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Abstract—This paper proposes a charging management
of electric vehicles (EVs) in a charging station taking into
account different behavioral responses of EV customers. The
EV charging problem is decomposed into two subproblems. The
first subproblem is called the pricing game and it considers the
charging price and the allowable requesting EVs for charging.
Included in this subproblem three different EV customer
responses to the charging price are developed. While the second
subproblem is called the power distribution game and it tackles
the charging power distribution among the plugged in EVs.
Three different EV customer responses to the charging power
are also proposed and included here. The proposed solution
for each subproblem is reached iteratively in a distributed
way. Detailed simulation, experiment, and comparison results
are presented to verify the effectiveness and correctness of
the proposed charging management with EV customer behaviors.

Index Terms—Distributed charging management, electric
vehicle (EV), charging station, customer behavior, game theory.

I. INTRODUCTION

THE increase in energy demand and the interest in environ-
mental concerns have boosted the focus on the renewable

energy sources and the electric vehicles (EVs). The number
of EVs on streets are continuously growing, however, the
limited capacity of their on-board batteries remains the big
challenge for their widespread use. This issue requires EVs to
be charged frequently to satisfy the charging requirements of
their EV customers. However, the total charging load of EVs
has to respect the charging capacity of the charging station
to avoid overload cases, which may affect the distribution
power network [1]. Addressing the matters related to the EV
charging problem requires developing an appropriate charging
management, i.e., control, of EVs in the charging station. This
management is also important to provide a flexible and a
scalable charging in a dynamic environment.

The EV charging problem was tackled in literature for
different aspects including the control of the charging energy
price and the charging power distribution of EVs. The control
architecture here can be mainly classified into centralized and
distributed approaches. Ref. [2] presented a centralized scheme
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to optimize the charging schedule of each EV while respecting
the demand curtailment request from the utility. Ref. [3]
developed a learning particle swarm optimization algorithm
to optimize the power distribution with enhanced economic
benefits. Ref. [4] introduced a four-stage optimization control
algorithm to reduce the operational cost in an EV charging
station and to balance the power supply and demand.

The distributed control has recently received a notable
attention due to its scalability and reduced communication
burden. Its importance is also because of the ability to secure
the privacy of the customers by reaching the solution without
revealing their private information. Ref. [5] applied game
theory into an EV fast charging station in which EVs optimize
the tradeoff between the benefits of charging and reserves
provision. Ref. [6] presented a decentralized control method
for charging stations. Two independent fuzzy logic systems
were utilised to maintain the power balance stable among
the charging station components. Ref. [7] developed a pricing
scheme to minimize power distribution losses in plug-in EV
(PEV) charging stations and to ensure system reliability.

On the other hand, treating the EV customers to have the
same behavioral response model such as linear function, with
respect to some charging quantities, e.g., charging price and
charging power, is still the main trend in the EV charging liter-
ature. However, in practice the EV customers are more likely
to have different behaviors, i.e., responses, and integrating
them into the charging problem is becoming more attractive.
The behavior could be basically modelled on the basis of
survey questionnaire [8], historical data [9], or theoretical
formulas [10].

Unlike the aforementioned literature, this paper develops
an EV charging management, which addresses different pref-
erences of charging station parties and different behaviors of
EV customers. Note that EV customer, EV driver, and EV are
used as alternatives in this paper. The EV charging problem
is considered as two subproblems on the basis of the two
distinct states of EV. By applying the suitable decision making
tool of game theory, these two subproblems are considered as
two games and named as pricing game and power distribution
game. The solution of each game is reached in a distributed
way to allow scalability and to secure the private information
of EV customers. All simulation, experiment, and comparison
are carried out to validate the proposed EV charging man-
agement and its real implementation. The major work of this
paper is summarized as follows:

1) Whole operation management of EV charging station
under conflicted preferences, utility functions, of charging
station operator and EV customers, i.e., charging station
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parties. This management includes determination of the
charging price, selection of EVs for charging, and distri-
bution of power among the plugged in EVs.

2) Dynamic determination of the charging price on the basis
of the present electricity price and EV calls for charging.

3) Power distribution control under the two realistic cases of
sufficient and limited power for charging, i.e., no overload
and overload, respectively.

4) Three different behavioral responses of EV customer to
the charging price and power, on the basis of insights
from social sciences and economics, are newly proposed
and integrated into the EV charging management.

