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Abstract—This paper proposes a charging management of elec-
tric vehicles (EVs) with a newly presented EV social contribution.
The EV charging problem is represented by a generalized Nash
equilibrium game where each individual EV tries to minimize its
charging cost while satisfying its own charging requirements and
respecting the charging facility constraints. The individual EV
features a social behavior to potentially contribute in shifting its
charging schedule from specific intervals that have insufficient
charging power. This shift in the EV schedule will allow more
charging power to other EVs that admit stricter charging require-
ments, i.e., intervals and demands. In this way, the contributed
EVs socially help others in reducing their charging costs which is
particularly important during the overload cases in the system.
The proposed solution is reached iteratively in a distributed way
utilizing the consensus network and found based on the receding
horizon optimization framework. Both simulation and experi-
mental results demonstrate the effectiveness and correctness of
the proposed social contribution in the charging management for
reducing the charging cost of EVs.

Index Terms—Distributed charging management, electric ve-
hicle (EV), social contribution, game theory, multi-step optimiza-
tion, overload control, consensus network.

I. INTRODUCTION

RENEWABLE energy sources and electrification of trans-
portation have recently drawn an increasing interest due

to the demand growth in energy and environmental concerns.
Electric vehicles (EVs) have also received a notable attraction
by industry and government and considered as promising
automobiles for future transportation [1]. However, EVs face
a prominent challenge to be re-charged periodically given the
travel trips made by the EV drivers and the limited capacity
of the EV on-board battery. This issue will largely affect the
total load on the charging distribution system as the number of
EVs increases. Therefore, uncontrolled EV charging can cause
harmful load peaks especially when overloads the capability
of the charging facility system [2]. This issue, together with
charging requirements of individual EVs and constraints of
charging facilities, makes the EV charging problem more chal-
lenging. These matters demonstrate the necessity to develop
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an effective charging management to improve the charging
operation efficiency, to coordinate the charging schedules of
individual EVs, and to reduce their charging costs.

There are two main classes of control architecture proposed
in the EV charging problem namely centralized and distributed
approaches. Ref. [3] proposed a centralized control approach
to minimize the total charging costs of EVs considering two
charging modes and time-of-use electricity price. In Ref. [4],
a binary optimization method with convex relaxation was
developed for EV charging scheduling. Ref. [5] applied an
improved learning particle swarm optimization algorithm to
optimize the power distribution with enhanced economic ben-
efits. However, with a large number of EVs in the system, the
centralized approaches encounter difficulties in collecting the
information and applying the solution in a specified interval.

The distributed control, on the other hand, has recently
received a notable attention because it allows scalability in
real-time and lowers the computation and communication
burden. It can also protect the privacy of the individual EVs
by reaching the solution without revealing their private infor-
mation. Ref. [6] proposed a distributed charging method for
plug-in hybrid EVs (PHEVs). The objective of each individual
PHEV user was to maximize its charging load at lower cost.
The PHEV users could adapt their charging rates on the basis
of dynamic pricing information and the optimal solution was
iteratively reached at the so-called equilibrium price. Ref. [7]
applied a noncooperative game theory into the EV charging
problem. The proposed charging management is distributed
in which each EV minimized its charging cost on the basis
of pricing policy from a regional aggregation unit. A hybrid
particle swarm optimization method was adopted to reach the
solution. Ref. [8] focused on a valley-filling objective to the
charging profile in the EV charging scheduling problem. The
proposed iterative algorithm required each EV to solve its
local problem of minimizing its charging cost only. In each
iteration, EVs updated their charging profiles responding to
a control signal broadcast by the utility company. Ref. [9]
introduced a distributed charging management of EVs in which
the objective was set to minimize the operation cost of the
power grid network. The day-ahead iterative solution was
reached by a partial decomposition method on the basis of
the Lagrangian relaxation framework. Ref. [10] applied game
theory into the EV fast charging station. The EV objective in
this approach compromised between benefits from charging
and reserves provision. The maximization of the proposed
social welfare was emphasized without mentioning charging
power distribution among EVs. In Ref. [11], the EV charging
problem in a microgrid of buildings was formulated as a
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Markov decision process. The objective was to maximize the
profit of the building while reducing the charging costs of EV
owners. The solution was heuristically proposed as a distribut-
ed simulation-based policy. Ref. [12] introduced a cooperative
charging approach to minimize a common cost function of
plug-in EVs (PEVs). This approach simplified the diversity
of the cost functions of EVs and the cooperative approach
can not be guaranteed to be existed between EVs since they
basically have selfish charging nature. Moreover, The charging
capability of the system was not considered nor its effect on
the charging power distribution among EVs. Ref. [13] pro-
posed a noncooperative game-theory-based charging control to
minimize the charging cost of each individual PEV. Since the
proposed method is a pure noncooperative, it lacks the ability
to consider possible cooperation between EVs which may exist
in practice. Moreover, the charging control did not show the
effect of limited total power for charging on the power dis-
tribution among EVs and how each EV reduces and shifts its
charging demand to other time accordingly. Unlike [12], [13],
the proposed charging management in this paper steps closer
to more realistic situations in terms of charging nature by
adopting both noncooperative and cooperative approaches, and
in terms of charging environment by addressing in detail the
power distribution among EVs under cases of limited total
power for charging.

