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Abstract—Lithium-ion battery packs have been widely applied
in many high-power applications which need battery manage-
ment system (BMS), such as electric vehicles (EVs) and smart
grids. Implementations of the BMS needs a combination between
software and hardware, which includes battery state estimation,
fault detection, monitoring and control tasks. This paper provides
a comprehensive study on the state-of-the-art of machine learning
approaches on BMS. It differentiates between these methods
on the basis of principle, type, structure, and performance
evaluation.

Index Terms—Machine learning, battery management systems,
state of charge, state of health, remaining useful life, fault
detection.

I. INTRODUCTION

Since the invention of electricity, the scientists across the

world have been investigating a method to store the energy and

to use it when it is required. This resulted in the creation and

evolution of the energy storage (ES) industry [1]. Increasing

the accuracy and efficiency of battery model is a hot research

which can enhance the development of several sectors. Such

these sectors are the electric vehicles (EVs), which include

ES and consider to be a green energy and draw the attentions

for many researchers. The focus on the reduction of green

house gases, such as carbon di-oxide(CO2), and the aim to

use a cleanly renewable energy in transportation increase the

penetration of energy storage systems [2]. Batteries are used

to improve the stability and reliability of microgrids with high

renewable energy penetration [3]. Among the various types of

batteries in the market, lithium-ions are the most efficient in

electrical systems. This is due to the high energy and power

density of this type as well as the wide temperature operating

range, small size, long lifespan, fast recharging characteristics,

and low self-discharge rate [4]. Battery Management Systems

(BMSs) are essentially important for increasing the efficiency

of battery state monitoring and protection from over current

and voltage as well as internal and external short circuits.

Although in the last decade many studies and patents were

developed on BMSs and their applications, many are still open

for further investigations [5]–[7]. In [8] shows the publication

work in Li-Ion batteries among the countries, where China

has paid more attention in BMSs and has the largest share

of studies in the world with up to 36%. The organization of

this paper is as follows. Section II presents an overview on the

battery management systems, while III overviews the machine

learning approaches. Section IV investigates the machine

learning approaches in BMS applications and compares them.

The conclusion and recommendations are presented in section

V.

Fig. 1. Percentage of research publications on Li-ion battery technology in
different countries.

II. OVERVIEW OF BATTERY MANAGEMENT SYSTEMS

Comparing with other chemistry types, Lithium-ion batter-

ies have been used in industry for several applications, such

as electric vehicles, due to the unique features as mentioned

in the introduction. Therefore, it is quite demanding to apply

monitoring and control methods, i.e., BMS, to prolong the

battery life cycle and to avoid sudden catastrophic events.

To implement BMS effectively, its different parts have to

be discussed in detail and some solutions to overcome their

shortcomings and to improve their performances need also to

be investigated. For reference discussions and investigations,

the main parts of the BMS is shown in Fig 2.

As EVs face many challenges due to the battery packs, the

battery conditions should be monitored in normal and abnor-

mal conditions during run-time. Battery cell monitoring in-
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Fig. 2. Overview of battery management system.

cludes battery status and operation indications [9]. Monitoring

the voltage, current, and temperature are also essential to pro-

tect the battery cells from over-current and over-voltage [10],

[11]. Recording the voltage, current and temperature of the

battery cells using sensors and data acquisition system [12],

[13], data can be generated to analyze the consumption pattern

of electric vehicles and the prediction of battery’s future status

by using feature extraction and data-driven methods [14], [15].

Batteries of electric vehicles have to be protected from over-

current or over-voltage during charging or discharging mode,

i.e., driving on-road or connected to grid. Therefore, a bat-

tery management in these modes are important to effectively

protect it and prolong its life cycle [11], [16].

Given the physical properties of battery, there is a challenge

to access its internal parameters. Particularly for lithium-ion

batteries, they possess nonlinear behaviors owing to some

time-variant parameters. Thus, accurate models are needed in

BMS to address these behaviors and to estimate the battery

internal parameters and states. Many scholars have proposed

various models to estimate the state of charge (SOC), state

of health (SOH), remaining useful life (RUL), state of power

(SOP), and state of function (SOF). However, inaccurate

battery modeling is still exist [17], [18].

In EVs, series-connected battery cells are used to feed the

electric motors and their accessories. The operating conditions

of these cells are different meanwhile the charging and dis-

charging modes of battery. Each cell might have different volt-

age and current from other cells, and can lead to overcharge

or undercharge to some of the cells. These may cause early

damage to some cells and sometimes internal short circuit due

to deformation of the battery anode, cathode and separator. To

solve such a problem, cell balancing is used to equalize the

voltage levels of cells and energy distribution in EV [19], [20].