II. SYSTEM STRUCTURE AND MODEL

The studied EV charging station (EVCS), which represents
one node with a feeder of the distribution power network,
contains fixed and dynamic systems as illustrated in Fig. 1.
The fixed systems include a grid system (GS), a photovoltaic
system (PVS), a battery energy storage system (BESS), and a
base load system (BLS). Each of them could be a group of
systems with the same type. On the other hand, the dynamic
systems consist of a number of requesting EVs for charging
(Nr := {1, 2, . . . , Nr}) and a number of plugged in EVs
(Np := {1, 2, . . . , Np}). The requesting EVs represent a group
of needed EVs to be charged, which send charging calls to the
EVCS. Once the charging calls are approved, the related EVs
can come the EVCS, occupy the charging poles, and become
plugged in EVs to be charged by power. Note that the numbers
of requesting EVs and plugged in EVs are dynamic over time.

The GS can supply or receive power in the EVCS, thus
symbolized by GS+ or GS−, respectively. The model of the
PVS is derived as in [11], while the battery of BESS or
plugged in EV on-board is modeled by its equivalent circuit
model [12]. BLS represents the EVCS building load (i.e., non-
EV load). Further to the aforementioned systems, there is an
EVCS operator (CSO) whom handles the following missions:

1) Receives the charging calls from the requesting EVs and
coordinates the charging of the plugged in EVs.

2) Determines the charging price.
3) Controls the power flow among the fixed systems includ-

ing the regulation of the BESS power in relation to the
GS power and PVS power. Since the focus of this paper
is on charging EVs, this power flow is controlled in a
similar way in [4].

4) Announces the charging capacity and checks its violation.

It has to be mentioned that due to the PVS intermittent
nature, the amount of its generated power is uncertain. This
dynamic power supply can be compensated by BESS and
GS. During unfavorable weather conditions, the insufficient
PVS power may potentially result in cases when the total
power demand is bigger than the total power supply, i.e.,
overload cases. The proposed charging management tackles
these challenging cases to efficiently distribute the present
total available charging power among EVs, as discussed and
validated in the following sections.
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Fig. 1. Structure of the test system.

III. OPERATION MANAGEMENT OF CHARGING STATION

The whole operation of the EVCS is constructed on two
tasks, i.e., subproblems, which are classified on the basis
of the two distinct states of an EV. These two EV states
are requesting for charging energy reservation when it is
unplugged and seeking for charging power when it is plugged
in. Each task is formulated on the basis of game theory, a
suitable decision making tool, with a noncooperative type due
to the selfish nature of the EV charging problem [5]. The
first task is called the pricing game and it is excused at each
time interval T1. While the second task is called the power
distribution game and it is executed at each time interval T2.
As shown in Fig. 2, T1 is larger than T2, thus the results of
each pricing game will obviously influence the outcomes of
its subsequent power distribution games.

Time

T
1
 

T
2
 

Pricing Game Power Distribution Game

Fig. 2. Timing diagram of the two games of the charging station operation.

A. Pricing Game

This game addresses the EV charging calls, that is, the
determination of the charging price and the allowable re-
questing EVs for charging along with their assigned energy
demands. The charging call of each n-th EV (n ∈ Nr)
carries its original, i.e., physical, charging energy demand
Eon = Ecn × (SoCen − SoCsn) with Ecn is its on-board
battery capacity as well as SoCsn and SoCen are its state-
of-charge (SoC) values at the start and end charging times,
respectively. The involved parties in this game are the CSO
and the requesting EVs whom have conflicting objectives
as discussed below. EVs call the CSO to reserve charging
energies. The CSO correspondingly determines the charging
price and the accepted, allowable, EVs for charging out of the
requesting EVs. The interactions between these two parties are
represented by a noncooperative Stackelberg game in which
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CSO is assumed to be a leader and EVs are designated to
be followers. In a market-oriented environment, usually the
preference of CSO is to enlarge its own profit through selling
energy to EVs, thus its utility function is defined to maximize
(1).

ucso =

t0+T1∑
t=t0

(Cch,t − Cpv,t − Cb,t − Cg,t − Cl,t)

=

t0+T1∑
t=t0

(
Nr∑
n=1

θch,tEn,t − θpv,tEpv,t − θb,tEb,t

− θg,tEg,t − θl,tEl,t

)
. (1)

In the above equation, t0 is the present time, and t is a
specific time. Cch,t, Cpv,t, Cb,t, Cg,t, and Cl,t are the costs
of charging EVs, PVS operation, BESS operation, energy
supplied from/back the GS, and BLS operation during a
specific time, respectively. θch,t, θpv,t, θb,t, θg,t, θl,t are
the unit costs of charging EVs (i.e., charging price), PVS
operation, BESS operation, energy supplied from/back the GS
(i.e., electricity price), and BLS operation, respectively. As
seen, θb,t influences the profit of CSO. En,t, Epv,t, Eb,t, Eg,t
and El,t are the energies consumed or supplied by the n-th
EV, PVS, BESS, GS, and BLS during a specific time.