This paper proposes a distributed charging management
that reduces the charging cost of each individual EV based
on a receding horizon optimization which is suitable for a
dynamic charging environment, e.g., with weather forecast
uncertainties and different EV driving pattern scenarios. The
proposed strategy does not compromise the security of the
charging network, i.e., does not reveal its individuals’ private
information comparing with [4], [5]. The approach considers
a social behavior of EV defined by its contribution to assist
in reducing the charging costs of others without sacrificing its
own charging cost. This is possible if the EV has the ability
to shift its charging power from certain times to others under
the same electricity price. In this way, the total power for
charging will be more available for EVs that admit stricter
charging requirements, e.g., high charging energy demands
and short charging intervals. The EVs here are assumed to
feature a social contribution behavior by some motivations and
incentives supported, for example, by the charging facility. The
major work of this paper is summarized as follows:

1) The proposed charging management considers a dynam-
ic charging capability constraint, i.e., a limited total
available power for charging EVs, and couples it with
the existing demand curtailment request and overload
control [4], [13].

2) Different from the pure noncooperative methods in charg-
ing [10], [13], this paper attaches the selfish behavior
with a social one. In this way, the proposed method
minimizes the charging costs of individual EVs based on
both a competitive manner and a cooperative assistance.

3) A social contribution behavior of EV is newly included in
the charging management which is particularly important
in the cases of limited total available power for charging,

i.e., overload cases in the system, that lead to lowering
the charging costs of EVs.

The rest of this paper is organized as follows. Section II
models the test system including the EV charging problem.
Section III develops the solution of the EV charging manage-
ment with the proposed social contribution concept. Detailed
simulation analysis is discussed in section IV. Experimental
results are presented in section V followed by conclusion in
section VI.

II. SYSTEM MODEL

As illustrated in Fig. 1, the test system is one node with
a feeder of the distribution power network named as EV
charging station (EVCS). This EVCS consists of a grid system
(GS), a photovoltaic system (PVS), a battery energy storage
system (BESS), a base load system (BLS), and a number of
EVs (N := {1, 2, . . . , N}). Each system could be a group of
systems with the same type. GS can give or receive power
symbolized by GS+ or GS−, respectively. The model of PVS
is derived as in [14], while the battery (i.e., BESS and EV
on-board) is modeled by its equivalent circuit model [15].
The BESS is utilised to buffer the power between surplus
and intermittent periods and mitigate the power and voltage
fluctuations [16]. BLS represents the base demand load (i.e.,
non-EV demand). Besides of the aforementioned systems,
there is an EVCS operator that handles the following missions:

1) Controls the power flow among GS, PVS, BESS, and
BLS in a similar way in [16].

2) Announces the total available power for charging EVs
and checks its violation.

3) Exchanges the shared (i.e., public) data between the
connected systems.

4) Coordinates the charging of EVs over a multi-step charg-
ing interval T := {1, 2, . . . , T}.

GS BESS

pg pb

PVS

ppv

EVN

pev,n

EV2

pev,2

EV1

pev,1

∑ pev,i

EVCS Operator

Power LineCommunication Line

pev, pev, pev,

pl

BLS

Node

Fig. 1. Structure of the test system

A. Available Charging Power Domain

The total available power for charging EVs pava,t relies
on the power flows of GS, PVS, BESS, and BLS, namely
pg,t, ppv,t, pb,t, and pl,t, respectively. After supporting the
demand of BLS, the total available power at any time t can
be calculated as

pava,t = pg,t + ppv,t + pb,t − pl,t, ∀t ∈ T . (1)
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By considering a maximum loading capability of the distri-
bution power network feeder Pmax

g and an overload safety
factor of EVCS ηt(≤ 1) [13], the charging power capability
of EVCS Pmax

c,t can be written as

Pmax
c,t = ηt(P

max
g + ppv,t + pb,t − pl,t), ∀t ∈ T . (2)

Given that pn,t is the battery charging power of EVn, the
available charging power domain can be then written as

0 ≤
∑
n∈N

pn,t ≤ pava,t ≤ Pmax
c,t , ∀t ∈ T . (3)

It is important to mention that (3) is the common constraint
that couples the charging schedules of EVs and the overload
cases are occurred when this constraint is violated at its upper
bound.

