vehicles (BEVs). Ref. [7] applied a joint charging and rout-
ing optimization into the EV charging navigation systems.
Ref. [8] implemented a distributed strategy for EV charging
navigation with consideration of power grid and traffic network
interactions. Ref. [9] developed a deep reinforcement learning
strategy for the EV charging navigation. Ref. [10] solved the
EVs’ charging decisions by a price incentive-based charging
navigation strategy. Ref. [11] formulated a coordinated spatial
EV charging navigation on the basis of user behavior.

The above literature tried to handle the preferences of both
the EVs and the power grid from a big picture. However, this
led to a distraction on the detailed concerns of each individual,
particularly the EV and its customer. Unlike these works,
this paper investigates in the EV customer perspective and
encompasses his/her own interests once demanding to navigate
to CS. The proposed strategy here studies the factors of the
EV energy consumption in driving for both reaching the CS
from the current EV location, i.e., before the charging process,
and for reaching the target EV customer destination from the
CS, i.e., after the charging process is completed. These two
factors are mainly related with the EV customer travel mobility
plan, i.e., travel trips. The strategy also tackles the cost of the
demanded amount of charging energy as well as it includes the
parking time before the start of charging at the CS. Moreover,
it addresses the extra time in charging due to the reduction in
the power rate at the CS pole.

The rest of this paper is organized as follows. Section
II models the charging navigation system, whereas section
III formulates this charging navigation problem for each EV
and proposes the solution technique. Simulation analysis and
comparisons are discussed in section IV and the conclusion is
presented in section V.
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II. SYSTEM MODEL

The charging navigation system (CNS) of EVs is a actually
a cyber-physical energy system after considering the focus is
on the charging aspects of EVs, i.e., the scope of this paper,
and the interactions between different located components in
the system. The configuration of the main components in this
CNS along with their features are shown in Fig. 1. These
components are assumed to be geographically distributed and
connected by proper communication infrastructure, such as
Internet, as well as some components are connected by power
lines. The upper part of Fig. 1 consists of traffic, weather,
and power grid centers that are necessary to operate the
lower part by supporting and exchanging information with its
components. The lower part includes the CSs and the EVs,
which are the main focused components in this paper.

The power grid center interacts with the CSs center to
exchange information about the power status and market, such
as electricity prices and power capacity and demand. The
weather center provides weather forecasts to traffic centner,
EVs, and CSs center, which can be utilized if CSs have
renewable energy resources. The traffic center takes place in
communicating with EVs to support them with information,
such as traffic congestion and road conditions. The models of
the lower part two components are described in the below.

EV Customer

- Mobility plan

- Energy demand

- Economical concern

- Behavior, etc.

EV

- Battery SoC

- Battery capacity

- Power consumption

- Charging rate, etc.

Charging Stations Center

- Location

- Charging price

- Charging poles capacity

- Charging power rate, etc.

Power Grid Center

- Power capacity

- Electricity price, etc.

Weather Center

- Solar irradiation

- Precipitation, etc.

Traffic Center

- Traffic congestion

- Road information, etc.

Fig. 1. Component configuration of the EV charging navigation system.

A. Charging Stations Center Model

This center is assumed to have information about a number
of CSs I := {1, 2, . . . , I}; i ∈ I. Given that x refers to
the altitude and y to the latitude, the fixed locations of these
CSs are in Li := {Li ∈ Li | Li(xi, yi)}. These CSs are
the places for charging the EVs within the travel mobility
multitime interval T := {1, 2, . . . , T}. At any time t ∈ T , the
ith CS, i.e., CSi, is supplied by the grid power at its point
pgi,t and may also by the power of its renewable and storage
energy resources pri,t. Therefore, the total available power of
this CS at time t for charging EVs, i.e., pi,t, can be written
as [12],

pi,t = pgi,t + pri,t, ∀t ∈ T . (1)

