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内容概要

本博士学位論文では非整数次制御（Fractional Order Control）の理論及びモーションコント

ロールへの応用について論じた。非整数次制御とは非整数次微積分方程式を用い、制御対象

のモデリングと制御器の構築を行う研究である。

非整数次制御は長い歴史を持つ “新しい”研究といえる。非整数次微積分は、整数次微積

分とほぼ同時に Leibnizによって言及された概念である（1695年）。Tustin教授は 1958年に

発表した論文の中で出力トルクの飽和を含む一慣性系の位置制御に非整数次の微分制御器Dα

を適用した。その提案手法によって、微分制御器次数 αを連続的に調整し、critical point付

近の広い周波数範囲で十分な位相余裕を容易に確保できると結論付けている。しかし、当時

非整数次微積分は一般の工学者に馴染みのない研究分野であった上に、実際の応用が少なく、

計算機の演算能力では非整数次制御系の実現が困難であったため、過去の半世紀で、制御の

研究者に注目されることはほとんどなかった。

近年では様々な制御対象に対し、非整数次微積分方程式が従来の整数次微積分方程式より

もよい精度でモデリングできることが実証されている。非整数次微積分方程式は複雑系のダイ

ナミックスを簡潔に表現できる有効なツールである。また、非整数次微積分モデルで表現され

た制御対象には非整数次制御器の導入が必要になってくる。さらに、計算技術の発達に伴い、

非整数次制御系をシミュレーションする事や実現する事は以前よりも容易になった。以上の

進歩のおかげで、非整数次微積分理論は多数の研究分野でその重要性が再認識され始めてい

る。特に、非整数次制御は非整数次微積分理論の制御への応用として現在国際研究コミューニ

ティから大きな注目を浴びている。非整数次制御専門のシンポジウムや会議はASME、IFAC

をはじめとする国際的な学術団体でも開催されている。

本学位論文は非整数次制御のシステマティックな紹介を行った上で筆者のオリジナルな研

究に基づいた非整数次制御の設計から実現まで全面的な知識を述べた。筆者は非整数次制御

の理論的な研究が重要だと認識しているが、同時に応用面の研究にも注力すべきだと考えて

いる。ほかの研究と同様に、非整数次制御の研究にも同じ分野の研究者の協力が不可欠であ

るので、良好な応用結果によって、有志の研究者を非整数次制御の研究に吸収し、新しい研究
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成果を生み出すことを期待している。非整数次制御の研究はまだ初期段階であり、特にモー

ションコントロールの領域ではほぼ空白の状態と言っても過言ではない。非整数次制御のモー

ションコントロールへの応用の “先駆者”として、筆者は強く責任感を感じ、後の研究者のた

めに、良い起点を築きたいと思っている。

以上の考えに基づき、本論文ではできる限り非整数次制御のあらゆる側面、必要な数学的

基礎知識、非整数次モデリングと同定、非整数次制御の理論及び実現法、制御系の設計と実

際の応用を紹介した。第一章では、非整数次制御の歴史、現状に触れる。第二章は非整数次制

御を理解するための必要な数学知識を紹介する。第三章では、非整数次制御の基礎知識、例

えば数学の表現、非整数次制御系の線形性、モデリング及び同定について述べる。第四章は

非整数次制御の導入によって、従来の整数次制御理論への影響を討論する。制御系のタイプ、

安定性の判定、周波数特性、ロバスト性及び筆者が提案した二段階の非整数次制御設計法を

言及する。第五章は離散的非整数次制御系のサンプリングタイムスケーリング特性を提案す

る。この特性を活かし、非整数次制御が時間領域において、過去のサンプリング入力に重み

関数付きで記憶し、新しい出力を算出するという解釈を提案する。第六章では複数の非整数

次制御器の実現法（周波数の折れ線近似法と他の直接離散法）を時間領域と周波数領域で評

価する。第七、八、九章は非整数次制御の応用および実験的検証を行う。従来の PID制御器、

ローパスフィルター及び外乱オブザーバーを非整数次制御に拡張し、軸捻れ装置を使い、制

御効果を検証する。制御器設計の明快さと良好な実験結果によって、非整数次制御の有効性

を実証する。最後に、第十章では結論及び今後の研究課題を詳しく述べる。

約三年間の非整数次制御の調査及び研究に従事した上で、非整数次制御の優位性が以下の

三点であると筆者は強く主張する：

• 制御対象のより正確なモデリング

• 明快かつ効果的なロバスト制御系設計

• 良い近似的な実現

モーションコントロールの問題に本質的に含まれている非線形要素、ロバスト性と他の制御

性能への要求などを考え、非整数次制御は一般的な手法であり、従来の整数次制御系の中間

的な性質をもつ制御系を容易に設計できる。筆者は非整数次制御の導入によって、我々が多

くの斬新な発見をできると確信している。
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SUMMARY

This dissertation deals with Fractional Order Control (FOC) and its applications in motion

control. The concept of FOC means controlled systems and/or controllers are described by

fractional order differential equations.

FOC is a “new” research with quite “old” history. The notation of fractional order

calculus was mentioned by Leibniz in 1695 as soon as the ideas of conventional calculus

were known. Prof. Tustin discussed using fractional order D controllers, sα, for the position

control of massive objects in 1958, where actuator saturation requires sufficient phase margin

around and below the critical point. However, due to the unfamiliar idea of taking fractional

order, so few physical applications and limited computational power available at that time,

fractional order calculus was not widely incorporated into control engineering in past half

century.

In recent years, researchers reported that fractional order differential equations could

model various materials more adequately than integer order ones and provide an excel-

lent tool for describing complex dynamic features. Obviously, the fractional order models

need fractional order controllers for more effective control of the “real” systems. The rapid

progress of available computational power also makes modeling and realization of fractional

order systems much easier than before. Thanks to these developments, fractional calculus

has begun to play a very important role in various fields. Especially, its application in

control engineering, FOC, is becoming a more and more important issue for the interna-

tional scientific community. Special international symposiums and workshops organized by

ASME and IFAC were held to promote international exchange and cooperation in Fractional

Derivatives and Their Applications (FDTA) research.

In this dissertation, a systematic introduction and the author’s original works in applying

FOC into motion control are mentioned in detail. The author thinks that parallel to the

development in theoretical aspects of FOC, efforts to apply it in real control problems are
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of same importance. Like all the other researches, the FOC research is also inevitably a

team work. Superior application results will absorb excellent researchers into FOC field and

produce more fruits in future FOC research. At the same time, FOC is still in a primitive

stage, especially in motion control field. Few researchers in control engineering know this

concept, at least in Japan. As a FOC “pioneer” (perhaps), the author feels a strong sense

of responsibility to establish a good basis for future FOC researchers.

Based on above considerations, this dissertation tries to cover nearly all the aspects of

FOC research, from mathematical preliminary, fractional order modeling and identification,

theoretical issues to realization methods, control design and real applications.

In chapter 1, the history and present situation of FOC research are introduced. Chap-

ter 2 describes necessary mathematic preliminary for understanding FOC research. Chap-

ter 3 gives fundamental issues for FOC. For example, the mathematic representations,

linearity of FOC systems, the modeling and identification issues. In chapter 4, the impacts

of introducing FOC concept to control engineering are discussed. Control system type,

stability determination, frequency responses and robustness for FOC systems are reviewed.

A two-stage approach for design of FOC system is also proposed in this chapter. Chapter 5

explores the sampling time scaling property for discrete fractional order controllers. This

time-domain explanation provides more insight into FOC as control with self-scaled mem-

ory. Chapter 6 mentions and compares different realization methods for fractional order

controllers, frequency-band approximation and direct discretization methods. Chapter 7, 8

and 9 concern the application of FOC to various conventional control methods, PID control,

low-pass filter and disturbance observer. The proposed FOC approaches are experimented

using torsional system. The control design and experimental results clearly display the

advantages of FOC both in control design and real applications. In chapter 10, the above

chapters are concluded. The future works for FOC research are also mentioned in detail.

After three years of investigation and research in FOC, the author believes the advan-

tages for introducing FOC to control engineering can be concluded in three points:

• Adequate modeling of control plant’s dynamic features
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• Effective and clear-cut robust control design

• Reasonable realization by approximation

Due to the non-linearities, demands for robustness and other control performances in motion

control problems, FOC could be a natural, general and effective approach with “in-between”

characteristics. With fractional order calculus and fractional order control, we may be able

to extend a lot of new things . . ..
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CHAPTER I

INTRODUCTION

1.1 Review of History

The concept of Fractional Order Control (FOC) means controlled systems and/or controllers

are described by fractional order differential equations. Expanding derivatives and integrals

to fractional orders is by no means new and actually has a firm and long standing theoretical

foundation. Interest in this subject was evident almost as soon as the ideas of the classical

calculus were known.

Leibniz mentioned it in a letter to L’Hospital over three hundred years ago (1695).

Leibniz raised the following question:

Can the meaning of derivatives with integer order dny(x)
dxn be generalized to derivatives

with non-integer orders?

The story goes that L’Hospital was somewhat curious about that question and replied

by another question to Leibniz:

What if the order will be 1/2?

Leibniz in a letter dated September 30, 1695 replied:

It will lead to a paradox, from which one day useful consequences will be drawn.

The earliest more or less systematic studies seem to have been made in the beginning and

middle of the 19th century by Liouville, Holmgren and Riemann, although Eular, Lagrange,

and others made contribution even earlier [1].

Parallel to these theoretical beginnings was the development of applying fractional cal-

culus to various problems. The fractional order calculus is not a sterile exercise in pure

mathematics. Many problems in physical sciences can be expressed and solved succinctly

by recourse to the fractional calculus. In a sense, the first of these was the discovery by Abel

in 1823 that the solution of the integral equation for the tautochrone could be accomplished

via an integral transform, which benefits from being written as a 0.5 order derivative [1].
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It was also found that the use of 0.5 order derivatives and integrals leads to a formula-

tion of certain electro-chemical problems, which is more economical and useful than the

conventional integer order approach [1].

As to fractional calculus’ application in control engineering, FOC was introduced by

Tustin for the position control of massive objects (see Fig. 1) half a century ago in 1958,

where actuator saturation requires sufficient phase margin around and below the critical

point [2].

sK
d

m
sJ

1+ θr

θm
α

2

saturation

e u

Figure 1: The position control loop with fractional order Dα controller

The characteristic equation of the above close-loop 1/sβ system with variable gain factor

A is

1 + Asβ = 0 (1)

where A = Jm/Kd in nominal case and β = 2−α. For 1 < β < 2, Equ. (1) has two complex-

conjugate dominant poles in the main sheet of the Riemann surface, −π < arg(s) < π:

s1,2 = A
− 1

β e±jπ/β (2)

The relative damping ratio ζ is

ζ = cos

(
π − π

β

)
= −cos

(
π

β

)
(3)

This result shows that the relative damping ratio ζ is exclusively decided by order β and

independent of the gain factor A.

In frequency domain, the characteristic equation is

1 + A(jω)β = 0 (4)

Equation. (4) can be rewritten in the form

(jω)β = − 1
A

(5)
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Figure 2: Nyquist plots of the fractional order 1/sβ system

The movement of −1/A can be considered to be the locus of the critical point (see Fig. 2)

when the gain variation occurs. For integer order system, when β = 2, the system will be

oscillatory due to its zero phase margin. Taking β = 1 leads to poor robustness against

saturation since pure D controller will be used. By letting β be fractional between 1 and 2,

a better tradeoff between stability and robustness will be obtained. Namely, the fractional

order Dα controller is naturally introduced whose order α should be chosen properly between

0 and 1. Therefore, necessary phase margin can be easily kept to any desired amount in wide

range of frequencies below and in the neighborhood of the critical point. This characteristic

highlights the hopeful aspect of applying FOC to control engineering.

Some other pioneering works were also carried out around 60’s by Manabe [3][4][5].

However, the FOC concept was not widely incorporated into control engineering mainly due

to the unfamiliar idea of taking fractional order, so few physical applications and limited

computational power available at that time [6].

1.2 Present Situation

In last few decades, researchers pointed out that fractional order differential equations could

model various materials more adequately than integer order ones and provide an excellent

tool for describing complex dynamic features [1] [7]. Especially for the modeling and iden-

tification of flexible structures with increasing application of lighter materials, fractional

3



order differential equations could provide a natural solution since these structures are es-

sentially distributed-parameter systems [8]. Obviously, the fractional order models need

fractional order controllers for more effective control of the “real” systems. This necessity

motivated renewed interest in various applications of FOC [9] [10] [11]. And with the rapid

development of computer performances, realization of FOC systems also became possible

and much easier than before.

The researches on FOC are mainly centered in European universities at present. The

CRONE team in France is leaded by Alain Oustaloup and Patrick Lanusse from Bordeaux

University, France. CRONE is the French abbreviation for Contrôle Robuste d’Ordre Non-

Entier (non-integer order robust control in English). Their practices include applying FOC

into car suspension control [12], flexible transmission [13], hydraulic actuator [14], etc.

Denis Matignon, a researcher from École Nationale Supérieure des Télécommunications

(the Institute of Telecom Paris in English), France, contributed to the theoretical aspects of

FOC concept, such as stability [15], controllability, and observability [16] of the fractional

order systems; while Slovak researchers, Ivo Petras and Igor Podlubny from the Technical

University of Kosice, are playing an important part for their efforts in modeling, realization

and implementation of fractional order systems. J. A. Tenreiro Machado and Yangquan

Chen, from Polytechnic Institute of Porto, Portugal, and Utah State University, Logan, are

also well-known for their outstanding works in implementation methods of fractional order

controllers, applying FOC in robotics control, etc. Their works will be cited in following

chapters.

FOC research has been internationally accepted. The first symposium on Fractional

Derivatives and Their Applications (FDTA) of the 19th Biennial Conference on Mechanical

Vibration and Noise was held from September 2-6, 2003 in Chicago, IL, USA [17]. This

conference was a part of ASME 2003 Design Technical Conferences. 29 papers concerning

FDTA in automatic control, automatic control and system, robotics and dynamic systems,

analysis tools and numerical methods, modeling, visco-elasticity and thermal systems were

presented in the symposium. A sub-committee called “Fractional Dynamic Systems” under

ASME “Multi-body Systems and Nonlinear Dynamics” committee was also formed during
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the symposium. The formation of the new sub-committee is expected to promote future

researches and international cooperations in FDTA.

And the first IFAC Workshop on Fractional Differentiation and its Applications will be

held in this year’s summer, July 19-21, in Bordeaux, France [18]. The following areas will

be covered by the workshop: representation tools, analysis tools, synthesis tools, simulation

tools, modeling, identification, observation, control, vibration insulation, filtering, pattern

recognition, edge detection. Besides the presentations of theoretical works and applications,

this workshop will also give rise to benchmark, testing bench and software presentations.

The author thinks that generally there are three main advantages for introducing frac-

tional order calculus to control engineering:

• Adequate modeling of control plant’s dynamic features

• Effective and clear-cut robust control design

• Reasonable realization by approximation

1.3 Outline of Chapters

In motion control field, the FOC research is still in a primitive stage. This dissertation

represents one of the first systematic efforts towards applying FOC to motion control.

Especially, realization issues and control design of FOC system will be discussed in detail.

The reader will find that FOC is just as tangible as conventional Integer Order Control

(IOC) and a new dimension opens to control engineering when the orders of controllers

and plant models become arbitrary numbers. The author believes that FOC is a natural

and powerful choice in control design and its design process should be clear-cut. There is

no reason that the knowledge of extremely well developed conventional IOC theories is not

made full use of in FOC research.

Based on above considerations, the dissertation aims to study the most fundamental

and important issues of FOC with regards to its applications to motion control. In order

to achieve this objective, this dissertation is organized as follows:
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Chapter 2 describes the necessary mathematic preliminary for understanding FOC re-

search. Especially the definitions of fractional order calculus and their Laplace and Fourier

transforms are mentioned in detail. Time-domain analysis tool, Mittag-Leffler function, will

also be introduced.

Chapter 3 gives fundamental issues for FOC. For example, the mathematic representa-

tions, linearity of FOC systems. The modeling and identification of fractional order system

are discussed in detail.

Chapter 4 reveals the impacts of introducing FOC concept to control engineering. The

conventional control concepts, such as control system type and stability determination, are

reviewed. Since FOC systems’ frequency responses can be exactly known, the wealth of

graphical methods and analysis tools in frequency domain are still available for FOC re-

search. The effective gain-phase tradeoff and less model error imply introducing FOC could

achieve an effective and clear-cut design of robust control system. A two-stage approach

for design of FOC system is also proposed in this chapter.

Chapter 5 explores the sampling time scaling property for discrete fractional order con-

trollers. This time-domain explanation provides more insight into FOC as control with

self-scaled memory. A novel realization method is also proposed based on the sampling

time scaling property.

Chapter 6 mentioned and compared different methods, frequency-band approximation

and direct discretization methods, for realizing fractional order controllers. Especially the

realization method proposed in Chapter 5 is used to establish baseline cases with full mem-

ory length.

Chapter 7, 8 and 9 concern the applications of FOC to various conventional control

methods, PID control, low pass filter and disturbance observer. The proposed FOC ap-

proaches are verified by real experiments using torsional system. The control design and

experimental results show an effective and clear-cut robust control design could be obtained

through FOC approach.

Chapter 10 concludes the above chapters and discusses the future works for FOC re-

search.
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CHAPTER II

MATHEMATIC PRELIMINARY

2.1 Mathematic Definitions

The idea of fractional order calculus that allows calculus’ order to be any arbitrary real

number, in fact, is a natural generalization of the notions of classical integer order calculus,

which are usually presented separately by integer order derivatives and integrals in classical

analysis. The mathematical definitions of fractional derivatives and integrals have been the

subject of several different approaches [1][7].

2.1.1 Grünwald-Letnikov definition

One of the most frequently encountered definitions is called Grünwald-Letnikov definition:

aD
α
t = lim

h→0

nh=t−a

h−α
n∑

j=0

(−1)j




α

j


 f(t− jh) (6)

where the binomial coefficients are



α

0


 = 1,




α

j


 =

α(α− 1) . . . (α− j + 1)
j!

for j ≥ 1 (7)

The Grünwald-Letnikov definition can be also written as [7]:

aD
α
t f(t) =

m∑

j=0

f (j)(a)(t− a)−α+j

Γ(−α + j + 1)

+
1

Γ(−α + m + 1)

∫ t

a
(t− τ)m−αf (m+1)(τ)dτ (8)

under the assumption that the derivatives f (j)(t) (j = 1, 2, . . . ,m + 1) are continuous in

[a, t] with m ≤ α < m + 1.