B. EV Charging Domain

The dynamic model of charging the EV on-board battery
can be described by the linear model (4) in which SoCn,t is
the state of charge of the EVn’s battery at time t, ηc ∈ (0, 1]
is the charging efficiency, In,t is the current cross the battery,
∆t is the time step, and Cn is the battery capacity (Ah).

SoCn,t+1 = SoCn,t +
ηcIn,t∆t

Cn
. (4)

Each EVn arrives EVCS at time T a
n with energy Ea

n and needs
to meet its demanded energy Ed

n when it departures at time T d
n .

Hence, the total requested energy for charging in the interval
T is Er

n,

Er
n = Ed

n − Ea
n = T

∑
t∈T

pn,t. (5)

Giving that SoCa
n is the state of charge of EVn at the arrival

time to EVCS and SoCd
n is its state of charge at the departure

time from EVCS, the following has to be held during charging

SoCa
n ≤ SoCn,t ≤ SoCd

n. (6)

C. EV Charging Problem

Consider a noncooperative game-theoretic based charging
management where each player, i.e., individual EVn, has
a preference to minimize its own charging cost under its
charging requirements. If Sn is the electricity price sensitivity
($/kWh2) of an EVn, Pmin

n,t and Pmax
n,t are the lower and up-

per bounds of the charging power of EVn, respectively, and pet
is the electricity price ($/kWh), the charging problem of each
EVn can be then defined to minimize the following quadratic
cost function along with its corresponding constraints,

min
pn,t

∑
t∈T

(
1

2
Sn∆t2p2n,t + pet∆tpn,t

)
(7)

s.t.
∑
n∈N

pn,t ≤ pava,t, ∀t ∈ T , (8)

Pmin
n,t ≤ pn,t ≤ Pmax

n,t , ∀t ∈ T . (9)

It is known that representing a problem by a theoretic game
means that its solution is called Nash equilibrium. Since the
constraint (8) couples all the charging powers of EVs, the

aforementioned charging problem is actually a generalized
Nash equilibrium (GNE) problem [17].

The lower bound and the upper bound of the charging power
of EVn are defined by the instantaneous power constraint (9).
Since this paper discusses a uni-directional charging of EVs,
the lower bound of the charging power is set to zero. However,
the upper bound equals the EVn’s charger power rate P r

n in
times when it is plugged-in (i.e., the binary parameter In,t =
1) and zero otherwise,

Pmax
n,t =

{
P r
n In,t = 1

0 In,t = 0.
(10)

III. CHARGING MANAGEMENT PRINCIPLE

The proposed solution of the EV charging problem de-
scribed in this section is based on a receding horizon opti-
mization framework over T time steps rather than a single
time step [18]. However, only the first action of the opti-
mal schedule will be applied at the current time step. The
optimization will be carried out again in the following time
step with a shifted horizon by one time step and with updated
realization based on the newly available information. The re-
alization results from several reasons such as weather forecast
uncertainties and different EV driving pattern scenarios, e.g.,
a modified constraint of the departure time. This point makes
the proposed optimization framework suitable in a dynamic
environment. It is worth to mention that the advantage of the
proposed charging management with the social contribution
concept is still existed and its essence is not changed in both
the deterministic and the stochastic information.

A. Optimality Conditions

Based on the Karush–Kuhn–Tucker (KKT) conditions of
optimality, the Lagrangian function of the aforementioned EV
charging problem for each EVn after introducing its Lagrange
multipliers λn,t, µmin

n,t , and µmax
n,t can be given by

Ln =
∑
t∈T

(
1

2
Sn∆t2p2n,t + pet∆tpn,t

)

−
∑
t∈T

λn,t

(∑
n∈N

pn,t − pava,t

)

+
∑
t∈T

µmin
n,t

(
Pmin
n,t − pn,t

)
+
∑
t∈T

µmax
n,t

(
pn,t − Pmax

n,t

)
.

(11)

Consequently, by considering a bold style of a symbol as a
T × 1 vector of its quantity, i.e., values over T time steps, the
gradient condition of the KKT necessary optimality conditions
is
∂Ln

∂pn
=

(
Sn∆t2pn + pe∆t

)
− λn + µmin

n + µmax
n = 0.

(12)

Due to the convexity of this problem, i.e., convexity of the cost
function along with linear inequality constraints, both the ex-
istence and the uniqueness of the GNE can be mathematically
demonstrated. Thus, KKT necessary conditions are sufficient.
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At the most socially stable equilibrium, i.e., λ, the optimal
solution, i.e., the Nash equilibrium (NE), for each EVn holds
the following [19],(

Sn∆t2pn + pe∆t
) .

