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Abstract—Charging station that incorporates renewable energy
resource and energy storage is a promising solution to meet the
growing charging demand of electric vehicles (EVs) without the
need to expand the distribution network. The aggregation of mul-
tiple energy resources and EVs requires an efficient and flexible
energy management strategy. This paper presents a two-stage
scheme to solve the power allocation and charging coordination of
plugged-in EVs. Game theory based control is utilized to address
the interaction among different components for respecting their
individual preferences. The first stage determines the power
allocation of PV, battery and the grid as well as total charging
power for EVs. In the second stage, charging power dispatch
among individual EVs is coordinated based on the available total
charging power determined in the first stage. As a result, the two
energy management problems of charging station are addressed
sequentially. The proposed solution is validated via simulation
and experiment, and the comparisons with benchmarks show its
advantages.

Index Terms—Charging coordination, charging station energy
management, energy storage, game theory, renewable energy.

I. INTRODUCTION

THE electric vehicle (EV) and renewable energy genera-
tion have achieved considerable development due to the

growing energy demand and scarcity in fossil fuels [1]. At
the same time, EVs consume a huge amount of electricity
when they are clustered in a charging station, which may
significantly impact the operation of the grid [2]. Therefore,
deploying renewable generation and battery energy storage on
the charging station side is regarded as a promising win-win
solution.

A. Motivation and Incitement

By integrating renewable energy and battery, charging sta-
tions can greatly reduce the consumed energy from the grid
and thus suppress the required grid capacity [3]. On the other
hand, this energy mixing complicates the configuration and
management of the charging station. Especially, renewable
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energy power generation is known to be intermittent, and the
charge and discharge capability of the battery usually changes
over time and is affected by the state of charge (SOC). Under
constantly changing charging power provision, the charging
of EVs should also be controlled to avoid undesired overload.
These problems pose challenges to the energy management
of the charging stations, because the stations must coordinate
both the charging power dispatch of EVs and the power
allocation among photovoltaic panels (PV), battery and the
grid.

B. Literature Review

Recently, the energy management of charging stations have
been extensively explored [4]–[7]. A charging mechanism was
introduced in Ref. [4] to determine the energy generation
and EV charging strategy based on the predicted PV gener-
ation power and EV arriving/departure time. In Ref. [5], a
power dispatch and charging strategy was developed for a PV
based battery swap station considering PV energy utilization
and swapping service availability. A day-ahead scheduling
framework was studied in [6] which aimed to optimize the
operation scheduling for both a microgrid and EV battery
swapping station. Chance constrained optimization based ap-
proach was suggested in [7] to optimize the operational cost
of the charging station using PV and battery powers. Ref. [8]
formulated a multi-objective optimization problem, which was
solved by stochastic dynamic programming. But the transition
probability of all the uncertainties was required in advance. In
addition, robust and nonlinear energy management strategies
were adopted to obtain the optimal demand and electricity pro-
curement under predicted uncertainties sets [9], [10]. It should
be noted that implementation of the above proposed methods is
highly dependent on the forecasting of uncertainties, such as in
the EV charging demand, renewable generation, and electricity
price [11]. Therefore, these time-ahead methods may lead to
suboptimal or even be impractical to directly apply to actual
cases.

In addition, the above existing methods are all centralized
solutions. Difficulties will arise when the number of EVs
and distributed energy resources increases [12]. Besides, con-
sidering that the charging station aggregates multiple energy
sources and different types of EVs, it is usually more suitable
to adopt a distributed and flexible control scheme. To address
the given problem in a distributed manner, Ref. [13] intro-
duced a distributed control based EVs charging scheduling.
But PV and battery were not included, and the focus was
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mostly on utilizing the charging flexibility of EVs while
ignoring the different charging requirements. Game theory
based approaches have been widely used to reflect the in-
dividual characteristic and distributed nature of the above
control problem [14]–[16]. Stackelberg game was used in
Ref. [14], [15] to model the interaction between the charging
station and EVs and thus determine a charging price to influ-
ence the charging demand. The price is only one of the factors
to impact the EV charging decisions, and the total available
charging power has to meet the physical constraints, especially
for the charging stations using PV and battery powers. The
power allocation on the energy supply side was not discussed
in detail in Ref. [16]. The order of energy use in the existing
schemes mentioned in Ref. [17], [18] was renewable, battery
and the grid to save the grid energy consumption. But this
may cause the battery to quickly run out of energy, and the
grid must provide all the load alone. The battery originally
equipped to reduce the burden on the grid cannot be fully
utilized.