The Grünwald-Letnikov definition describes the unification of two notions, integer order

derivatives and integrals. For a continuous function y = f(t), the well-known definition of
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m-order derivative of function f(t) is

aD
m
t f(t) = lim

h→0

nh=t−a

h−m
n∑

j=0

(−1)j




m

j


 f(t− jh) =

dmf(t)
dtm

(9)

as all the binomial coefficients after




m

m


 are equal to 0. Similarly, considering negative

values of order −m leads to

aD
−m
t f(t) = lim

h→0

nh=t−a

hm
n∑

j=0

(−1)j



−m

j


 f(t− jh)

=
1

(m− 1)!

∫ t

a
(t− τ)m−1f(τ)dτ (10)

Integrating the relationships

aD
−1
t f(t) = lim

h→0

nh=t−a

h
n∑

j=0

(−1)j



−1

j


 f(t− jh)

= lim
h→0

nh=t−a

h
n∑

j=0

f(t− jh)

=
∫ t

a
f(τ)dτ (11)

and
d

dt

(
aD

−m
t f(t)

)
=

1
(m− 2)!

∫ t

a
(t− τ)m−2f(τ)dτ =a D−m+1

t f(t) (12)

give

aD
−m
t f(t) =

∫ t

a

∫ t

a

(
aD

−m+2
t f(t)

)
dt

=
∫ t

a
dt

∫ t

a
dt

∫ t

a

(
aD

−m+3
t f(t)

)
dt

. . .

=
∫ t

a
dt

∫ t

a
dt . . .

∫ t

a
f(t)dt (13)

actually m-fold integral.

8



2.1.2 Riemann-Liouville definition

Another most widely known definition of fractional order calculus is called Riemann-Liouville

definition with an integro-differential expression. The definition for fractional order integral

is

aD
−α
t f(t) =

1
Γ(α)

∫ t

a
(t− ξ)α−1f(ξ)d(ξ) (14)

while the definition of fractional order derivatives is

aD
α
t f(t) =

dγ

dtγ

[
aD

−(γ−α)
t

]
(15)

where

Γ(x) =
∫ ∞

0
yx−1e−ydy (16)

is the Gamma function, a and t are limits and α (α > 0 and α ∈ R) is the order of the

operation. γ is an integer that satisfies γ − 1 < α ≤ γ. Obviously, the Riemann-Liouville

definition is also a unification of integer order derivatives and integrals since integer order

α actually equals γ.

Performing integration repeatedly by parts and differentiation on the Riemann-Liouville

definition under the assumption that f(t) must be m + 1 times continuously differentiable

[7], which is satisfied by most of dynamical processes, gives

aD
−α
t f(t) =

1
Γ(α)

∫ t

a
(t− ξ)α−1f(ξ)d(ξ)

=
m∑

j=0

f (j)(a)(t− a)−α+j

Γ(−α + j + 1)

+
1

Γ(−α + m + 1)

∫ t

a
(t− τ)m−αf (m+1)(τ)dτ (17)

where m ≤ α < m + 1. Therefore, if f(t) has m + 1 continuous derivatives, the Riemann-

Liouville definition is equivalent to the Grünwald-Letnikov definition.

Similarly to integer order calculus, fractional order calculus is also a linear operation

following directly from the above two definitions:

Dα(λf(t) + µg(t)) = λDαf(t) + µDαg(t) (18)

9



2.2 Laplace and Fourier Transforms

Fractional order calculus is quite complicated in time domain, as shown in its two definitions.

Fortunately one of the features most important to control engineers, its Laplace transform,

is very straightforward. Based on the Riemann-Liouville definition, fractional order integral

of order α > 0 can be written as a convolution of the functions g(t) = tα−1 and f(t):

0D
−α
t f(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1f(τ)d(τ) =

1
Γ(α)

tα−1 ∗ f(t) (19)

The Laplace transforms of the function tα−1 is [7]

L{tα−1} = Γ(α)s−α (20)

Therefore, using the convolution formula for the Laplace transform, the Laplace transform

of fractional order integral can be obtained:

L{0D
−α
t f(t)} = s−αF (s) (21)

For fractional order derivative, it can be rewritten in the form:

L{0D
α
t f(t)} = g(n)(t) (22)

g(t) =0 D
−(n−α)
t f(t) =

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1f(τ)d(τ) (23)

where n− 1 < α < n.

Using formula for the Laplace transform of an integer order derivative leads to

L{g(n)(t)} = snG(s)−
n−1∑

k=0

skg(n−k−1)(0) (24)

The Laplace transform of the function g(t) is evaluated by Equ. (21):

G(s) = s−(n−α)F (s) (25)

Additionally, from the definition of derivative it follows that

gn−k−1(t) =
dn−k−1

dtn−k−1 0
D
−(n−α)
t f(t) =0 Dα−k−1

t f(t) (26)

10



Substituting Equ. (25) and Equ. (26) into Equ. (24), the final expression of the Laplace

transform of fractional order derivative is

L{0D
α
t f(t)} = sαF (s)−

n−1∑

k=0

sk
0D

α−k−1
t f(0) (27)

where n − 1 < α < n again. If all the initial conditions are zero, the Laplace transform of

fractional order derivative is simply

L{0D
α
t f(t)} = sαF (s) (28)

Form Equ. (21) and Equ. (28), the Laplace transforms of fractional ±α order calculus

lead to the use of fractional order Laplace operator s±α. The transfer functions of models

and controllers, which are described by fractional order differential equations, can be derived

conveniently using fractional order Laplace operator s±α.

By Laplace transforming fractional order calculus into s domain, complicated manipu-

lations of the Gamma function, Γ(x), can be reduced to simple algebraic manipulations of

the s±α operator. This result is intuitively reassuring and greatly simplifies the analysis of

FOC system.

As same as Laplace transform, using the convolution formula for Fourier transform gives

Fe{0D
−α
t f(t)} = Fe

{
1

Γ(α)
tα−1

}
∗ Fe{f(t)} (29)

Therefore, from Equ. (21) the Fourier transform of fractional order integral is

Fe{0D
−α
t f(t)} = (jω)−αF (jω) (30)

Similarly, the Fourier transform of fractional order derivative is

Fe{0D
α
t f(t)} = (jω)αF (jω) (31)

Frequency response of FOC system can be exactly obtained by substituting s±α with

(jω)±α in its transfer function. This advantage implies frequency-domain analysis of FOC

system is as convenient as IOC system’s. The graphical tools in frequency domain are still

available for FOC analysis and design.

11



2.3 Time-domain Analysis

Some simple functions’ fractional order calculus can be derived straightforwardly using the

two mathematical definitions [1]. For example, based on the Riemann-Liouville definition,

the unit-step response of open-loop 1/sα system is given based on the properties of the

Gamma function 1 2:

L−1
{

1
sα
· 1
s

}
=

1
Γ(γ + α)

dγ

dtγ

∫ t

0

1
(t− ξ)−α−γ+1

f(ξ)dξ

=
1

Γ(γ + α)
dγ

dtγ
tγ+α

γ + α

=
1

(γ + α)Γ(γ + α)
(γ + α) . . . (α + 1)tα

=
1

Γ(α + 1)
tα (32)

When the fractional order α equals integer n, the response is well-known result for the

unit-step input:

L−1
{

1
sn
· 1
s

}
=

1
n!

tn (33)

As shown in Fig. 3, the unit-step responses of open-loop fractional order 1/sα systems

(α = 0.2, . . . , 0.8) display quite different behaves compared to their integer order counter-

parts (α = 0, 1) in time domain.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
n

it
-s

te
p

 R
es

p
on

se

Time (sec)

α:from 0 to 1
   with 0.2 interval

α = 1

α = 0

Figure 3: Unit-step responses of open-loop 1/sα systems

1Γ(x− 1) = Γ(x)/(x− 1)
2Γ(1) = 1
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For more general time-domain analysis of fractional order systems, an effective tool

called Mittag-Leffler function [7] [19] can be introduced. The Mittag-Leffler function in two

parameters Eα, β(z) is defined as

Eα, β(z) =
∞∑

j=0

zj

Γ(αj + β)
(α > 0, β > 0) (34)

Its kth derivative is given by

E
(k)
α, β(z) =

∞∑

j=0

(j + k)!zj

j!Γ(αj + αk + β)
(k = 0, 1, 2, . . .) (35)

It is convenient to introduce the function

εk(t, y; α, β) = tαk+β−1E
(k)
α,β(ytα) (k = 0, 1, 2, . . .) (36)

The Laplace transform of the function εk(t, y; α, β) is

∫ ∞

0
e−stεk(t,±y; α, β)dt =

k!sα−β

(sα ∓ y)k+1
(Re(s) > |y|1/α) (37)

Another convenient property of εk(t, y; α, β) is its simple fractional differentiation:

0D
λ
t εk(t, y; α, β) = εk(t, y;α, β − λ) (λ < β) (38)

For the unit-step response of the close-loop 1/sα system with unity feedback, its Laplace

transform can be rewritten as:

1
s
· 1
1 + sα

=
s−1

sα + 1
=

0!sα−(α+1)

(sα + 1)0+1
(39)

Therefore, by using Equ. (36) and Equ. (37) the inverse Laplace transform can be given:

L−1
{

1
s
· 1
1 + sα

}
= tα

∞∑

j=0

(−tα)j

Γ[(1 + j)α + 1]
(40)

and the unit-step responses are plotted in Fig. 4. It can be seen the time responses of

close-loop fractional order 1/sα systems show a nice interpolation between the responses of

the integer order systems.

For general transfer functions, firstly consider a special fractional order transfer function

given by the following form:

Gn(s) =
1

ansβn + an−1sβn−1 + . . . + a1sβ1 + a0sβ0
(41)
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Figure 4: Unit-step responses of close-loop 1/sα systems

where βk (k = 0, 1, . . . , n) is an arbitrary real number

βn > βn−1 > . . . > β1 > β0 (42)

and ak (k = 0, 1, 2, . . . , n) are arbitrary constants.

Based on Equ. (37), the infinite series expansion of 1
1+x

3 and the multinomial theorem

4, the inverse Laplace transform of Equ. (41) can be rewritten as follows:

Gn(s) =
1

ansβn + an−1sβn−1

1

1 +
∑n−2

k=0
aksβk

ansβn+an−1sβn−1

=
a−1

n s−βn−1

sβn−βn−1 + an−1

an

1

1 +
a−1

n s−βn−1
∑n−2

k=0
aksβk

sβn−βn−1+
an−1

an

=
∞∑

m=0

(−1)ma−1
n s−βn−1

(sβn−βn−1 + an−1

an
)m+1

[
n−2∑

k=0

(
ak

an

)
sβk−βn−1

]m

=
∞∑

m=0

(−1)ma−1
n s−βn−1

(sβn−βn−1 + an−1

an
)m+1

×
∑

k0+k1+...+kn−2=m

k0≥0;...kn−2≥0

(m; k0, k1, . . . , kn−2)

×
n−2∏

i=0

[(
ai

an

)ki

s(βi−βn−1)ki

]

3 1
1+x

=
∑∞

n=0
(−1)nxn

4Multinomial theorem: (x1 + . . . + xk)n =
∑

(n; n1, n2, ..., nk)xn1
1 xn2

2 . . . xnk
k . where the sum is over all

(n1, . . . , nk) such that ni is a non-negative integer for each i and n1 + . . . + nk = n.
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=
1
an

∞∑

m=0

(−1)m
∑

k0+k1+...+kn−2=m

k0≥0;...kn−2≥0

(m; k0, k1, . . . , kn−2)

×
n−2∏

i=0

(
ai

an

)ki s−βn−1+
∑n−2

i=0
(βi−βn−1)ki

(sβn−βn−1 + an−1

an
)m+1

(43)

where (m; k0, k1, . . . , kn−2) are the multinomial coefficients. 5

The term-by-term inversion by using Equ. (37) gives the final expression for the inverse

Laplace transform of the function Gn(s):

gn(t) =
1
an

∞∑

m=0

(−1)m

m!

∑

k0+k1+...+kn−2=m

k0≥0;...kn−2≥0

(m; k0, k1, . . . , kn−2)

×
n−2∏

i=0

(
ai

an

)ki

εm


t,−an−1

an
; βn − βn−1, βn +

n−2∑

j=0

(βn−2 − βj)kj


 (44)

Therefore, the unit-impulse response of the fractional order system with the transfer

function Equ. (41) is given by Equ. (44):

yimpluse(t) = gn(t) (45)

Integrating Equ. (44) with the help of Equ. (38) gives the unit-step response ystep(t):

ystep(t) =
1
an

∞∑

m=0

(−1)m

m!

∑

k0+k1+...+kn−2=m

k0≥0;...kn−2≥0

(m; k0, k1, . . . , kn−2)

×
n−2∏

i=0

(
ai

an

)ki

εm


t,−an−1

an
; βn − βn−1, βn +

n−2∑

j=0

(βn−2 − βj)kj + 1


 (46)

Further inverse Laplace transforms can be obtained by combining Equ. (37) and Equ. (38).

For example, let F (s) be general form of transfer functions

F (s) =
bnsαn + bn−1s

αn−1 + . . . + b1s
α1 + b0s

α0

ansβn + an−1sβn−1 + . . . + a1sβ1 + a0sβ0

=
n∑

i=0

bis
αiGn(s) (47)

where αi ≤ βn, (i = 0, 1, . . . , n). Then the inverse Laplace transform of F (s) is

f(t) =
n∑

i=0

biD
αign(t) (48)

where the fractional derivatives of gn(t) can be evaluated using Equ. (38).

5The coefficients (n; n1, n2, . . . , nk) in the multinomial theorem are called multinomial coefficients.
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CHAPTER III

FUNDAMENTAL ISSUES

3.1 Representations

The fractional order system can be represented by a fractional SISO model using fractional

differential equation:

anDαn
t y(t) + . . . + a1D

α1
t y(t) + a0D

α0
t y(t)

= bmDβm
t u(t) + . . . + b1D

β1
t u(t) + b0D

β0
t u(t) (49)

where 0D
(∗)
t := D

(∗)
t and αk, βk (k = 0, 1, 2, . . .) are arbitrary real numbers, βn > . . . >

β1 > β0, αn > . . . > α1 > α0 and ak, bk (k = 0, 1, 2, . . .) are constants.

By Laplace transform, the transfer function of fractional order system can be obtained

in following general expression:

G(s) =
Y (s)
U(s)

=
bmsβm + . . . + b1s

β1 + b0s
β0

ansαn + . . . + a1sα1 + a0sα0
(50)

For special fractional order systems, R(sα) = N(sα)/D(sα), a state-space model de-

scribed in vector and matrix relations is given as:

x(α)(t) = Ax(t) + Bu(t)

y(t) = Cx(t), t ≥ 0 (51)

The controllability and observability of the fractional order R(sα) systems can be discussed

based on the state-space model description [15] [16]. Obviously, this description is conve-

nient only for simple models with integer order sα operator, (sα)n (n = 0, 1, . . .).

Another type state-space model of fractional order system can be written as [20]:

ẋ(t) = f(x(fr)(t), u(t))

y(t) = g(x(fr)(t), u(t)), t ≥ 0 (52)
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which expresses the 1st-order derivative in the state-space equations and has the classical

state-space interpretation for the fractional order systems too. On the right side of these

equations, more than one fractional order derivatives of the state-space variables can be

transferred. This state-space model cannot be expressed in vector and matrix relations in

time domain. But in s-plane, it is possible by using transfer function matrixes:

sX(s) = A(s)X(s) + B(s)U(s)

Y (s) = C(s)X(s) (53)

Similarly, the overall transfer function can be derived as:

Y (s)
U(s)

=
Cadj(sI−A)B

det(sI−A)
(54)

Therefore, the characteristic equation of the closed-loop system can be determined by solv-

ing the determinant in the denominator of the transfer function, which is a fractional order

polynomial in s:

ansαn + . . . + a1s
α1 + a0s

α0 = 0 (55)

3.2 Linearity

As mentioned in Chapter 2, systems’ linearity is obviously kept when their orders are

expanded to fractional orders:

Dα (λf(t) + µg(t)) = λDαf(t) + µDαg(t) (56)

The linearity of fractional order systems follows directly from the two mathematical defini-

tions. For the Riemann-Liouville definition of α order (k − 1 < α < k), it can be seen:

aD
α
t (λf(t) + µg(t)) =

1
Γ(k − α)

dk

dtk

∫ t

a
(t− τ)k−α−1 (λf(τ) + µ(τ)))dτ

=
λ

Γ(k − α)
dk

dtk

∫ t

a
(t− τ)k−α−1f(τ)dτ

+
µ

Γ(k − α)
dk

dtk

∫ t

a
(t− τ)k−α−1g(τ)dτ

= λaD
α
t f(t) + µaD

α
t g(t) (57)
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Similarly, based on the Grünwald-Letnikov definition, the same result can be arrived:

aD
α
t (λf(t) + µg(t)) = lim

h→0

nh=t−a

h−α
n∑

j=0

(−1)j




α

j


 (λf(t− jh) + µg(t− jh))

= λ lim
h→0

nh=t−a

h−α
n∑

j=0

(−1)j




α

j


 f(t− jh)

+ µ lim
h→0

nh=t−a

h−α
n∑

j=0

(−1)j




α

j


 g(t− jh)

= λaD
α
t f(t) + µaD

α
t g(t) (58)

Although FOC is conceptually unfamiliar, it is in fact a natural generalization and

expansion of IOC theory. The FOC systems are also linear systems whose Laplace and

Fourier transforms are similar to integer order systems’ but with fractional order operators.

3.3 Modeling and Identification

There is a growing significant demand for better mathematic models to describe real objects

recently. The fractional order model can provide a new possibility to acquire more adequate

modeling of dynamic processes. Fractional order models have been applied to describe re-

heating furnace [7], visco-elasticity [1][7][8], chemical processes [22] and Chaos system [21],

etc.

