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Prediction-based Game-theoretic Strategy for
Energy Management of Hybrid Electric Vehicles
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Abstract—This paper studies a prediction-based energy man-
agement for onboard hybrid energy storage system (HESS),
combining engine-generator (EG), battery, and ultracapacitor
(UC). Each of these energy sources has a specific utility func-
tion to represent its unique preference. Thus, a game-theoretic
strategy is presented to model the different preferences of these
energy sources and their interactions, and hence to properly
dispatch the power load demand among them. To further improve
this power dispatch, i.e., the energy management, that may be
influenced by the fluctuation of the uncertain power load demand,
a prediction is included in the basic game-theoretic strategy
to form a prediction-based game-theoretic strategy. The power
load demand can be derived from the velocity in HESS and the
velocity prediction is implemented by a long short-term memory
(LSTM) network. An improvement on the accuracy of this
prediction is achieved by utilizing feature extraction and time-
series analysis. A multiple time-series method is newly applied
to group the input features according to the target prediction
horizon. The solution, i.e., Nash Equilibrium, of this proposed
strategy is reached based on the best response functions of the
energy sources and its performance is quantified by four criteria.
Short-distance and long-distance driving in a broader scope are
analyzed in simulation. Both the simulation and experiment
results demonstrate the efficiency of the proposed strategy to
smoothen the battery power with decreasing 0.01% in σpb (i.e.,
prolong battery life), to reduce the engine-generator power with
reducing 0.01% in µEg (i.e., deplete fossil fuels), and to lower
the driving costs. Moreover, the robustness and sensitivity of
the proposed strategy are validated through case studies with
increasing velocity prediction error.

Index Terms—Game theory, energy management, onboard
hybrid energy storage system, long short-term memory, velocity
prediction.

NOMENCLATURE

Ug Utility function of EG
Ub Utility function of battery
Uc Utility function of UC
Ugc Utility function of the EG and UC combination
Ubc Utility function of the battery and UC combination
Pg EG Power
Pb Battery power
Pc UC power
Pl Load power
P ∗
g Optimal EG power
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Pbave Average battery power
Pblast Battery power in the last instant power
Pbmax Maximum of battery power
Pbmin Minimum of battery power
Pbpre Average future battery power over horizon
Plpre Future load power
Pcmax Maximum of UC power
Pcmin Minimum of UC power
P ∗
c Optimal UC power
Pe Engine power
ωe Rotational speed of engine
τe Engine torque
Voc Open circuit voltage of battery model
Vcini Initial voltage of UC
Vcmax Maximum voltage of UC
Vcmin Minimum voltage of UC
Vc UC voltage
Vbus Bus voltage
Icpre Future current of UC
C Capacity of UC
∆t Time step
λ Ratio of battery power to load power
ng Normalization factor for EG power
nb Normalization factor for battery power
nc Normalization factor for UC power
ho Prediction horizon
hi Input horizon
Γt Features for velocity prediction at time t
vt Velocity
at Acceleration
ct Type of driving condition
it Input gate of LSTM
ft Forget gate of LSTM
ot Output gate of LSTM
C̃t Candidate cell status of LSTM
Ct New cell status of LSTM
µEg Average engine power
µpb Average battery power
σ2
pb Variance of battery power
µEc Average energy difference of UC
T Total driving time

I. INTRODUCTION

DUE to the increasing CO2 emission and the depleting
fossil fuels, electric vehicles have gained tremendous

attention as considered to be environment-friendly vehicles in
the field of transportation [1]. However, these electric vehicles
are still facing several challenges for their widespread use.
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Due to the limited power density of the electric vehicle’s
battery, a battery-ultracapacitor (UC) hybrid energy system
was proposed to utilize the high power density of UC pack [2].
In addition, due to the limited energy capacity of the battery
on the long-term, the battery-UC hybrid energy system could
not serve for long-distance travels, and thus it would cause
driving range anxiety [3]. Therefore, an onboard hybrid energy
storage system (HESS), combining engine-generator (EG),
battery, and UC pack, was introduced [4]. Since this onboard
HESS has three energy sources with different characteristics,
it is necessary to design an energy management strategy to
properly and effectively distribute the power load of vehicle
among them.

Several energy management strategies were proposed in
the literature in this regard. Ref. [5] proposed a fuzzy logic-
based energy management in a battery/UC hybrid energy
system to control the state of charge (SOC) of UC and to
smooth the battery power. A multi-agent distributed-based
energy management in smart islands was proposed in Ref.
[6] and the proposed distributed optimization was accom-
plished by using primal-dual method of multiplier. Ref. [7]
applied a non-cooperative game theory-based strategy in the
hybrid energy system that considered the behavior of each
energy source. Energy management strategies such as the ideal
average-constant-load demand-based control, the power-flow
control and the game theory-based control had described and
compared in Ref. [7] and concluded that the game theory-
based approach had gained a better result. Ref. [8] proposed
a game-theoretic strategy with a tuning process for the weight
coefficients of the utility functions to further improve the
flexibility of the energy management in real time. Although the
above strategies showed good results, they did not consider the
future information in the models. A machine learning based
approach for energy management in renewable microgrids was
proposed in Ref. [9] and it considered support vector machine
to estimate the load demand. However, it only considered the
coordinated charging scheme, only suitable for the centralized
frameworks, and thus it was not possible to use it in a decen-
tralized structure. A Stochastic management of hybrid AC/DC
microgrid considering electric vehicles charging demands was
investigated in Ref. [10] and a support vector machine was
developed to model the uncertainty effects of the system.
However, they mainly cared about the cost of power purchase
and didn’t consider the characteristics of components such
as battery aging which is extremely important in HEV. A
game-theoretic energy management with velocity prediction
in hybrid electric vehicle was proposed in Ref. [11] and the
characteristics of components were considered in performance
criteria. But it didn’t consider the power cost. Therefore, an
distributed energy management with considering uncertainties,
characteristics of components and power cost is importantly
needed for onboard HESS. Due to the influences of the
dynamic load demand fluctuations of the vehicle in the HESS,
which mainly come from the dynamic driving velocities, a
velocity prediction is needed to handle the uncertainties of the
onboard HESS. It is expected that designing an energy man-
agement strategy with velocity (which as mentioned before
can determine the load demand) prediction for the onboard

HESS is importantly needed to prolong life of components
and lower driving costs.