By considering the maximum loading capacity of CS Pmax
i

and its overload control threshold ηi(≤ 1) [13], the announced

available power has to held the following,

pi,t ≤ ηiPmax
i , ∀t ∈ T . (2)

It is assumed that every ith CS has a number of charging
poles (CPs) Kc

i := {1, 2, . . . ,Kc
i }; kc ∈ Kc

i and a number of
parking slots (PSs) Kp

i := {1, 2, . . . ,Kp
i }; kp ∈ K

p
i . Given

that the charging power rate of CP is P r
i,c ∈ Pr

c , if all CPs in
the ith CS are occupied by EVs, the maximum applied power
rate, i.e., charing capacity, that can be supported by this CP is

P r,max
i,c ∈ Pr,max

i = min(P r
i,c,

pi,t
Kc

i

), ∀t ∈ T . (3)

At any time t, each CS offers a specific charging price for
EVs θci,t ∈ θct ($/(kWh)) on the basis of electricity market
and charging power demand. It also offers a specific parking
price, fee, θpi,t ∈ θ

p
t ($/h). These two prices are considered to

be fixed according to time-of-use rate plan.

B. EV Model
The term EV refers to the BEV itself and also to its

customer, i.e., user/driver, in which they are interchangeably
used. It is assumed to have in the CNS a number of EVs N :=
{1, 2, . . . , N}; n ∈ N . Unlike CSs, these EVs have dynamic
geographical locations Ln := {Ln ∈ Ln | Ln(xn, yn)}, which
are determined by the travel mobility plans of EV customers.
This mobility plan indicates to the cycle of the daily travel
activities that can be represented by the three main statuses
of EVs as illustrated in Fig. 2, namely moving, parking, and
charging.

Moving

ChargingParking

Fig. 2. Travel mobility statuses of EVs.

While EV is moving on road from the origin to the
destination, i.e., EV in the moving status, it consumes energy
from its battery. Once the EV arrives at the destination, it will
park for some time, i.e., EV in the parking status. At any
of these two statuses, if the remaining energy of EV battery
becomes low, its EV customer may decide to navigate to a
specific CS to plug in the EV for charging, i.e., EV in the
charging status. Therefore, the term of EV charging navigation
refers to the state when EV customer demands to select a
proper CS to charge the EV. Once the EV is charged by
the demanded energy, it will continue to move on road to
its planned destination.

When EV runs on road, it consumes (discharges) power pdn,t
which is related to its speed vn,t by an approximated quadratic
form with proper coefficients a1, a2, and a3 [11],

pdn,t = a1v
2
n,t + a2vn,t + a3, ∀t ∈ T . (4)
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The actual speed of EV on road vn,t between two locations,
such as Li(xi, yi) and Ln(xn, yn), depends on the expected
speed of EV between the two locations vn,i and also on
the EV customer behavior factor bn,t, as defined in (5). The
expected speed can be substituted by the distance between the
two locations Dn,i (simply equals

√
(xn − xi)2 + (yn − yi)2)

and the expected time to travel between them Tn,i. It is
assumed that the EV customer can access the values of the
distance Dn,i ∈ D and the expected time T ′

n,i ∈ T ′ from the
information supported by the traffic center. Whereas, the factor
bn,t is related to the EV customer behavior. This behavioral
factor could rely on several issues, such as the weather and
traffic conditions, therefore, it is reasonably assumed to be in
the range [0,3].

vn,t = vn,i × bn,t =
Dn,i

T ′
n,i

× bn,t, ∀t ∈ T . (5)

The SoC dynamics of EV battery depends on the battery
capacity (size) Sn as well as on the EV status, i.e., moving or
charging here. However, at any time t the SoC of EV, SoCn,t,
should be within the maximum and minimum limits, SoCmax

n

and SoCmin
n , respectively, as follows,

SoCmin
n ≤ SoCn,t ≤ SoCmax

n . (6)

Once the EV is moving on the road, the SoC dynamics can
be written by the following linear model,