Actually, using fractional order model for describing distributed-parameter systems is

quite natural since the Laplace transform of partial differential equations will inevitably

introduce fractional order s operator. For a simple example, see semi-infinite cable in Fig. 5

with voltage v(t, 0) applied in x = 0 [3]. R and C are cable’s electrical resistance and

capacity at unit length. The physical model of the system can be described by following

equations:

Ri(t, x) = −∂v(t, x)
∂x

(59)

C
∂v(t, x)

∂t
= −∂i(t, x)

∂x
(60)

The Laplace transform of the above equations gives:

RI(s, x) = −∂V (s, x)
∂x

(61)
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Figure 5: Semi-infinite cable

CsV (s, x) = −∂I(s, x)
∂x

(62)

Therefore,
∂2V (s, x)

∂x2
−RCsV (s, x) = 0 (63)

The general solution for the 2nd-order differential equation is:

V (s, x) = C1e
√

RCsx + C2e
−√RCsx (64)

For the semi-infinite cable, it gives

V (s, 0) = C1 + C2 (65)

V (s,∞) = C1e
√

RCs∞ + C2e
−√RCs∞ = 0 (66)

Finally,

V (s, x) = V (s, 0)e−
√

RCsx (67)

I(s, x) =

√
C

R
V (s, 0)s0.5 (68)

As another example, consider a torsional model as shown in Fig. 6, which consists of a

flexible shaft attached to a rigid disk [23]. The rigid body equation of the disk is given as

I1s
2θ1 = T1 + T12 (69)

Take a small element of length dx along the shaft axis and observe the cylindrical surface,

as shown in Fig. 7(a). This element will deform through a small angle dθ.
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Figure 6: The flexible shaft attached to a rigid disk

 

T

dx

T+dT
γ

r
dθ

(a) Small element of the tor-
sional shaft

 

τ

Shear stress

r+dr

r

(b) Shear stress in a small an-
nular cross section

Figure 7: Deformation of the torsional shaft

Based on the theory of elasticity [24], γ is the shear strain:

γ = r
∂θ(t, x)

∂x
(70)

The corresponding shear stress at the deformed point at radius r is

τ = Gγ = Gr
∂θ(t, x)

∂x
(71)

where G is shear modulus [24].

As shown in Fig. 7(b), since this shear stress acts tangentially, the overall torque at the

shaft cross section is

T =
∫

r × (τ × 2πrdr) = G
∂θ(t, x)

∂x

∫
2πr3dr = GJ

∂θ(t, x)
∂x

(72)

Now apply Newton’s second law for rotatory motion of the small element dx shown in

Fig. 7(a), the equation of motion is

ρJdx
∂2θ(t, x)

∂t2
= T + dT − T =

∂T (t, x)
∂x

dx (73)
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Substitute Equ. (72) and cancel dx to get the equation of a circular shaft as

ρJ
∂2θ(t, x)

∂t2
=

∂

∂x
GJ

∂θ(t, x)
∂x

(74)

For a uniform shaft segment of length l with associated overall angular deformation θ, the

torsional stiffness k is

k =
T

θ
= GJ

∂θ(t, x)
∂x

· 1
θ

=
GJ

l
(75)

Therefore, Equ. (74) can be rewritten as

I2

l

∂2θ(t, x)
∂t2

− kl
∂2θ(t, x)

∂x2 = 0 (76)

For Equ. (74), the Laplace transform in t can be obtained:

I2

l
s2θ(x)− kl

d2θ(x)
dx2

= 0 (77)

where θ(s, x) is abbreviated as θ(x) for simplicity. Let µ2 = I2
kl , the solution of Equ. (77),

a 2nd-order differential equation, is

θ(x) = C1e
µsx + C2e

−µsx (78)

For the free end of the shaft, there is no deformation and the shear stress in zero. Therefore,

the below two boundary conditions can be obtained:

θ(x)|x=0 = θ1,
dθ(x)
dx

∣∣∣∣
x=l

= 0 (79)

Therefore, the two constants C1 and C2 can be calculated as:

C1 =
e−µlsθ1

2cosh(µls)
and C2 =

eµlsθ1

2cosh(µls)
(80)

Torque T12 in Fig. 6 can be obtained:

T12(s) = (kl)
dθ(x)
dx

∣∣∣∣
x=0

= −tanh(µls)θ1 (81)

Finally, substitute T12 in Equ. (69), the transfer function between T1 and θ1 can be achieved:

T1

θ1
= I1s

2 + kl · µs · tanh(µls)

= I1s
2 +

√
klI2tanh




√
lI2

k
s


 s (82)
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However, in conventional modeling method, the torsional system in Fig. 6 are usually

modeled as a rigid body system with inertia I = I1 + I2:

T1

θ1
= (I1 + I2)s2 (83)

As shown in the Bode plots of Fig. 8, the fractional order transfer function model in Equ. (82)

displays the mechanical resonance effect naturally. At low-frequency range, the two models

give similar frequency responses. At high frequency range, the fractional model can describe

the distributed nature of the torsional system; while in conventional integer order model,

this nature is totally ignored. Fractional order modeling is a useful tool to give more

adequately description of system’s “real” dynamic features.
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Figure 8: Bode plots of the torsional system’s fractional order model and conventional
integer order model

From the above two examples, it can be seen that distributed-parameter systems are

naturally described by a set of partial differential equations. However, these equations will

lead to transfer functions that are quotients of transcendental functions.

Using fractional order transfer function model, a quotient of polynomials in sα, it is

also possible to fit better a set of experimental data. For example, the frequency-domain

identification of a flexible structure by fractional order model can take into account not only

material damping, but also other variety of physical phenomena such as visco-elasticity and

anomalous relaxation. This fact indicts fractional order models can be an appropriate and
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hopeful tool to model the dynamic features of flexible structure more accurately which is

becoming more and more important due to lighter materials and faster motions [7][8].

For fractional order models like Equ. (50), frequency-domain identification methods to

determine the coefficients αk, βk (k = 0, 1, 2, . . .) and ak, bk (k = 0, 1, 2, . . .) are as routine

as conventional integer order models. Various identification methods for determination of

the coefficients were developed [7][8][25], based on minimization of the difference between

the measured frequency response F (ω) and the frequency response of the model G(jω). For

example, the quadratic criterion for the optimization can be in following form:

Q =
M∑

m=0

W 2(ωm) |F (ωm)−G(jωm)|2 (84)

where W (ωm) is a weighting function and M is the number of measured values of frequencies

ω = (ω0, ω2, . . . , ωM ).

Compared to the general fractional order model as in Equ. (50), a special model can be

introduced, in which only integer orders of fractional order operator sα are used:

G(s) =
∑m

i=0 ai(sα)i

(sα)n +
∑n−1

j=0 bj(sα)j
, n ≥ m (85)

It is interesting to notice that the selection of α can actually be seen as selecting the

phenomena that can be modeled. For example, when modeling a flexible structure, using

α = 2 can not model damping. In α = 1 case, we can model the damping. If we can further

take α = 0.5, other phenomena such as visco-elasticity and anomalous relaxation will be

described. The other advantage of this model is that existing optimization methods can

still be use since only integer order sα is introduced.
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CHAPTER IV

CONTROL IMPACTS

4.1 Control System Type

Control system type is defined as the number of poles that G(s) has at s = 0. Here G(s)

is the forward-path transfer function for unity feedback systems. In order to investigate

the impacts of sα upon conventional integer order control, consider a unity feedback with

open-loop transfer function:

G(s) =
K(s− z1)(s− z2) . . . (s− zm)
sα(s− p1)(s− p2) . . . (s− pn)

(86)

It is well-known that for system with a step-function input of magnitude R, R/s, the steady-

state error is:

ess =
R

1 + lims→0 G(s)
=

R

1 + lims→0
K

∏m
i=1(s− zi)

sα ∏n
j=1(s− pj)

(87)

For system with a ramp-function input R/s2:

ess =
R

lims→0 sG(s)
=

R

lims→0
K

∏m
i=1(s− zi)

sα−1 ∏n
j=1(s− pj)

(88)

For system with a parabolic function input R/s3:

ess =
R

lims→0 s2G(s)
=

R

lims→0
K

∏m
i=1(s− zi)

sα−2 ∏n
j=1(s− pj)

(89)

Obviously, since the fractional order sα does not exactly cancel the integer orders of s for

the various inputs, there will always be a fractional order s term in the numerator or the

denominator, which accounts for the fact that the steady-state error ess is always either 0

or infinite. The following table Table. 1 shows the effects of fractional sα on steady-state

error.

Based on root locus condition on magnitude, the values of K along the root locus can

be determined by

|K| = |sα| |s− p1||s− p2| . . . |s− pn|
|s− z1||s− z2| . . . |s− zm| (90)
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System type of α Input Error Constant Steady-state Error

0 < α < 1 Unit step ∞ 0
Ramp 0 ∞

Parabolic 0 ∞

1 < α < 2 Unit step ∞ 0
Ramp ∞ 0

Parabolic 0 ∞

2 < α < 3 Unit step ∞ 0
Ramp ∞ 0

Parabolic ∞ 0

Table 1: State-state error of fractional type system

and condition on angels:

6 G(s) = −α 6 s +
m∑

k=1

6 (s− zk)−
n∑

j=1

6 (s− pj) (91)

Obviously by choosing α small enough, the fractional pole at 0 can be reduced to 16 0 and

is thereby made transparent to the rest of the system. A weak pole (0 < α ¿ 1) behaves

like a linear multiplier of value 1. On the other hand, a strong pole, for example α = 1,

tends to shift the root locus to the right which may lead to instability. As α is reduced

from 1 to zero, the fractional pole at the origin can be adjusted to exhibit different pole-like

behavior. This suggests that the tendency of a pole to shift the entire root locus plot can

now be scaled to accommodate a particular application by introducing the fractional order

operator sα.

For a type α system, 0 < α < 1, with a unit step input, the steady-state error of the

system is 0, a characteristic usually found in a system of at least TYPE 1. However, when

0 < α ¿ 1, the root locus plot would resemble that of a TYPE 0 system since the weak

pole at sα has little effect to root locus. A fractional type system seems to combine some

of the characteristics of TYPE N and TYPE N+1 systems.

For a simple example, consider the unit-step responses of G(s) = 1/sα for a very small

α = 0.00001 and α = 0 (see Fig. 9). The steady-state error of 1/s0.00001 is zero, which is
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the characteristic of TYPE 1 system; while for 1/s0, a TYPE 0 system, the error is 0.5.
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Figure 9: Unit-step responses of 1/s0.00001 and 1/s0

In above example, even with very small fractional order 0.00001, the system’s charac-

teristics are greatly changed and show a combinatorial effects of the neighbor integer order

0 and 1 systems. More extensive analysis which examines this combinatorial effects of

fractional poles and zeros, and their relationship to system damping coefficients and other

performance criteria are beyond the scope of this dissertation and still largely open research

problems.

4.2 Stability Determination

The question of stability is of main interest in control theory. A fractional order system is

stable if all its roots in the main sheet of the Riemann surface are negative or have negative

real parts [26]. However, It is quite difficult to find a general stability criterion like Routh

criterion for integer order systems.

For the special fractional order systems with only integer order sα operators, this

question can be easily resolved. For example, the characteristic equation of R(sα) =

N(sα)/D(sα) systems can be expressed as:

(sα)n + an−1(sα)n−1 + . . . + a1s
α + a0 = 0 (92)

where 0 < α < 1. Let σ := sα, Equ. (92) can be rewritten as

σn + an−1σ
n−1 + . . . + a1σ + a0 = 0 (93)
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The requirement of stability for Equ. (92) is the roots pi of the characteristic equation

in the main sheet of the Riemann surface (−π < arg(s) < π) must be all located in the

left-half s-plane. As shown in Fig. 10, using the mapping σ := sα, the corresponding

stability condition for Equ. (93) is that all its roots p
′
i must be located outside the sector

of −π
2 α < arg(p

′
i) < π

2 α in the σ-plane.

Ims 

Res

Stable  
region 

Stable  
region 

0 

Imσ

Reσ

Stable  
region 

Stable  
region 

0 

s-plane σ-plane

Figure 10: Larger stable root region for fractional order R(sα) system

Namely, the stabilities for R(sα) systems are guaranteed iff the roots of the polynomial

Equ. (93) lie outside the closed angular sector:

|arg(δ)| ≤ α
π

2
(94)

For state-space representation of the R(sα) fractional order systems, all the eigenvalues of

the state-transition matrix A should be outside the above sector. This result generalizes

the well-known results for the integer case α = 1 in a stupendous way.

As a qualitative explanation in time domain, compared with the characteristic equa-

tions of integer order control systems with same coefficients {an−1, . . . , a1, a0}, the stability

requirement of the FOC systems is looser (see Fig. 10). When uncertainties occur, the co-

efficients of characteristic equation change and consequently roots move about the complex

plane. Looser stability requirement of FOC systems means better robustness performance

against uncertainties.

Like IOC systems, frequency-domain approaches are more convenient to determinate

the stabilities of FOC systems . In chapter 2, it has been shown that the Fourier transform

of fractional order systems can be easily obtained by substituting the s operator with jω,
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just as same as conventional integer order systems.

Here, the close-loop 1/sα system is used again as an example to illustrate the effec-

tiveness of stability analysis by classical frequency-domain approaches, such as the Nyquist

criterion. In the Bode plots of Fig. 11(a), the phase margin is negative for 2.2 order α

and zero for 2 order α. For the other orders smaller than 2, the phase margin is positive

and the system should be stable. The time responses of close-loop 1/sα systems verify this

stability analysis. Obviously when taking α as 2 and 2.2, the system will be unstable (see

Fig. 11(b)).
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Figure 11: Example of stability determination using Nyquist criterion

4.3 Frequency-domain Analysis

As a starting point for frequency-domain analysis of FOC system, consider the classical way

of introducing a sinusoidal input with amplitude R and frequency ω:

r(t) = Rsin(ωt) (95)

In order to obtain steady-state output, y(t), fractional order calculus of sin(ωt) need be

known. Since sin(ωt) is a periodic function, it’s fractional α order calculus (−1 < α < 1)

can be expressed in following form

0D
α
t sin(ωt) = 0D

α
t ejωt −0 Dα

t e−jωt

2j
(96)
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When t tends to infinity, the fractional α order derivative of ejωt can be expanded using an

asymptotic expansion of the incomplete gamma function [1]:

0D
α
t ejωt

∣∣∣
t→∞ = (jω)αejωt −

∞∑

k=0

(jωt)−1−kt−α

Γ(−α− k)

= ωαej(ωt+π
2
α) −

∞∑

k=0

(jωt)−1−kt−α

Γ(−α− k)
(97)

Based on this expansion, Equ. (96) can be rewritten as

0D
α
t ejωt +0 Dα

t e−jωt

2j

∣∣∣∣∣
t→∞

= ωαsin(ωt +
π

2
α)−

∞∑

k=0

1− (−1)−1−k

2jΓ(−α− k)
(jωt)−1−kt−α

= ωαsin(ωt +
π

2
α) +

∞∑

n=0

(−1)n

ω1+2nΓ(−α− 2n)
· 1
t1+2n+α

= ωαsin(ωt +
π

2
α) (98)

Namely,

0D
α
t sin(ωt)|t→∞ = ωαsin(ωt +

π

2
α) (99)

Therefore, the steady-state output, y(t), of fractional order sα system will also be a sinusoid

with same frequency ω, but different amplitude, Rωα, and phase, ωt + π
2 α:

y(t) = Y sin(ωt + φ) (100)

where Y is the amplitude of the output sine wave scaled by ωα and φ is the phase shift

of π
2 α. The utility of being able to vary α fractionally is apparent when considering that

control system’s frequency responses can be further adjusted accurately between existing

IOC systems through FOC approach.

As discussed in chapter 2, for a general FOC system with transfer function G(s), the

amplitude and phase of the output sinusoid are

Y = R |G(jω)| , φ = 6 G(jω) (101)

Unlike the complicated time-domain analysis, frequency responses of FOC systems can

be easily and exactly known. The wealth of graphical methods and analysis tools in fre-

quency domain are still available for fractional order systems and can be used as conveniently
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as in conventional IOC system analysis and design. Most importantly, the Nyquist stability

criterion can be a general solution for determining FOC system’s stability. Due to these

reasons, FOC researches are mainly carried out in frequency domain.

To investigate the impacts of introducing FOC upon system’s frequency responses, the

Bode plots of unity-feedback control system G(s) with fractional order operator sα are

shown from Fig. 12 to Fig. 15.
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Figure 12: Bode plots of G(s) = 1
sα
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Figure 13: Bode plots of G(s) = 1
sα+1

By adjusting fractional order α, the control system’s frequency responses are significantly

changed. Even fractional order is a natural interpolation between integer orders, the FOC

system’s properties exhibit distinct differences between conventional IOC systems. It implies

some complicated frequency characteristics, which were obtained by high-order transfer
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Figure 14: Bode plots of G(s) = 1
s+sα+1
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Figure 15: Bode plots of G(s) = 1
s2+sα+1

functions in IOC before, could be realized easily by FOC with simpler structures and less

control parameters.

It is of interest to consider the effects on frequency-domain responses when fractional

order poles and zeros are added to the prototype forward-path transfer function of a unity-

feedback control system. As an example, consider a more general unity-feedback control

system G(s):

G(s) =
K(s + 2)
sα(s + 1)

(102)

then

|G(jω)|dB = −20αlog10|jω|+ 20log10|K|+ 20log10|jω + 2| − 20log10|jω + 1|

6 G(jω) = −α
π

2
+ 6 (jω + 2)− 6 (jω + 1) (103)
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Here the advantage of introducing sα is more obvious. Recall that when α = 1, jω is con-

sidered to have a constant phase characteristic of -90 degree. By introducing sα, Equ. (103)

shows that an arbitrary phase shift can be obtained with different value of α. Moreover, this

phase is independent of frequency ω. By choosing α between 0 and 2, the phase response

of the system can be precisely offset (increased or decreased) by any amount from 0 to -180

degree.
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Figure 16: Bode plots of G(s) with selected α (K=10)

As shown in Equ. (103) and Fig. 16, when the type of system, α, is reduced from 2 to 0,

the effect is to reduce the system gain at constant rate −20α dB/decade; while adding phase

in a linear fashion. In phase plot’s bottom trace, −180 degree in low frequency range is the

standard response of two strong poles located at the origin. As α is reduced, phase is added

and the whole response is shifted upward. This is an interesting result when contrasted

with conventional lead, lag networks or PID-type controllers which have undesirable phase-

margin and phase-gain trade-offs at certain frequencies. This advantage implies a clear-cut

control design could be achieved by introducing FOC approach.

4.4 Design of Robust Control System

Robustness of control systems to disturbances and uncertainties has always been a central

issue in feedback control. Feedback would not be needed for most control systems if there

were no disturbances and uncertainties. Developing robust control methods has be the focal

point in the last two decades in the control community. The state-of-the-art H∞ robust
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control theory is the result of this effort [27]. Despite its past successes in various applica-

tions, H∞ control is notorious for its high-order, conservative controllers and complicated

mathematics.