On the other hand, naturally each n-th EV driver aims to
meet his/her charging energy demand at a minimized expense,
such as following the below utility function,

uθn =

t0+T1∑
t=t0

(
−1

2
Sn,tE

2
n,t + (θmaxch,n − θch,t)En,t

)
. (2)

With θmaxch,n is the maximum charging price (cent/kWh) at
which the EV driver begins to be unwilling to pay; Sn,t is the
EV driver energy-price sensitivity (cent/kWh2), i.e., sensitivity
towards his/her required charging energy on the basis of the
charging price. The utility function (2) reaches its maximum
at each specific time when

En,t
.
= E∗n,t =

θmaxch,n − θch,t
Sn,t

, (3)

namely a preferred amount of charging energy, E∗n,t, jointly
determined by the dynamic charging price and the EV driver
sensitivity. Thus the charging price and the EV driver sensi-
tivity are obviously influencing the charging decision. In this
paper, this EV driver sensitivity is related to the EV driver
behavior in which three responses are proposed, namely high,
mid, and low sensitivities to the charging price, and shown
in Fig. 3. For reaching the same amount of charging energy,
the relationships are different between the charging price and
the required energy. Based on insights from social sciences
and economics [13], these relationships are represented by
exponential, linear, and logarithmic functions, and correspond
to price high-sensitive driver (Pr-HSD), price mid-sensitive
driver (Pr-MSD), and price less-sensitive driver (Pr-LSD).
The logarithmic function displays a “risk-averse” (opening
downward) behavior. It indicates a tendency to prioritize
securing the charging energy as much as possible over the

charging price. This behavior matches the Pr-LSD. Similar-
ly, the exponential and linear functions show “risk-seeking”
(opening upward) behavior (i.e., Pr-HSD) and “risk-neutral”
behavior (i.e., Pr-MSD), respectively.
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Fig. 3. Charging price vs. energy demand of EV driver under three different
responses.

Thus the dynamic EV driver sensitivity can be accordingly
defined as

Sn,t =
Sbasen

(1− SoCn,t)Rn,t
. (4)

In the above equation, SoCn,t is the present SoC of the n-th
EV on-board battery. The behavioral response of the EV driver
to the charging price is represented by Rn,t,

Rn,t =


eαn,t−1
e−1 , for Pr−HSD

αn,t, for Pr−MSD

ln[αn,t(e− 1) + 1], for Pr− LSD.

(5)

The parameter αn,t ∈ [0, 1], which is the same input of
the three customer responses, reflects the ratio of the present
charging price θch,t to its EV driver maximum limit θmaxch,n ,

αn,t = max

(
1− θch,t

θmaxch,n

, 0

)
. (6)

Note that if θch,t equals zero, naturally all Rn,t’s become
identical, one, due to the “free” charging. From (4), obviously
the static base sensitivity, Sbasen , equals Sn,t when Rn,t is one
and SoCn,t is zero, i.e., EV on-battery is fully depleted. Thus
Sbasen could be reasonably defined as [refer to (3) and Fig. 3]

Sbasen =
θmaxch,n − θbasech,n

Ecn
. (7)

Where θbasech,n is a base charging price until which the EV driver
will not compromise his/her original charging energy demand.

Due to the linearity of the CSO utility function, i.e., sum
of linear functions, and the concavity of the EV driver utility
function, both the existence and the uniqueness of the Nash
equilibrium can be straightforwardly proven [14]. Algorithm 1
summarizes the iteration process to reach the Nash equilibri-
um, i.e., determination of the charging price and the allowable
EVs for charging, following the above procedures [refer to (1)–
(7)]. In the algorithm, k is the number of iteration, and ∆θch is
a fixed step size to increase θch,t[k]. After considering a proper
initialization, the algorithm works in a distributed manner as
follows. First, CSO announces the modified charging price at
the current iteration k as in line 6. Then, EVs respond to
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this price and calculate their current energy demands [refer to
lines 7-9]. Consequently, CSO calculates its resulting profit as
in line 10. The above process is constantly repeated as long
as there is an increase in the CSO profit. The iteration stops
when the CSO utility, ucso, (i.e., its total profit) is maximized
under a specific (i.e., final) charging price, θch,t. At this point,
the n-th EV may have reduced its original energy demand
to an assigned energy demand Ean =

∑t0+T1

t=t0
E∗n,t, which is

determined based on its response (i.e., acceptance) to the final
charging price. It is the truth that all θmaxch,n ’s of the allowable
EVs for charging are larger than the final charging price.
Note that under the iteratively distributed manner of the the
algorithm, the assumed private information of EVs, such as
Rn,t and SoCn,t, is not reveled to the leader CSO.