Optimizing the power consumption of electric vehicle bat-

teries, reducing energy losses and distribution of cell en-

ergy require an effective battery power management control

(PMC). Effective BMS can reduce the number of battery

Fig. 3. Machine Learning Approaches in BMS Applications.

charge/discharge during the life cycle. The PMC provides

a variety of electronic devices and patents that have been

effective by addressing this challenge and are now one of the

major topics in industrial research and automotive research.

For PMC, it has proposed many of electronic devices and

patents [21], [22] that have been effective in addressing this

challenge and now it is one of the major topics in industrial

research and automotive manufactures.

When the battery is in the discharging mode, it may be

exposed to under-current and under-voltage. While in the

charging mode, the battery may be exposed to over-current and

over-voltage, and consequently, its temperature will increase

rapidly [23]. Therefore, the battery protection is indispensable

in BMS and plays a crucial role. In the past few years,

many accidents have been witnessed and have led to life and

financial losses. These issues prompted the battery manufac-

turers to develop solutions for temperature control and heat

management that guarantee operations in the permissible and

tolerable ranges of the cells and prevent from thermal runaway

and internal short circuit [24], [25].

In order to implement BMS in EV, a combination of hard-

ware and software is always needed. With the development

of the wireless charging of EVs over the sparse charging

stations in the smart network, communication and networking

as one of the subsections of BMS will affect the overall battery

performance [26].

III. OVERVIEW OF MACHINE LEARNING APPROACHES

Machine learning (ML) is a broad topic with a large variety

of applications. A comprehensive classification of ML is

presented in [27], which describes the different techniques of

machine learning. This paper aims to provide an appropriate

classification of machine learning techniques that have been

implemented in BMS applications and is shown in Fig 3. In

this classification, the machine learning methods are divided

into three main groups; (A) supervised learning, (B) unsuper-

vised learning, and (C) reinforcement learning. The following

is a brief description for each group that are used in regression

and classification applications.
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A. Supervised Learning

1) Artificial Neural Networks (ANN): The ANN concept is

based on biological neural networks. In ANN, the activation

functions, such as Sigmoid functions, are used to connect its

nodes and to sum its weights. In general, the ANN neural

nodes are trained with a stochastic gradient descent method

called back-propagation. For more details, please refer to [28].

This ANN class can be divided into two subgroups:

• Classic Neural Networks: This subgroup includes wavelet

neural network (WNN), radial basis function (RBFN),

feed forward neural network (FFNN), and extreme learn-

ing machine (ELM).

• Modern Neural Networks: The modern neural networks

are usually called deep neural networks, as a class of

machine learning algorithms, that use multiple layers

to progressively extract more features from the original

input. Deep NNs are also attributed as deep learning

approaches which mainly include Recurrent Neural Net-

work (RNN), Convolutional Neural Network (CNN), and

the expansion of RNN and CNN, such Long short-term

memory network (LSTM). Note that combinations of

the existing deep learning methods have recently been

investigated to improve their performances [29].

2) Support Vector Machine: The Support Vector Machines

(SVMs) are supervised learning models with associated learn-

ing algorithms that analyze data used for classification and

regression analysis [30]. The technique here is adopted from

kernel regression and has been used in many linear and non-

linear regression applications such as support vector regression

(SVR) and relevance vector machine (RVM). For more details

about SVM, please refer to [31].

B. Unsupervised Learning

The two main goals of this group that are used in different

applications are clustering the data into groups by similarity

and dimensionality reduction to compress the data while

maintaining its structure and usefulness data [32], [33]. This

group includes Gaussian process regression (GPR), kernel

density, Boltzmann machine, and isometric feature mapping

(ISOMAP).

C. Reinforcement Learning

Reinforcement learning (RL) is an important type of ma-

chine learning in which an agent learns how to behave

in the environment by taking actions and discovering their

results [34]. The main tasks of RL are policy, reward function,

value function, and optionally a model of the environment that

can be effective for decision making of a problem. In recent

years, numerous improvements have been made in this area

by researches [35], [36] which includes Monte Carlo and Q-

Learning methods.