SoCn,t+1 = SoCn,t −
ηd∆tpdn,t
Sn

, (7)

with ηd ∈ (0, 1] is the discharging efficiency and ∆t is the
time step. Similarly, given that ηc ∈ (0, 1] is the charging
efficiency and pcn,t is the charging power delivered to the EV
battery at the CS, the SoC dynamics of EV while it is plugged
in and charged at the CS is [14],

SoCn,t+1 = SoCn,t +
ηc∆tp

c
n,t

Sn
. (8)

It should be noted that the charging power delivered to
the EV battery has also to be no smaller than zero, i.e., uni-
directional charging of EV, and also no bigger than the charing
power rate that can be supported by the cth CP in the ith CS
as written in (9).

0 ≤ pcn,t ≤ P
r,max
i,c , ∀t ∈ T . (9)

It is assumed that EV arrives at the ith CS at time T a
n,i with

SoC of SoCa
n,i and departs, leaves, CS at time T l

n,i with SoC
of SoCl

n,i. Therefore, the demanded (requested) charging ener-
gy of EV in its charging time interval T c

n,i := {T a
n,i, . . . , T

l
n,i}

can be written as follows [15],

Er
n = (SoCl

n,i − SoCa
n,i)Sn =

∑
t∈T c

n,i

∆tpcn,t. (10)

It has to be noted that only the focused models are presented
here which will be used in the following sections.

III. EV CHARGING NAVIGATION

Again, the EV charging navigation refers to the condition
when the EV customer demands to charge his/her EV at the
nearby/available CS. In other words, guiding the specific EV
to properly selecting the target CS. The problem formulation
and the technique to reach the solution are described in the
follows.

A. Problem Formulation

The focus in this paper is on the practical implementation
of EV charging navigation in a large scale of geographical dis-
tribution of EVs with consideration of economical objectives
and behavioral concerns of EV customers. It is known that the
timely move of EV over the designated destinations is the main
principle of the EV customer travel mobility plan. Therefore,
charging EV is assumed to be the mission that needs to be done
as fast and cheaper as possible. Therefore, the cost function of
each EV customer, in minimizing the monetary value to finish
this charging mission, is reasonably constructed in this paper
as the focused problem of this EV charging navigation. At
this point, several concerns, i.e., criteria, have to be considered
when formulating the EV customer decision to select, navigate
to, a proper CS, as described in the below.

Intuitively, each EV customer concerns about selecting the
closest CS to his/her location for charging the EV. This is
because the EV customer needs to avoid the useless power
consumption running on the road to reach the CS. Therefore,
the EV customer cares about the cost of energy consumption
(i.e., discharging) to reach the ith CS Cd

n,i ∈ Cdn from the
current time (t = 1). This cost can be defined as in (11) after
assuming that the running time on road to reach the CS is in
the interval T d

n,i := {1, 2, . . . , T a′
n,i ∈ T a′

n } and the unit cost of
the energy consumption is θd ($/kWh). This cost can also be
approximated to have relation with the EV driving efficiency
ηdn (kWh/km) and the distance between the nth EV and the
ith CS, Dn,i (km).

Cd
n,i = θd

∑
t∈T d

n,i

∆tpdn,t = θdηdnDn,i. (11)

The second concern for the EV customer is about the cost
Cp

n,i ∈ Cpn of EV parking, i.e., waiting at the PS of the ith
CS before start charging when all its CPs are occupied. If the
waiting time is in the interval T p

n,i := {T a′
n,i, . . . , T

a
n,i ∈ T a

n },
this cost can be written as follows,

Cp
n,i =

∑
t∈T p

n,i

θpi,t∆t. (12)

The time to fully charge the EV by its demanded energy
at the CS can be basically calculated by Er

n/P
r
i,c, as can be

derived from (10). However, the charging power capacity from
the CP at the CS could be lower than its charging power rate
CP due to the lack of available power in the CS, as discussed
in the section II-A. This will result in an extra time ∆Tn,i in
charging the EV. Therefore, a newly discussed concern of EV
customer in this paper is about the cost of this extra charing
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time Cw
n,i ∈ Cwn that is defined by (13). Here, θbn is the unit cost

($/h) for the extra charing time, which is defined by the EV
customer behavior and his/her own estimation for the monetary
influences tied with this extra time.