= λ, (13)

with pn has not violated its lower and upper bounds [refer to
(9)]. By introducing a projection operator P [.] of the argument
into the feasible charging domain of EVn between Pmin

n and
Pmax

n , the optimal solution can be then uniquely represented
in terms of λ as

pn = P
[
λ− pe∆t

Sn∆t2

]
. (14)

If a centralized control method is applied here, then assigning
the charging power of each EV by (14) will be the responsibil-
ity of the centralized (i.e., global) controller. To this end, this
global controller has to know all the information of EVs, such
as Sn’s, to be able to find λ and then to reach the solution (14).
However, after assuming the privacy of the EVs’ local (i.e.,
private) information, the centralized control method usually
becomes invalid. This assumption makes sense in practice,
since each EV cares mainly about its local information,
preference, and constraints, i.e., (7) and (9). Furthermore, the
social contribution concept, which is proposed in the following
section, is also a private issue for EV and can not be handled
by a global controller. Moreover, after considering a large
number of EVs in the EVCS, the centralized approach faces
difficulties in gathering the information of EVs and applying
the solution in a specified interval. Therefore, making the
charging decisions of EVs by themselves is reasonable here,
and thus a distributed charging management is proposed in the
following section.

B. Distributed Management with Social Concept

The aim here is to solve the EV charging problem, i.e.,
reaching (14), along with the influence of the proposed social
concept in a distributed way, that is, without global controller
and without revealing the EVs’private information. Note that
the EVCS operator here is just a coordinator who handles a
coordination task of announcing the total available power for
charging EVs pava and checking its violation. As mentioned
in the previous section, each EV is willing to set its own charg-
ing power decision pn by itself, thus each EV is assumed to
have a local controller that accesses only its local information
and sets its own decision. However, handling the common
constraint (8) and then reaching the solution (i.e., λ) requires
communication between these local controllers and exchange
to their public information, i.e., pn’s and λn’s, as illustrated
in Fig. 2. In this distributed structure, EVCS operator and EVs
are represented by individual nodes connected by a network
of links. Each EV node executes algorithm 1, which shows
the proposed distributed charging management with social
contribution (DCMSC) for an EVn in a single time step.
This algorithm is initialized by setting the binary flag of
social contribution SC to one. For clarity, algorithm 1 is
organised as three tasks, namely optimization, communication,
and contribution, in which each task has a unique meaning and
function as explained below.

Optimization

Communication

Contribution

Coordination

1λ 1p

1..npavap

λ
nλ np
λ

λ 2λ
2p

EVCS Operator

EV1EVn

EV2

Network

NodeLink

OptimizationCommunicationContribution

Optimization

Communication

Contribution

Fig. 2. The network of connected nodes with their tasks.

Firstly, optimization task means finding the optimal charg-
ing schedule, i.e., solving the charging problem, of each
EVn over the time horizon individually with its own current
constraints only [refer to line 2 in algorithm 1]. Note that here
the maximum charging power of EVn, Pmax

n , is dynamically
changing, and the optimal outcomes are pn and λn. This is
an important step to create the intended distributed structure
and to emphasize the ability of each EV to make its initial
charging decision. Thus in the first round of processing this
task, no overload cases are yet addressed in the system. Note
that executing this task only while dropping the other two tasks
in the charging management will be named as method-1 [refer
to the beginning of section IV].

Secondly, communication task means communicating be-
tween nodes to tackle the common constraint (8), i.e., over-
load control. In other words, it is the only task in which
the nodes communicate to check the overload cases if they
occur when violating (8) in any single time step over the
time horizon [refer to line 3]. Algorithm 1 terminates at
the Nash equilibrium if no overload cases are met or after
handling them along with the contribution task. However, if
any overload case is met, the binary flag of overload OL is
set to one. Hence, a compromised solution in this time step
is expected to be reached between the nodes (i.e., EVs) by
suppressing their charging powers currently demanded to meet
the constraint (8). In other words, reaching the solution (14)
requires converging all values of λn,t’s of the EV nodes to
the global decision-making value λt, an element of λ as
discussed in the follows. First, the power mismatch due to
violating the common constraint will be assigned to ∆pt. This
term is important to bring the power balance back into the
system to meet the constraint (8) at its upper bound. In the
distributed structure here, each EV local controller shares only
its public information (pn and λn), and interacts iteratively
with other neighboring local controllers. This interaction-based
method is implemented by utilizing the consensus network
concept [19]. To do so, each node updates its λn,t utilizing
the sum of the weighted differences between this node’s λn,t
and that of its neighbors’ λj,t’s and the weighted degree of
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Fig. 3. Concept of the charging power of EVn. (a) Without social
contribution. (b) With social contribution.

violating the common constraint as well [refer to line 13]. βn
and αn are two weight parameters and Nn is the neighbor’s
set of node n [19]. As the convergence is accomplished,
the new maximum charging power of EVn, Pmax

n , can be
calculated similar to (14) [refer to line 15]. Note that ε0 and
ε1 are small user defined values. After addressing the overload
case, EVn has to re-optimize its charging schedule with the
new calculated value of the maximum charging power. Once
handling the overload cases, the final task will be launched. It
is noted that handling only the first two tasks in the charging
management means addressing the optimal schedule of EV
along with the overload control and this will be named as
method-2.