It should be noted that the previous literature did not take
into account the power shortage in which the power supply is
insufficient to meet the demand. In fact, the available energy
supply of charging stations is likely to change over time
(i.e., time-varying), especially when those stations are partly
powered by the integrated PV and battery. For such cases,
there is currently few solutions to allocate the power among
PV, battery and the grid, when the power shortage happens.
In addition, due to the insufficient total supply, the original
charging of EVs will be affected. Thus, a new charging
dispatch must be considered. To address the above problems,
in this paper we propose a two-stage energy management
scheme. In the first stage, based on the charging needs of the
EVs, the charging station has the right to first determine the
available total charging power as well as the power allocation
among PV, battery and the grid. The second stage coordinates
the EV charging power distribution under the limitation of the
total available charging power determined in the first stage.
This two-stage scheme continues over time, during which
the decisions are made in turn. Since each stage involves
multiple players with their own competitive decision-making,
it is natural to use game theory as an effective tool to express
the respect for each player’s unique preference.

C. Contribution and Paper Organization

The main contributions of this paper are summarised as
follows:

1) Proposing a two-stage scheme to solve both the power
allocation among PV, battery and the grid, and the co-
ordination of EVs charging under insufficient and time-
varying power supply;

2) Extending the use of game theory in the energy man-
agement of charging stations, not only for EVs charging
dispatch but also for power allocation among PV, battery
and the grid;

3) Determining directly the total charging power for EVs
taking into account the physical constraints, which is dif-
ferent from the previous work using pricing mechanism
to indirectly affect the charging load [14], [15];

4) Studying the two-stage scheme under both grid-tied mode
and islanded mode, while most previous work has focused
only one single mode.

The rest of this paper is organized as follows. Section II
describes the configuration of the charging station. Section III
and IV formulate the first stage power allocation problem
and second-stage EV charging dispatch problem, respectively.
Detailed simulation results are discussed in Section V. Ex-
perimental results are presented in Section VI followed by
conclusion in Section VII.

II. SYSTEM AND PROBLEM OVERVIEW

The studied EV charging station is equipped with PV and
battery, and it also connects with the grid. And various EVs
can stochastically and dynamically arrive and charge at the
charging station. As shown in Fig. 1, arrival EVs send their
desired charging requirement signal

∑
i∈I p

req
e,i to charging

station. As the energy supply, charging station provides the
total charging power for EVs. Here the total charging power
is supplied by a combination of PV, battery and grid. How to
determine their respective supplied power is very important.
It should note that considering the limited power capacity,
charging station might not be able to meet the desired charg-
ing requirements of EVs. This aspect is different from the
traditional scenario in which the supplied power should meet
the demand. In addition, given the low battery SOC and low
or no PV power, the total available charging power of the
EVs should be reduced accordingly. Therefore, the charging
station has the right to first determine its charging power
provision, i.e., pl in Fig. 1 in the first stage. pl is directly
affected by the PV power, battery power and grid power
determined in the first stage. Then, based on the information
of pl published by the charging station, the second stage is to
determine the share of this insufficient total charging power
pl among individual EVs. Again, because each of the above
stages contains multiple players, it is effective to apply the
game theory reflecting the competitive decision-making of the
players. The two stages continue over time, and their decisions
are made by turns. And considering the role of charging
station and EVs are nonsymmetric, that is why we adopt the
decoupled structure [14]–[16]. The proposed two-stage energy
management scheme will be detailed in section III and IV,
respectively. The scheme can be used for other types of energy
storage and renewable energy sources by introducing their
utility functions.

Game
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∑
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Fig. 1. The proposed two-stage energy management scheme for charging
station.
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III. POWER ALLOCATION–THE 1ST STAGE

The purpose of the the 1st stage is to determine the power
allocation among the PV, battery, grid. The power allocation
problem is mathematically formulated as a noncooperative
game. The heterogeneous energy sources: the PV, battery and
grid are treated as three individual players in the formulated
game, and they are assumed to be selfish and attempt to
maximize their own utilities.

A. Utility Functions

Utility function is widely used to quantify the satisfaction
level or preference of an individual agent for the action it
takes [14], [15]. A quadratic form cost function is used to
quantify the objective of each player. Note that quadratic form
functions have been widely used to model player preference
in energy system and economics [14], [19].

1) Battery: Here, the lithium-ion battery is used as an
energy storage device. The stationary storage battery is to
serve as an energy buffer for the PV and the grid. The
battery SOC should be maintained at a specific preferred level.
Therefore, the battery can quickly deliver or absorb power and
thus provide a sufficient regulation margin for the possible
fast adjustment. In this regard, the behavior of the storage
battery equipped in the charging station is different from that
of the on-board EV battery. Note that due to the focus on
EV charging, the dynamics of the EV battery in this paper
is mainly represented as a charging load. Then, the utility
function of the battery ub is defined as follows [19]:

ub = −1

2
(pb − pbf )2, (1)

where the preferred pbf is directly related to the battery SOC
as follows

pbf =

(
socb(t)− socbf

(socb,max − socb,min)/2

)
pb,max. (2)

where [socb,min, socb,max] and [pb,min, pb,max] are the battery
permitted SOC and power operation range, respectively. As-
suming an equal possibility of charge and discharge, preferred
SOC socbf is designed targeting 50%.