A new dimension opens to control engineering when the order of Laplace operator s

becomes an arbitrary real number. A controller, which is neither too conservative nor

too aggressive, can be easily designed by choosing proper fractional order. More adequate

fractional order model also leads to less model error used in control design.

4.4.1 Less model error

A good model should be simple enough to facilitate design, yet complex enough to give

the control engineer confidence that designs based on the model will work on the true

plant. Fractional order modeling and identification rightly fit this category. As mentioned

in section 3.3, fractional order model can give a natural description of complex dynamic

features, especially for distributed-parameter systems. On the contrary, the conventional

integer order model can only describe lumped-parameter systems. For flexible structures

expressed by integer order model, additional modal analysis is needed [23].

Adequate fractional order modeling could give us a reliable understanding of control

plants before control design. At the same time, obtaining lower order fractional model for

control plant, low order controllers could be designed. This implies the controlled system

is more robust against noises and disturbances [8]. Finally, fractional order plant models

naturally need fractional order controllers for more effective control [19].

4.4.2 Effective gain-phase tradeoff

In robust control, it is well-known that a good performance requires large loop gain in

some frequency range, typically some low-frequency range (0, ωl); while good robustness

and good sensor noise rejection require small loop gain in some frequency range, typically

some high-frequency range (ωh,∞).

The transition frequency range (ωl, ωh) is crucial for robust control design. A “strong”

transition will cause stability problem due to the possibility of negative relative stability

margin, phase margin; while a “weak” transition will lead to poor robust performance
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against noises and disturbances since the loop gain in high-frequency range is relatively

large. As shown in Fig. 17, adoption of fractional order controllers can easily obtain a

smooth transition and give proper phase margin by using only one control parameter, the

fractional order α.

logω
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dΒ

deg.
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-20αdB/dec
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−90

−180

−90α

ωl ωh

Figure 17: Smooth transition by adoption of fractional order controllers

It has been mentioned that the conventional IOC methods have undesirable phase-gain

tradeoff at certain frequency. Mainly due to this reason, high-order controllers were de-

signed. By introducing fractional order controllers, gain and phase can be shifted precisely

and easily by any amount with less control parameters, mostly the fractional orders. Con-

sider a unity-feedback system G(s) with gain K = 4

G(s) =
K

s(s + 1)(s + 2)
(104)

Obviously, the control system has poor relative stability due to the small phase margin

(see Fig. 18(b)). This may cause robustness problem when uncertainties such as parameter

variation occurs. For example, larger K = 6 will shift gain response upward and lead to

zero phase margin.
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order (α=1 and K=4)
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(c) Bode plots of G(s) with fractional α
order (K=4)

Figure 18: Gain-phase tradeoff with fractional α order

In order to improve the system’s robustness with less gain loss, introducing fractional

order low-pass filter 1/(s + 1)α is an effective approach. The system’s open-loop transfer

function is now

G(s) =
K

s(s + 1)α(s + 2)
(105)

where order α can be any real number from 1 to 0. As shown in Fig. 18(c), with proper

fractional order α, the phase margin can be offset to any desired amount.

Fig. 18(a) plots the relationship among phase margin, α and K. Even taking K as 10,

selecting α smaller than 0.6 can still give positive phase margin. With novel tuning knob

α, the possibility of gain-phase tradeoff is greatly increased. It can been seen in Fig. 18(a)

adjusting fractional order α is much more effective to obtain proper phase margin with less
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gain loss than changing gain K.

The advantage of FOC is not restricted to phase margin analysis. Consider the M −∆

loop shown in Fig. 19. From Small Gain Theorem [27], robust stability of the loop is assured

with

(a) ‖ ∆ ‖∞≤ 1/γ if and only if ‖ M(s) ‖∞< γ

(b) ‖ ∆ ‖∞< 1/γ if and only if ‖ M(s) ‖∞≤ γ

where γ > 0.

M

ω1

ω2

e1

e2

∆

Figure 19: M −∆ loop for robust stability analysis

To illustrate FOC’s advantage, let M be a low-pass filter but with fractional order:

M(s) =
1

(τs + 1)α (106)

and ∆ be a time delay uncertainty, e−sTd , which is the only source of unmodeled dynamics:

∆(s) = e−sTd − 1 (107)
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Figure 20: M(s) with time delay uncertainty ∆ (Td = 1/300 and τ = 1/200)
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The magnitude plot of 1/∆ and different α order M(s) are shown in Fig. 20. For con-

ventional integer order filter, 1 is the smallest order that can be taken. Clearly there is still

room to recover some control performance. To do this, raising the filter’s cut-off frequency

or expanding nominal plant model to account for uncertainties can be choices. Large cut-off

frequency will lead to worse noise rejection. And reflecting uncertainties in nominal plant

model maybe too complicated in calculation to make this approach unattractive. Taking

proper fractional order α, for example 0.8 and 0.6 in Fig. 20, can further and easily re-

cover some control performance with less noise rejection loss. For low orders, 0.4 and 0.2,

obviously the robust stability criteria is violated.

By introducing FOC concept, control system’s performance can be further and easily

adjusted between conventional IOC systems. The more effective gain-phase tradeoff of

fractional order controllers implies FOC could be an effective and clear-cut design tool for

real control applications.

4.4.3 Design method for FOC

Systematic design method for FOC still largely keeps being an open problem. Various

methods have been reported for FOC design. A method based on pole distribution of the

characteristic equation in complex plane was proposed [28]. Since it is more convenient to

analyze FOC system in frequency domain, H2, H∞ and other optimal control methods were

expanded to design FOC system [12][29][13]. However, the optimal algorithm might become

very complicated due to the necessity of optimizing fractional orders. The cost-effectiveness

of above optimal methods are questionable. To decrease the difficulty of optimization,

Genetic Algorithm (GA) can be applied [30].

The author believes that the design and application of FOC should be clear-cut. Because

FOC provides us a novel and powerful tool in control design, we should make full use of its

power to solve complex control problems in a simpler and more straightforward way. It has

been mentioned that FOC can further and easily improve the performance of IOC system

designed by IOC methods. And for most control problems in motion control, integer order

models may be not as adequate as fractional order model. But they can still provide a good

37



description of control plant’s dynamic features considering its simplicity.

Based on these considerations, the author designed FOC in a two-stage or hybrid ap-

proach: use IOC design method firstly and then improve the performance of designed control

system by adding proper fractional order controller (see Fig. 21). Namely, design IOC sys-

tem to give a good sense of direction and fine tune it’s performance using novel FOC design

method. This two-stage design could make the most of well developed IOC knowledge and

novel FOC advantages. Therefore, a clear-cut and cost-effective design approach would be

obtained. In below chapters, the control design issues will be mentioned in detail with

theoretical analysis and experimental verifications.

Design by IOCConventional IOC

Improvement by FOCImprovement by FOC

Control ApplicationsControl Applications

First Design

Second Design

Figure 21: Illustration for the two-stage design approach

38



CHAPTER V

SAMPLING TIME SCALING PROPERTY

While FOC system’s analysis and design in frequency domain are as convenient as conven-

tional IOC systems due to the availability of existing graphical tools, in practice the perfor-

mance of a control system is more realistically measured by its time-domain characteristics.

At the same time, most modern control systems are controlled by digital controllers. It is

well-known that continuous-data controllers such as PID controllers can be approximated

digitally with clear time-domain interpretations. For example, the backward-difference rule

for derivative controller means the change of sampled inputs between one sampling time pe-

riod. The trapezoidal-integration rule approximates the area under the sampled inputs by

a series of trapezoids. These clear time-domain interpretations significantly simplified their

use in various control applications. Classical control theory was extremely well developed

based on integer order differential equations.

On the contrary, for fractional order controllers, it was not so. Podlubny proposed a

simple geometric interpretation of fractional integrals as “changing shadows on the wall

(gt, f)” and some pictures describing this changing were given [31]. However, since most

modern controllers are realized by digital computers, clear interpretation of fractional order

controllers in discrete domain should be much more concerned with practical importance.

Especially insights in discrete fractional order controllers would be enlightening for the

future development of FOC research.

5.1 Scaled Sampling Time

From the Riemann-Liouville definition, fractional order integral with order between 0 and

1 can be rewritten in following form

0D
−α
t f(t) =

∫ t

0
f(τ)dgt(τ), 0 < α < 1 (108)
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where

gt(τ) =
1

Γ(1 + α)
[tα − (t− τ)α] (109)

Let t := nT , where T is sampling time and n is the step currently under execution, then

gnT (kT ) =
nα − (n− k)α

Γ(1 + α)
Tα, k = 1, ..., n (110)

Based on the same consideration of trapezoidal integration method, the constant sampling

time T is adjusted to Tn(k) for the kth step in discrete fractional order integral controller:

Tn(k) = ∆gnT (kT )

= gnT (kT )− gnT [(k − 1)T ]

=
(n− k + 1)α − (n− k)α

Γ(1 + α)
Tα (111)

Thus

Tn(n) =
1α − 0α

Γ(1 + α)
Tα

Tn(n− 1) =
2α − 1α

Γ(1 + α)
Tα

. . .

Tn(1) =
nα − (n− 1)α

Γ(1 + α)
Tα (112)

Finally, the integral
∫ t
0 f(τ)dgt(τ) in Equ. (108) can approximated as a series of trapezoids

with the scaled sampling time Tn(k)

0D
−α
nT ≈

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) (113)

and if T → 0, then

0D
−α
nT =

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) (114)

From Equ. (112), the interpretation of discrete fractional order integrals is the “deforma-

tion” of their integer order counterparts by internal sampling time scaling. As shown in

Fig. 22, with same sampled inputs f(kT ) as integer order integral, the scaled sampling time

Tn(k) leads to different characteristics of fractional order integral. Based on this sampling
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time scaled version of trapezoidal integration rule, it is easily to understand that the past

inputs are “forgotten” gradually in discrete fractional order integral due to their scaled

tiny sampling time while in integer order ones all the values are “remembered” with same

weights. Therefore, a link to known classical trapezoidal-integration rule has been found,

but with scaled sampling time in fractional order case.

 

4 

0 

1 2 3 

1 2 3 4 

0 

integer order integral

fractional order integral

Figure 22: Trapezoidal-integration rules with the scaled sampling time

Similarly, discrete fractional order derivatives with order between 0 and 1 can also be

written as

0D
α
t f(t) =

1
Γ(1− α)

d

dt

∫ t

0

f(τ)
(t− τ)α

dτ

=
d[

∫ t
0 f(τ)dg

′
t(τ)]

dt
, 0 < α < 1 (115)

where

g
′
t(τ) =

1
Γ(2− α)

[t1−α − (t− τ)1−α] (116)

Therefore,

T
′
n(n) =

11−α − 01−α

Γ(2− α)
T 1−α

T
′
n(n− 1) =

21−α − 11−α

Γ(2− α)
T 1−α

. . .

T
′
n(1) =

n1−α − (n− 1)1−α

Γ(2− α)
T 1−α (117)
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Again based on the trapezoidal integration rule, the integral
∫ t
0 f(τ)dg

′
t(τ) in Equ. (115)

can be also approximated as

∫ nT

0
f(τ)dg

′
t(τ) ≈

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

T
′
n(k) (118)

and if T → 0, then

∫ nT

0
f(τ)dg

′
t(τ) =

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

T
′
n(k) (119)

The interpretation of discrete fractional order derivatives is the derivatives of fractional

(1 − α) order integrals
∫ nT
0 f(τ)dg

′
t(τ). Namely, it can be understood geometrically as the

changing ratio of the “scaled integral area” due to the scaled sampling time, as shown in

the shadow area of Fig. 23.

 

1 2 3 3 1 2 0 4

Figure 23: Changing of the “scaled integral area”

Clearly, when order α equals 1, the sampling time will not be scaled any more. From the

viewpoint of sampling time scaling, in discrete domain FOC is also a natural generalization

and interpolation of conventional integer order control.

5.2 Control with Self-scaled Memory

Viewing in terms of sampling time scaling can gain more insight into discrete FOC sys-

tems. The fractional order controllers are controllers with self-adjustable parameters and a

mechanism for adjusting the parameters. As shown in Fig. 24, a fractional order controller

can be considered conceptually as the series of a sampling time scaler and conventional

integer order controller. Namely, the sampling time of input sequence is pre-adjusted by

the sampling time scaler before entering integer order controller.

Therefore, fractional order control can be regarded as a special control strategy, which

apply strong control action to latest sampled inputs by using “forgetting factors” λn(k).
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Figure 24: Sampling time scaler of FOC systems

Large scaled sampling time of latest values means small “forgetting factors” and vice versa.

For example, the control law of a pure fractional order integral controller can be rewritten

in “forgetting factor” form, where λn(k) equals 2/Tn(k) in Equ. (112):

u(n) =
n∑

k=1

1
λn(k)

[e(k) + e(k − 1)] (120)
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Figure 25: Plots of the forgetting factor λn(s) (T=0.001sec)

It can be seen in Fig. 25 that in fractional order integral controllers the sampled inputs

are memorized with time-scaled weights, while the integer order controllers give all the

inputs same weights. More fractional order differs from the integer order 1, more obvious

the sampling time scaling is. Fig. 25 shows discrete fractional order controllers memorize

the latest inputs more strongly and also “forget” the old inputs more completely than

conventional integer order controllers.

An adaptive controller can be defined as a controller with adjustable parameters and a

mechanism for adjusting parameters [32]. The adaptive controller modifies its parameters in
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response to changes in the dynamics of the control plant. Due to the parameter adjustment

mechanism, the adaptive control system becomes nonlinear, which is difficult to analyze.

For fractional order controller, the internal sampling time is adjusted by the sampling time

scaling mechanism. However, this adjustment is not in response to outer changes and the

control system keeps being linear, which means the wealth of analysis tools can still be

used. The rapidly fading influences of the old inputs and dominance of the latest ones make

fractional order controllers “passively adaptive” to the changes of the control plant. This

distinct characteristic could also be a time-domain explanation for FOC system’s robustness

against various uncertainties.

5.3 Realization by Sampling Time Scaling

It is common knowledge that fractional order systems have an infinite dimension while

integer order systems are finite dimensional. Discretization of fractional order controller by

the time-scaled trapezoidal integration rule is not an exception. Proper approximation by

finite difference equation is needed to realize fractional order controller.

Based on the observation that the scaled sampling time near “starting point” t0 is small

enough to be “forgotten” for large t (see Fig. 26), a novel realization method is proposed

to take into account only the behavior of f(t) in “recent past”, i.e. in the interval [t−L, t],

where L is the length of “memory”:

t0D
k
t f(t) ≈t−L Dk

t f(t), t > t0 + L (121)

Therefore this realization method can be considered as a kind of “short memory principle”

approach but based on the Riemann-Liouville definition [7].

From Equation (113) and Equation (118), it is easy to give the discrete equivalent of

fractional α order integral or derivative controllers as follows:

Z{Dα[x(t)]} ≈ 1
Tα

[L/T ]∑

j=0

cjz
−j (122)

For integral controllers (α < 0), coefficients cj are

c0 =
1

2Γ(1 + |α|)
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Figure 26: Discrete Iα controller’s scaled sampling time (T = 0.001sec)

cj =
(j + 1)|α| − (j − 1)|α|

2Γ(1 + |α|) , j ≥ 1 (123)

And the coefficients of derivative controllers (α > 0) are a little more complicated:

c0 =
1

2Γ(2− α)

c1 =
21−α − 1
2Γ(2− α)

cj =
1

2Γ(2− α)

[
(j + 1)1−α − j1−α

− (j − 1)1−α + (j − 2)1−α
]
, j ≥ 2 (124)

Figure 27 shows the Bode plot of discrete Z{1/s0.5} controller for sampling time T =

0.001sec realized by different [L/T] (solid line) compared with the ideal case of continuous

controller 1/s0.5 (dash line). Clearly, in order to have a better approximation in discrete

domain, shorter sampling time and larger [L/T ] (memory length) are preferable.

5.4 Example: One-mass Position Control

In order to verify the sampling time scaling property of discrete fractional order controllers,

one-mass position control is used as a simple prototype, where Jm = 0.001kgm2, Kd = 0.1

and a torque limitation of ±5NM is introduced (see Fig. 28). Sampling time T is taken as

0.001sec. Time responses with fractional order derivative controllers Dα are simulated using

the above realization method with full memory length. Namely, all the past sampled inputs

45



100 101 102 103 104
-80

-60

-40

-20

0

M
a

g
n

it
u

d
e 

(d
B

)

100 101 102 103 104
-200

-150

-100

-50

0

Freq. (rad/sec)

P
h

a
se

 (
d

eg
.)

(a) L/T = 10

100 101 102 103 104
-80

-60

-40

-20

0

M
a

g
n

it
u

d
e 

(d
B

)

100 101 102 103 104
-200

-150

-100

-50

0

Freq. (rad/sec)

P
h

a
se

 (
d

eg
.)

(b) L/T = 100

100 101 102 103 104
-80

-60

-40

-20

0

M
a
g
n

it
u

d
e 

(d
B

)

100 101 102 103 104
-200

-150

-100

-50

0

Freq. (rad/sec)

P
h

a
se

 (
d

eg
.)

(c) L/T = 1000
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Figure 27: Bode plots of Z(1/s0.5) with different memory length L/T (solid line: approxi-
mation cases; dashed line: ideal case)

e during the simulation will be memorized. The integer order D1 controller is discreted by

the backward-difference rule:

Z

{
df(t)
dt

∣∣∣∣
t=kT

}
= Z

{
1
T

(f(kT )− f [(k − 1)T ])
}

=
z − 1
Tz

F (z) (125)

sK
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2
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e u

Figure 28: The one-mass position control loop

The time responses with different α order derivative controllers are shown in Fig. 29.

Obviously, the FOC systems are much more robust than conventional IOC systems. The
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system with D1 controller has the best time response when torque saturation does not exist

(see Fig. 29(a)). However, as shown in Fig. 29(b), its robustness against torque saturation

is very poor and the time response is totally no good. On the contrary, the control systems

with fractional order Dα controllers display much better robustness. Among them, D0.4

controller has the best robust performance.