Several works in the literature were proposed to predict the
vehicle velocity, which could be categorized into model-based
prediction, big data-driven prediction and neural-network (NN)
prediction. Ref. [12] used the model-based prediction (in-
cluding the dynamic programming, deterministic model pre-
dictive control, equivalent consumption minimization strategy
(ECMS) and optimal ECMS) and neural networks (including
back propagation (BP-NN), layer recurrent (LR-NN) and ra-
dial basis function NN (RBF-NN)) to predict velocity and their
performances were compared to concluded that the RBF-NN
predictor got a better prediction precision and it is suitable for
modeling comprehensive driving behaviors. Ref. [13] used a
deep learning method based on big data including historical
velocity, traffic conditions, road information and weather, to
predict the future velocity profile. A two-level data-driven
model on the basis of big data and neural network is proposed
to predict future velocities [14]. Despite of the beauty of the
aforementioned works, it is difficult to obtain a large amount
of data from different resources and to analyze them in real
time. Instead of relying on big data, Ref. [15] relied on his-
torical velocities and a context-aware nonlinear autoregressive
model with exogenous inputs to predict velocity. The velocity
prediction was treated as a time series problem and solved
by utilizing NN. Besides, unified multilayer perceptron and
unified nonlinear autoregressive NN with external input NNs
were compared in Ref. [16] for sequence prediction. Ref. [17]
compared the multilayer perceptron and the long short-term
memory (LSTM) network for estimation task and validated
that the LSTM gained a better performance with being more
sensitive to capture the peaks and valleys. A location-velocity-
temporal attention LSTM model was proposed in Ref. [18]
and the two temporal attention mechanisms were applied to
the hidden state vectors from the location and velocity LSTM
layers. In addition, LSTM network is appropriate to learn
long-term dependency which is beneficial to learn sequence
information [19], such as velocity profile. Standing on the
shoulder of giants, the the LSTM network is selected for
velocity prediction.

A. Motivation and Contribution

According to the above discussion of energy management
strategies in the literature, an energy management strategy
with velocity prediction is importantly needed to handle the
uncertainties of the onboard HESS and lower driving costs
with considering characteristics of components. It is interesting
to note that there are different characteristics in the respective
preference of each energy source in the HESS. For example,
the EG is capable of providing long-term energy supply, thus
its preference should be minimizing its fuel consumption as
much as possible. The battery has higher energy density, but
its cycle life is limited and will be largely affected by charg-
ing/discharging. Thus the preference of battery is to prolong
its life. For UC, it is more ”robust” and its preference is to
maintain its capability of fast charging/discharging. To balance
the different preferences, it is expected to take advantage of
the characteristic of each component and represent interactions
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among them. It is well-known that game theory is a powerful
mathematical tool to represent interactions among players
who have different preferences. To the best knowledge of
the authors, game theory is an effective distributed method
to dispatch the power among multiple energy sources. Game
theory has further applications to develop strategies with
considering future information or uncertain conditions. It is
expected that considering the predicted velocity information in
the utility functions, i.e., preferences, of the different energy
sources of onboard HESS will improve the performance of the
energy management.

To this end, this paper proposes a game-theoretic energy
management with velocity prediction to distribute vehicle
power load in the onboard HESS among its energy sources.
This strategy consists of two processes, namely velocity pre-
diction and game theory-based power distribution. The veloc-
ity prediction is treated as a time-series problem and an LSTM
network is implemented to predict future sequences. Compared
with the previous work [11], feature extraction and multiple
time-series method are further utilized to improve the accuracy
of this velocity prediction. This predicted velocity information
is added into the designed utility function for each component
of the HESS and a prediction-based game-theoretic strategy
is then implemented. The Nash Equilibrium of this strategy
is reached based on the best response functions. Moreover,
the performance is not only related to the characteristics of
components such as battery, but also the power cost. Thus
the driving cost analysis is implemented under the long-
distance driving profile, which shows results in a broader
scope, compared with the previous work in [11]. Below are
the contributions of this paper:

1) Comparing with the existing game-theoretic energy
management of the onboard HESS, a prediction-based
game-theoretic energy management is proposed to han-
dle the uncertainties mainly from the fluctuations of load
demand. The predicted information is added into the
utility functions of these energy sources, and then forms
a non-cooperative game, which is for smoothing the
fluctuations of the battery power, lowering the driving
cost, and increasing the system efficiency.

2) Comparing with the conventional single time-series
method, a multiple time-series method is newly applied
to group the input features according to the target
prediction horizon. In order to improve the velocity
prediction accuracy, not only the time-series analysis,
but also the feature extraction is implemented. More
features such as acceleration and the type of driving
condition are deeply extracted from velocity profile.