Since battery can either discharge or charge, here pb > 0
means battery is discharging and pb < 0 means charging.
Because of the battery physical constraints, the battery power
pb and SOC socb should satisfy the following inequality
constraints at any time:

socb,min ≤ socb ≤ socb,max, (3)

pb,min ≤ pb ≤ pb,max, (4)

The evolution of battery SOC is related to its output power

socb(t+1) =

{
socb(t)− pb(t)∆t/Eb/ηd, if pb(t) > 0;
socb(t)− pb(t)∆tηc/Eb, otherwise. , (5)

socb(0) = socb,ini, (6)

where Eb, ηd, ηc, and socb,ini are the battery normal energy,
battery discharge efficiency, charge efficiency, and initial SOC
value, respectively.

2) PV: In general, PV panels are assumed to be working
at the maximum power point tracking (MPPT) mode, and the
corresponding power pmp can be roughly estimated by

pmp = GiApvηpv, (7)

where Gi is the solar irradiance, Apv is the installed PV panels
surface area, and ηpv is the conversion efficiency.

Although PV generation can reduce the energy from the
power system, the rapid fluctuation of solar power could cause
unexpected voltage violation [20]. Then, it is necessary to
impose PV power ramping restriction ppv,rp as follows

pp(t)− pp(t− 1) ≤ ppv,rp. (8)

where pp(t) is the PV power at time t. However, the ramping
restriction inevitably results in PV curtailment from forgone
energy usage. Thus, the utility function of the PV up is defined
to emphasize providing the power as close as possible to pmp

that minimize the curtailment loss [21]. Here, up is defined as

up = −1

2
(pp − pmp)2, (9)

And pp satisfies the following

0 ≤ pp ≤ pmp, (10)

3) Grid: The utility function of the grid ug is defined to
emphasize the economy, namely reduction of the electricity
consumption from the grid. Similar to the utility functions of
battery and PV [22], we have

ug = −1

2
(pg − pg,opt)2, (11)

where pg,opt means the preferred output power of grid, here it
is zero, i.e., zero energy consumption of the grid. According
to this function, the utility function ug is maximized when
there is no power output from the grid, while a large amount
of grid output power is undesirable. The grid should meet the
power capacity limits and ramping power limits

0 ≤ pg ≤ pg,max, (12)

|pg(t)− pg(t− 1)| ≤ pg,rp, (13)

where pg,max and pg,rp are the maximum permitted deliver
power and ramping power.

4) Modified Utility Functions: Ideally EV charging station
should satisfy EVs charging power requirement. However, due
to the limitation of charging station capacity, it is possible
that charging station cannot provide that required amount of
charging power. For instance, when there is no PV power at
night and battery SOC is low, the grid power with physical
capacity limit may be lower than the required charging power
of EVs

∑
i∈I p

req
e,i . preqe,i is EV i’s desired charging power

requirement sent to charging station, where I denotes the
set of plugged-in EVs. Let p∗l =

∑
i∈I p

req
e,i and pl denote

the actual provision total charging power determined by PV,
battery and grid, i.e.,

pl = pp + pb + pg. (14)

And pl and p∗l have the following relationship

pl ≤ p∗l . (15)
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Then, charging station should maximize the following utility
function ul as much as possible:

ul =− 1

2
(pl − p∗l )2

=− 1

2
(pp + pb + pg − p∗l )2

(16)

As seen, the utility function ul is maximized when the supplied
power is exactly equal to the required power of EVs. In
addition, ul is also affected by the strategy of each player.
Therefore, a possible solution is to combine the utility function
ul with those of other players. Thus, the final form of the utility
function of each player is modified as follows:

up,l = up + wl,pul, (17)
ug,l = ug + wl,gul, (18)
ub,l = ub + wl,bul, (19)

where wl,p, wl,g, wl,b are weight coefficients with bigger and
positive values, such that the last term of each modified utility
function is treated as penalty term. Therefore, the physical
meaning of the above mentioned final form of the utility
function is that each energy source, i.e., PV, battery and grid,
works to maximize its own utility. Meanwhile, it is required
to contribute to minimizing the shedding of total charging
demand as much as possible.

In addition, the above three weights adaptively vary based
on the total charging demand p∗l , as shown in the follow-
ing equation. When p∗l increases, the weights wl,p, wl,g, wl,b

decrease correspondingly. This results in less emphasis on
meeting the charging demand, and thus accordingly impacts
the peak load. The quasi-pricing mechanism is similar to the
pricing mechanism described in Ref. [14], [15].

wl,p = wmaxl,p (1− p∗l /pevcs),
wl,g = wmaxl,g (1− p∗l /pevcs),
wl,b = wmaxl,b (1− p∗l /pevcs),

(20)

where coefficients wmax
l,p , wmax

l,g , wmax
l,b are bigger and positive

values, pevcs is the maximum available total charging power
of the charging station. The above three weights are equivalent
to the role of the charging price.