Algorithm 1 Pricing Game Management
I. Initializing Phase
1: k = 0
2: θch,t[k] = θg,t
3: Update SoCn,t, ∀n ∈ Nr
4: Calculate Sbasen by (7), ∀n ∈ Nr

II. Updating Phase
5: k = k + 1
6: θch,t[k] = θch,t[k − 1] + ∆θch
7: Calculate Rn,t[k] by (5), ∀n ∈ Nr
8: Calculate Sn,t[k] by (4), ∀n ∈ Nr
9: Calculate E∗n,t[k] by (3), ∀n ∈ Nr

10: Calculate ucso[k] by (1)
III. Checking Phase
11: if ucso[k] < ucso[k − 1] then
12: Final θch,t ← θch,t[k − 1]
13: Terminate
14: else
15: Go back phase II
16: end if

B. Power Distribution Game

This game handles the power distribution among the
plugged in EVs and it works as follows. After the settlement of
the pricing game, the allowable (i.e., accepted) EVs will plug
in for charging until they meet their assigned energy demands.
The involved parties in this game are only the plugged in EVs,
i.e., CSO here is just a coordinator. During charging, each
EV tries to maximize its satisfaction, i.e., desire to have a
specific amount of charging power. The interactions between
EVs are represented by a noncooperative game in which the
utility function of the n-th EV (n ∈ Np) for the charging
power problem is defined as follows,

un,t = ϑn,t

(
−1

2
p2n,t + P dnpn,t

)
, (8)

0 ≤ pn,t ≤ P dn . (9)

With pn,t is the actually acquired charging power of the
n-th EV; P dn is its desired charging power, which may be
not met such as due to limited total charging power, i.e.,

insufficient charging capacity; ϑn,t is a parameter to reflect
the charging power anxiety (PA) of its driver. Obviously, the
above utility function reaches its maximum when pn,t equals
P dn , and its value is scaled by ϑn,t, the power anxiety of
the specific EV driver. The proposed concept of the power
anxiety, analogous to the range anxiety concept in driving, is
defined as the worry of the EV driver charging his/her EV that
will run out of time before reaching his/her desired, assigned,
energy demand. Thus PA represents the power excitement, β′n,t
∈ [0, 100], to make the desired charging power P dn matches
the reference charging power P rn,t, i.e., ratio of the remaining
energy demand over the remaining charging time. In other
words, the higher the n-th EV power anxiety, the higher its
ability to meet its energy demand at its preferable end charging
time ten.

β′n,t =
P rn,t
P dn

=
Ecn(SoCen − SoCn,t)

(ten − t)
× 1

P dn
. (10)

Similar to section III-A, the PA is related to the EV driver
behavior in which three responses are proposed, namely high,
mid, and low sensitivities to the power excitement, a function
to the reference charging power, and shown in Fig. 4. For
reaching the same amount of charging power anxiety, the
relationships are different between the power excitement and
PA. Again, these relationships are represented by exponential,
linear, and logarithmic functions, and correspond to power
high-sensitive driver (Po-HSD), power mid-sensitive driver
(Po-MSD), and power less-sensitive driver (Po-LSD). The
logarithmic function displays a “risk-averse” (opening down-
ward) behavior. It indicates a tendency to prioritize securing
the charging power as much as possible over the charging
time to avoid ending up without reaching the desired energy
demand. This behavior matches the Po-HSD. Similarly, the
exponential and linear functions show “risk-seeking” (opening
upward) behavior (i.e., Po-LSD) and “risk-neutral” behavior
(i.e., Po-MSD), respectively. Accordingly, and on the basis of
βn,t = β′n,t/100, which is the same input of the three customer
responses, the power anxiety ϑn,t ∈ [0, 1] can be written as

ϑn,t =


ln[βn,t(e− 1) + 1], for Po−HSD

βn,t, for Po−MSD
eβn,t−1
e−1 , for Po− LSD.