Cw
n,i = ∆Tn,iθ

b
n =

(
Er

n

P r,max
i,c

− Er
n

P r
i,c

)
θbn. (13)

It is known that the charging energy cost Cc
n,i ∈ Ccn, paid

by the EV customer to the CS, is an important concern while
selecting the CS for charging the EV, which is defined as,

Cc
n,i =

∑
t∈T c

n,i

θci,t∆tp
c
n,t. (14)

The final discussed concern of EV customer here is about
the cost of energy consumption Cr

n,i ∈ Crn to resume running
on the road from the ith CS, after finishing the charging
process, to the target destination Ln,d. This concern is worthy
to be included in the cost function of EV customer once
selecting the CS for charging the EV. Similar to (11), this
cost can be defined as in (15), given that T r

n,i := {T l
n,i ∈

T l
n, . . . , T

r
n,i ∈ T r

n } is the time interval to leave the ith CS and
to reach the destination. This cost can also be approximated
given that the distance between the ith CS and the target
destination is Di,d (km) as follows,

Cr
n,i = θd

∑
t∈T r

n,i

∆tpdn,t = θdηdnDi,d. (15)

After considering all the above concerns, the cost function
of the nth EV customer can be then represented in the
following optimization problem,

min
fn,i

∑
i∈I

fn,i
(
Cd

n,i + Cp
n,i + Cw

n,i + Cc
n,i + Cr

n,i

)
, (16)

where fn,i is a binary number that indicates to the selection
status of the ith CS by the nth EV as defined by,

fn,i =

{
1 EVn selects CSi,

0 Otherwise.
(17)

B. Solution Technique

The solution of the above problem by selecting the proper
CS for charging the EV is made locally by the EV side. There-
fore, each EV is assumed to have a local controller that makes
the CS selection decision. Once the EV customer asks to select
a CS at time t, the EV local controller calls the proposed
EV charging navigation strategy (EVCNS), i.e., algorithm 1.
This EVCNS is divided into four stages, namely initializing
EV information, collecting information from charging stations
center, collecting information from traffic center, and selecting
the charging station.

At the first stage of EVCNS, the local parameters of
EV have to initialized. Some of these parameters are time-
based, therefore, they need to be updated at the beginning of
executing EVCNS, as in line 1 of algorithm 1.

Algorithm 1 EV Charging Navigation Strategy
I. Initializing EV Parameters
1: Update Ln, bn,t, Ln,d, SoCn,t, Dm

n,t, Bn, θbn,
II. Collecting Data From Charging Stations Center
2: Fetch In, Li, T a

n , θpt , Pr
c , Pr,max

c , θct , T l
n,

III. Exchanging Information with Traffic Center
3: Receive T a′

n , D, T ′, T r
n ,

IV. Selecting The Charging Station
4: Calculate Cdn by (11),
5: Calculate Cpn by (12),
6: Calculate Cwn by (13),
7: Calculate Ccn by (14),
8: Calculate Crn by (15),
9: Solve (16),

10: Navigate to the ith CS of fn,i = 1.

After that the EV controller collects data from the charging
stations center, as in line 2. This data is important to get knowl-
edge about the available CSs and their charging schedules,
capacities, and prices. However, only some nearby CSs to the
EV location In are of interest to the EV customer, as defined
in (18). These interested CSs are located inside a geographical
circle that its center is the EV location. The radius of this circle
is defined by the accepted distance of EV customer Da

n, which
depends on two factors as written in (19). The first factor is
the maximum driving distance Dm

n,t that can be supported by
the EV. This maximum distance is related to the amount of
energy in the EV battery, which can be accessed by the battery
management system of EV battery and can be read from the
EV dashboard. The second factor is the driving range anxiety
of EV customer An [16]. This factor is related to the EV
customer behavior, in which an increase in its value will to
lead to a decrease in the geographical circle radius, i.e., focus
on closer CSs. The value of this range anxiety is defined to
be in the range [0,1] and to follow a Poisson distribution.