B. Noncooperative Game

A noncooperative game is then set up at each control time
instant. It is represented in the strategic form

Gcs = {(P,G,B), {pp, pg, pb}, {up,l, ug,l, ub,l}}, (21)

where the game players, namely the PV “P”, the grid “G” and
battery “B”, are assumed to be selfish. Each player attempts to
maximize its own utility function. However, the utility function
value of an individual player depends not only on its own
control variable but also on the decision of other player and
required charging power of EVs. Since these three independent
players are selfish, a balanced allocation settles down under
the so-called Nash Equilibrium (NE) [23]. Under NE, if one
of the players unilaterally changes its decision variable (i.e.,
pp, pg, pb), the cost of all three players cannot be improved at
the same time. Thanks to the concavity of the utility functions

ug,l, ug,l and ub,l, the existence and uniqueness of NE can be
proved by solving the following best response (BR) functions:

BRp :
∂up,l
∂pp

= 0, BRg :
∂ug,l
∂pg

= 0, BRb :
∂ub,l
∂pb

= 0, (22)

then we can obtain

BRp : pp =
pmp − wl,p(pg + pb − p∗l )

1 + wl,p
,

BRg : pg =
−wl,g(pp + pb − p∗l )

1 + wl,g
,

BRb : pb =
pbf − wl,b(pp + pg − p∗l )

1 + wl,b
.

(23)

The Hessian (H) of each utility function is

Hp,l : −(1 + wl,p) < 0,

Hg,l : −(1 + wl,g) < 0,

Hb,l : −(1 + wl,b) < 0,

(24)

which is always negative definite. Thus, the solutions in BRp,
BRg and BRb are global minimum points that determine an
optimal power allocation.

Algorithm 1 Power allocation for charging station
1: Initialization pp,last ← pp,t−1, pg,last ← pg,t−1, pb,last ←
pb,t−1.

2: repeat
3: solve pg via BRg using pb,last and pp,last and check (12-13).
4: solve pp via BRp using pg,last and pb,last, and check (8-10).
5: solve pb via BRb using pg,last and pp,last and check (3-4).
6: Check convergency:
7: if |pp − pp,last| ≤ ε and |pg − pg,last| ≤ ε and |pb −

pb,last| ≤ ε then
8: terminate
9: else

10: pp,last ← pp, pg,last ← pg , pb,last ← pb.
11: end if
12: until convergence
13: solve pl via (14) and send pl to the second stage.
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Fig. 2. An example iterative convergence of decisions of the three players.

Given the BRp, BRg and BRb, the developed algorithm for
power allocation of charging station is shown in Algorithm 1.
Initially, the PV, grid and battery player share their decisions
made at the last time instant, i.e., pp,t−1, pg,t−1 and pb,t−1 [see
line 1]. For the grid, to maximize its utility ug,l, its decision
pg is solved through BRg , where pp = pp,t−1, pb = pb,t−1,
and then updates its new decision pg,t−1 [see line 3]. The
same procedure can be repeated for PV and battery players
to obtain their response decisions using BRp and BRb [see
line 4-5]. Once the convergence of pp, pb and pg iteratively
achieves, namely the NE of the game is found [see line 6-12
and Fig. 2]. Further, the final total available charging power
pl can be calculated by (14) and the signal will be sent to
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the second stage for EV charging coordination [see line 13].
The players only share their control variables (i.e., pp, pb, pg)
and the total required charging command (p∗l ) from the EV
charging side through the environment, thus the players’ local
privacy information is well preserved internally.

IV. EV CHARGING COORDINATION–THE 2ND STAGE

Based on the total charging power pl determined by the
first stage, each EV should determine its shared portion of
pl in the second stage, namely EV charging coordination.
EV charging coordination should consider the diversities. For
instance, the required charging power of EVs differs each
other. The preference of individual EV charging requirement
is also different, which is reflected in that some EVs are urgent
for charging quickly regardless of the higher electricity price,
while other EVs have no particular requirement and can be
parked for a long time. Those characteristics require flexible
charging coordination. The advantage of applying game theory
to solve the present charging coordination problem is its dis-
tributed nature and full respect of the preference of individual
players. Here, EVs are modeled as independent players in the
noncooperative game and they are competing for the published
total charging power pl.