This paper is organized as follows. Section II describes
the system configuration and modeling. Velocity prediction
is implemented in Section III and the design of the game-
theoretic energy management strategy of onboard HESS is
presented in Section IV. A comparison analysis of the two
game-theoretic strategies, i.e., with and without velocity pre-
diction, in simulation and experiment is presented in Section
V and Section VI, respectively. Finally, the conclusion is given
in Section VII.

II. SYSTEM CONFIGURATION AND MODELING

The overall system configuration consists of two parts (i.e.,
stages), namely velocity prediction and power distribution, as
shown in Fig. 1. For the prediction part, LSTM network is
utilized to predict the velocity of the HESS. In the power
distribution part, we focus on calculating the vehicle demanded
power load and power consumption, on the basis of the
aforementioned and predicted velocity and by utilizing the
longitudinal vehicle dynamics model. This part also focuses
on distributing the calculated demanded power load properly
among the three existing energy sources in the HESS, i.e., EG,
battery pack, and UC pack. The adopted topology of these
three sources is a parallel-active topology, which can provide
higher reliability and flexibility than other topologies [20]. As
seen in this topology, the power from the EG and UC can be
controlled by adjusting the duty cycles of their AC/DC and
DC-DC converters while the battery is directly connected to
the common bus, i.e., DC bus, to maintain the stability of its
voltage.
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Fig. 1. System configuration.

In the HESS, the energy management problem is to dispatch
power over the components i.e., EG, battery pack, and UC
pack, with considering the performance of each component.
Since there are different characteristic in the respective pref-
erence of each energy source in the HESS, they form a multi-
objective problem with five criteria as shown in the simulation
part. Take an example, the load demand from vehicle is
293.3W , the EG, battery and UC pack decide their powers
(i.e., Pg = 30.2W,Pb = 36.7W and Pc = 226.4W ) to match
the requirement (i.e., Pl = Pg + Pb + Pc) and at the same
time higher their own profits (i.e., the five criteria) as much
as possible.

As shown in Fig. 1, the system consists of three energy
sources (i.e., UC, battery, and engine-generator) and longitu-
dinal vehicle dynamics. Here, we model each component.

1) Engine-generator: Similar to the model process in the
[7], it is modeled based on the engine torque-speed map and
generator efficiency map [7], as shown in Fig. 2. These two
maps cooperatively determine the optimal power of engine at
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different power levels, as follows.

Pe = τeωe (1)
Pg = εpcεgPe (2)

where the Pg is the final output power of the EG, Pe is the
power of engine, εg is the efficiency of generator, εpc is the
efficiency for conversing power, τe is the engine torque, and
ωe is the rotational speed of engine. For any Pg , there is only
one corresponding optimal torque-speed couple.

Fig. 2. (a) Engine torque-speed map. (b)Generator efficiency map.
2) Battery pack: It is modeled by its equivalent circuit

[7], as shown in Fig. 3(a). The equivalent circuit model
of battery consists of open circuit voltage (Voc), internal
resistance (rb), two resistance networks (τs = Rt,s, Ct,s and
τt = Rt,m, Ct,m). Through curve fitting experimental data,
the Voc and rb are represented by two six-ordered polynomial
functions as follows:

Voc = woc,0 + woc,0x+ ...+ woc,6x
6 (3)

rb = wr,0 + wr,1x+ ...+ wr,6x
6 (4)

where x means the SOC of battery.
3) UC pack: It is also modeled by its equivalent circuit

[7], as shown in Fig. 3(b). The equivalent circuit model of
UC consists of capacitance (C), internal resistance (Rc,s) and
leakage current modeling (Rc,p).

(a)

C

Rc,s

Rc,p

(b)

Fig. 3. Equivalent circuit models of (a) Battery pack. (b) UC pack.

4) Longitudinal vehicle dynamics: This model is widely
used to calculate the power demand for propelling the vehicle
at a certain velocity, acceleration, and road condition [21].
This model is based on the free body of the vehicle, in which
the applied forces on the vehicle are the aerodynamic force
(Faero = −ρCdAv), friction force (FTire = µmg), gravity
force (Fgrav = mgsinα), and acceleration force (FTraction =
mα), as shown in Fig. 4. The power consumption of a vehicle
is calculated as Pl = (FA + FR + FU + FAccel)v

III. VELOCITY PREDICTION

Predicting the velocity is a challenging issue, in which
it is highly dynamic and hard to be explicitly represented
by equations [12]. Thus, we utilize here a neural network
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Fig. 4. Longitudinal vehicle dynamics model.

to predict the velocity because it can map an extremely
nonlinear relationship between input and output [12]. Since
it is difficult to obtain enough information, that is required
for the velocity prediction, including historical driving data,
weather information, traffic condition, and road information,
we use here typical driving cycles as the dataset and we treat
the prediction problem as a time-series problem [12]. Because
the LSTM network can capture the long-term dependencies,
it is suitable for time-series problem [19], and thus it is
selected in this paper. Furthermore, to improve the accuracy
of velocity prediction, a multiple time-series method is used
to group the input features according to the target prediction
horizon, comparing with the single time-series used in the
above method. In addition, due to the limited dataset, feature
extraction is applied to obtain the acceleration and the type of
driving condition from the historical sequences, i.e., vehicle
velocities of the typical driving cycles.