In = {i ∈ I | Dn,i ≤ Dmax
n }, ∀n ∈ N . (18)

Da
n = Dm

n,t × (1−An), ∀n ∈ N . (19)

The EV controller also exchanges information with the traf-
fic center. It sends the locations of the EV, target destination,
and CSs to the traffic center. Then, it receives from the traffic
center the distances and the expected arrival times to these
areas, as listed in line 3.

After gathering all the above data, the EV local controller
can then processes the necessary information to select the
suitable CS. It first calculates the costs that concern the EV
customer, as in lines 4-8. Then, it solves the optimization
problem (16) and suggests to navigate to the optimal CS, as
in lines 9 and 10, respectively.

It should be noted that the proposed EVCNS has several ad-
vantages in the modern implementation of the cyber-physical
systems. At the large-scale network application, the proposed
EVCNS works in a distributed manner. Therefore, it only
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needs to collect some information and applies the solution for
a single EV in the specified interval comparing with the cen-
tralized approach that has one global controller who requires
to gather all the information of EVs and finds the solutions
for all EVs. Another issue is that the proposed EVCNS runs
by sharing/collecting general (public) information to/from the
connected centers with no need to reveal private information
of EV customers. This concern is important to protect and to
secure the privacy of the EV customers in the cyber-physical
systems network.

IV. SIMULATION RESULTS AND ANALYSIS

The performance of the proposed algorithm is evaluated
here by the following described simulation setup. It is assumed
to have EV customer, who demands to charge his/her EV by
Er

n = 50 (kWh) at a time of the day with unit of charging
price θc = 0.16 ($/kWh) at all CSs [17]. The model of this
example EV is BMW iX3 with driving efficiency ηdn = 0.206
(kWh/km) [18], [19]. The unit cost of energy consumption
θd is considered to be the same of θc, because the consumed
energy in EV in driving will be compensated by the charged
energy at the CS. It is assumed also to have four CSs and
all are located within the circle of the accepted distance of
EV customer. The distances between the example EV and
these CSs, i.e., CS1, CS2, CS3, and CS4, are 7.5, 15, 20,
and 23.5 (km), respectively. Whereas, the distances between
the CS1, CS2, CS3, and CS4 and the target destination of EV
customer are 23, 18, 15.5, and 6 (km), respectively. All the
four CSs have available CPs at the time of charging demand
by the example EV except CS1, which needs T p

n,1 = 0.5 (h)
to have a vacant CP and it offers a parking fee θp = 0.5
($/h). Out of the four CSs, CS1 and CS2 have extra charging
time ∆Tn,1 = ∆Tn,2 = 1 (h), due the lack of power and the
example EV customer estimates the unit cost for this extra
charing time to be θb = 0.2 ($/h).

Three methods in this paper are adopted, i.e., Method-1,
Method-2, and Method-3, and compared with the proposed
one, i.e., method-4. The addressed issues by each method are
summarised in Table I and described as follows:

1) Method-1: Minimizes the costs of energy consumption to
reach the CS and charging energy.

2) Method-2: Minimizes the costs of energy consumption to
reach the CS, charging energy, and parking time.

3) Method-3: Minimizes the costs of energy consumption
to reach the CS, charging energy, parking time, and extra
charing time.

4) Method-4: Minimizes the costs of energy consumption
to reach the CS, charging energy, parking time, extra
charing time, and energy consumption to reach the target
destination.

Therefore, Method-1 is actually seeking for the nearest CS
that supports the lowest charging price while dropping the
other criteria. As shown in Table II, The lowest calculated
cost is for CS1, i.e., 8.247 ($) and this method chooses CS1

to navigate for charging, as illustrated by the arrow from the
EV location to this CS in Fig. 1(a).