The comparisons of the integer order and fractional order derivative controllers are

shown in Fig. 30 and Table. 2. Obviously, the self-scaled sampling time gives fractional order

Dα controllers an intermediate and different characteristic among conventional integer order

D controllers. The mechanism of sampling time scaling property could give a qualitative

analysis for FOC’s robustness.
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Figure 29: Time responses θm(t) with Dα controllers
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Figure 30: Plots of Dα controllers’ output u(t)
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D0 Dα D1

Inputs Memorized Newest one Whole Newest two
Forgetting Factor 1 Scaled ±T

Control Action Weak Middle and Scaled Strong
Robustness - Good Poor

Table 2: The comparison of integer order D controllers and fractional order Dα controllers
(0 < α < 1) based on the one-mass position control example

Just like conventional integer order control, to give a quantitative analysis in time do-

main is quite difficult. It is often convenient and with more valuable information to analyze

fractional order control system in frequency domain. For stability analysis, Fig. 11 in chap-

ter 4 can be referred. The Dα controllers’ robustness could be understood as keeping proper

phase margin between 0 and 90 degree. Therefore, a better tradeoff between stability and

robustness can be easily obtained. The “in-between” characteristic of Dα control’s time

responses could be analyzed by their close-loop frequency-domain specifications, as shown

in Fig. 31 and Table. 3.
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Figure 31: Close-loop gain plots with Dα controllers (saturation is consider as a gain

variation Ksat reduced from 1 to 0.00001)

D0 Dα D1

Resonant Peak Mr Large Intermediate Small
Bandwidth BW Small Intermediate Large
Change of BW Small Intermediate Large
Cut-off Rate Large Intermediate Small

Table 3: The comparison of frequency-domain specifications based on Fig. 31
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CHAPTER VI

REALIZATION METHODS

Though it is not difficult to understand the theoretical advantages of FOC, especially in

frequency domain, realization issue kept being somewhat problematic and perhaps was one

of the most doubtful points for the application of FOC. As shown in the Riemann-Liouville

definition, fractional order systems have an infinite dimension; while the conventional in-

teger order systems are finite dimension. To realize fractional order controllers perfectly,

all the past inputs should be memorized. It is impossible in real applications. Proper

approximation by finite differential or difference equation must be introduced.

Frequency-band fractional order controller can be realized by broken line approximation

in frequency domain. But further discretization is required for this method [33]. As to

direct discretization, various methods have been proposed such as Sampling Time Scaling,

Short Memory Principle [7], Tustin Taylor Expansion [34], Lagrange Function Interpolation

method [9], while all the approximation methods need truncation of the expansion series.

6.1 Frequency-band Approximation

6.1.1 Frequency-band fractional order controller

Since fractional order system’s frequency responses can be exactly known, approximating

fractional order controllers by frequency-domain approaches is natural. At the same time,

it is neither practicable nor desirable to try to make the order be fractional in whole fre-

quency range. The frequency-band fractional order controllers are required and practical in

most control applications. The broken-line approximation method can introduced to realize

frequency-band fractional order Iα controller. Let
( s

ωh
+ 1

s
ωb

+ 1

)α

≈
N−1∏

i=0

s
ω
′
i

+ 1
s
ωi

+ 1
(126)
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Figure 32: An example of broken-line approximation (N = 3)

Based on Fig. 32, two recursive factors ζ and η are introduced to calculate ωi and ω
′
i:

ζ =
ω
′
i

ωi
, η =

ωi+1

ω
′
i

(127)

Since

ω0 = η
1
2 ωb, ω

′
N−1 = η−

1
2 ωh (128)

Therefore

ζη =
(

ωh

ωb

) 1
N

(129)

with

ωi = (ζη)iω0, ω
′
i = ζ(ζη)iω0 (130)

The frequency-band fractional order controller has−20αdB/dec gain slope, while the integer

order factors 1
/

( s
ω
′
i

+ 1) have −20dB/dec slope. For the same magnitude change ∆:

−20α =
∆

logζ + logη
, −20 =

∆
logζ

(131)

Thus

(ζη)α = ζ (132)

Therefore ζ and η can be expressed respectively by

ζ =
(

ωh

ωb

) α
N

, η =
(

ωh

ωb

) 1−α
N

(133)

Finally

ωi =
(

ωh

ωb

) i+1
2−

α
2

N

ωb, ω
′
i =

(
ωh

ωb

) i+1
2+ α

2
N

ωb (134)
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Figure. 33 shows the Bode plots of ideal frequency-band case (α = 0.4, ωb = 200Hz, ωh =

10000Hz) and its 1st-order, 2nd-order and 3rd-order approximations by broken-line ap-

proximation method. Even taking N = 2 can give a satisfactory accuracy in frequency

domain.
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Figure 33: Bode plots of ideal case, 1st, 2nd and 3rd-order approximations

6.1.2 Digital implementation

The approximate controllers can be discreted using bilinear transformation method. For

example, the 2nd-order approximation of fractional −0.4 order controller in frequency range

[200, 10000] is
0.2091(s + 786.4471)(s + 5561.0205)

(s + 359.6462)(s + 2543.0828)
(135)

Its digital implementation by bilinear transformation is

0.4110z2 + 0.0146z − 0.0843
z2 − 0.5756z − 0.0831

(136)

The Bode plots of the 2nd broken-line approximation and its digital implementation with

sampling time T = 0.001sec are shown in Fig. 34. The vertical line in the discrete-time

Bode plots is located at the Nyquist frequency, which equals π/T (rad/sec).

6.2 Direct Discretization

Standard discrete control system is shown in Fig. 35. For simplification, the controller Kd

is discrete fractional α order derivative (0 < α < 1) or integral (−1 < α < 0).
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Figure 34: The Bode plots of the 2nd broken-line approximation and its digital implemen-
tation (sampling time T is 0.001sec)
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Figure 35: Block diagram of digital control system

6.2.1 Short memory principle

The discretization method is based on the observation that for the Grünwald-Letnikov

definition, the values of the binomial coefficients near “starting point” t = 0 are small

enough to be neglected or “forgotten” for large t. Therefore the principle takes into account

the behavior of x(t) only in “recent past”, i.e., in the interval [t − L, t], where L is the

length of “memory”:

0D
α
t x(t) ≈t−L Dα

t x(t), (t > L) (137)

Based on approximation of the time increment h through the sampling time T , the

discrete equivalent of the fractional order α derivative is given by

Z{Dα[x(t)]} ≈

 1

Tα

m∑

j=0

cjz
−j


 X(z) (138)
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where m = [L/T ] and the coefficients cj are

c0 = 1,

cj = (−1)j




α

j


 =

j − α− 1
j

· cα
j−1, j ≤ 1 (139)

6.2.2 Tustin taylor expansion

The direct discretization can also be obtained by using the well-known Tustin operator or

trapezoidal rule as a generation function:

Z{Dα[x(t)]} ≈
(

2
T

1− z−1

1 + z−1

)α

X(z) (140)

Taylor expansion of the fractional α order Tustin operator gives
(

2
T

1− z−1

1 + z−1

)α

=
1

Tα

∞∑

j=0

cjz
−j (141)

Here the coefficients cj are

cj =
2α

j!

[(
1− x

1 + x

)α](j)
∣∣∣∣∣
x=0

(142)

Real implementation of Equ. (140) corresponds to m-term truncated series given by

Z{Dα[x(t)]} ≈ Truncm

[(
2
T

1− z−1

1 + z−1

)α]
X(z)

=


 1

Tα

m∑

j=0

cjz
−j


 X(z) (143)

6.2.3 Lagrange function interpolation

For example, quadratic Lagrange interpolation among x(k − 2), x(k − 1) and x(k) in the

interval 0 ≤ t ≤ 2T results

x(t) =
x(k)− 2x(k − 1) + x(k − 2)

2

(
t

T

)2

− x(k)− 4x(k − 1) + 3x(k − 2)
2

t

T

+ x(k − 2) (144)

The α order derivative of tn is [1]

0D
α
t (tn) =

n!tn−α

Γ(n− α + 1)
(145)

53



Therefore, for t = 2T the α order derivative of x(t) is

Dαx(t)|t=2T =
1

Tα
· 1
2αΓ(3− α)

[(2 + α) · x(k)

− 4α · x(k − 1) + α2 · x(k − 2)
]

(146)

The z-transformation is

Z{Dαx(t)} =
1

Tα
· 1
2αΓ(3− α)

[(2 + α)− 4αz−1

+ α2z−2]X(z) (147)

Therefore, the m-order Lagrange Function Interpolation method can also be rewritten in

the form:

Z{Dα[x(t)]} ≈

 1

Tα

m∑

j=0

cjz
−j


 X(z) (148)

6.3 Evaluation of Direct Discretization Methods

For comparison purpose, the one-mass position control is introduced again as a simple

prototype for the case of Jm = 0.001 and Kd = 0.01 (see Fig. 36). Time responses with

fractional order derivative controllers Dα are simulated and evaluated. The Dα controllers

are discretized by using the above direct discretization methods.

 

sKd
msJ

1+ qr

qm
a

2

Figure 36: The position control loop with fractional α order derivative controller

Those methods’ convergences must be analyzed before applying them to control im-

plementation. The semi-log chart of Fig. 37 shows the amplitude absolute values of the

coefficients |cj | versus term order j when approximating α = 0.4 derivative. Short Memory

Principle (SMP) and Sampling Time Scaling (STS) methods should have similar approxi-

mation performances, while the SMP’s coefficients converge a little more rapidly than the

STS’s. The poor convergences of Tustin Taylor Expansion (TTE) and Lagrange Function

Interpolation (LFI) methods seem problematic (see Fig. 37a and Fig. 37b).
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Figure 37: |cj | versus j when approximating D0.4

6.3.1 Baseline establishment

In order to evaluate the discretization methods in time domain, a reliable baseline case must

be established in advance. For simulation of FOC systems, using the truncated Grünwald-

Letnikov expansion (Short Memory principle)[19], Mittag-Leffler function [19], Bromwich’s

integral with a numerical integration and B-spline series expansion [35] can be options. How-

ever those methods are either too abstract or too complicated for engineering applications.

To simulate FOC systems with non-linear factors is also difficult.

As mentioned in chapter 5, the sampling time-scaled trapezoidal integration rule for

discrete fractional order controllers can give a clear geometric interpretation and thus be

a reliable simulation method. For a reasonable baseline, the whole past values will be

memorized when simulating by STS method:

Z{Dα[x(t)]} ≈

 1

Tα

∞∑

j=0

cjz
−j


 X(z) (149)

For integral controllers (α < 0), coefficients cj are

c0 =
1

2Γ(1 + |α|)

cj =
(j + 1)|α| − (j − 1)|α|

2Γ(1 + |α|) , j ≥ 1 (150)

And the coefficients of derivative controllers (α > 0) are

c0 =
1

2Γ(2− α)
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c1 =
21−α − 1
2Γ(2− α)

cj =
1

2Γ(2− α)

[
(j + 1)1−α − j1−α

− (j − 1)1−α − (j − 2)1−α
]
, j ≥ 2 (151)

From above equations, it can be seen that the full memory length STS method would be

a clear and easy way to establish baseline case. And the algorithm can be conveniently

combined with other components such as non-linear factors during the simulation.

6.3.2 TTE and LFI methods

The simulations of TTE and LFI methods verify the convergence analysis. As shown in

Fig. 38(a) with approximation order m = 5, the TTE method results poor performance.

Actually the fractional order controllers realized by high order TTE methods can make con-

trol systems unstable; while higher the order better the approximation should be achieved.

The time responses of LFI method for D0.4 controller are also unsatisfied (see Fig. 38(b)).

In addition, the programming complexity of calculating high order Lagrange interpolation

and Tustin operator’s high order derivative makes the two methods inferior to control ap-

plications.
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Figure 38: Time responses of TTE and LFI methods
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6.3.3 SMP and STS methods

In order to investigate the influence of the memory length in SMP and TST methods, a

quadratic performance index J is defined in an error function form:

J =
∫ t

0
[fa(t)− fb(t)]

2 dt (152)

with t(= 1sec) simulation time, fa(t) time responses of the two approximation cases, fb(t)

the baseline time response. The baseline case is calculated by full memory length STS

method. Fig. 39 shows performance index J versus memory length n(≥ 5), in which the

fractional order α is from 0.8 to 0.2 with 0.2 interval.
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Figure 39: Performance index versus memory length

The four quantities of the step responses, maximum overshoot, delay time, rise time and

settling time, are calculated for both methods. For clearness, only α = 0.4 case is plotted

in Fig. 40.

As shown in Fig. 39 and Fig. 40, clearly the approximation performance is remarkably

improved when increasing the memory length from 10 to 100. Between 100 and 1000 memory

length, the performance improvement is just slight; while hardware burden increases due

to the necessity of storing and processing more data in short time. The step response’s

quantities plotted in Fig. 40 also show the same observation result.

The SMP method has a slightly better approximation than the STS method. The

programming of SMP method is also much easier in which cj can be calculated by simply
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Figure 40: Time responses’ four quantities

multiplying cj−1 and (j − α− 1)/j together, as shown in Equ. (139). The SMP method is

practically superior. Taking 100 memory length can have a good approximation in most

cases (see Fig. 41). With highly-developed computational power, processing 100 sampling

data with simple algorithm should not be problematic in mili-second level for modern digital

control systems.

Fig. 42 verifies that the well-approximated fractional order D0.4 controllers are remark-

ably robust against saturation non-linearity. It was found that the fractional order con-

trollers, like PIDα controller, are robust against other non-linearities such as gear backlash.

This aspects will be mentioned in below chapters.

The digital implementation of D0.4 for SMP and STS methods are:

Z(SMP ){s0.4} = 15.8489− 6.3396z−1 − 1.9019z−2 − 1.0143z−3 − 0.6593z−4 − 0.4747z−5
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Figure 41: Time responses with different memory lengths (α = 0.4)
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Figure 42: Robustness of approximated D0.4 controller against saturation non-linearity
(dash lines are the time responses with integer 1 and 0 order Dα controllers)

− 0.3639z−6 − 0.2912z−7 − 0.2402z−8 − 0.2028z−9 (153)

Z(STS){s0.4} = 8.8689 + 4.5738z−1 − 5.1664z−2 − 1.3436z−3 − 0.7834z−4 − 0.5373z−5

− 0.4008z−6 − 0.3150z−7 − 0.2567z−8 − 0.2149z−9 (154)

where m = 10 and T = 0.001sec.

It must be pointed out that the necessary memory length, namely how good the approx-

imation is needed, should be decided by the demand of specific control problem. Larger

memory gives better performance, but also leads to longer computation time. This tradeoff

is not restricted in FOC field, but actually a common problem in digital control.

59



6.3.4 Frequency responses of SMP and STS methods

The above direct discrete methods are based on different approaches, mathematical def-

inition for SMP, simple Taylor expansion for TTE and geometric interpretation for STS

and LFI. In order to verify the conclusion drawn in time domain, the Bode plots of D0.4

controller discreted by STS and SMP methods are plotted and examined in Fig. 43.
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Figure 43: Bode plots of Z{s0.4} discreted by SMP and STS methods (dash line is the ideal
responses for continuous s0.4 and sampling time T = 0.001sec)

The above Bode plots show the effectiveness of the SMP and STS approximations for

fitting the ideal responses in a wide range of frequency, especially in magnitude character-

istic. SMP gives a better approximation than STS both in magnitude and phase, which

is consistent with the conclusion obtained in time-domain evaluation. The accuracy of the

approximations is greatly improved when increase memory length m from 10 to 100. And

obviously, longer the memory length is taken, better the approximation will be.
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CHAPTER VII

FRACTIONAL ORDER PIαDβ CONTROL

7.1 Review of PID Control

The PID controller is by far the most dominating form of feedback control in use today.

More than 90% of all control loops are PID. Integral, proportional and derivative feedback is

based on the past(I), present(P) and future(D) control error. The PID controller is applied

for a wide range of problems: process control, motor drives, magnetic and optic memories,

automotive, flight control, instrumentation, etc. PID is the first solution that should be

tried when feedback is used.

The transfer function of the PID controller is written as

Gc(s) = Kp +
Ki

s
+ Kds = (1 + Kd1s)

(
Kp2 +

Ki2

s

)
(155)

Namely, the PID controller actually consists of a PD portion connected in cascade with

a PI portion. The PD controller can improve the damping and rising time of a control

system, but the steady-state response is not affected. The PI controller can improve the

steady-state error, but the rise time is increased. This leads to the motivation of using a

PID controller so that the best features of each of the PI and PD controllers are utilized.

The significance of the PID controller is that it can deal with lots of control problems

.

.

.
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PIDPD
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(a) Conventional PID
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(b) Fractional PIαDβ

Figure 44: PID controllers from point to plane with fractional orders
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Figure 45: Bode plots of PID controller with different Kp, Ki and Kd
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Figure 46: Bode plots of novel PIαDβ controller with different α and β

with simple structure and few control parameters. Only three parameters Kp, Ki and Kd

need to be designed. In order to further improve PID controller’s performance, the fractional

order version PIαDβ is proposed:

Gc(s) = Kp +
Ki

sα + Kds
β (156)

Namely, the orders α and β of I and D controllers are not necessarily integer order 1, but

any real numbers. As shown in Fig. 44, the fractional order PIαDβ controller generalizes

the integer order PID controller and expands it from point to plane. This expansion could

provide much more flexibility in PID control design.

For an example, Kp = 0.309, Ki = 4.5, and Kd = 0.0006 are selected as baseline case.

By the comparison of Fig. 45 and Fig. 46, it can be seen that letting I and D portions’ order

be fractional can adjust the PID controller’s frequency responses much more significantly
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than changing coefficients Kp, Ki, and Kd. And the change of the frequency responses is

also more predictable. The real control applications of PIαDβ controller will be mentioned

in below sections.

7.2 Iα Controller for One-mass Speed Control

For one-mass speed control with gain variation, fractional order Iα controller could give good

control and robust performances. The control loop for fractional one-mass speed control sys-

tem is shown in Fig. 47, where the nominal inertia of the electric motor Jm0=6.53×10−4kgm2,

friction coefficient Dm=1.25×10−3Nm · sec/rad, controller’s coefficient Ki=0.11, sampling

time T=0.001sec and an encoder (8000pulse/rev) is used as feedback speed sensor. Input

torque saturation Tmax and motor inertia variation ∆Jm(= Jm−Jm0) will be introduced to

verify the robustness against nonlinearity and parameter variation for the Iα control system.