A. Dataset and Feature Extraction

As mentioned above, we use typical driving cycles, 18
driving cycles provided by the Driving Cycle Simulink Block
in MATLAB here with time step of one second, to build
the proper dataset, as shown in Fig. 5. These driving cy-
cles are ARB02, CSHVR-Driver, CSHVR-Vehicle, Nurem-
bergR36, OCC, REP05, UDDSHDV, UNIF01, WVUCITY,
WVUINTER, WVUSUB, Japanese JC08 Cycle, New Eu-
ropean Driving Cycle (NEDC), INDIA-HWY-SAMPLE, op-
tional air conditioning test SC03, aggressive driving US06, the
air resources LA92, Urban Dynamometer Driving Schedule
(UDDS). Out of these 18 driving cycles, NEDC and UDDS
are selected as testing data whereas the others are used to train
the adopted neural network model in this paper.

Each of these driving cycles has a certain velocity profile,
i.e., value at each second during a specific period of time.
Since this dataset has only one feature of velocity, it limits
the prediction potential, accuracy, of the LSTM model. To
overcome this issue, we obtain extra features from this dataset
profile to characterize the operating dynamic state of the
vehicle, such as acceleration and types of driving conditions.
Thus the overall features for velocity prediction are velocity,
acceleration and types of driving condition. To obtain the type
of driving condition for each segment, we do the followings.
The dataset in Fig. 5 is divided into segments with a time pe-
riod of 60 seconds. Therefore, we can get the average velocity
and average acceleration for each segment correspondingly.
Based on the velocity profile, the acceleration/deceleration
profile can be generated. Furthermore, the acceleration velocity
ratio and uniform velocity ratio can also then be extracted.



FINAL MANUSCRIPT FOR IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, JUNE 1, 2021 5

Therefore, each segment can have four features, i.e., char-
acteristics, namely the average velocity, average acceleration,
acceleration velocity ratio, and uniform velocity ratio, which
are further used to cluster the type of driving condition for
each segment.

Sixteen typical driving cycles

(training data)
NEDC and UDDS

(testing data)

Fig. 5. The example dataset of velocity profile of 18 typical driving cycles.
We further cluster the types of driving conditions based

on the average velocity, average acceleration, acceleration
velocity ratio, and uniform velocity ratio. To do so, the k-
means method is selected here to divide the driving condition
into several types, as explained in the below steps:

1) Randomly choose K objects from N objects as the initial
clustering centers.

2) Calculate the distance between each object and these
center objects, and then reallocate these objects based
on the minimum distance.

3) Recalculate the mean value of each cluster.
4) Calculate the distances between center objects and their

former center objects. When it is within the error limita-
tion, we keep the center objects unchanged and draw the
conclusion that the function converges, so the algorithm
terminates. If the conditions are not satisfied, return to
step 2.

Note that for a better representation of the road conditions
in real world, we classify here the driving conditions into four
types, namely freeway, national highway, urban road, and low
speed road, such as roads in campuses [11]The four types
of driving conditions are digitalized as one, two, three, four
to respectively represent the freeway, national highway, urban
road, and low speed road.
B. LSTM Network

As mentioned before, the LSTM network is selected to
predict the future velocity of the vehicle. To train this model,
we utilize the aforementioned dataset. Here, the structure of
the proposed LSTM network is shown in Fig. 6 (a) which
has three layers, namely input, output, and one hidden layer
in between. For a better visualization and representation, the
LSTM cell in Fig. 6 (b) shows a zoomed-out version of the
LSTM block. The LSTM cell as shown in Fig. 6 (b) has three
gates, i.e., input gate it, forget gate ft and output gate ot.
The dt is the hidden state of the LSTM cell, which transfers
message to the next cell. The C̃t and Ct are candidate cell
status and new cell status respectively.

it = σ(Wi[dt−1, xt] + bi) (5)
ft = σ(Wf [dt−1, xt] + bf ) (6)
ot = σ(Wo[dt−1, xt] + bo) (7)

C̃t = tanh(Wc[dt−1, xt] + bc) (8)

Ct = it ∗ C̃t + ft ∗ Ct−1 (9)
dt = ot ∗ tanh(Ct) (10)

The proposed LSTM network has one hidden layer with 30
neuron cells, while the number of the neurons in the input
and output layer are determined by the dimensions of the
input horizon hi and the prediction horizon ho, respectively.
Note that the input of LSTM is a historical sequence of the
features that explained in the previous section and the output
is the future velocity sequence and the nonlinear relationship
between them fNN can be expressed as:

[vt+1, . . . , vt+ho ] = fNN (Γ t−hi+1, . . . , Γ t). (11)

LSTM LSTM

put

Hidden layer

put

tanh

x

X

+

X

tanh

ft it

Ct

ot

dt

Ct-1

dt-1

Fig. 6. (a) LSTM Network. (b) LSTM cell (zoomed-out version of LSTM
block).

Basically, Γ t equals to the velocity vt at time t. However,
after the feature extraction that we proposed, it can be written
that Γ t = [vt, at, ct], where vt, at, ct are the velocity, acceler-
ation, and type of driving condition at time t, respectively. As
explained earlier, here the time series analysis is performed on
the input features through both single and multiple time-series
methods to improve the prediction accuracy and are explained
as in the follows.

1) Single time-series method: The prediction problem is
regarded as a single time-series problem. The input-output
pattern is shown in Fig. 7(a). Since there are 30 neurons in
the hidden layer and each input passes through LSTM, the hi
inputs in this method go through 30 ∗ hi cells.

2) Multiple time-series method: We treat the prediction
problem as a multiple time-series problem. The input features
here are divided into several groups according to the target
prediction horizon ho, as shown in (12). Each group of
input features corresponds to one output instant, as shown in
Fig. 7(b). Each group has hi

ho
input instants and goes through

30 ∗ hi

ho
cells. The fraction of hi

ho
should be a positive integer

because it represents the number of input instants, which is
determined in this paper to be hi

ho
= 5, i.e., hi = 5ho, based

on simulation analysis in section V-A.