IV. MACHINE LEARNING APPROACHES IN BMS

APPLICATIONS

Due to the complex internal dynamic behavior of the battery

and uncertain external operating conditions, is usually difficult

to accurately model the battery by equivalent circuit and

physical-based models that are associated with estimating the

model parameters using model-based approaches. Machine

learning methods which are based on mathematical and sta-

tistical concepts are considered as reliable and convenient

techniques to be used in BMS. An alternative, they have been

widely used in SOC, SOH, RUL estimation, and prediction

of battery aging and degradation. The battery modeling using

the machine learning approach does not need an exact chem-

ical process of the system. Machine learning techniques use

the battery SOH data, which can be measured by advanced

sensor technology. Such methods extract appropriate feature

information and build the degradation model to predict RUL

and end of life (EOL). These techniques are able to represent

degradation-intrinsic relationships and trends based on history

data [37]. Although a huge number of data are needed during

the training phase and the predictive model is non-transparent

[38].

So far, there are many different literature surveys on the

classification of battery management systems such as remain-

ing useful life, fault diagnosis and prognosis, and other issues.

These survey papers have briefly presented the model-based,

data-driven based, and ANN-based methods. However, they

did not focus on the machine learning approaches. In this

section, the most important parts of the BMS are discussed,

particularly that using machine learning techniques.

A. Remaining Useful Life

In Li-ion battery, some irreversible reactions occur during

the operating process, such as the deposition of lithium,

decomposition of electrolytes, and so on, which will lead

to capacity degradation and prolong the useful life of the

battery. The remaining useful life has an effect on the system’s

reliability. Prognosis of remaining useful life is an important

way to guarantee the battery reliability. As we know the

battery capacity changes during the time. Once the capacity

passes the threshold of failure, it may lead to an explosion.

So, the reliability and safety of the lithium-ion battery will

be enhanced through this operation. It is therefore critical to

making an accurate prediction of the RUL battery [8], [39],

[40].

Two types of ANNs, including feed-forward neural network

(FFNN) and recurrent neural network (RNN), have been

successfully applied to predict battery RUL [41]. Among the

neural network methods, RNN is considered to perform well

in predicting the RUL due to capturing and updating the

information from the degradation data [42]. On the other hand,

the ability of SVM to handle small training data sets is ap-

pealing, the number of support vectors decreases accordingly

when the size of the training dataset increases [43]. In order

to enhance SVR’s robustness and stability with large-scale

training samples, decremental and incremental strategies have

been introduced to integrate the relevant SVR training data

sample and to dismiss the irrelevant part [44]. Nevertheless,

this method also increases the computational cost [45]–[47].
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Comparing with SVM, RVM provides comparable perfor-

mance when using extremely sparsely defined kernel functions

as well as probabilistic predictions [48], [49]. Therefore,

RVM is an effective approach in the RUL prediction due to

uncertainty representation. Moreover, to improve the RVM’s

long-term predictive performance and accuracy, an incremental

online learning strategy is proposed in [48].

It has to be noted that GPR is another kernel-based ML

approach which can discover prognostics combined with prior

knowledge based on Bayesian model and can provide variance

to explain the associated uncertainty around its mean predic-

tion [50], [51].

Recently, deep neural networks have been used for predict-

ing RUL owing to their high predictive abilities [39], [52]–

[54]. In [39], the long-short-term memory (LSTM) recurrent

neural network (RNN) is established to learn the long-term

dependencies related to the degraded lithium-ion battery ca-

pacity. The LSTM-RNN is adaptively optimized by using the

resilient mean square back-propagation method and the over

fitting problem issue is addressed by applying the dropout

technique. The optimized LSTM-RNN is capable of capturing

the underlying long-term dependencies between the degraded

capacities and creating a specifically capacity-oriented RUL

predictor whose long-term learning efficiency is compared

with the support vector machine, the particle filter, and the

original RNN.

B. Fault Diagnosis and Prognosis

There are some critical issues in the battery management

system, including protection of over/under voltage and over

current, which are a common fault type of battery systems

[55]. In charge/discharge mode, the battery undergoes irre-

versible chemical reactions that can affect the lithium plating

and dendrite formation, especially in low temperature. In

addition, the formation of dendrite due to the intercalation

between anode and cathode can lead to an internal short

circuit, which can affect the battery performance and safety.

Ignoring this critical issue can cause catastrophic faults owing

to thermal runaway. Therefore, a lot of efforts have been done

on the fault diagnosis and safety management using model-

based and machine learning methods for the battery protection

[56].

In recent years, numerous efforts on diagnosis and prognosis

were developed by means of model-based methods. On the

other hand, only a little studies were proposed that use ma-

chine learning approaches such as ANN [38], [57], SVR [58],

GPR [59]. In [60], a data-driven approach is proposed for

embedding diagnosis and prognostics of battery health using a

support vector machine. Hong and et. al. developed a new deep

learning approach to accurately predict multi-forward-step

voltage for battery systems using RNN-LSTM. The analysis

showed that the proposed method has a strong predictive

capacity for battery voltage. The accuracy and robustness

of this method are both verified by comparisons between

different hyper-parameters [56]. In [61] an accurate and robust

algorithm for on-board diagnosis of short-circuit (SC) battery

anomaly is presented. Note that the likelihood algorithm uses

the battery terminal voltage and current information that are

measured by logged by the power management integrated

circuit (PMIC).