(11)
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Solving the power distribution game looks clear by looking
at (8) because each EV is willing to be charged at his/her
desired charging power P dn . However, during charging in real
environments there are various factors that can limit the power
supply from the EVCS. These factors will dynamically influ-
ence the charging capacity pcch,t, i.e., total available power for
charging EVs, managed by the CSO. It is possible that the total
sum desired charging power of EVs, charging requirement,
may become larger than the charging capacity, i.e., overload
case. Thus EVs must compromise their desired charging power
demands to meet the EVCS charging capacity, constraint (12).∑

n∈Np

pn,t ≤ pcch,t. (12)

Since (12) couples all the charging power of EVs, the afore-
mentioned charging power problem is actually a generalized
Nash equilibrium (GNE) problem [14]. Since the proposed
solution of this problem is based on the Karush–Kuhn–Tucker
(KKT) conditions of optimality, the Lagrangian function of
the n-th EV can be given as

Ln =ϑn,t

(
1

2
p2n,t − P dnpn,t

)
+ λn,t

∑
n∈Np

pn,t − pcch,t


+ µminn,t (0− pn,t) + µmaxn,t

(
pn,t − P dn

)
. (13)

With λn,t, µminn,t , and µmaxn,t are the Lagrange multipliers of
the n-th EV. Consequently, the gradient condition of the KKT
necessary optimality conditions is

∂Ln
∂pn,t

= ϑn,t
(
pn,t − P dn

)
+ λn,t + µminn,t + µmaxn,t = 0. (14)

Both the existence and the uniqueness of the GNE can be
mathematically proofed due to the convexity of this problem,
i.e., convexity of (8) and linearity of (9) and (12), and thus
KKT necessary conditions are sufficient. The most socially
stable equilibrium, i.e., optimal solution, is of interest here
and can be reached by demanding all λn,t’s of EVs to have
a uniform value, λt [14]. Reaching this uniform value means
that the n-th EV holds

ϑn,t
(
pn,t − P dn

) .
= −λt, (15)

with pn,t has not violated its lower or upper bound in (9).
This can be symbolised by P [.], a projection operator of the
argument into the feasible charging domain between 0 and P dn .
Hence the optimal solution can be uniquely represented as

pn,t = P
[
P dn −

λt
ϑn,t

]
. (16)

Again, the local information of EVs such as ϑn,t and
SoCn,t, are assumed to be secured from public, thus a central-
ized solution is invalid. Instead, after utilising the consensus
network concept [15], the distributed algorithm 2 is proposed
for a single control instant. Each EV here is assumed to have
a local controller whom accesses only its information, seeks
its desired charging power, shares only its control variables
(pn,t and λn,t), and updates its demand iteratively until the
uniform value λt is reached.

In the first phase of algorithm 2, an initialization to λn,t’s,
and pn,t’s, is performed with zero value and EV desired
charging power, respectively, namely a preferred ideal case. In
the checking phase, the common constraint (12) is checked.
If the charging capacity pcch,t is sufficient to meet all pn,t’s,
the algorithm reaches the Nash equilibrium and terminates.
Otherwise, a negotiating procedure among EVs is introduced
to reach a compromised solution by suppressing the charging
power of EVs currently demanded to meet the constraint as
discussed in the next phase.

In the consensus phase, first the power mismatch due to
violating the common constraint is assigned to ∆pt, managed
by CSO. This term is important to bring the power balance
back into the system to meet (12) at its upper bound. Second,
converging all λn,t’s to a uniform one is performed. To this
end, each EV updates its λn,t utilizing the sum of the weighted
differences between its λn,t and that of its neighbors’ λj,t’s
and the weighted degree of violating the common constraint
as well [refer to line 9]. Here, ω and ψ are two weight
parameters and Nn is a neighbor’s set of the n-th EV [15].
When convergence is accomplished, the charging power of the
n-th EV can be calculated [refer to line 11]. Finally, a return to
recheck the the common constraint is applied. The algorithm
will repeatedly iterate over the checking and consensus phases
until the common constraint is satisfied. Note that ε0 and ε1
are small user defined values.

Algorithm 2 Power Distribution Game Management
I. Initializing Phase
1: λn,t = 0 ∀n ∈ Np
2: pn,t = P dn ∀n ∈ Np

II. Checking Phase
3: if

∣∣∣∑n∈Np pn,t − p
c
ch,t

∣∣∣ ≤ ε0 then
4: Terminate
5: end if

III. Consensus Phase
6: while

∑
n∈Np pn,t > pcch,t + ε0 do

7: ∆pt =
∑
n∈Np pn,t − p

c
ch,t

8: while max(|λn,t − λj,t|) > ε1 do ∀n, j ∈ Np
9: λn,t ← λn,t +

∑
j∈Nn ω(λj,t − λn,t) + ψ∆pt

10: end while
11: pn,t = P

[
P dn −

λn,t
ϑn,t

]
∀n ∈ Np

12: end while
13: Go back phase II

IV. SIMULATION RESULTS AND ANALYSIS

The proposed management performance of the EVCS op-
eration is evaluated by three parts. The first introduced a case
study to assess the proposed pricing game management while
the second presented another case study to assess the power
distribution game management. Finally, the whole operation
is conducted with comparison with another literature method.
Overall, the simulation configuration is set up as follows.