 

 α

i

s

K

mm
DsJ +

1+ 

 

ωr

ω m

saturation

Figure 47: Fractional α order I control loop with non-linear factor

The Sampling Time Scaling method with full memory length is applied to implement

Iα controller on digital computer. As shown in Fig. 48, the time responses of fractional

order systems are clearly the “interpolation” between integer order ones. The time domain

performances, such as overshoot and settling time, are changed greatly with different α

orders. In Fig. 49, a constant overshoot can be ensured in face of inertia variation, showing

a good robustness of the fractional Iα control system. In the same line, Fig. 50 also shows

that fractional order controllers are much more robust against saturation non-linearity than

their integer order counterparts.
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Figure 48: The time responses of Iα control system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

sp
ee

d
 r

es
p

on
se

s 
(r

a
d

/s
)

time (sec)

Jm0

Jm1

(a) α = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

sp
ee

d
 r

es
p

on
se

s 
(r

a
d

/s
)

time (sec)

Jm0

Jm1

(b) α = 0.5

Figure 49: Robustness of the fractional Iα control system against inertia variation: Jm0 =
6.53× 10−4kgm2, Jm1 = 3.36× 10−3kgm2
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Figure 50: Robustness of the fractional Iα control system against torque limitation Tmax
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7.3 Frequency-band PIαD Control

7.3.1 Experimental torsional system

Torsional system was chosen as testing bench, which is a typical oscillatory system. As

shown in Fig. 51, two flywheels are connected with a long torsional shaft; while driving

force is transmitted from driving servomotor to the shaft by gears with gear ratio 1:2. Some

system parameters are adjustable, such as gear inertia, load inertia, shaft elastic coefficient

and gear backlash angle. The encoders and tacho-generators are used as position and

rotation speed sensors.

load flywheel 
(changeable) 

bearing 

friction load adjustment 

belt Torsional shaft 
(changeable) 

driving flywheel 
(changeable)

driving servomotor 

load servomotor 

encoder  

tacho-generator  

backlash adjustment 

Figure 51: Experimental setup of the torsional system

The simplest model of the torsional system with gear backlash is three-inertia model, as

shown in Fig. 52 and Fig. 53, where Jm, Jg and Jl are driving motor, gear (driving flywheels)

and load inertias, Ks shaft elastic coefficient, ωm and ωl motor and load rotation speeds,

Tm input torque and Tl disturbance torque. The gear backlash non-linearity is described

by the classical dead zone models in which the shaft is modeled as a pure spring with zero

damping [36]. Frictions between components are neglected due to their small values.

Motor

Jm

Load

Jl
Gear 

Jg

δ, K g 

Shaft

K

  

Tm ωm

Tl ωl

s

Figure 52: Torsional system’s three-inertia model

Parameter setting of the experimental torsional system are shown in Table. 4 with
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Figure 53: Block diagram of three-inertia model

backlash angle δ of ±0.6deg. Open-loop transfer function from Tm to ωm is in following

form:

P3m(s) =
(s2 + ω2

h1)(s
2 + ω2

h2)
Jms(s2 + ω2

o1)(s2 + ω2
o2)

(157)

where ωo1 and ωo2 are resonance frequencies while ωh1 and ωh2 are anti-resonance frequen-

cies. ωo1 and ωh1 correspond to torsion vibration mode; while ωo2 and ωh2 correspond to

gear backlash vibration mode (see Fig. 54).

Table 4: Parameters of the three-inertia system
Jm Jg Jl Kg Ks

(Kgm2) (Kgm2) (Kgm2) (Nm/rad) (Nm/rad)

0.0007 0.0034 0.0029 3000 198.4900
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Figure 54: Bode plots of three-inertia model
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Since gear elastic coefficient Kg is much larger than shaft elastic coefficient Ks (Kg À
Ks), for speed control design the two-inertia model is commonly used in which driving

motor inertia Jm and gear inertia Jg are simplified to a single inertia Jmg(= Jm + Jg) (see

Fig. 55).

Tm

Tl ω l+ 

+ 

+ 

 

 

1/( Jls)

) 

Ks/s

+
 ωm

1/(Jmgs)

Figure 55: Block diagram of two-inertia model

The open-loop transfer function for two-inertia model is

P2m(s) =
s2 + ω2

h

Jmgs(s2 + ω2
o)

(158)

where ωo is resonance frequency and ωh is anti-resonance frequency corresponding to torsion

vibration mode. Obviously the existence of backlash vibration mode is totally ignored in

this simplified model.

7.3.2 PID controller design by CDM

Firstly, the conventional integer order PID control is designed by Coefficient Diagram

Method (CDM), which is a direct characteristic polynomial design approach proposed by

Manabe [37]. When backlash angle δ is set to zero, the experimental torsional system can

looked as two-inertia system. As shown in Fig. 56, a set-point-I PID controller is introduced

to the speed control of two-inertia system, which will be designed using the standard form

of CDM [37] [38].

The characteristic equation of the close loop is

P (s) = (JlKd + JlJmg)s4 + JlKps
3 + (JlKs + JmgKs + KsKd + JlKi)s2

+ KsKps + KsKi

= a4s
4 + a3s

3 + a2s
2 + a1s + a0 (159)
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Figure 56: Set-point-I PID controller

Then the stability indexes are

γ1 =
a2

1

a2a0
=

KsK
2
p

Ki(JlKs + JmgKs + KsKd + JlKi)
(160)

γ2 =
a2

2

a3a1
=

(JlKs + JmgKs + KsKd + JlKi)2

KsJlK2
p

(161)

γ3 =
a2

3

a4a2
=

JlK
2
p

(Jmg + Kd)(JlKs + JmgKs + KsKd + JlKi)
(162)

Consider the same factor a2 = JlKs + JmgKs + KsKd + JlKi, the relationship between γ1,

γ2 and γ3 can be written as

A = γ2 − 1
γ1
− 1

γ3

=
JlKs + JmgKs + KsKd + JlKi

K2
p

(163)

Therefore, from Equ. (160), Ki can be derived as

Ki =
Ks

γ1A
(164)

Similarly, Kd and Kp can be calculated as

Kd =
Jl

γ3A
− Jmg (165)

Kp =
√

γ2JlKs

A
(166)

Finally, based on the CDM standard form (γ1 = 2.5, γ2 = 2, γ3 = 2), the PID controller’s

parameters can be expressed as following

Kp =
10
√

2
11

√
JsKs, Ki =

4
11

Ks, Kd =
5
11

Jl − Jmg (167)
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Table 5: Two-inertia System’s Parameters

Jmg Jl Ks

(Kgm2) (Kgm2) (Nm/rad)

0.0040 0.0029 198.4900

Table. 5 and Equ. (167) give

Kp = 0.9789, Ki = 72.1782, Kd = −0.0027 (168)

Time responses by simulation show the designed PID control system has satisfactory per-

formances (see Fig. 57(a)) in nominal case (gear ratio is 1:1); while as shown in Fig. 57(b),

in its frequency response, enough phase margin is not kept in the neighborhood of critical

point. This would cause poor robustness of the integer order PID control system against

non-linearities such as saturation and parameter variations.
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Figure 57: Designed integer order PID control system

7.3.3 Frequency-band Iα controller

The most straightforward way to improve the robustness of designed PID control system

should be adjusting I controller’s order to give control system more phase margin around

the critical point. As mentioned in chapter 6, it is neither practicable nor desirable to try

to make the order be fractional in whole frequency range. Frequency-band fractional order

controller is a proper solution.
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As shown in Equ. (169), a frequency-band Iα controller is proposed to substitute con-

ventional integer order I controller. The low band frequency ωb is taken as 10rad/sec and

high band frequency ωh are 1000rad/sec:

1
s

( s
ωb

+ 1
s

ωh
+ 1

)1−α

(169)

By changing order α, the phase margin of proposed fractional order PIαD control system

can be adjusted easily to any desired amount (see Fig. 58(a)). As shown in Fig. 58(b) and

Fig. 58(c), when uncertainties such as saturation (gain variation) and load inertia variation

exist, enough phase margin can be easily kept by choosing proper fractional order α.
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Figure 58: Bode plots of fractional order PIαD control systems

7.3.4 Experimental results

The frequency-band Iα controllers are realized using broken-line approximation method.

Experiments are carried out with sampling time T=0.001sec and 3nd-order broken-line
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approximation (N = 3).

As shown in Fig. 59, letting I controller’s order be fractional can affect control sys-

tem’s time response greatly. It can be seen the frequency-band PIαD systems show better

robustness to saturation non-linearity with smaller overshoots.
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Figure 59: Step responses with input torque saturation (Tm saturation is ±3.84NM)
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Figure 60: Step responses of PIαD system with load inertia variation. (solid line: nominal
case; dotted line: 0.3Jl; broken line: 1.7Jl)
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Figure 60 gives the step responses of PIαD control systems with different inertia on

load side. Compared to severe change of integer order PID control system’s time responses

with large overshoot and overswing, the frequency-band PIαD control systems show better

robustness against load inertia variation.

7.4 Fractional Order PIDβ Control

7.4.1 Unstable integer order PID control system

For two-inertia speed control, the history of control theory can be seen. Various design

methods such as classical PID control, time derivative feedback, model following control,

disturbance observer-based control, state feedback control and modern H∞ control have

been proposed [38] [39] [40] [41]. Among them, the PID control is the most widely used in

real industrial applications.
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Figure 61: Bode plot of Gl(s) for PID control system

Common weak point of the above methods is that the existence of backlash non-linearity

is totally neglected. This weakness may make designed speed control systems unstable and

give rise to backlash vibration. For example, when the torsional system’s gear backlash

angle δ is not zero, the three-inertia model must be used in control design. For three-inertia

plant P3m(s), the close-loop transfer function of integer order PID control system from ωr

to ωm is

Gclose(s) =
CI(s)P3m(s)

1 + CI(s)P3m(s) + CPD(s)P3m(s)
(170)
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where CI(s) is I controller and CPD(s) is the parallel of P and D controllers in minor loop;

therefore Gclose(s) is stable if and only if Gl = CI(s)P3m(s) + CPD(s)P3m(s) has positive

gain margin and phase margin. But as shown in Fig. 61, with same PID parameter setting

designed by using two-inertia model, the gain margin of Gl(s) will be negative. Therefore,

with the existence of gear backlash, the designed integer order PID control system in above

section will be unstable and lead to severe vibration.
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Figure 62: Bode plots of Gl(s) for PIDβ control system

7.4.2 Design of fractional order β

In order to design a stable control system for three-inertia system, several methods have been

proposed, but their design processes are very complicated. As an example, for PID control,

introducing a low-pass filter Kds/(Tds + 1) to substitute D controller and redesigning the

whole control system with three-inertia model can be a solution [42]. Due to the necessity

of solving high order equations, the design is not easy to be carried out. Clear-cut design
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approach is required in practical applications.

In this chapter, a novel fractional order PIDβ controller is proposed to achieve a clear-

cut design of stable control system when gear backlash exists. Instead of solving high order

equations, by changing Dβ controller’s fractional order β, the frequency response of Gl(s)

can be effectively adjusted (see Fig. 62). As shown in Fig. 63, selecting proper fractional

order β can improve PIDβ control system’s gain margin quite easily. In nominal case, when

β < 0.84 the PIDβ control system will become stable.
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Figure 63: Gain margin versus fractional order β
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Figure 64: Gain plots of the PIDβ control systems and three-inertia plant

At the same time, for better backlash vibration suppression higher Dβ controller’s order

is more preferable. As shown in open-loop gain plots of 0.85, 0.8, 0.7 and 0.5 order PIDβ

control systems (see Fig. 64), higher the D controller’s order is taken lower the gain near
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gear backlash vibration mode is. Based on the tradeoff between robustness and vibration

suppression strength, fractional order 0.7 is chosen as Dβ controller’s best order.

7.4.3 Realization of Dβ controller

Short Memory Principle is adopted to realize discrete fractional order Dβ controller. The

discrete equivalent of Dβ controller is in following form:

Z{Dβ[f(t)]} ≈

T−β

m∑

j=1

cβ
j z−(j−1)


 Z{f(t)} (171)

For a comparison purpose, the Sampling Time Scaling method is also applied to realize

discrete Dβ controller, which has same form as Equ. (171). The semi-log charts of Fig. 65

show the two realization method’s binomial coefficients cj versus term order j when approx-

imating D0.5. Based on the observation of Fig. 65, memorizing 10 latest values (m=10) is

assumed to have a good approximation.
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Figure 65: Binomial coefficients cj versus term order j when approximating D0.5 (Sampling
time T = 0.001sec)

7.4.4 Experimental results

Experiments are carried out with sampling time T=0.001sec. Since driving servomotor’s

input torque command Tm has a limitation of maximum±3.84 Nm, Ki is reduced to 20.2099

by trial-and-error to avoid large over-shoot caused by the input torque saturation.

Firstly, integer order PID speed control experiment is carried out. As shown in Fig. 66
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the PID control system can achieve satisfactory response when the backlash angle is ad-

justed to zero degree (δ = 0); while due to the existence of backlash non-linearity, severe

vibration occurs and the PID control system is obviously unstable (see δ = 0.6 case). This

experimental result is consistent with above theoretical analysis.
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Figure 66: Time responses of the integer order PID control
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Figure 67: Time responses of PIDβ control with gear backlash (realized by Short Memory
Principle method)

Realization by Short Memory Principle method: Figure 67 gives the experimental

results of fractional order PIDβ control with 0.7 and 0.5 order Dβ controllers. Severe

vibration in integer order PID control case is effectively suppressed. The control system’s

stability and robustness against gear backlash non-linearity can be greatly improved by

introducing fractional order version Dβ controller. PID0.7 control system has a good tradeoff
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between stability and backlash vibration suppression. The intermittent tiny vibrations in

lower order 0.5 case are due to its relatively high gain near gear backlash vibration mode

in open-loop frequency response.
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Figure 68: Continuity of PIDβ control’s time responses with gear backlash (realized by
Short Memory Principle method)

It is interesting to find the time responses of fractional order PIDβ control system show

somewhat “interpolation” characteristic. As shown in Fig. 68, PID0.9 control has the most

severe vibration due to the instability, while PID0.87 is on a critical state between instabil-

ity and stability. PID0.89 and PID0.88 have intermediate time responses. This experimental

result should be natural since these orders are continuously changed. The “interpolation”

characteristic is one of main points to understand the superiority of FOC as providing a

clear-cut and effective tool for adjust control system’s characteristics further between con-

ventional IOC approaches. At the same time, this experimental consistency with logicality
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also verifies the good approximation of the realization method based on Short Memory

Principle.

Experiments of PID0.7 control with different memory length m are also carried out. As

shown in Fig. 69, even 2nd-order approximation can give a relatively good performance;

while taking m=100 actually has almost same performance as m=10 case. These results

show that in this control problem memorizing 10 latest values is a reasonable choice for

applying the Short Memory Principle method.
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Figure 69: Time responses of PID0.7 control with different memory length m (realized by
Short Memory Principle method)

Realization by Sampling Time Scaling method: In chapter 6, it was concluded

that Short Memory Principle Method and Sampling Time Scaling Method have similar

approximation performance, but the Short Memory Principle method is practically superior
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due to its simple algorithm. The time responses of PID0.7 control realized by Sampling

Time Scaling method (memory length m = 10) are shown in Fig. 70. It can seen that the

conclusion drawn in chapter 6 is verified by real experimental results.
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Figure 70: Time responses of PIDβ control with gear backlash (realized by Sampling Time
Scaling method with m = 10)

7.5 Summary

In this chapter, PIαDβ control, a fractional order version of conventional PID control, is

proposed and verified by various control problems using the experimental torsional system.

By letting controller’s order be fractional, control system’s frequency responses can be

designed effectively and much more predictably with less control parameters, only fractional

order α and β in this chapter.
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Even having a little higher hardware demand, clear-cut design and better control per-

formance of PIαDβ control demonstrated in this chapter still highlight FOC’s promising

aspect. Rapid development of computational power also makes fractional order controller’s

implementation not really problematic.

However, care must be taken about the purpose of section 7.4. It is not to claim PIDβ

controller as a good controller for three-inertia system, but to contribute to being a valuable

experience and verification for novel but still primitive FOC research. Especially the section

shows the possibility of straightforward and better tradeoff between stability margin loss

and backlash vibration suppression strength through FOC approach. This tradeoff is a

common and natural problem in oscillatory systems’ control [45]. For such kind of systems,

a fractional order controller in the following form

Gc(s) =
Kps + Ki

(Tds + 1)αs
(172)

is expected to be a general solution, where better tradeoff between stability margin and

vibration suppression can be achieved by choosing proper fractional order α. Namely, a PI

controller with fractional low-pass filter 1
(Tds+1)α is a proper choice for oscillatory systems’

control design. This aspect will be discussed in next chapter, chapter 8.
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CHAPTER VIII

FRACTIONAL ORDER FILTER

8.1 Redesign the PID Controller

In chapter 7, the PID controller was designed using the fixed gammas of CDM. Standard

form was emphasized at CDM’s early stage. When gammas are in standard form, pole

pattern is fixed. Only variation of magnitude due to τ is allowed. The early version of

CDM is actually nothing but an analytical pole assignment method, where robustness is

not guaranteed at all. As discussed in Ref. [37], what is really needed for controller design

of two-inertia resonant system is phase lag, not phase lead. For this reason, the value of D

control becomes negative, which means phase lag. However positive feedback of D control

will lead to poor robustness and should be avoided as much as possible in control design.

Namely, the big value of negative Kd causes robustness problem for the integer order PID

control design in chapter 7.

In recent development, the selection of the gammas is recommended. Designers should

choose proper gammas that can guarantee not only stability but also robustness. The CDM

formula for designing PID controller is repeated:

A = γ2 − 1
γ1
− 1

γ3
(173)

Kd =
Jl

γ3A
− Jmg (174)

Kp =
√

γ2JlKs

A
(175)

Ki =
Ks

γ1A
(176)

In order to avoid D control, Kd = 0 is assigned. Therefore the following results are derived:

[A γ3 Kp Ki] = [0.6629 1.0671 1.6187 117.8528] (177)

γ3 can not be assigned previously any more and must be the value calculated under above

assignment. Namely, a PI controller, where the assignment is γ1 = 2.5, γ2 = 2 and γ3 =
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1.0671, should give a better performance in both stability and robustness than the PID

controller designed in chapter 7.

Redesigned set-point-I PI control is shown in Fig. 71. The PI controller is designed by

revised CDM method with Ki = 119.78 and Kp = 1.6187. Simulation results with nominal

three-inertia model (backlash angle is 0 deg.) show the redesigned PI control system has

satisfactory time responses in nominal case. However, as demonstrated in chapter 7, control

system’s vibration suppression performance must be considered due to the existence of gear

backlash.
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Figure 71: Set-point-I PI controller
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Figure 72: Simulation results with nominal three-inertia model

8.2 Necessity of Tradeoff Adjustment

For clearness, the stability analysis is repeated. With nominal three-inertia model P3m(s),

the close-loop transfer function of integer order PI control system from ωr to ωm is

Gclose(s) =
CI(s)P3m(s)

1 + CI(s)P3m(s) + CP (s)P3m(s)
(178)
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where CI(s) is I controller and CP (s) is P controller in minor loop; therefore Gclose(s) is

stable if and only if Gl = CI(s)P3m(s) + CP (s)P3m(s) has positive gain margin and phase

margin.
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Figure 73: Bode plots of Gl(s) for PI control system

As shown in Fig. 73, the PI speed control system has enough stability margin; while

in order to recover some vibration performance, additional factors with negative slope and

phase-lag are needed. However introducing these factors will simultaneously lead to phase

margin loss. Namely, there exists a tradeoff between stability margin loss and vibration

suppression strength in torsional system’s PI speed control.