A. Utility Function for EV Charging

For each EV player i ∈ I, its charging utility function is
defined by Ue,i(pe,i) which represents the level of satisfaction
for the obtained charging power pe,i for the ith EV,

Ue,i(pe,i) = Qe,i · preqe,i · ln(pe,i + 1), (25)

where the natural logarithm ln(·) has been extensively used for
designing the utility and has also been shown to be suitable
for designing the utility for the load [24], [25]. preqe,i is the
required charging power of the ith EV. Qe,i is a parameter
defined to address the various preferences of EVs on charging
requirement according to the following: Bigger Qe,i means
EVs are urgent and willing to charge quickly. And EVs with
smaller Qe,i have no particular requirement and are willing
to donate portion of limited charging resource to contribute
to other EV with urgent charging response. The final charging
power pe,i is affected by Qe,i since an EV with bigger Qe,i has
a higher marginal utility. Therefore, it needs to obtain more
charging power to reach its maximum satisfaction level. In the
game, each player, i.e., individual EV, seeks to maximize its
own utility.

In addition, all EV players compete the total charging power
pl determined by the first stage, thus they need meet∑

i∈I

pe,i = pl. (26)

The dynamics of the ith EV battery, in terms of its SOC
soce,i, is described as follows,

soce,i(t+ 1) = soce,i(t) + pe,i(t)∆tηc,i/Ee,i, (27)

where pe,i is the battery charging power, Ee,i is the battery
capacity, and ηe,i is the charging efficiency.

B. Generalized Nash Equilibrium

Due to (26) couples all of charging powers of EVs, the
charging power dispatch game problem turns to generalized
Nash equilibrium (GNE) problem [26]. The compromised
charging power of the ith EV can be obtained through solv-
ing (25) subject to (26). In order to study the existence of
a socially stable solution to the game, based on the Karush-
Kuhn-Tucker (KKT) conditions of optimality, the Lagrangian
function of the ith EV is given by

Li =−Qe,i · preqe,i · ln(pe,i + 1) + λi(
∑
i∈I

pe,i − pl) (28)

Then the gradient condition of the KKT necessary optimality
conditions is

∂Li
∂pe,i

= −
Qe,i · preqe,i
pe,i + 1

+ λi = 0 (29)

Due to the convexity of this problem, the existence and the
uniqueness of GNE can be proved mathematically. Thus, KKT
necessary conditions are sufficient. At the most socially stable
equilibrium point, λ for each EV holds the following [26],

Qe,i · preqe,i
pe,i + 1

= λ. (30)

It can be seen that λ is a positive value. Then the optimal
charging power of ith EV can be uniquely determined based
on λ by

pe,i =
Qe,i · preqe,i

λ
− 1. (31)

In addition, the charging power of EV has to be limited by its
allowable domain

0 ≤ pe,i ≤ preqe,i . (32)

If a centralized approach is applied here, then assigning the
charging power for each EV by (31) will be the responsibility
of the centralized controller. However, such a centralized
controller has to know all information of EVs, e.g., Qe,i and
preqe,i , to find λ and then to reach an equilibrium solution (31).
This centralized approach is less flexible and not suitable for
privacy preserving [21]. Therefore, a flexible distributed EV
charging coordination algorithm is proposed in the following
section.

C. Distributed Implementation

Here a consensus network based distributed algorithm is
proposed to solve the charging coordination problem as shown
in Algorithm 2. When EVs connect to the charging station,
each EV should first publish the necessary communication
information λi and preqe,i [see line 1]. Since EV is assumed
to be selfish, such characterisation naturally enables it to
send its maximum charging power, which can be obtained
by solving (25) subject to (32). Then, an initial λi value is
generated under (30). Similarly, other plugged-in EVs also
generate λi and preqe,i . This signal preqe,i is shared to the charging
station for Algorithm 1 while λi is shared among its neighbor
EVs through the communication network. EVi can access the
shared information of its neighbors, i.e., λj , j ∈ Ni, which
is the set of the neighbors of EVi. Once EVs receive the pl
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information, the distributed charging coordination computation
is started.

At the 2nd stage, two situations need to be discussed [see
line 2]. If there is only one single EV, then pe,i = pl is the
optimal dispatched charging power [see line 13]. The other
situation is the general situation that includes at least two EVs.
Under this situation, pl needs to be allocated to each EV based
on (31). First, according to the shared information (pe,i and pl),
the power mismatch, i.e., ∆p =

∑
pe,i − pl, will be checked

whether the system power balance condition is met [see line
3]. If not, a switch variable LK is set to be 1 [see line 4],
and all EVs start the consensus network to interact with their
neighbors and update λi in the following way [see line 5-7]

λi ← λi +
∑
j∈Ni

wij(λj − λi) + α∆p, (33)

where wij is the connectivity strength which can be chosen
from 0 ≤ wij ≤ (maxi=1...N |Ni|−1). Through several
iterations, all λi will quickly converge to a same value [see
Fig. 3] and satisfy max(|λi − λj |) ≤ ε1, and then LK is set
to be 0 [see line 8].
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Fig. 3. An example iterative convergence of λi

The EV uses this new value λi to update its decision pe,i
[see line 10]. The power mismatch ∆p condition is checked
again, and when ∆p is small enough ∆p ≤ ε0, the GNE
of the original problem is found [see line 11]. Otherwise,
the consensus algorithm will be repeated again until GNE is
reached. Also, pe,i should be checked for constraint violation
(32) on each iteration. Note that since charging coordination
is dynamic over time, the above process is repeated at each
control time instant. Through the algorithm, the coordinated
charging is solved locally using local information.