Finally, the contribution task means the potential self-based
modification made by the individual EVn on its charging
power. The social contribution concept of EVs proposed here
means that the contributed EVn can shift its charging schedule
over several same electricity price periods since it has a
loose charging requirement, i.e., a charging demand over long
charging interval. As a result, this EVn can lower its charging
demand by the amount named as social energy in a specific
time st ∈ To during the overload periods To ⊂ T . This energy
amount of EVn can be compensated in other periods named
as social periods Tn,st and defined by (15) to be the time steps
out of the overload times and with the same electricity price,
to reserve the EVn’s charging cost, when it is plugged-in.

Tn,st = {t ∈ T \To | pet = pest, In,t = 1}. (15)

The concept of the social contribution on the charging power
of EVn is illustrated for clarity in Fig. 3. On the other hand,
there are some EVs having stricter charging requirements
and may need to be charged over different electricity price
times including the overload periods. Therefore, given the
shifting demand by the contributed EVn from To, the total
available power for charging during To will be more available
for these in-need EVs. In other words, the in-need EVs can
increase their demands during To and lower them in the high
electricity price periods, i.e., lower charging costs. In such
a way, the EVn may socially help other EVs in reducing
their charging costs. The aforementioned description about
the social concept can be then formulated in algorithm 1 as
follows. During the overload times To, EVn will calculate its
social energy Es

n which is still able to be charged during
the social times Tn,st. In other words, the weighted time
sum of the differences between its maximum charging power

and its calculated charging power [refer to line 23]. If the
social energy is bigger than its threshold Es,th

n , EVn can then
contribute others by decreasing its maximum charging power
according to its social energy value. However, the EVn will
compensate the previous decrease by increasing its charging
power during Tn,st later again in the optimization task. Finally,
after addressing the overload cases (i.e., OL = 1) and the
social contribution (i.e., SC = 1) by passing over the above
described three tasks, algorithm 1 will terminate in line 4.
The so-called method-3 means that the charging management
runs the three above described tasks, i.e., the optimization,
communication, and contribution tasks.

Algorithm 1 DCMSC
I. Initialization
1: SC = 1

II. Optimization Task
2: Solve (7) subject to (9)

III. Communication Task
3: if (

∣∣∑
n∈N pn − pava

∣∣ ≤ ε0) & (SC = 1) then
4: Terminate
5: end if
6: SC = 0
7: OL = 0
8: for ∀t ∈ T do
9: while

∑
n∈N pn,t > pava,t + ε0 do

10: OL = 1
11: ∆pt =

∑
n∈N pn,t − pava,t

12: while max(|λn,t − λj,t|) > ε1 do ∀j ∈ Nn

13: λn,t ← λn,t +
∑

j∈Nn
αn(λj,t − λn,t) + βn∆pt

14: end while
15: Pmax

n,t = P
[
λn,t − pet∆t
Sn∆t2

]
16: end while
17: end for
18: if OL = 1 then
19: Go back phase II
20: end if
IV. Contribution Task
21: for ∀t ∈ To do
22: st = t
23: Es

n = Tn,st
∑

t∈Tn,st
(Pmax

n,t − pn,t)
24: if Es

n ≥ Es,th
n then

25: if Es
n ≥ ∆tpn,t then

26: Pmax
n,t = 0

27: Es
n ← Es

n −∆tpn,t
28: else
29: Pmax

n,t = pn,t − Es
n/∆t

30: Es
n = 0

31: end if
32: Go back phase II
33: end if
34: end for
35: SC = 1
36: Go back phase II
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IV. SIMULATION RESULTS

The performance of the proposed algorithm has been eval-
uated by two case studies. The first is established with a small
number of EVs charging during a specific interval of the day
to show clearly the effect of the social contribution on the
power distribution of EVs. While the second which adopts a
large scale penetration of EVs charging throughout one day is
illustrated to demonstrate the effect of the social contribution
on the charging cost reduction. In both cases, the simulation
configuration is set up as follows.