Inputs =


[Γ t−hi+1, . . . , Γ t−hi+(N−1)ho+1],

[Γ t−hi+2, . . . , Γ t−hi+(N−1)ho+2],

. . .

[Γ t−hi+ho , . . . , Γ t].

(12)
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Fig. 7. (a) Single time-series method. (b) Multiple time-series method.

C. Comparison between the Two Time-series Methods

We compare here the performance in predicting the velocity
between the single time-series method and the multiple time-
series method. As mentioned in section III-A, the driving
cycle NEDC and UDDS are chosen as the testing cycles.
Furthermore, the comparison is conducted with three standard
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evaluation criteria of Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE) [22].

As seen in Fig. 8 and Table I, the multiple time-series
method can guarantee smaller errors in the selected criteria
in the testing driving cycles NEDC and UDDS. Therefore,
this method has a better performance, i.e., more accurate
predicted velocities. Thus, we choose it for predicting the
velocity prediction in this paper, as seen in the example two
driving cycles NEDC and UDDS in Fig. 9.
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Fig. 8. Comparison in the velocity prediction performance between the two
time-series methods.

TABLE I
COMPARISON BETWEEN THE TWO TIME-SERIES METHODS

Driving Cycle Method Evaluation Criterion

MAE MAPE RMSE

NEDC Single time-series 6.144 0.241 7.428
Multiple time-series 2.808 0.118 3.404

UDDS Single time-series 7.610 0.564 10.283
Multiple time-series 3.541 0.237 4.849

Time [s]

(a)

Time [s]

(b)
Fig. 9. The predicted velocity by the multiple time-series method in the two
testing driving cycles (a) NEDC. (b) UDDS.

IV. POWER DISTRIBUTION
For the HESS with multiple sources, they naturally need

a decentralized control strategy to distribute power (i.e., en-
ergy management). It is well-known that game theory is a
powerful mathematical tool to represent interactions among

players who have different preferences [7]. In this HESS,
there are three players with different references and game
theory can work fine to handle this application. To distribute
the power in the onboard HESS among the three energy
resources, i.e., EG, battery, and UC pack, game theory is
properly utilized. In addition, there exist the uncertainties from
the fluctuations of load demand in the onboard HESS, thus
game-theoretic strategy with considering the uncertainties is
importantly needed. To handle the uncertainties, the predicted
velocity is combined to form the utility functions of these three
energy sources. Base on the discussion above, we propose
here a game-theoretic strategy with velocity prediction (GT-
VP) which is compared with a game-theoretic strategy without
velocity prediction (GT-NVP). To this end, a non-cooperative
game is formulated, i.e., G = [3, (Pg, Pb, Pc), (Ug, Ub, Uc)], in
which the three energy sources of EG, battery, and UC pack
are treated as selfish players with strategies of (Pg, Pb, Pc) and
utility functions of (Ug, Ub, Uc) , respectively. At each control
instant, each player determines its strategy, i.e., power, to
maximize its own utility function. Furthermore, the solution of
this game-theoretic strategy, i.e., Nash Equilibrium, is reached
through the best response functions of the players.

A. Utility Functions
1) Engine-generator: Its preference is defined to maximize

its fuel economy, and thus it is defined as in (13) to provide its
power Pg as close as possible to its economical and optimal
power P ∗

g [8].
Ug = 1− ng(Pg − P ∗

g )
2, (13)

where ng is a normalization factor [0,1]. In order to make
the range of ng(Pg − P ∗

g )2 between 0 to 1, it is defined as
ng = 1

(P∗
g )2 .

It should be noted that since the optimal power P ∗
g is

a fixed value for each onboard HESS that depends on the
characteristics of its engine-generator [7], the above utility
function in both game-theoretic strategies (GT-VP and GT-
NVP) are the same.

2) Battery pack: Its preference is defined to prolong its
cycle life by the try to decrease the variation and magnitude
of its power Pb [23]. To this end, the two-objective function
(14) is designed. The wb1 and wb2 are the weight coefficients
of the two sub-utility functions Ub1 and Ub2 for minimizing
the power amplitude and power variation, respectively.

Ub = wb1Ub1 + wb2Ub2, (14)

Ub1 = 1− nb1(Pb − Pbave)
2, (15)

Ub2 = 1− nb2(Pb − Pblast)
2. (16)

where nb1 and nb2 are also normalization factors respectively
defined by (17) and (18).

nb1 = min

{
1

(Pbmax − Pbave)2
,

1

(Pbmin − Pbave)2

}
, (17)

nb2 = min

{
1

(Pbmax − Pblast)2
,

1

(Pbmin − Pblast)2

}
. (18)

It should be noted that for the strategy (GT-NVP), the Pbave
represents the average value of Pb within a period of time
T from the beginning of driving cycle to the current control
instant t, while in strategy (GT-VP) the period is extended
to include the prediction horizon ho by adding the average
value of future battery power over this horizon Pbpre, which
is determined by the predicted velocity, as designed in (19).
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The λ in (21) is the ratio of battery power to load power Pl
which is calculated from the historical power of battery and
load.