Algorithm 2 Distributed EV Charging Coordination
1: Initialization: The plugged-in EVs initialize preqe,i and λi inde-

pendently and receive pl sent by charging station.
2: if EV charging number Nev ≥2 then
3: while ∆p = |

∑
pe,i − pl| > ε0 do

4: LK = 1
5: Consensus phase: set up the consensus network
6: while (max(|λi − λj |) > ε1 or LK=1) do
7: λi ← λi +

∑
j∈Ni

wij(λj − λi) + α∆p

8: LK = 0
9: end while

10: pe,i =
Qe,i·p

req
e,i

λ
− 1, and check (32)

11: end while
12: else
13: pe,i = pl, and check (32)
14: end if

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are presented for assessing
the performance of the proposed two-stage scheme for a
considered charging station.

A. System Setup

There are six chargers in the charging station, and each of
them is with maximum power 30 kW. The rated PV capacity
ppv,rate is 70 kW. The grid power capacity is pg,max =100
kW less than the maximum total charging power pevcs 180
kW. Grid ramping pg,rp is 1% of pg,max, and ppv,rp is 10%
of ppv,rate [20]. The parameters of battery are Eb = 180
kWh, pb,max = 90 kW, pb,min = −90 kW, socbf = 0.5,
socb,ini = 0.5, ηc/ηd/ηe,i = 0.95. Considering uncertainties,
two different PV power profiles are considered: one is with
high PV power and the other low. The daily arrival EVs
number are also different in two days. Each EV battery
capacity is distributed within [40, 60] kWh, their start charging
SOCs are randomly generated from [0.2, 0.5], and their target
charging end SOCs are set as 0.95. Total simulation time are
2 days with 1 minute time interval. The weight coefficients
wmax

l,p , wmax
l,g , wmax

l,b are set as 10.

B. Power Allocation

Fig. 4 shows the two different days’ operation results of
power allocation among PV, battery and grid as well as
the final coordinated EVs charging power at each minute.
It could be found that both the fluctuation of PV power
and total charging power are very intensive. If there is no
energy storage, then the grid has to balance the system power,
which will inevitably cause the grid power to vary drastically.
Under the proposed strategy, the undesired situation is avoided
by exploiting battery to bear the fluctuation and share the
power demand. As a result, the grid power exhibits a smooth
profile, and the maximum power is less than the peak charging
demand. The proposed scheme slowly changes the battery
SOC and keeps it near the intermediate level, which ensures
the battery has sufficient margin to discharge and charge. In
addition, the PV power curtailment mainly occurs when there
is less charging demand. The sum of PV, battery and grid
powers constitutes the total charging power provided to EVs.
Then EVs compete and share the charging power based on
Algorithm 2.

Besides, it is worth noting that the allowable total charging
power is not fixed but dynamically changes over the time
as shown in Fig 5. Most ratios of the actual provided total
charging power to the required one are greater than 0.8, which
means most charging demand is met. The above ratios in the
first day are obviously lower than those in the second day. This
is because the first day has higher charging demand. Thus,
the peak load is more suppressed according to the developed
quasi-pricing mechanism. Meanwhile, lower charging demand
obtains the higher ratios in the second day. The results show
the impact of the developed quasi-pricing mechanism on the
peak load. The red circle area has extreme low ratios because
at that time the battery SOC almost reaches its lower bound,
PV power is less, and the required charging power exceeds the
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Fig. 4. Power allocation and battery SOC response.

power capacity of charging station corresponding to Fig. 4.
Therefore, the supplied total charging power is a compromise
result of the game among PV, battery and grid.
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Fig. 5. The actual and required total charging power and their ratios.

C. Performance Comparison on Power Allocation

For reference purposes, the proposed two-stage scheme (i.e.,
TS#2 below) is compared with other three approaches:
(1) The conventional rule based strategy (RBS) [17], [18]:

When there is surplus power, the excess energy is stored in
the ESS, and when there is a shortage of power, the battery
discharges, or distribution grid provides the power.

(2) The pricing scheme (PS) in Ref. [14], [15]: The EV
charging demands are pricing sensitive and impacted by
the price determined by the charging station.

(3) The proposed two-stage based scheme but without con-
sidering grid ramping and quasi-pricing scheme in (20)
(TS#1).

(4) The proposed two-stage based scheme (including grid
ramping and quasi-pricing scheme in (20)) (TS#2).