The pairs of the on-board battery capacity 22–242 Ah and
the charger power rate 3.3–10 kW of EVs are selected random-
ly within the data bank in [20]. Meanwhile, the SoC values
at the arrival and departure times are considered to follow a
normal distribution, 0.2–0.6 and 0.7–0.9, respectively [21].
The EV arrival time to EVCS could be any time, however,
there are two mean peak arrival times: one in the morning
(08:30) when people come workplace and the other at night
(17:30) when they return back home [13]. The EV departure
time from EVCS is randomly set after considering its own
realization, i.e., specifications and charging requirements. The
solar irradiance and temperature data needed by PVS to gener-
ate the solar power is taken from [22]. The BLS load and the
electricity price profiles are taken from [23], [24], respectively.
The optimization time horizon is one day, and the sample-
time is 15 minutes. The charging power capability of EVCS is
considered in a similar way to the maximal charging capability
in [13]. Note that method-1 and method-2 [13], [19], [25],
which have been described in section III-B, are adopted to
serve as comparison methods with the proposed charging
management represented by method-3. The addressed issues
by each method are summarised as follows:

1) Method-1: Optimizes the schedule of each EV but can not
handle the overload cases in the EVCS, i.e., no overload
control.

2) Method-2: Optimizes the schedule of each EV and
handles the overload cases in the EVCS, i.e., overload
control.

3) Method-3: Optimizes the schedule of each EV, handles
the overload cases, and applies the social contribution.

A. Small Scale–Specific Interval Case Study

Given the aforementioned simulation configuration, three
EVs are chosen with different realizations listed in Table I that
are charging in the specific interval 8:00–16:00. The electricity
price is shown in Fig. 4 (a) and the results of the above three
methods are shown in Fig. 4 (b)-(d).

TABLE I
REALIZATIONS OF THE EXAMPLE THREE EVS

Target EV Cn(Ah) P r
n(kw) Ta

n T d
n SoCa

n SoCd
n

EV1 48 3.3 8:30 13:10 0.21 0.90
EV2 51 3.3 8:35 13:20 0.23 0.89
EV3 54 3.3 8:40 15:52 0.32 0.85

As seen from the results of method-1 in Fig. 4 (b), all
EVs are charged with their maximum charging powers at
electricity price 0.160. Then, while EV3 fulfilled its charging

requirement at price 0.170, EV1 and EV2 are still charged
with their maximum charging powers at it and fulfilled their
charging requirements at price 0.240. It is noticed that SoCs
of EVs start to increase beginning from their arrival values at
their arrival times with the same rate of their charging powers
until they meet their departure values at their departure times.
It is known that the overload cases occur as the charging
requirement of EVs, i.e., total charging power (

∑
n∈N pn,t),

exceeds the charging capability. Since method-1 does not
have overload control, one overload case is occurred in the
period 11:00–13:10 with amount shaded in purple. Note that
in the period 08:00–09:00 no overload is happened since
the charging requirement of EVs is 3.3×3=9.9 kW and the
charging capability is 10 kW. Since the overload is harmful
and causes a load imbalance in the EVCS, the EVCS operator
applies a penalty during this case such as increment on the
electricity price [26]. This increment is assumed here to be
0.075 $/kWh. Accordingly, the charging costs of each EV
and of all EVs (EV1−3) by method-1 are shown in Table II.

The results of method-2 in Fig. 4 (c) observe similar
trends to that ones in method-1. However, in contrast to
the results of method-1, no overload in the period 11:00–
13:10 is occurred and the charging requirement has always
respected the charging capability. Note that the charging power
distribution among the three EVs during the overload period
has followed the procedure mentioned in the communication
task of algorithm 1. Due to the charging requirements (i.e.,
SoCd

n and T a
n ), EV1 and EV2 have to be charged in the high

price period 09:00–11:00. However, since there is no overload
here, i.e., no price penalty, the charging costs of EVs have
decreased as listed in Table II.

The results of method-3 in Fig. 4 (d) match that ones in
method-2 by respecting the charging capability, while show
some differences because of the social contribution affect.
EV3 here has a late departure time and has also the ability
to increase its charging power after the departure time of
EV1 (i.e., 13:10) because its charging power did not reach
its charging power rate 3.3 kW. This condition gives EV3

the ability to contribute to other EVs by decreasing (stopping
here) its charging power in the lowest charging capability
period 11:00–13:10. EV1 and EV2 get a chance, accordingly,
to increase their charging powers from the EV3’s share. This
will help both EV1 and EV2 to decrease their charging powers
during the highest price period 09:00–11:00. As a result,
their charging costs, comparing to those in method-2, have
decreased as recorded in Table II. Note again that EV3 has
fulfilled its charging requirement by increasing its charging
power in the period 13:10–15:52 which admits the same
price to that one it decreased its power at before, i.e., 0.170.
This means that EV3, comparing with method-2, has socially
contributed, i.e., without harming or benefiting its charging
cost, to decrease the charging costs of EV1 and EV2 by $0.139
for each and a total by $0.278. In other words, a charging
cost reduction by 5.799 % and 5.753 % for EV1 and EV2,
respectively, and a total by 4.268 %. It should be noted that
the charging cost reduction can be much bigger with higher
electricity price, different realizations, and larger penetration
of EVs.
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Fig. 4. (a) Electricity price profile. Charging capability, charging requirement,
and EVs’ responses of power and SoC in (b) Method-1. (c) Method-2. (d)
Method-3.