8.3 Fractional Order Low-pass Filter

In order to achieve a proper controller, which is neither conservative nor aggressive, re-

designing the PI controller or applying other control methods can be options; while in this

chapter, a fractional order low-pass filter 1
(τs+1)α is introduced (see Fig. 74). The tradeoff

between stability margin loss and vibration suppression strength can be easily adjusted by

choosing only one control parameter, fractional order α.

As shown in Fig. 75(a) and (b), a predictable and easy tradeoff between phase margin

and vibration suppression strength can be achieved by choosing proper fractional order α.

With fractional order low-pass filter, a clear-cut control design could be obtained. Parameter

τ will give control system enough large band width for a fast time response. Here considering
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the frequency range of torsion vibration mode, τ is taken as 0.005(=1/200).
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Figure 74: PI controller with fractional order low-pass filter
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Figure 75: Bode plots with fractional order low-pass filter

8.4 Vibration Suppression with Parameter Variation

In torsional system, vibration occurs because kinetic energy, which is manifested as speeds

of inertia (mass) elements, can be converted into elastic potential energy and back to kinetic

energy [24]. The elastic potential energy is due to the deformation in spring-like elements,

the long torsional shaft and the gears. For a rotation system like torsional system with the

single degree of freedom θ. Kinetic energy stored in the inertia element is

KE =
1
2
Jθ̇2 (179)

Elastic potential energy stored in the spring is

PE =
1
2
Ksθ

2 (180)
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J is the moment of inertia of the flywheels and Ks is the torsional stiffness of the shaft.

Larger J will store more kinetic energy; while for the same elastic potential energy, smaller

Ks will lead to larger θ. Therefore, large load side inertia and thin shaft make vibration

suppression of the torsional system more difficult.

In order to verify proposed FOC approach’s superiority in vibration suppression, besides

the gear backlash, other uncertainties, load inertia variation and shaft variation, are also

introduced to experiments to further verify FOC approach’s robustness. Experiments with

large load inertia (5 load flywheels) and thin shaft (4mm diameter) will be carried out.

The Bode plots of Gl(s) and open-loop gain are shown in Fig. 76 and Fig. 77 using

three-inertia model. As mentioned in chapter 3, the dynamic of the shaft can be described

more adequately by fractional order model, especially for thin shaft. However, practices

show the conventional three-inertia model may be not enough, but can still provide good

vision for control system design and analysis.

From the Bode plots, it can be seen the parameter variations mainly move torsional

vibration mode to lower frequency region. This movement may lead to stability problem

due to decreased phase margin around torsional vibration mode. Especially in thin shaft

case (see Fig. 77), larger open-loop gain around the torsional vibration mode makes it easier

to cause vibrations than in nominal case.
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Figure 76: Bode plots with load inertia variation (5 load flywheels): dashed line in (a)
nominal case; (b) three-inertia model
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Figure 77: Bode plots with shaft variation (diameter 4mm): dashed line in (a) nominal
case; (b) three-inertia model

As shown in the Figures of Bode plots, despite the existence of large parameter varia-

tions, the control system can still keep enough phase margin and better vibration suppres-

sion performance by choicing proper fractional order α of the low-pass filter. By introducing

fractional order low-pass filter, the phase margin can be easily adjusted accurately to any

desired value among integer order filters; while some vibration suppression performance can

be recovered compared to using conventional integer order filters only.

8.5 Experimental Results

8.5.1 Nominal case with gear backlash

Experiments are carried out with sampling time T=0.001sec. The fractional order low-

pass filters are realized by broken-line method, where approximation order N = 2 and

approximation band is [200 10000]. Since the driving servomotor’s input torque command

Tm has a limitation of maximum ±3.84 Nm, Ki is reduced to 30.6417 by trial-and-error.

Firstly, integer order PI speed control experiment is carried out. As shown in Fig. 78 the

PI control system can achieve satisfactory time responses when backlash angle is adjusted

to zero degree (δ = 0); while persistent vibration occurs when gear backlash non-linearity

exists (see δ = 0.6 case). Obviously, PI control only can not provide enough strength for

suppressing backlash vibration.

Figure 79 shows experimental results with different α order filters. Vibration occurred in
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Figure 78: Time responses of integer order PI control system

PI-only control is effectively suppressed. Taking α as 0.4 gives the best time response. For

other higher α order cases, their time responses are not such satisfied due to larger phase

margin loss. FOC approach is effective to adjust the tradeoff between stability margin loss

and vibration suppression strength, in which only one control parameter, fractional order

α, is needed.
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Figure 79: Time responses with fractional order 1
(τs+1)α filters
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Figure 80: Continuity of time responses with different fractional order α

In order to verify whether the fractional order filter can give a continuous tradeoff tuning,

the time responses of α = 0.01 and α = 0.99 cases are also experimented. As shown in

Fig. 80, the results display a good continuity. Attention should be paid toward the reasons

for vibrations in two cases. Poor vibration suppression performance causes vibration in

α = 0.01 case; while nearly zero phase margin in α = 0.99 leads to much more severe

vibration. Namely, the reason for the second case is its poor stability performance. A

proper fractional order α can obtain a better tradeoff between these two extreme cases.

Figure. 81 shows experimental results with the 1st-order and 3rd-order approximations

of broken-line method. Even taking 1st-order approximation can give a relatively good

performance.
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Figure 81: Time responses with different approximation order of 1
(τs+1)0.4 filter

8.5.2 Load inertia and shaft variations

Figure 82 shows that taking α as 0.4 and 0.6 can still have good vibration suppression

performance. In Fig. 83 with shaft variation, small α, 0 and 0.2, is not enough to suppress

backlash vibration; while large α, 0.8, will cause stability problem. Intermediate values, 0.4

and 0.6, give good tradeoff between these two cases.
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Figure 82: Time responses with load inertia variation (5 load flywheels)
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Figure 83: Time responses with shaft variation (diameter 4mm)

8.6 Summary

In this chapter, a conventional PI controller with fractional order low-pass filter 1
(τs+1)α

is proposed to give a straightforward tradeoff adjustment between stability margin loss

and vibration suppression strength. In oscillatory system control, this kind of tradeoff is

a common problem. As shown in above theoretical analysis and experimental results, by

introducing FOC concept, we can design control system in a clear-cut way since control

system’s frequency response can be easily adjusted to desired shape with few control pa-

rameters. Namely, the tuning knob can be reduced significantly compared to high-order

transfer functions obtained by conventional IOC approaches.

At the same time, it can be seen using fractional order controller is a general method

to tradeoff inconsistent control demands, which is not limited to the specific problem. “Ef-

fective & clear-cut design” can be achieved by expanding controller’s order to fractional.

FOC is not an abstract concept, but a natural and powerful expansion of the well-

developed IOC. Knowledge and design tools developed in IOC can still be made good use
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of in FOC research, as demonstrated in this paper.

For example, upgrading traditional PID controller by introducing fractional order fac-

tors, such as fractional order Iα, Dβ controllers or fractional order filters, could give a

more effective control of complex dynamic features. It is interesting to find that in the

experiments the 1st-order approximation can also have a relative good performance (see

Fig. 81(a)). This filter is actually a simple one order controller:

0.2091
(s + 3092.4949)
(s + 646.7270)

(181)

The author does believe some well-designed IOC system might in fact be a unconscious

approximation of FOC system. If this hypothesis can be established, FOC’s advantages in

control field would be further verified.
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CHAPTER IX

FRACTIONAL ORDER DISTURBANCE OBSERVER

9.1 Conventional Disturbance Observer

The disturbance observer regards the difference between actual output and the output of

nominal model as an equivalent disturbance applied to the nominal model. It estimates the

equivalent disturbance and utilize this estimation as a compensation signal. The disturbance

observer (DOB) concept was proposed by Ohnishi in 1987 [43]. Umeno and Hori refined

the framework of disturbance observer theory based on the design of TDOF (Two Degree

Of Freedom) servo controllers and the factorization approach [44]. It is now a common

practice to use DOB in many high precision motion control systems.

Disturbance observers offer several attractive features. In the absence of large model

errors, they allow independent tuning of disturbance rejection characteristics and command

following characteristics. Further more, compared to integral action, disturbance observers

allow more flexibility via the selection of the order (relative degree) and bandwidth of low-

pass filtering (the cut-off frequency); this filtering is frequently referred to as disturbance

observer’s Q-filter.

Gp(s)

Gn(s)
-1

Q(s)

c u

d

y

n

Figure 84: Conventional form of disturbance observer

In conventional disturbance observer, the basic idea is to use a nominal inverse model

of the plant to estimate the disturbance (see Fig. 84). It will be mentioned later in this
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chapter that this disturbance observer configuration is actually another form of loop-shaping

to add more attenuation in the lower frequency range at the cost of the reduced stability

margin. However, using disturbance observer structure allows simple and intuitive tuning

of disturbance rejection characteristics. This explains why disturbance observer is more

welcome by the control practitioners.

In this chapter, firstly the conventional disturbance observer is applied to the robust

control of the experimental torsional system. As shown in Fig. 85, the inverse plant model

for disturbance observer is Js, where J equals the sum of Jm, Jg and Jl. In this simple

inverse model, the three masses of driving motor, gear and load are considered to be connect

with a rigid shaft that can be described as a single mass J . The Q-filter is a low-pass filter to

restrict the effective bandwidth of the disturbance observer. For simplicity of the discussion,

the Q−filter is assumed to be in following form:

Q(s) =
1

(τs + 1)n
(182)

where τ is cut-off frequency and n is the relative degree of Q-filter.

 
 

Torsional 
  System

(τs+1)
1

Js

inverse model
   

      Q-filter

Tm
ωm

n

Figure 85: Conventional disturbance observer for the robust control of experimental tor-
sional system

The disturbance observer is applied to estimate disturbance torque T̂d, which is gen-

erated due to unmodeled dynamics in single inertia model Js. Considering the frequency

range of torsion vibration mode, τ is taken as 0.005(=1/200). By choosing different relative

degree n, the control system’s frequency responses can be adjusted. As shown in Fig. 86,

n=1 has the best vibration suppression performance. The three-inertia model is used as for

approximating actual torsional system in Fig. 87.
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Figure 86: Open-loop gain plot with different integer order n

Simulation results show PI speed controller with disturbance observer (n=1) can give

a good control performance in nominal case, where backlash angle δ = 0.6deg and and

maximum torque limitation is ±3.84Nm. In the simulation, gear backlash is described

using deadzone factor and elastic factor, which is far from adequate due to gear backlash’s

complex dynamic features, as shown in section 7.4. Whether disturbance observer with the

1st-order Q-filter can suppress backlash vibration effectively or not should be verified by

experiments.

   
 

  

Three-inertia 

      Model

τs+1 τs+1
Js1

Tm ωm

Kp

Ki
s

ωr

Figure 87: Block diagram for simulation with three-inertia model
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Figure 88: Time responses in simulation (n=1)

9.2 Novel Fractional Order Q-Filter

An equivalent block diagram for the disturbance observer is shown in Fig. 89. From the

figure, transfer functions from command, disturbance, and noise to output are

GCY (s) =
Y (s)
C(s)

=
Gp(s)Gn(s)

Gn(s) + Q(s)(Gp(s)−Gn(s))
(183)

GDY (s) =
Y (s)
D(s)

=
Gp(s)Gn(s)(1−Q(s))

Gn(s) + Q(s)(Gp(s)−Gn(s))
(184)

GNY (s) =
Y (s)
N(s)

=
Gp(s)Q(s)

Gn(s) + Q(s)(Gp(s)−Gn(s))
(185)

The behaviors of the above equations as Q → 1 and Q → 0 show why Q is chosen as a

low-pass filter. As Q → 1 at low frequencies, GCY (s) → Gn(s) and GDY (s) → 0. And at

high frequencies, Q → 0 leads to GNY → 0.

1

1-Q(s)

Q(s)

Gn(s)

Gp(s)
c u

d

y

n

Figure 89: Equivalent diagram of the conventional disturbance observer

The key design issue for disturbance observer is choosing Q(s) to provide a good tradeoff

95



between disturbance rejection performance versus stability robustness and noise sensitivity.

The selection of Q−filter’s parameters are limited by unmodeled dynamics. Consider these

uncertainties as a multiplicative perturbation of the nominal system gives

Gp(s) = Gn(s)(1 + ∆(s)) (186)

From Fig. 89, the open-loop transfer function for the disturbance observer system, in the

absence of unmodeled dynamics, is

L(s) =
Q(s)

1−Q(s)
(187)

This shows the sensitivity function S(s) and the complimentary sensitivity function T (s)

[46]. For the disturbance observer loop in Fig. 89, T (s) equals to Q(s) and S(s) equals to

1−Q(s). Therefore, for the multiplicative uncertainty, the robust stability of the inner loop

formed by the disturbance is assured [27]:

‖ T (jω)∆(jω) ‖∞≤ 1 (188)

In above chapters, theoretical analysis and experimental results show by taking fractional

order, control system’s frequency responses can be effectively adjusted. FOC may also be

applied in disturbance observer. A fractional order Q-filter was proposed by Chen with

simple theoretical analysis as the possibility of better tradeoff between phase margin loss

and vibration suppression strength [45].

In this chapter, the fractional version of Q-filter and its properties will be further ex-

ploited with robust control analysis and experimental verification. The fractional order

Q-filter is the Q-filter whose relative degree can be any real number, not only integers:

Q(s) =
1

(τs + 1)α (189)

T (s) and S(s), actually Q(s) and 1 − Q(s), with fractional relative degree α are shown

in Fig. 90. It can be seen with fractional α the frequency responses of T (s) and S(s) are

rightly between conventional integer order ones.

For clearness, the gain plots of fractional order Q−filter and the time delay uncertainty:

∆(s) = e−sTd − 1 (190)
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Figure 90: Effect of taking fractional order filter on inner disturbance observer loop
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Figure 91: Fractional order Q−filter with time delay uncertainty

in section 4.4 is shown again in Fig. 91. Obviously, by taking proper fractional order relative

degree α, some disturbance rejection performance can be easily recovered; while the robust

stability criteria is still satisfied.

For an application, disturbance observer with fractional order Q-filter is used in the

robust control of the torsional system. In torsional system control, suppressing torsional

vibration and backlash vibration with parameter variations is one of central problems. From

open-loop Bode plot, Fig. 92, it can be seen that around backlash vibration mode, there is

enough phase margin; while the small phase margin around torsional vibration mode may

cause stability problem.

On the robustness aspect, control system with small fractional order filter tends to be
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bad robust stability, but could give a better backlash vibration suppression performance due

to their smaller gain characteristics (see Fig. 91 and Fig. 92). Namely, a tradeoff between

robust stability loss and backlash vibration suppression strength exists in the disturbance

observer approach.
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Figure 92: Open-loop Bode plots with different α
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Figure 93: Bode plots of fractional order Q-filter 1
(τs+1)α

For conventional disturbance observer, the possibility of better tradeoff is restricted

since only integral order n can be chosen. As mentioned in above section, taking n as 1,

the smallest value for n, gives the best vibration suppression performance for conventional

disturbance observer. To further improve vibration suppression performance while keep

enough robust stability margin, introducing Q-filter, whose order is between 0 and 1, is

actually a natural choice. The Bode plots of the fractional order Q-filter are shown in
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Fig. 93. It can seen a clear-cut design of “in-between” frequency responses is achieved by

only adjusting the fractional order α. A proper selected fractional order α can easily recover

some vibration suppression strength while keep enough robust stability margin.

9.3 Comparative Experiments

9.3.1 Conventional disturbance observer

Experiments are carried out with sampling time T=0.001sec. The fractional order low-

pass filters are realized by broken-line method, where N = 2 and approximation band is

[200 10000].

Firstly, speed control experiment with integer order Q-filter is carried out. As shown in

Fig. 94, the control system can achieve satisfactory response when backlash angle is adjusted

to zero degree (δ=0). With the existence of gear backlash non-linearity, persistent vibration

occurs (see δ=0.6 case). Fig. 95 shows that compared with PI-only control, introducing

disturbance observer can give better vibration suppression performance. However, this

performance improvement is not enough to suppress effectively the vibration caused by

gear backlash.
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Figure 94: Time responses with integer order Q-filter (n=1)

For higher order n, like n=2 and n=3, the vibration suppression performance is actually

deteriorated, while the control system still keeps stable (see Fig. 96). This experimental

result verifies that a tradeoff between robust stability and vibration suppression strength

exists and can be adjusted by different order n of the Q-filter.
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Figure 95: Comparison of PI-only control and PI+DOB control
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Figure 96: Time responses with integer order Q-filter (n = 2, 3)

9.3.2 DOB with fractional order Q-filter

Figure 97 shows the experimental results with different α for fractional order Q-filter 1
(τs+1)α .

By taking α as 0.8, the vibration caused by gear backlash is effectively suppressed and the

best time response is achieved. The response of 0.8 order Q-filter has nearly same time

response where the gear backlash does not exist (compare Fig. 94(a) and Fig. 97(b)).

Higher α, for example 1.0, cannot suppression backlash vibration while the control

system is still be stable. In the time response of α = 0.6 case, even backlash vibration is

suppressed, the time responses reveal it’s relative poor stability performance. For small α

like 0.4, the fractional order Q-filter actually instablizes the control system. In Fig. 98, it
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Figure 97: Time responses with different fractional order α

can be seen clearly that the existence of gear backlash and larger gain of 0.4 order Q-filter

give bad robust stability performance for the inner disturbance observer loop.
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Figure 98: Time responses with 0.4 order Q-filter
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9.3.3 Robustness against parameter variations

Fig. 99 and Fig. 100 show the experimental results with load inertia and shaft elasticity

variations. As same as in the above nominal case, control system with integer order Q−filter,

i.e. α = 1, 2, 3, can not suppress the backlash vibration. Too strong vibration suppression

strength of α = 0.6 case actually leads to robust stability problem. Taking α as 0.8 gives

good performance in both nominal and parameter variation cases.
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Figure 99: Time responses with load variation (5 flywheels)

9.4 Summary

In this chapter, a fractional order Q-filter of disturbance observer, 1
(τs+1)α , was introduced

to substitute the integer order Q-filter 1
(τs+1)n used in conventional disturbance observer for

the speed control of torsional system. The theoretical analysis and experimental results show

that changing Q-filter’s order fractionally could give more possibility and an effective way to

obtain better tradeoff between control system’s robust stability and vibration suppression

performance.
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Figure 100: Time responses with shaft variation (4mm diameter)

It can be seen introducing fractional order components is actually a nature thinking.