Pbave =


1
T

∑T
i=1 Pb(i), GT −NV P,

∑T
i=1 Pb(i)+hoPbpre

T+ho
, GT − V P,

(19)

Pbpre = λ

∑t+ho
i=t+1 Plpre(i)

ho
, (20)

λ =
1

ho

t∑
i=t−ho

Pb(i)

Pl(i)
, (21)

3) UC pack: Its preference is defined to maintain its energy
capability for prolonging UC aging by making its power Pc
, i.e., stored energy, as close as possible to its desired power
P ∗
c as in (22) after considering that nc is a corresponding

normalization factor [0,1].
Uc = 1− nc(Pc − P ∗

c )
2, (22)

Vcini =

√
V 2
cmax + V 2

cmin

2
, (23)

P ∗
c = 2Pcmax ·

(
V 2
c − V 2

cini

V 2
cmax − V 2

cini

)
− Pcmax. (24)

where Vcini is the initial voltage of UC pack, Vcmax and
Vcmin are the upper and lower bounds of the UC pack voltage,
Pcmax is the maximum power of the UC pack, and Vc is the
UC voltage. It should be noted here that Vc in the strategy
(GT-NVP) represents the UC voltage at the current control
instant t, while its value in the strategy (GT-VP) includes the
future power load of the vehicle Plpre that is obtained by its
dynamics model with future velocity as in (25). Here, Icpre is
future current of UC pack, C is the capacity of the UC pack,
∆t is the time step, Pl is power load of the vehicle, and Vbus
is the bus voltage.

Vc =

{
Vc,t, GT −NV P,

Vc,t − Icpre∆t

C
, GT − V P,

(25)

Icpre =
Plpre − Pl

Vbus
. (26)

B. Reduced Game and Nash Equilibrium
It is worth to note that under the energy conservation law

the power of all units in the HESS that shown in Fig. 1 have
to meet the following power constraint:

Pc = Pl − Pg − Pb. (27)

Given (27), one player out of the three proposed play-
ers in the game-theoretic strategy can be represented
by the left two players. In other words, if the UC
pack is substituted by the other two players, the formu-
lated game-theoretic strategy of the three players G =
[3, (Pg, Pb, Pc), (Ug, Ub, Uc)] can be reformulated into two-
players game G = [2, (Pgc, Pbc), (Ugc, Ubc)]. This is reason-
able since the UC pack works as an energy buffer in the
system. Thus, the utility function of the UC pack can be
embedded into the utility functions of the other two players
with proper weights. Therefore, the modified utility functions
of the engine-generator Ugc and battery Ubc can be written as
in (28) and (29), respectively. The weights in each equation
(as eq. (31) and (32) ) are summed to be one and the value of
each weight is between zero to one as shown in eq. (30). Note
that the weights here can be determined by several methods,
such as the one in [7].

Ugc = wgUg + wcgUc, (28)
Ubc = wb1Ub1 + wb2Ub2 + wcbUc. (29)
0 < wg, wcg, wb1, wb2, wcb < 1, (30)

wb1 + wb2 + wcb = 1, (31)
wg + wcg = 1. (32)

The solution, i.e., Nash Equilibrium, of the formulated
game-theoretic strategy can be reached by the best response
functions of the players [7]. The target best response functions
can be obtained through the partial derivatives of the modified
utility functions, i.e., ∂Ugc

∂Pg
= 0 and ∂Ubc

∂Pb
= 0. For the engine-

generator, in order to maximize its own utility function Ugc ,
its decision Pg is solved using its own best response function
in (33).

−2ngwg(Pg − P ∗
g ) + 2ncwcg(Pc − P ∗

c ) = 0, (33)

For the battery, in order to maximize its own utility function
Ubc , its decision Pb is solved using its own best response
function in (34).
−2nb1wb1(Pb−Pbave)−2nb2wb2(Pb−Pblast)+2ncwcb(Pc−P ∗

c ) = 0.
(34)

As shown in Fig. 10, the convergence of Pg and Pb is
iteratively achieved, namely the Nash Equilibrium of the Non-
cooperative game, which proves the existence and uniqueness
of Nash Equilibrium. The Nash Equilibrium is achieved with
selected strategy and no player can benefit by changing
strategy while the other players keep theirs unchanged [7].

Number of Iterations

Fig. 10. Convergence to Nash Equilibrium at an example stage in the
following simulation.

Consequently, the existence of Nash Equilibrium can be
proved and the power dispatch in the HESS can be written
as in (35) and (36). Note that since Pl is a known value, Pc
can be then calculated by (27).

Pg =
2ngwgP

∗
g + 2ncwcg(Pl − Pb − P ∗

c )

2ngwg + 2ncwcg
, (35)

Pb =
2nb1wb1Pbave + 2nb2wb2Pblast + 2ncwcb(Pl − Pg − P ∗

c )

2nb1wb1 + 2nb2wb2 + 2ncwcb
.

(36)
V. SIMULATION ANALYSIS

The simulation was implemented in real time under Python
environment and the control instant for energy management
is one second. The simulation includes two procedures, i.e.,
velocity prediction and energy management. The real-time
velocity prediction of single time series for each step costs
0.359 milliseconds and that of multiple time series costs
1.039 milliseconds. Although the multiple time series method
gives higher computational burden, it can give the prediction
within the instant control time step (i.e., one second) of the
proposed game theory. Therefore the computational burden
can still be implemented in real-time for this application
of HESS. Here the simulation analysis is divided into two
parts. The first part is dedicated to determine the prediction
horizon of velocity ho. While the second is conducted to
compare the performance of the two game-theoretic strategies,
i.e., GT-NVP and GT-VP. Following the evaluation criteria
of the multi-objective problem in the literature, four criteria
are introduced to measure the performance within the three
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players in the HESS as shown in (37)-(40) as well as the
overall performance of all the players as expressed in (41).