TABLE II
EV CHARGING COSTS IN 8 HOURS.

Target EV EV1 EV2 EV3 EV1−3

Method-1 ($) 2.673 2.693 1.976 7.342
Method-2 ($) 2.397 2.416 1.700 6.513
Method-3 ($) 2.258 2.277 1.700 6.235
Charging cost reduction ($) 0.139 0.139 0.000 0.278
Charging cost reduction (%) 5.799 5.753 0.000 4.268

It has to be mentioned that in real life EVs can not know
or inform their exact arrival or departure times to EVCS
because inaccuracy in their predicted values may occur, such
as when using different map services. This error results in a
time difference and then may lead to a mismatch in the current
charging schedules and costs. To reflect the influences of these
uncertain scenarios on the charging costs of the proposed
charging management, i.e., method-3, an example of the result
to speed profile deviations, i.e., time differences of ±15 and
±30 min, are applied on the EV1 arrival and departure times
mentioned in Table I. Here ± means after or ahead of the
predicted time. As seen in Table III, a bigger time deviation
will cause a bigger charging cost mismatch. Moreover, the
charging cost mismatch of EV1 caused by the deviation on
the arrival time is bigger than that caused by the deviation
on the departure time. It is because during the arrival time,
EV1 is having a better or worse chance in charging when the
electricity price is the lowest and there is no overload occurred.
On the other hand, due to the higher electricity price and the
existence of the overload during the departure time deviation
of EV1, there is a cost mismatch in EV2 too. Since EV3 is
mostly charging out of the plugged in time of EV1 [refer to
Fig. 4 (d)], it is not influenced by the time deviation of EV1

and thus its charging cost remains the same. Deviations on
the arrival and departure times of EV2 and EV3 will lead to
similar observations.

TABLE III
INFLUENCES OF EV1 ARRIVAL AND DEPARTURE TIMES.

Target EV EV1 ($) EV2 ($) EV3 ($) EV1−3 ($)

Ta
1

±15 min ±0.066 ±0.000 ±0.000 ±0.066
±30 min ±0.126 ±0.000 ±0.000 ±0.126

T d
1

±15 min ±0.057 ±0.009 ±0.000 ±0.066
±30 min ±0.115 ±0.018 ±0.000 ±0.133

B. Large Scale–One Day Interval Case Study

Under the same aforementioned simulation configuration
and comparison methods, the proposed charging management
is tested with 50 EVs throughout one day with electricity price
is shown in Fig. 5 (a) and results are shown in Fig. 5 (b)-
(d). In method-1, after optimizing the charging schedules of
EVs, the results suffer from three overload cases as depicted in
Fig. 5 (b). This is because of the big number of EVs charging
at the same time, i.e., peak charging times. However, EVs
are not charged in the two locally high price periods, i.e.,
located during the charging intervals of some EVs, 09:00–
11:00 and 18:00–20:00. Given the applied price penalty in the
overload periods, the total charging cost of EVs is $102.921.
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Fig. 5. (a) Electricity price profile. (b) Charging requirement of EVs
by method-1. (b) Charging requirement of EVs by method-2. (c) Charging
requirement of EVs by method-3.

Meanwhile in method-2, as expected and shown in Fig. 5 (c),
the extra charging requirement beyond the charging capability
is cut and added to other periods. Part of these additions
will lead to increments happening in the aforementioned two
locally high price periods. However, since no price penalty is
applied here, the total charging cost of EVs has decreased to
$87.104 comparing with method-1. Finally, in method-3 and
as illustrated in Fig. 5 (d), some EVs have socially contributed
by shifting their charging times from the overload periods to
others. This will decrease the charging requirement during the
aforementioned two locally high price periods. As a result, the
total charging cost of EVs has decreased by $5.418 to become
$81.686, i.e., decrease by 6.220 %.

Apart from the above 50-EV scenario, by continuing to scal-
ing up the penetration number of EVs in the distribution power
network, the reduction on the charging cost will be much more
bigger as listed in Table IV. This further demonstrates the
effectiveness of the proposed EV social contribution in the
charging management to reduce the charging costs of EVs.

TABLE IV
CHARGING COST REDUCTION BY SOCIAL CONTRIBUTION IN ONE DAY.