Fig. 6 shows that the grid power profiles of the four
schemes. Under RBS and PS, the abrupt changes in the grid
power are observed, which is due to the control logics. The
RBS and PS schemes require the grid to bear the most of the
charging demand alone. Meanwhile, the grid power profile
under TS#2 is the smoothest. Comparing TS#1 with TS#2,
the fluctuation in TS#2 is greatly alleviated because of the
included grid ramping constraint, and battery better works to
absorb the fluctuation. Note that frequent power fluctuation is
undesired for the grid, which may reduce the power quality and

adversely affect system performance. In addition, thanks to the
developed quasi-pricing scheme to restrict the peak charging
demand, both PS and TS#2 enable lower grid peak power
without reaching the upper limit of grid output.
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Fig. 6. Comparison results of grid power.

Fig. 7 depicts the battery power and SOC response. Due to
the battery capacity is limited, the battery energy is quickly
drained under RBS and PS, and the effective working time
of battery is relatively short. While developed TS scheme
can keep battery with sufficient margin for discharging and
charging to share the burden of grid. Thus, RBS and PS is
suitable for applications with large battery capacity, and the
proposed strategy could save the battery capacity. Comparing
with RBS and PS, TS#1-2 can recover to the starting SOC
of battery at the end of a day. This makes the same dispatch
flexibility at each day. In addition, TS#1-2 let battery withstand
the frequent power fluctuations and reduce the impact on the
grid.
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Table I compares the results of RBS, PS, and TS#1-2 in
terms of the following six criteria: battery maximum power,
battery working time, grid peak power, grid peak-to-average
ratio (PAR), grid power fluctuation and number of served
EVs. A lower PAR is preferable for the grid as it indicates
improved peak load regulation and the overall load on the grid
is flattened. Although PS has the lowest grid peak power, it
significantly reduces the EV charing demands, thereby further
extending the EV charging time. This in turn causes less served
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EVs due to the long occupation of the EV chargers. Comparing
with other three schemes, the proposed TS#2 demonstrates a
balanced and improved performance.

TABLE I
COMPARISON AMONG THE FOUR SCHEMES.

Bat. Bat. working Grid PAR Grid fluctua- Served
max.(kW) time(Hours) Max.(kW) tion max.(kW) EVs

RBS 79 15 100 4.54 50 55
PS 61 19 75.5 5.14 32.2 45

TS#1 64 48 100 3.47 17.4 59
TS#2 57 48 91.6 3.3 2.4 57

D. Performance Comparison on EV Charging Coordination

EV players need compete the limited total charging power
determined by charging station according to the algorithm 2.
Taking the first coming 7 EVs in Fig. 4 for example, here
they are assigned the same required charging power preqe,i =
20 kW for comparison convenience. Two cases with different
Qe,i settings are compared. In Case 1, seven EVs have the
same Qe,i values of 2. In Case 2, the Qe,i value from EV1 to
EV7 are intentionally set from 2 to 7, with an interval of 0.5,
meaning they have different preferences.

50 100 150 200 250
0

10

20

C
P

1
/k

W

Case1

Case2

50 100 150 200 250
0

10

20

C
P

2
/k

W

50 100 150 200 250
0

10

20

C
P

3
/k

W

50 100 150 200 250
0

10

20

C
P

4
/k

W

50 100 150 200 250
0

10

20

C
P

5
/k

W

50 100 150 200 250

Time [min]

0

10

20

C
P

6
/k

W

EV1

EV2

EV3

EV4

EV6

EV7

EV5

EV6
EV5

EV2 EV3 EV6 EV7EV4 EV5

Group 1

Group 2

Coming EV: EV1

Fig. 8. Charging coordination comparison of Case 1 and 2.

Fig. 8 shows the dispatched charging power of each EV.
For Case 1, when multiple EVs are charged at the same time,
the plugged-in EVs obtain the equal charging power because
of their equal Qe,i. However, for Case 2, their dispatched
charging power are changed since their Qe,is are different.
Particularly, in Case 2, since EV2 with lower Qe,i has longer
cross-charging interval with others, its charging power is cur-
tailed, thereby its total charging time is extended by 11.3%. In
contrast, the EV4-7 obtain larger charging power and complete
their charging tasks in advance. Moreover, when each EV with
higher Qe,i joins such as EV5-7 , charging power of EV2 is
reduced accordingly.

Here EV1-3 are classified as Group 1, and the remaining
EVs are classified as Group 2. The charging completion time
of EVs of Group 1 is delayed. Conversely, EVs of Group 2
in Case 2 obtain more power, and shorten their charging
completion time. Therefore, this mechanism is very helpful for
EVs with urgent charging tasks (e.g. EVs with extremely low

SOC). Facing the limited total charging power, the proposed
scheme provides a viable solution to coordinate the charging
power among EVs considering their different preferences.