The on-board battery capacity Ecn 7.6–85 kWh and the
desired charging power P dn 3.3–10 kW of EVs are selected
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randomly within the data set in [16]. The SoC values at the
start and end charging times SoCsn and SoCen are considered
to follow normal distribution 0.2–0.6 and 0.7–0.9, respective-
ly [17]. The rest specifications of EVs including the EV driver
behavioral response (RSPNS) are randomly generated within
appropriate ranges to cover different situations. The solar
irradiance and temperature data needed by PVS to generate
the solar power is taken from [18]. The BLS load and the
electricity price profiles are taken from [19], [20], respectively.
Unit operation costs of EVCS systems are considered as in [4].

A. Pricing Game Evaluation

A case study of ten requesting EVs is introduced with
specifications listed in Table I. The electricity price is assumed
to be 6.344 (cent/kWh) in the requested charging durations
of these EVs. Once the charging calls are delivered to CSO,
algorithm 1 is executed. The CSO sets the charging price θch,t
to be 12.35 (cent/kWh) to guarantee a maximum profit up to
589.83 (cent). Consequently, as explained in section III-A and
shown in Fig. 5, the assigned energy demands Ean’s of EVs
are differently lower than their original demands Eon’s on the
basis of their EV driver responses to the charging price. It
can be observed here that the more sensitive EV driver is,
the more energy difference (i.e., Eon − Ean) is. So, by listing
EVs on the basis of this energy difference ascendantly starting
from the left-hand side, EVs of Pr-LSD will be on the left,
EVs of Pr-MSD in the middle, and EVs of Pr-HSD on the
right. This is a reasonable result because EVs of Pr-LSD care
less about the increase in the charging price, and thus are
less willing to reduce their original energy demands. Similar
conclusion can be drawn for EVs of Pr-MSD and Pr-HSD.
Note that this energy difference still differs among EVs of
the same behavioral response because it is also influenced by
Sbasen . For example, EV6 has a smaller energy difference than
that one of EV2 because its Sbasen is smaller than EV2 one.

TABLE I
SPECIFICATIONS OF THE REQUESTING EVS FOR CHARGING.

SPEC Ec
n P d

n SoCs
n SoCe

n Sbase
n RSPNS

kWh kW % % cent/kWh2

EV1 24.0 6.6 0.46 0.85 0.83 Pr/Po-HSD
EV2 75.0 10.0 0.54 0.79 0.39 Pr/Po-LSD
EV3 35.8 7.2 0.50 0.86 0.94 Pr/Po-HSD
EV4 40.0 6.6 0.36 0.70 0.54 Pr/Po-MSD
EV5 33.5 6.6 0.50 0.74 0.35 Pr/Po-LSD
EV6 28.0 10.0 0.48 0.88 0.28 Pr/Po-LSD
EV7 35.8 7.2 0.44 0.73 0.30 Pr/Po-LSD
EV8 18.4 3.3 0.21 0.89 0.81 Pr/Po-HSD
EV9 19.0 3.3 0.20 0.88 0.37 Pr/Po-LSD
EV10 18.4 3.3 0.23 0.90 0.62 Pr/Po-MSD
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Fig. 5. Results of the pricing game management.

B. Power Distribution Game Evaluation

The focus here is on the dynamic charging power curves of
EVs. However, showing all EV curves could result in a messy
figure and thus disturb the concerned focus. Hence a case study
including the last three EVs of Table I is introduced, namely
EV8, EV9, and EV10. These EVs are assumed to start charging
at t0=0 (min) and to have the same preferable end charging
time ten=180 (min). To show the ability of algorithm 2 to
control the power distribution among EVs under two realistic
cases of no overload, i.e.,

∑
pn,t ≤ pcch,t, and overload, i.e.,∑

pn,t > pcch,t, the charging capacity pcch,t is designed to be
12, 8, and 5 kW in the time intervals (0-60 min), (60-200
min), and (200-400 min), respectively, as shown in Fig. 6(a).