Penetration No. of EVs 250 500 1000 1500
Charging cost reduction ($) 28.119 58.187 109.364 171.811
Charging cost reduction (%) 6.511 6.812 7.162 7.639

Host PC

Power

Supply
Electronic

Load dc bus BESS
NI

CompactRIO
Electronic

Loads

Sampling

Resistors

NI

myRIOs

DC-DC

Converters

Fig. 6. Downscaled testbed.

V. EXPERIMENTAL VERIFICATION

A downscaled testbed, 1:200 at power level, is setup to
verify the distributed implementation of the proposed charging
management. The EV charging facility and the hourly time
step are also downascaled to three charging poles (CPs) and
to minutely time step, respectively. A downscaled scenario
compatible with that in section IV-B, i.e., runs over one-day
interval, is then expected to be created. As illustrated in Fig. 6,
PVS and GS+ are combined together and emulated through a
controllable power supply on the left side. While on the same
side, an electronic load is used to emulate BLS and GS−. The
BESS is installed with actual cells and connected directly to
the dc bus. Each charging pole includes a unidirectional buck
dc-dc converter, electronic load to mimic the on-board battery
dynamics, and a National Instruments (NI) myRIO as a local
controller. All of the three dc-dc converters are controlled by
PI (Proportional and Integral)-based Pulse-Width-Modulation
(PWM). High-accuracy sampling resistors are used as current
sensors. The aforementioned description about the testbest can
be further represented by a functional block diagram as shown
in Fig. 7. Note that here the host PC, who is analogous to
the EVCS operator, collects and records all the experimental
data. It controls the power supply and the left-sided electronic
load through their RS232 serial communication ports. It also
coordinates the local myRIO controllers and communicates
with the NI CompactRI via Wi-Fi and Ethernet, respectively.
The specifications for major components of the testbed are
listed in Table V. The sample-time here is 15 seconds, and
the latency of all the used communications is in the range of
tens of milliseconds.

A scenario of nine EVs in which each three are orderly
charging at a charging pole is considered here. The total
charging costs of EVs by method-1, method-2, and method-3
are $22.113, $20.811, and $19.770, respectively, which admit
similar observations to that in sections IV-A and IV-B. To
avoid redundancy, the focus here is only on the proposed
method-3 and its implementable performance. Thus, a com-
parison between the simulation and the experimental results
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Fig. 7. Functional block diagram of the testbed.
TABLE V

SPECIFICATIONS FOR MAJOR COMPONENTS

Power Supply Max power: 800 W
(Takasago ZX-800L) (0-80V, 0-80A)
Electronic Load [left] Max power: 600 W (1 PLZ-50F,
(1 Kikusui PLZ-50F/150U) 4 PLZ150USs with 1.5-150 V,

0-30 A each)
Electronic Loads [right] Max power: 150 W each
(3 Maynuo M9711) (0-150 V, 0-30 A each)
dc-dc Converters Max power: 100 W each
(Design/fabricated in house) Switch Frequency: 20 kHz
Li-ion Battery Pack (BESS) Four cells (series), 12.5 Ah/cell,
(Lishen LP2770102AC) 3.2 V/cell (nominal voltage)
High-accuracy Sampling Resistors
(PCN Corporation RH series) RH250M4 0.01 Ω (± 0.02%)

are shown in Fig. 8. Here, EV6 reduced its charging power
in the overload period 11:47–13:15 to help EV4 and EV5
in reducing their charging costs by lowering their charging
powers in the locally high price period 09:00–11:00. Similarly,
EV7 reduced (stopped here) its charging power in the overload
period 20:00–21:00 to help EV8 and EV9 in reducing their
charging costs by lowering their charging powers in the locally
high price period 18:00–20:00. As seen, the experimental
charging powers of EVs well match the results in simulation.
This validates the real-time implementation and correctness of
the distributed charging management with the proposed social
contribution concept.

VI. CONCLUSION

EVs naturally feature a selfish behavior meanwhile schedul-
ing their charging times. Given proper incentives, however,
it is possible to motivate them to contribute in reducing
the charging costs of other EVs. This paper has proposed
a distributed charging management with an EV social con-
tribution concept. The EV charging problem is represented
by a generalized Nash equilibrium game. Each individual EV
in this game has minimized its charging cost respecting its
charging requirements and the charging facility constraints.
The solution is iteratively reached in a distributed way and
is constructed by three tasks that match three comparison
methods. The proposed method has proofed effective results
in optimizing the charging schedules of EVs, controlling the
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Fig. 8. Experimental versus simulation results (CP: charging pole).

overload cases in the system, and reducing the charging costs
of EVs. The experimental results have well matched the
findings in simulation and have further validated the real-
time implementation and correctness of the proposed charging
management. The proposed concept of EV social contribution
has further extensions such as studying different types of EV
contribution behavior in the charging management.
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