µEg =
1

T

T∑
i=1

Pg(i), (37)

µpb =
1

T

T∑
i=1

Pb(i), (38)

σ2
pb =

1

T

T∑
i=1

(Pb(i)− µpb)
2, (39)

µEc =
1

T

T∑
i=1

∣∣∣∣12Cv2
c (i)−

1

2
CV 2

cini

∣∣∣∣ , (40)

ρ =
√
N(µEg)2 + (1−N(µpb))2 +N(σpb)2 +N(µEc)2, (41)

N(x) =
x− xmin

xmax − xmin
, (42)

where µEg is the average engine power, µpb is the average
battery power, σ2

pb is the variance of battery power, µEc is the
average energy difference between the energy stored in the
UC pack and the desired initial energy, T is the total driving
time, i is the present driving time, and N(·) is a normalization
function of the argument x between its minimum value xmin

and its maximum value xmax. The less energy supplied by
engine-generator µEg means saving more fossil fuels, the more
average battery power µpb and less variance of battery power
σ2
pb reflect to extend battery aging, and the less average UC

energy difference µEc means prolonging UC aging. Therefore,
it should be noted that it is preferred to have less energy
supplied by engine-generator µEg , more average battery power
µpb, less variance of battery power σ2

pb, and less average UC
energy difference µEc. Thus, it is obvious that a lower value
of overall performance ρ indicates better performance.

A. Determination of Prediction Horizon of Velocity

Since the performance of the power dispatch is the aim
of this paper, the determination of the prediction horizon
for velocity is designed on the overall performance of the
proposed GT-VP strategy. The the prediction horizon ho is
changed between 1 to 10 with offline simulation analysis on
the historical driving profiles and the overall performance ρ
is tracked in Fig. 11. It is clear to conclude that the best
performance, i.e., the lowest value of ρ, can be reached when
the prediction horizon ho = 6, and thus its value is set as 6.

Prediction Horizon [s]

Fig. 11. Overall performance at different prediction horizons of velocity.

B. Comparison Between the Two Game-theoretic Strategies
As mentioned before, the two driving cycles NEDC and

UDDS are selected as the testing data for the comparison be-
tween the two game-theoretic energy management strategies,
in which two cases are studied.

1) Short-distance driving: Fig. 12 shows the power dis-
patch among the three players in a single run of the testing
driving cycle NEDC, in which the green curves indicate to
the results form the GT-NVP whereas the red curves refer to
the results from the GT-VP. The contributed power from each
player follows its preference that is designed by its objective
function. It is obvious that the results of both strategies follow
the same general trend. However, there is a difference between
the results, and thus some enlarged segments are illustrated. In
addition, Table II is introduced for further detailed comparison.
As it can be seen from µEg , the power of engine-generator
in GT-VP is decreased by 0.010 % compared with that in
GT-NVP. This means less use in oil, i.e., saving money and
cleaner environment. This results from the reason that the
average battery power µpb of GT-VP is larger than that of GT-
NVP, i.e., increase by 12.06%, which means again that more
clean energy is used in GT-VP. The variation of the battery
power σpb in GT-VP is smaller, i.e., smoother, by 1.12% than
that in GT-NVP. As described in section IV-A, decreasing the
variation of battery power is effective to prolong the battery
life, and thus the GT-VP strategy is more successful than
GT-NVP in this reagrd. Finally, although the average energy
difference of UC pack in GT-VP is increased by 0.107%, it
does not matter because the UC pack works as an energy
buffer and it has a high power density. Similar to NEDC,
the quantified performance of the UDDS driving cycle in the
Table II also demonstrates that the proposed GT-VP is more
effective than the GT-NVP.
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Fig. 12. Power dispatch among the players in the NEDC driving cycle.
TABLE II

THE COMPARISON OF EVALUATION CRITERIA IN SIMULATION

Driving Index Evaluation Criterion

Cycle µEg(w) µpb(w) σpb(w2) µEc(J)

NEDC
GT-NVP 30.046 3.605 182.176 30785
GT-VP 30.043 4.040 180.146 30818
Percentage −0.010% 12.06% −1.12% 0.107%

UDDS
GT-NVP 29.994 12.570 55.496 30065
GT-VP 29.992 12.619 54.659 30079
Percentage −0.007% 0.390% −1.51% 0.047%

Due to the unavoidable error and noise in the velocity
prediction, the analysis of robust and sensitivity of the pro-
posed prediction-based strategy is necessary. We study the
robustness and sensitivity issue of the proposed approach
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 Prediction Error

Fig. 13. Overall performance at different prediction error of velocity.

through case studies with increasing velocity prediction error.
To generate the case studies, velocity prediction with fewer
layers, fewer training steps and fewer neural cells is carried
out to increase the prediction error. Then the prediction-based
game-theoretic strategy is implemented to calculate evaluation
criteria and overall performance (i.e., ρ value, lower ρ means
better performance) for each case. From Fig. 13, we can see
that the ρ value is increased and then keeps stable when
the prediction error increases gradually. Although the overall
performance becomes gradually worse when the prediction
error becomes larger, it finally keeps at the same level. Besides,
the overall performance will change even though the prediction
error slightly change. Therefore, the robustness and sensitivity
of the proposed prediction-based strategy are validated.