E. Islanded Operation

The proposed two-stage scheme is also tested in the case of
electricity outage, namely an islanded operating mode. Under
this case, there is no grid connection and hence the on-site
PV and battery jointly supply all the charging power for
EVs. The results are shown in Fig. 9. Due to the insufficient
power supply, the stored battery energy is quickly consumed
comparing with the grid-connection operation in Fig. 4. Mean-
while, more PV power is utilized. Under the present scenario,
the EV charging mainly occurs when PV power generation
is available. Overall, electricity outage worsens the charging
power provision but with the proposed two-stage scheme, the
charging station can still maintain its basic charging ability
through the PV and battery.
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Fig. 9. Power allocation and battery SOC response under islanded mode.

F. Main Achievements

Here we briefly summary the obtained results and main
achievements based on the above simulation results and com-
parisons. In order to respond to the EV charging demand,
the first stage of the proposed scheme determines the outputs
of PV, battery and the grid, and eventually the associated
compromised total charging power, namely performing the
power allocation. As a result, battery is properly utilized to
provide long-lasting service and sufficient regulation margin
for fast adjustment, thereby reducing the burden on the grid.
Meanwhile, the developed quasi-pricing scheme effectively
reduced the peak charging demand. For the EV charging
coordination, i.e., in the second stage, the proposed scheme
gives a compromised solution for the EV charging power
dispatch under limited total charging power. The dispatch
results also reflect the charging preferences of individual EVs,
in which an EV with urgent charging requirement obtains more
charging power.

VI. EXPERIMENTAL VERIFICATION

A reduced-scale testbed, 1:1000 at power level, is setup
to validate the implementation of the proposed two-stage
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scheme. The EV charging station and the hourly time step
are also downscaled to three chargers and to minutely time
step, respectively. As shown in Fig. 10, PV and grid are
combined together and emulated through a controllable power
supply on the left side. The battery is set up using actual
cells and connected directly to the dc bus. The emulated
EV chargers are on the right side and each one contains
its own unidirectional buck dc-dc converter. Electronic load
mimics the on-board battery dynamics, and a local National
Instruments (NI) myRIO as a local controller. All of the dc-dc
converters are controlled by PI (Proportional and Integral)-
based Pulse-Width-Modulation. The high-accuracy sampling
resistors are used as current sensors. The host PC collects and
records all the experimental data as well as communicates with
the NI CompactRIO and NI myRIOs via Ethernet and Wi-Fi,
respectively. It also controls power supply through its RS232
serial communication ports. The specifications for the major
components of the testbed are listed in Table II.

Battery Power Supply NI CompactRIO Electronic Loads

Host PC Sampling 

Resistors
NI

MyRIOs

DC-DC

Converters

DC

Bus

Fig. 10. Reduced-scale testbed.

A scenario of five EVs is considered here of which except
Qe,i other parameters such as battery capacity, SOC, required
charging power are same. A comparison between the sim-
ulation and the experimental results are shown in Fig. 11.
Here, battery undertakes the power fluctuation arising from
intermittent PV power generation. For EVs, EV1 has smaller
Qe,i than EV2 and EV3, and thereby its charging power is
reduced and its charging time is extended. Once EV2 and
EV3 leave, EV1 obtains higher charging power. Similarly,
the situation is similar for EV4 and EV5. As seen, the
experimental charging powers of EVs well match the results
in simulation. This validates the real-time implementation and
correctness of the proposed energy management.

TABLE II
SPECIFICATIONS FOR MAJOR COMPONENTS.

Power Supply Max power: 800 W
(Takasago ZX-800L) (0-80V, 0-80A)
Electronic Loads Max power: 150 W each
(3 Maynuo M9711) (0-150 V, 0-30 A each)
DC-DC Converters Max power: 100 W each
(Design/fabricated in house) Switch Frequency: 20 kHz
Li-ion Battery Pack Four cells (series), 12.5 Ah/cell,
(Lishen LP2770102AC) 3.2 V/cell (nominal voltage)
High-accuracy Sampling Resistors RH250M4 0.01 Ω (± 0.02%)
(PCN Corporation RH series)
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Fig. 11. Experimental versus simulation results.

VII. CONCLUSION

This paper presented a two-stage scheme for the power al-
location of charging station and coordination of EVs charging.
The power allocation among PV, battery and the grid as well
as the available total charging power was solved in the first
stage. Game theory was applied to deal with the different
preference of each component, and its Nash equilibrium was
directly solved based on the best response strategy. Then, the
determined total charging power published to the second stage
as coupled constraint. The EV charging coordination problem
was solved by considering their unique individual charging
requirements. And it was implemented in a distributed manner.
Finally, the proposed scheme was evaluated through simulation
and experiment. Comparing with conventional RBS, the pro-
posed scheme could continuously maintain the battery SOC
in an intermediate level, and make the grid power profile
smooth as well as with lower PAR and peak power. The
numerical results and comparison with benchmarks confirmed
the effectiveness of the proposed solution.
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