TABLE I
CONCERNED CRITERIA OF THE COMPARISON METHODS

Criterion Cd
n Cc

n Cp
n Cw

n Cr
n

Method-1 3 3 7 7 7
Method-2 3 3 3 7 7
Method-3 3 3 3 3 7
Method-4 3 3 3 3 3

Method-2 is similar to Method-1 but with ability to tackle
the case of unavailable CPs at the CSs for the current time.
Therefore, since in the described simulation setup all CPs at
CS1 are occupied and it needs T p

n,1 = 0.5 (h) to have a vacant
CP, it will apply a parking cost of 0.25 ($). Therefore, the
lowest calculated cost by Method-2 is supported by CS2, i.e.,
8.494 ($), as listed in Table II. This means Method-2 chooses
CS2 to navigate, as depicted in Fig. 1(b).

Comparing with Method-2, Method-3 handles the extra
charging time due the lack of power, such as the extra 1 (h)
at CS1 and CS2. This will result in an extra cost of 0.2 ($) at
these two CS. Thus, CS3 will be offering the lowest calculated
cost of 8.659 ($) in Method-3, and then it will be chosen for
navigation, as seen in Table II and Fig. 1(d).

Beyond to the concerned issues in Method-3, Method-
4 addresses also the traveling cost after charging from the
potential selected CS to the target destination of EV customer.
Therefore, including this cost of traveling will make the
calculated cost of CS4, i.e., 8.972 ($), as the lowest among
others. Thus, Method-4 will indicate to navigate to CS4 for
charging, as pointed out in Table II and Fig. 1(d).

It is worthy to observe from the costs of CSs in proposed
Method-4 that it saves, i.e., reduces the cost by, 0.483 ($)
comparing with Method-1 for a single charging navigation of
the EV customer. This means a monetary saving by 5.108
(%). By extending this saving for multiple charging navigation
demands due to the travel mobility activities of EV customer
over time, i.e., monthly and yearly, the resulted monetary
saving will be worthy to adopt the usage of the proposed
method.

TABLE II
COSTS AND CHARGING STATION SELECTIONS BY THE COMPARISON

METHODS

Target CS CS1 CS2 CS3 CS4 Selected CS
Method-1 ($) 8.247 8.494 8.659 8.774 CS1

Method-2 ($) 8.497 8.494 8.659 8.774 CS2

Method-3 ($) 8.697 8.694 8.659 8.774 CS3

Method-4 ($) 9.455 9.287 9.169 8.972 CS4

V. CONCLUSION

Once the EV customer demands to charge his/her EV at
a charging station, multiple important factors need to be
considered for a better selection. These factors are related to
the stages before, during, and after charging. This paper intro-
duced a strategy that addressed these factors in the selection
problem of the charging station. The strategy was structured
to be suitable for the distributed large-scale implementation
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(a)

Destination

EV

CS4

CS2 CS1

CS3

(b)

Destination

EV

CS4

CS2 CS1

CS3

(c)

Destination

EV

CS4

CS2 CS1

CS3

(d)

Destination

EV

CS4

CS2 CS1

CS3

Fig. 3. Illustrative example of CS selection by the comparison methods. (a)
Method-1. (b) Method-2. (c) Method-3. (d) Method-4.

of the EV charging navigation. This navigation problem was
formulated as a cost function for each EV/customer which
included the costs of energy consumption in driving to reach
the charging station and the EV destination after charging,
parking time, extra time due to the uncertainty in the charging
power rate, and the demanded charging energy. The solution
of choosing the charging station was reached in an optimal
way. The simulation analysis proofed the performance of
the proposed strategy over several comparison methods for
lowering the overall cost to finish the charing of EV within
the travel mobility of EV customer. The work in this paper
could be extended to show the economical improvements at a
large-scale charging of EVs over a long time interval.
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