As shown in Fig. 6, during the first time interval 0-60 (min),
as pcch,t(=12 kW) is larger than the charging requirement, i.e.,
sum of all the desired charging power of EVs, all of EVs are
charged at that power, i.e., 3.3 kW. Thus their power anxieties
equal zeros, i.e., no anxiety yet at this stage. From 60 (min),
pcch,t decreases to 8 kW, which is below the sum of the EV
desired power, i.e., overload case. Thus overload control is
applied and PAs of EVs start to have values bigger than zeros.
As discussed in section III-B, the PA value depends on its EV
driver behavior with higher value at higher sensitivity, i.e.,
PA of EV8 is the highest and PA of EV9 is the lowest. This
results in a change on the power of each EV in proportion to
its PA, i.e., the actual acquired power of EV8 is the highest
while the actual acquired power of EV9 is the lowest [refer
to line 11 in algorithm 2]. As long as the overload case exists
(i.e., until 301 min), PAs of EVs dynamically increase up to
their upper bounds, one, at the preferable end charging time,
i.e., 180 (min). This means the EV power tends to have a
uniform value, i.e., 2.6 or 1.6 kW when pcch,t(=8 or 5 kW),
respectively, since pcch,t is evenly distributed among EVs. At
time 293 (min) from which EV8 is fully charged, i.e., its SoC
reaches its SoCen=0.89, pcch,t is then distributed evenly among
the remaining EV9 and EV10 to make the charging power of
each equals 2.5 kW. At time 301 (min), when EV8 is fully
charged, pcch,t comes now back to be bigger than the desired
charging power of the remaining EV9, i.e., no overload case.
So, EV9 is continuously charged with its desired power until
it is fully charged at time 315 (min). Note that the dynamics
of SoCs of EVs in Fig. 6(d) match their power dynamics in
Fig. 6(c). Overall, given the same physical specifications and
charging demands of EVs, the behavioral responses of EV
drivers caused different charging durations of EVs. In other
words, EV8 (Po-HSD) is charged first, then EV10 (Po-MSD),
then EV9 (Po-LSD).

C. Whole Operation Evaluation and Comparison

As explained in section III, there are two time scales which
need to be coordinated, one for the pricing game and another
one for the power distribution game. It is known that the
electricity price can be updated each hour, i.e., real-time price,
and the charging power can be updated more frequently. Thus
it is reasonable to set T1 = 1h and T2 = 15min [2], [3],
to make the proposed charging management more efficient
in a dynamic environment. For a better illustration, Fig. 5
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Fig. 6. Results of the power distribution game management.

shows a flow chart of the timing-based coordination process
to execute the two proposed algorithms, algorithms 1 and 2.
Here, TP and TD are two indicators for the execution time of
the two algorithms, respectively. It is worth to mention that
the change in the electricity price, which is set by the utility
(i.e., grid), is included in the pricing game (i.e., lines 2 and 10
of algorithm 1) to reflect its influence. The simulation time is
conducted for one day with a total of 145 requesting EVs in
the example EVCS which has a capacity of 20 charging poles.
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Fig. 7. Timing-based coordination of executing algorithms 1 and 2.

For reference purposes, the proposed charging management
(PCM) is compared with a norm method named as the
basic charging management (BCM). In BCM method, CSO
accepts the requesting EVs on the basis of their charging calls
sequence, i.e., first come, first served, and agrees on their
original energy demands, i.e., equal to the assigned energy
demands [21]. Moreover, CSO treats the charging price as a
levelized price, i.e., electricity price plus fixed operational unit
cost such as 3.5 (cent/kWh) here [22].

To evaluate the performance of the two charging methods
in terms of benefits for CSO and EV driver parties, five
quantitative criteria are chosen, which have values in the range

[0, 1] with higher benefit at higher value. For CSO, a profit
ratio (PR) is introduced, which means the CSO profit over the
maximum resulting one by the two comparable methods. For
EV drivers, an average satisfaction on the charging price (PS)
is considered in a similar way to the behavior in Fig. 3, i.e., has
zero value when the charging price is bigger or equal to the
EV maximum price limit. Another criterion for EV drivers
is an average satisfaction on the charged energy (ES), i.e.,
has one value when the assigned demand equals the original
demand [10]. For both parties, an acceptance ratio (AR) is
chosen, which represents the number of the accepted EVs over
the total requesting EVs. To quantify the overall operation
performance, a quality of service (QoS) is introduced, which
represents the average of the previous criteria.