When taking integer order controller only can not meet control demand, usually too ag-

gressive or too conservative, further adjustment by letting control order be fractional could

be a good choice. As the control order has much bigger influence on control performance

than coefficients, FOC approach could give a clear-cut and effective control design with less

control parameters.

This chapter contributes to expand control application field for FOC research to one

of popular control practices, the disturbance observer. The author believes there are lots

of existing control practices whose performance could be easily upgraded through FOC

approach.
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CHAPTER X

CONCLUSIONS AND FUTURE WORKS

10.1 Position of FOC

• Theoretical position: FOC opened a new dimension for control theory. The highly

developed control theory based on integer order differential equations shows quite

different characteristics when it is expanded into fractional order field. At the same

time, FOC is actually a nice generalization of IOC theory. This generalization gives

huge space for researchers to see conventional IOC theory in a fresh light and find

new and interesting things.

• Practical advantages: From practice viewpoint, the ideal fractional order con-

trollers can only be realized by proper approximation with finite differential or dif-

ference equations. Namely, “design by FOC and realize by IOC” are inevitably. The

practical advantages for FOC is to provide more flexibility and insight in control de-

sign and thus give a clear-cut approach for designing robust control system. The

author does believe some well-designed IOC system might in fact be a unconscious

approximation of FOC system.

10.2 Unfamiliar but Natural Choice

• Modeling and identification: The dynamic features of “real” systems can be de-

scribed more adequately by fractional order models. Especially for light materials and

flexible structures, not only damping, but also other variety of physical phenomena

such as visco-elasticity and anomalous relaxation should be taken into account. This

demand naturally needs fractional order models, which is a hopeful tool for modeling

complex dynamic features.
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• Control design: Control design is a kind of tradeoff between different prescribed con-

trol demands, which are usually contradicted. Good design means a better method to

control same plant that can satisfy these contradicted demands with lower cost in both

design and realization. By introducing FOC, control system’s characteristics, both in

time domain and frequency domain, can be further and effectively adjusted. There-

fore, a better tradeoff could be obtained compared to conventional IOC approaches.

10.3 Effective and Clear-cut Control Design

• Powerful sα operator: As emphasized in above chapters, changing the order of

Laplace operator s order significantly affects control system’s characteristics. Espe-

cially, in frequency domain, this effect is straightforward. Fractional order controllers

are able to realize complicated frequency response easily with less control parameters,

usually fractional orders only. Therefore, the tuning knob can be reduced significantly

compared to high-order transfer functions designed by conventional IOC approaches.

• Two-stage design approach: FOC is a generalization of conventional IOC con-

trol. FOC plays an “interpolation” role among IOC systems. As to real applications,

fractional order controllers are realized by conventional integer order controllers after

proper approximation. Therefore, the highly developed IOC theory should be made

the most of. The two-stage design approach used in this dissertation rightly satis-

fies this reasonable conclusion. The FOC applications in chapter 7, chapter 8 and

chapter 9 show the clear-cutness and effectiveness of the two-stage design in practical

applications, in which IOC design method gives a good sense of direction and novel

FOC design method further improves control performance.

10.4 Realization by Proper Approximation

• Various approaches: Several realization methods were proposed for the realization

of fractional order controllers. Since most controllers are implemented on digital

computers, discretization of fractional order controllers is more concerned. Short

Memory Principle, Sampling Time Scaling, Tustin Taylor Expansion and Lagrange
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Interpolation Function can be applied to direct discretization. Since the broken-line

method approximates fractional order controllers in frequency domain firstly, further

discretization is needed.

• Reasonable approximation: The experimental results in chapter 7, chapter 8 and

chapter 9 verify the reliability of fractional order controller’s realization. In direct

discretization methods, the Short Memory Principle gives the best performance with

simple approximation algorithm. The broken-line method provides more flexibility in

design of fractional order controllers with satisfied approximate accuracy. The order

of approximation, which means how good the approximation is needed, should be

decided by the demand of specific control problem, as is true in the discretization of

conventional integer order controllers.

10.5 Future Works

• Identification and modeling: Identification and modeling of flexible structures us-

ing fractional order models will provide more insight and more reliable basis for control

design. Especially for a structure with light materials and fast motions, fractional or-

der models could give an effective description of the complex dynamic features. And

the FOC systems designed using fractional order models should give a better control

performance, such as vibration suppression, better robustness and so on.

• Systematic design method: The systematic design method is still an open problem

for FOC research. The optimal control methods, such as H2 and H∞ can be expanded

to FOC control design. However, the optimization will become quite complicated.

Genetic algorithm can be a solution to reduce the complexity of optimization. For a

clear-cut and effective FOC design, making the most of FOC’s advantages over IOC

is crucial.

And for applying FOC in MIMO system, using transfer function matrix mentioned

in section 3.1 should be an interesting research field.

• Control design using s0.5: The even orders of s0.5, (s0.5)0, (s0.5)2, . . . , (s0.5)2n, are
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actually integer order s operator, s0, s1, . . . , sn. And (jω)0.5 = ω0.5 6 π
4 . Namely,

introducing integer order s0.5 operator can be considered to be able to “split” con-

ventional IOC system into half. The stability of R(s0.5) system can also be easily

determined (see section 4.2). Tools not only in frequency domain but also in time

domain such as root-locus technique can be applied. Some interesting results should

be achieved in this FOC research direction.

• Fractional order zα operator: From FOC viewpoint, some modern digital con-

trol techniques, such as multi-rate sampling control, can be considered as trying to

realize or approximate fractional order zα operator. For example, z−0.5 means the

value of input between latest two sampled inputs. Generalizing present digital con-

trol techniques based on FOC concept should be a quite challenging and meaningful

research.

• Comparison with popular IOC methods: As mentioned above, FOC is actually

a nature choice. Especially in frequency domain, it is easy to understand that there

is no reason why only integer order s can be taken. The author strongly believes that

conventional high-order controllers designed by popular IOC methods such as H2

and H∞ might actually be unconscious approximations of fractional order controllers.

Review of conventional IOC methods from novel FOC viewpoint should be fruitful

and beneficial for the development of both IOC and FOC theories.

• Expansion of application field: In this dissertation, torsional system is used as

the testing bench, whose control was one of benchmark problems for motion control.

The theoretical analysis and experimental results show the hopeful aspect for applying

FOC in motion control. Actually, due to the non-linearities, demands for robustness

and other special control performances in motion control problems, FOC could be a

general and effective approach with “in-between” characteristics. Expansion of FOC

application in the control of harddisk, robot, electrical vehicle, wheelchair, etc, is

important for absorbing more interest and attention from academic communities and

also should be helpful for the future development of FOC research.
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Finally, the author would like to end this dissertation with the following expressive

quotation:

“. . . all systems need a fractional time derivative in the equations that describe them . . .

systems have memory of all earlier events. It is necessary to include this record of earlier

events to predict the future . . .

The conclusion is obvious and unavoidable: Dead matter has memory. Expressed dif-

ferently, we may say that nature works with fractional time derivatives.”– S. Westerlund,

Dead matter has memory! Physics Scripta, Vol. 43, 1991, pp. 174-179

With fractional order calculus and control, we may be able to extend a lot of new things

. . .

108



APPENDIX A

EXPERIMENTAL TORSIONAL SYSTEM

Control PC
Servo drivers

Simulator

(a) Experimental environment

(b) Servo simulator

Figure 101: Photographs for the experimental torsional system
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A.1 Servo Simulator

Servo simulator’s setup is shown in Fig. 102. A long torsional shaft connects driving side

and load side. Driving force is transmitted from driving servomotor to the shaft through

gears whose reduction ratio Ng is 2. Some parts are are changeable, such as the number

of flywheels in driving side and load side, shaft with different diameter and gears’ backlash

angle. Namely, parameters, Jg and Jl the inertias of gear (driving side) and load side, Ks

the elastic coefficient of the torsional shaft and δ the gear backlash angle, can be adjusted for

specific experiment (see Fig. 103). The encoders and tacho-generators are used as position

and rotation speed sensors.

load flywheel 
(changeable) 

bearing 

friction load adjustment 

belt Torsional shaft 
(changeable) 

driving flywheel 
(changeable)

driving servomotor 

load servomotor 

encoder  

tacho-generator  

backlash adjustment 

Figure 102: Experimental setup of servo simulator

Motor

Jm

Load

Jl
Gear 

Jg

δ, K g 

Shaft

K

  

Tm ωm

Tl ωl

s

Figure 103: Three-inertia model for the servo simulator

Driving flywheel Jg1 3.6573× 10−3(Kg ·m2) (each)
Load flywheel Jl1 3.7878× 10−3(Kg ·m2) (each)
Drive side basic Jl0 6.1342× 10−3(Kg ·m2)
Drive servomotor Jm0 6.5338× 10−4(Kg ·m2)
Load side basic Jl0 4.1062× 10−3(Kg ·m2)

(including load servomotor)

Table 6: Inertias of flywheels and motors in driving side and load side
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Shaft: 4mm 2.4504(Nm/rad)
Shaft: 8mm 3.9207× 101(Nm/rad)
Shaft: 12mm 1.9849× 102(Nm/rad)
Shaft: 16mm 6.2731× 102(Nm/rad)
Shaft: 20mm 1.5315× 103(Nm/rad)
Gear 3000(Nm/rad)

Table 7: Shaft and gear elastic coefficients Ks0 and Kg

Size 1070(mm)× 375(mm)× 500(mm)
Weight 150(Kg)
Servomotor 500W Brushless DC motor (MHI-AM500HEX)
(Drive & Load) rated torque: 1.6(Nm)

rated speed: 3000(rpm)
maximum torque: 3.84(Nm)
built-in encoder: 2000(pulse/rev)

Torsional shaft diameter: 4, 8, 12, 16, 20(mm)
(five) Length: 200(mm)
Drive flywheel diameter: 150(mm)
(two) thickness: 10(mm)
Load flywheel diameter: 150(mm)
(five) thickness: 10(mm)

Table 8: Servo simulator’s specifications

The parameters and servo simulator’s specifications are listed in Table. 6, Table. 7 and

Table. 8. The maximum torque for driving servomotor is ±3.84NM . Namely, an output

torque saturation exists in the servo simulator. Due to the severe noise in tacho-generator’s

output signal, the encodes are used as speed sensors by calculating changing ration of

rotation angle in one sampling time. The encoders’ count evaluation is set to be quad edge

evaluation. Therefore, when sampling time is 0.001sec, the coarse quantization for rotation

speed is

± 2π

4× 2000× 0.001
= ±0.7854(rad/sec) (191)

Considering gear’s reduction ratio Ng, the inertias of driving servomotor Jm, gear (in-

cluding driving flywheels) Jg and load side Jl can be calculated by following equations (see

Fig. 103, Table. 6 and Table. 7):

Jm = Jm0

Jg = (Jg0 + mJg1)/N2
g
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Jl = (Jl0 + nJl1)/N2
g

Ks = Ks0 (192)

In nominal setup, the numbers of driving flywheels m and load flywheels n are both 2.

Namely, the system parameters are:

Servomotor inertia Jm 0.0007(Kgm2)
Driving gear inertia Jg 0.0034(Kgm2)
Load inertia Jl 0.0029(Kgm2)
Shaft elastic coefficient Ks 198.4900(Nm/rad)
Gear elastic coefficient Kg 3000(Nm/rad)

Table 9: Parameter setting of nominal setup

A.2 Digital Control System
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Figure 104: Digital control system of the experimental torsional system

As shown in Fig. 101(a) and Fig. 104, the experimental torsional system is controlled

by a PC with 1.6GHz Pentium IV CPU and 512M memory. Realtime operating system

RTLinuxTM distributed by Finite State Machine Labs, Inc. is used to guarantee the timing

correctness of all hard realtime tasks [47]. The kernel version for RTLinux is 2.4.4.

Control programs are written in RTLinux C threads which can be executed with strict

timing requirement of control sampling time. The torque commands are calculated by the
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digital computer and sent to the two servo drivers. A 12-bit analogue input/output board

with 4 output DA channels and 8 input AD channels is used to convert digital torque

commands to analogue signals and analogue output voltage of tacho-generators to digital

signals, while the pulse output signals of encoders are counted by a 4-channel 24-bit encoder

pulse counter board.

As shown in Fig. 105, the control algorithm is written in the while(1) loop of a thread

named void *ctrl thread(void *arg). The start/stop command for the control thread is sent

from foc.app through FIFO CMD channel. The handler int my handler(unsigned int fifo) is

used to receive start/stop command from foc.app, create/cancel control thread ctrl thread()

and set sampling time for the while(1) loop in the thread. Torque command is calculated

in ctrl thread() and sent to servo drivers. Finally, experimental data, executive time t,

reference value ref , rotation speeds ωm, ωg and ωl, and driving servomotor torque command

Tm are transfered to foc.app through FIFO DATA channel and saved in data files.

control algorithm

ctrl_thread

my_handler

FIFO_CMD

start/stop

FIFO_DATA

(t, ref, ωd, ωg, ωl, Tm)

Encoder 

counter board

Encoder 

counter board

AD/DA

counter board

AD/DA

   I/O board

drivers

motorsmotors

θ

Tm

foc_module.o

foc_app

Figure 105: Conceptual diagram for RTLinux control program
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APPENDIX B

COEFFICIENT DIAGRAM METHOD

B.1 Coefficient Diagram

For a characteristic polynomial:

P (s) =
n∑

i=0

ais
i = ansn + ... + a1s + a0 (193)

Stability index γi, equivalent time constant τ , and stability limit γ∗i are defined as follows:

γi = a2
i /(ai+1ai−1), i = 1, ..., (n− 1) (194)

τ = a1/a0 (195)

γ∗i = 1/γi+1 + 1/γi−1, γ∗n = γ∗0 = ∞ (196)

012345
0.1

1

10

ai

(a) ai versus i

012345
0.1

1

10

γ i

γi

τ

∗

(b) γi, γ∗i , τ versus i

Figure 106: Example of the coefficient diagram

For an example, when the characteristic polynomial is expressed as

P (s) = 0.25s5 + s4 + 2s3 + 2s2 + s + 0.2 (197)

then

ai = [0.25 1 2 2 1 0.2] (198)
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γi = [2 2 2 2.5] (199)

τ = 5 (200)

γ∗i = [0.5 1 0.9 0.5] (201)

The coefficient diagram is shown in Fig. 106, where coefficient ai is read in Fig. 106(a) and

stability index γi, stability limit γ∗i , equivalent time constant τ are read in Fig. 106(b). The

τ is expressed by a line connecting 1 to τ . As shown in Fig. 107, if the ai curve is left-end

down, the equivalent time constant τ is small and response is fast. The equivalent time

constant τ specifies the response speed.

012345
0.1

1

10

larger τ slower response

smaller τ faster response

Figure 107: Effect of equivalent time constant τ

B.2 Stability Condition

Based on the sufficient condition for stability and instability proposed by Lipatov, the

stability condition for Coefficient Diagram Method (CDM) can be decided. The sufficient

condition for stability is given as:

γi > γ∗i , for all i = 1, ..., (n− 2) (202)

The sufficient condition for instability is given as:

γi+1γi ≤ 1, for some i = 1, ..., (n− 2) (203)

The stability index γi can be rewritten as:
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(a) graphically expressed γi
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(b) Changing of ai curve’s curtature

Figure 108: Effect of stability index γi

log10γi = log10

[
a2

i /(ai+1ai−1)
]

= (log10ai − log10ai−1)− (log10ai+1 − log10ai) (204)

Therefore, γi can be graphically obtained (see Fig. 108(a)). If the curvature of the ai

curve becomes larger, the system becomes more stable due to the larger stability index γi

(see Fig. 108(b)). Namely, control system’s stability can be determined graphically from

coefficient diagram.

B.3 Standard Form

The recommended standard form for CDM is

γ1 = 2.5, γ2 ∼ γn−1 = 2 (205)

When a0 = 0.4 and τ = 2.5 are chosen, the characteristic polynomial P (s) is obtained in

following form:

P (s) = 2−
(n−2)(n−1)

s sn + . . .

+ 2−10s6 + 2−6s5 + 2−3s4 + 0.5s3 + s2 + s + 0.4 (206)

The so-called canonical transfer functions are helpful to clarify the characteristics of P (s).

The system type 1 close-loop canonical transfer function is in following form:

T1(s) = a0/(ansn + . . . + a1s + a0) (207)
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and for system type 2:

T2(s) = (a1s + a0)/(ansn + . . . + a1s + a0) (208)

-3 -2 -1 0 1
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1/τ
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Figure 109: Pole location of CDM standard form

The standard form has favorable characteristics as listed below:

1. For system type 1, overshoot is almost zero. For system type 2, necessary overshoot

of about 40% is realized [48].

2. Among the system with same equivalent time constant τ , the standard form has the

shortest settling time. The settling time is about 2.5∼3τ .

3. The lower order poles are aligned on a vertical line. The higher order poles are located

within a sector 49.5 degrees from the negative real axis, and their damping coefficient

ξ is larger than 0.65 (see Fig. 109).

B.4 Recent Development

The standard form was emphasized at the early stage of CDM, in which robustness was

not guaranteed. The choice of γ1 = 2.5, γ2 = γ3 = 2 is recommended due to stability and

response requirement, but it is not necessary to make γ4 ∼ γn−1 equal to 2. The condition

can be relaxed as

γi > 1.5γ∗i (209)

117



With such freedom, control design using CDM can integrate robustness in the character-

istic polynomial design with a small sacrifice of stability and response. Namely, the essence

of CDM lies in the proper selection of stability indices γi in a manner that both robustness

and stability are guaranteed as shown in section 8.1.

Therefore, control system’s stability, response and robustness can be graphically ex-

pressed in the diagrams of CDM. This advantage is the source for the effectiveness of CDM

design. The recent development of CDM can be found in Ref. [48] and Ref. [49], in which

a systematic approach for guarantee of robustness in CDM design is discussed in detail.
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