In [62], the classification efficiency of machine learning ap-

proaches is investigated by using supervised learning methods.

The algorithms, that are evaluated for the diagnosis of battery

cells, are k-nearest neighbors (k-NN), logistic regression (LR),

Gaussian naive Bayes (GNB), kernel space vector machine

(KSVM), and neural network (NN). These linear and nonlinear

techniques are proven to classify Ni-MH battery cells that are

unbalanced and damaged. In this paper, it has been proven

that LR algorithm is the easiest algorithm to be set up and has

a good performance. K-NN algorithm has weak classification

efficiency as its classification curve edge is not smooth. KSVM

methods have a greater classification performance because the

function of the radial base kernel can be better adapted to

the operation of the battery cells. Based on the occurrence

probability of events, GNB produces a non-linear smooth

curve classifier that operates with high efficiency. It has to be

noted that NN provides a high evaluation score with correctly

classified data. However, in its classification regions, there are

some zones that do not fit the data trend. Thus this technique

requires a lot of training data to improve its efficiency.

V. CONCLUSION AND RECOMMENDATIONS

In this paper, machine learning approaches for estimation,

monitoring, and control of the battery management systems

including the state of charge, state of health, and remaining

useful life are reviewed with the focus on their weaknesses

and strengths.

Firstly, the parts of the battery management systems, which

can affect the performance, have been investigated and their

weaknesses as well as the associated challenges are briefly

explained. Secondly, since achieving an accurate model of the

battery is almost impossible with physical phenomena such

as hysteresis, identification of the battery internal parameters,

state of charge and state of health estimation, and prediction

of battery status by means of model-based methods are not

sufficient.

Therefore, this paper is provided a comprehensive inves-

tigation on the use of machine learning methods in battery

management systems. By comparing the existing methods,

the advantages and disadvantages of these methods in RUL

prediction and fault diagnosis and prognosis are discussed.

It has to be noted that due to the variety of the available

applications in terms of the classification and regression in the

BMS, each method can work well for a particular application.

Thus a brief comparison is made by discussing the the

advantages and disadvantages of each method along with their

principles as listed in Table I. Moreover, this review paper

provides some recommendations for improving the robustness

and accuracy of the RUL prediction and fault detection in

solving the existing problems. The authors do believe that

these recommendations will make a significant contribution
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TABLE I
COMPARISON OF THE MACHINE LEARNING METHODS VS MODEL-BASED METHODS

Methods Principle Advantages Disadvantages

Classic NN Non-linear and self-adaptive information processing system formed

High accuracy Time consuming
Easy transplant to hardware after offline training Large set of data set is required for the training process
Temperature effect is taken as an input Hard to generalize to different working conditions
Capable of working in battery non-linear conditions

Modern NN The same structure with NNs but with deep multi-layer
Higher accuracy Time consuming
Suitable for high complex non-linear fitting via ML-NNs Need large memory storage to store the trained data

SVM Supervised learning model in high dimensional feature space

High accuracy Not easy to select a good kernel function
The size of training data set is small vs NNs method High complex computation
Performs well in non-linear and high dimension models
Prediction is quickly and accurately by using suitable data

RVM Identical to SVM, with a probabilistic method and Bayesian framework

Good accuracy Large data-sets are required fort training
High learning ability High time and memory demands
Sparsity High complex computation
Easy training process

GPR kernel-based and deriving from the Bayesian framework
Provide covariance to generate uncertainty level Performance is highly affected by kernel functions
Non-parametric; Being flexible High computational cost

Model-based Including different methods for estimation
Insensitive to initial SOC; Good robust High computational cost
High accuracy (IF accurate model be available) Depend on modeling accuracy

towards the improvement of machine learning methods for

BMS in the future which are listed as follows:

• Given that the Li-ion battery maybe exposed to different

environmental conditions in real-word that not able to be

simulated in laboratories, it is better to take into account

the different uncertainties including noise effect, different

temperature conditions during the data acquisition.

• Further studies are needed to reduce the computational

complexity of machine learning approaches by means of

different optimization techniques.

• In the real-time systems of the realistic world, the algo-

rithms need to be processed at high speeds which utilises

less data-based techniques to fasten the training process.

Moreover, parallel computing techniques can also be used

to speed up the computation and learning processes.
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