As seen from the results in Fig. 8, the charging price in
PCM has less variance over its average 16.79 (cent/kWh)
than that of BCM over its average 13.69 (cent/kWh). In other
words, comparing with BCM, PCM tries to flatten the charging
price, i.e., the difference between its charging price and the
electricity price is more when the latter is low. This is because
PCM tends to make the charging price close to the base
charging price θbasech,n, which has an assumed average value here
of 16 (cent/kWh). Thus PCM dynamically suits the charging
price for a larger number of EV drivers corresponding to
their behaviors, i.e., PS in PCM is higher than that of BCM.
PCM may curtail the EV original energy demands [refer to
section IV-A], while BCM does not, i.e., ES in PCM is lower
than that of BCM. However, this gives PCM a larger time
margin to accept more EVs for charging (i.e., 111) than BCM
does (i.e., 91) especially at large number of requesting EVs
with limited charging poles condition, thus PCM admits higher
AR than BCM. Since PCM charges larger number of EVs
with higher average charging price, its CSO profit, 174.51
×102 (cent/kWh), is higher than that of BCM, 146.82 ×102

(cent/kWh). Thus PR in PCM is higher than that of BCM.
Overall, PCM results in a more efficient performance, i.e.,
higher QoS, comparing with BCM.
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V. EXPERIMENTAL VERIFICATION

To validate the implementable operation of the proposed
charging management, a downscaled testbed by 1:200 at
power level is set up. The hourly time step and the EV
charging facility are also downascaled to minutely time step
and three charging poles (CPs), respectively. Note that the
downscaling made here requires creation of a compatible
operational scenario with that one in section IV-C. As shown
in Fig. 9, the power sources PVS and GS+ are combined
together and emulated by a controllable power supply. BLS
and GS− are also combined and emulated by electronic load
on the left side, while BESS is set up with actual cells.
Each charging pole consists of a unidirectional buck dc-dc
converter, an electronic load to mimic the on-board battery
dynamics, and a National Instruments (NI) myRIO as a local
controller. The three dc-dc converters have efficiencies about
90% and are controlled by PI (Proportional and Integral)-based
Pulse-Width-Modulation and the sampling resistors are used
as current sensors. This testbest can be further represented
by a functional block diagram as illustrated in Fig. 10. The
host PC here, analogous to the EVCS operator, collects and
records all the experimental data, controls the power supply
and the left-sided electronic load through their RS232 serial
communication ports, coordinates the local myRIO controllers
via Wi-Fi, and communicates with the NI CompactRIO by
Ethernet.

Host PC

Power Supply Electronic Load dc bus BESS NI CompactRIO Electronic Loads

Sampling Resistors NI myRIOs dc-dc Converters

Fig. 9. Downscaled testbed.

A scenario of ten EVs are accepted for charging out of four-
teen requesting EVs. A comparison between the simulation
and the experimental results are shown in Fig. 11. As seen,
the selection of EVs for charging and the dynamics of charging
price and EV charging power admit similar observations to that
ones in section IV-C. The first three EVs, EV1−3, are charged
with their full original demands since no other requesting
EV calls have competed them during their charging durations.
However, meanwhile the existence of the charging calls, the
charging price increases, and thus EV4 (Pr-HSD) reduces
its charging demand and eventually terminates it in front
of EV7 (Pr-LSD). During the insufficient charging capacity
time interval 18:00–20:00, EV8−10 are differently charged

dc bus

dc-dc Electronic load

PWM NI myRIO 
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Local Information

Public Information
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Current

Current
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Power Supply
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Current

dc-dc Electronic load
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Current

Fig. 10. Functional block diagram of the testbed.

lower than their desired power in proportion to their PAs,
i.e., EV10 (Po-HSD) has the most little decease. As seen, the
experimental charging power of EVs well match the results
in simulation. This validates the real-time implementation and
correctness of the proposed distributed charging management
with different EV customer behaviors for EVCS operation.
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Fig. 11. Experimental versus simulation results.

VI. CONCLUSION

In order to handle the different behavioral responses of EV
customers in the EV charging problem, it is broken down
into two subproblems in which the EV customer behavior is
included. Three behavioral response models of EV customer
are proposed and named as high, mid, and low sensitive
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customers on the basis of charging price and charging power.
The first subproblem is called the pricing game and is modeled
as a noncooperative stackelberg game to set the charging
price and the allowable requesting EVs for charging. The
second subproblem is called the power distribution game and
is designed as a generalized noncooperative game to conduct
the power distribution among the plugged in EVs. Besides
of the effective simulation results of the proposed charging
management, it is benchmarked against a comparable method
to further verify its performance. The implementable operation
of the proposed behavior-based charging management is also
proofed by experimental results.
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