2) Long-distance driving: In order to compare the two
game-theoretic strategies from a broader scope, the NEDC
driving cycle is repeated sixteen times with different initial-
izations to form a long-distance driving profile. The overall
performance ρ of the two game-theoretic strategies in this
designed driving profile is shown in Fig. 14, in which two
observations can be seen. The first is that the ρ value of GT-VP
is always lower than that of GT-NVP. It is worthy to mention,
as described in section V-A, that a lower value of ρ means
a better performance. The second point is that the difference
in the value of ρ between the two game-theoretic strategies is
gradually increased over distance, i.e., repeated NEDC driving
cycles with different initializations. These observations can be
further interpreted in terms of a monetary value by analyzing
the costs of driving by the two game-theoretic strategies. This
driving cost C, which is resulted from the costs of the power
of the engine-generator Cg , battery Cb, and UC pack Cc, is
defined by (43) after considering that po and pe are the prices
of the oil and electricity for generating one joule energy.

C = Cg + Cb + Cc =

T∑
i=1

[poPg(i) + pe(Pb(i) + Pc(i))] . (43)

Consequently, the difference in costs (∆C) between the two
game-theoretic strategies, which indicates the saved money
that is made by GP-VP over GP-NVP, is illustrated in Fig 14.
It is clear that GT-VP strategy results in lower driving cost
comparing with GT-NVP.

Distance [km]

Fig. 14. The overall performance and difference in costs of the two game-
theoretic strategies under long-distance driving profile.

Given the above discussions, it can be concluded that the
proposed game-theoretic strategy with velocity prediction GT-
VP is more effective than the game-theoretic strategy without
velocity prediction GT-NVP in short and long-distance driving.

VI. EXPERIMENT
To validate the implementable operations of the proposed

strategy GT-VP and comparison with GT-NVP, a testbed was
set up. The power level of this testbed was downscaled to
60 W to match the capacity of the experimental components.
The testbed in experiment was configured to be similar in
practice to that of the vehicle’s powertrain, i.e., the system
configuration in Fig. 1. In this testbed, the power supply
emulates the role of the engine-generator along with its AC/DC
converter. Whereas, the electronic load acts as the load demand
of the vehicle. The battery pack and the UC pack as well as
its DC/DC converter are implemented by real devices. The
sampling resistors are used for current measurements. The
CompactRIO controller controls the power-width-modulation
of the DC/DC converter and the host PC is used for observing
the results. The specifications of these components are sum-
marized in Table III and the block diagram connections among
them are illustrated in Fig. 15(b). Here, the solid lines indicate
the power connections whereas the dotted lines indicate the
signal communications.
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Fig. 15. The experimental setup of the onboard HESS (a) Downscaled
testbed. (b) Block diagram.

TABLE III
SPECIFICATIONS FOR MAJOR COMPONENTS

Power Supply Max power: 800 W
(Takasago ZX-800L) (0-80V, 0-80A)
Electronic Load Max power: 600 W (1 PLZ-50F,
(1 Kikusui PLZ-50F/150U) 4 PLZ150USs with 1.5-150 V,

0-30 A each)
DC-DC Converter Max power: 100 W
(Design/fabricated in house) Switch Frequency: 20 kHz
Li-ion Battery Pack (BESS) Four cells (series), 12.5 Ah/cell,
(Lishen LP2770102AC) 3.2 V/cell (nominal voltage)
UC Pack Four cells (series), 1760 F/cell,
(Nippon Chemi-Con) 2.5 V/cell (Max Vol.)
High-accuracy Sampling Resistors
(PCN Corporation RH series) RH250M4 0.01 Ω (± 0.02%)
Control and DAQ System I/O board: NI 9401
(NI CompactRIO) A/D boards: NI 92192, NI 9203

The two energy management strategies were implemented
by Labview platform and the results are shown in Fig. 16
and Table IV. As seen, the experiment results match those
in simulation and lead to the same conslusions. Therefore,
the proposed GT-VP is not only supreme over GT-NVP in
simulation analysis but also in practical implementations.

TABLE IV
COMPARISON OF EVALUATION CRITERIA IN EXPERIMENT

Driving Index Evaluation Criterion

Cycle µEg(w) µpb(w) σpb(w2) µEc(J)

NEDC
GT-NVP 7432 -0.096 20.13 185632
GT-VP 7427 -0.299 19.58 182701

Percentage −0.067% 2.11 −2.73% −1.57%

VII. CONCLUSION
A game-theoretic strategy with velocity prediction was

proposed to dispatch the power among the three energy sources
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Fig. 16. The results of two game-theoretic strategies in experiment.

of engine-generator, battery, and UC pack in the onboard
HESS. The game-theoretic strategy was designed as a non-
cooperative game on the basis of the individual preferences
of the energy sources. The velocity prediction of the vehicle
was implemented by an LSTM network. The training of this
neural network was applied by extending the original dataset
with utilizing feature extraction. A multiple time-series method
is newly applied to group the input features according to the
target prediction horizon. Moreover, the predicted information
is added into the utility functions of these three energy sources
in the non-cooperative game. The solution, i.e., Nash Equilib-
rium, of the proposed GT-VP was reached through the best
response functions of the energy sources. The comparisons of
the two game-theoretic strategies in both short-distance and
long-distance driving scenarios were analyzed in simulation.
Comparing with the GT-NVP, the proposed GT-VP showed
better performance both in short-distance and long-distance
driving scenarios in simulation. The results in simulation and
experiment demonstrated that the GT-VP is superior than
the GT-NVP by reducing fossil fuels, prolonging battery life
and lowering the driving cost. Moreover, the robustness and
sensitivity of the proposed strategy were validated through
case studies with increasing velocity prediction error. Even
though, there are still some limitations of the proposed GT-
VP strategy. For example, the velocity prediction costs the
expense of computational burden. The proposed strategy can’t
work properly if the prediction error is too large. Therefore,
the future work for this paper could be further improve the
prediction process by including more realistic information
such as traffic and weather conditions.
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