
FINAL MANUSCRIPT FOR IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, NOVEMBER 15, 2014. 1

Utility Function-Based Real-Time Control of
A Battery-Ultracapacitor Hybrid Energy System

He Yin, Student Member, IEEE, Chen Zhao, Student Member, IEEE, Mian Li, Chengbin Ma, Member, IEEE

Abstract—This paper discusses a utility function-based control
of a battery-ultracapacitor hybrid energy system. The example
system employs the battery semi-active topology. In order to
represent different performance and requirements of the battery
and ultracapacitor packs, the two packs are modeled as two
independent but related agents using the NetLogo environment.
Utility functions are designed to describe the respective pref-
erences of battery and ultracapacitor packs. Then the control
problem is converted to a multi-objective optimization problem
solved by using the Karush-Kuhn-Tucker conditions. The weights
in the objective functions are chosen based on the location
of the knee point in the Pareto set. Both the simulation and
experimental results show the utility function-based control
provides a comparable performance with the ideal average load
demand-based control, while the exact pre-knowledge of the
future load demand is not required. The utility function-based
control is fast enough to be directly implemented in real time.
The discussion in this paper gives a starting point and initial
results for dealing with more complex hybrid energy systems.

Index Terms—Battery, ultracapacitor, hybrid energy system,
energy management, optimization control.

I. INTRODUCTION

Currently, batteries are one of the most commonly used
energy storage devices. However, their energy and power den-
sities, reliability, cycle-life and management are always their
limitations, and thus batteries alone often cannot meet load
requirements efficiently and continuously. A hybrid energy
system, formed by combining multiple energy storage devices
(e.g., battery, ultracapacitor, flywheel, fuel cell, etc.) and
generators (e.g., micro-turbine, wind turbine, PV panel, etc.),
has proved to be a feasible solution to meet the energy/power
requirements with improved flexibility, reliability and cost
efficiency. Since the system configuration and behavior of the
hybrid system are becoming more complex, the optimized
management and control of a hybrid energy system is still
a challenging task. To achieve the optimal solution to this
energy management problem, it is especially important to
represent and take advantage of the characteristics of each

Manuscript received March 14, 2014; revised May 30, 2014, and October
7, 2014; accepted November 13, 2014. This work was supported by Na-
tional Science Foundation of China [grant number 51375299(2014-2017) and
51375302(2014-2017)].

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

The authors are all with University of Michigan-Shanghai Jiao Tong
University Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan
Road, Minhang, Shanghai 200240, P. R. China (e-mail: yyy@sjtu.edu.cn;
zc437041363@sjtu.edu.cn; mianli@sjtu.edu.cn; chbma@sjtu.edu.cn). M. Li
and C. Ma are also with a joint faculty appointment in School of Mechanical
Engineering, Shanghai Jiao Tong University.

component and the interactive relationship among them. Com-
pared to centralized control approaches, modeling and control
of the components as independent but related agents fully
respect the performance and requirements of various individual
components [1]. This agent-based approach can improve the
synergy, and thus, the flexibility, scalability, fault-tolerance and
reliability of the hybrid energy systems, and also can reduce
required computational efforts [2]–[4].

This paper discusses the modeling and control of a battery
semi-active hybrid energy storage system (HESS). Although
the structure of this type of HESSs is relatively simple,
those typical systems have been widely applied and are
suitable for agent-based modeling and control. The discussion
in this work provides a starting point and initial results
for dealing with more complex hybrid energy systems. The
battery-ultracapacitor HESSs have been investigated in recent
years. The basic concept is to use ultracapacitors (UCs) as
an assistant energy storage device in order to improve the
performance of the entire energy storage systems, in terms
of efficiency, reliability, and dynamic response. UCs provide
fast and efficient energy delivery and long cycle-life without
any chemical reaction involved [5], [6]. In addition, the state
of charge (SOC) of an UC can be accurately obtained because
its SOC is proportional to the square of the cell voltage. The
range of UC operating temperature (-40 to +70◦C) is also
wider than that of batteries. The primary disadvantage of UCs
is their relatively low energy density compared to batteries.
Thus hybridization of batteries (and/or fuel cells) and UCs
is considered in nature to be the best usage of UCs for real
applications [7]–[9].

Besides the hardware aspects, many energy management
strategies have been proposed for the control of the battery-
ultracapacitor HESSs [10], [11]. A real-time optimal-control
approach was discussed and implemented using Neural Net-
works (NNs) [12]. This approach was further improved by
introducing a pre-training procedure to obtain convergent
weights for NNs [13]. The rule-based approaches were shown
to be suitable for the control of the battery-ultracapacitor
HESS [14]–[18]. Model predictive control is able to handle
various constraints in the HESSs [19], and a probability-
weighted Markov process has been used to predict future load
demands [20]. The trade-off between the battery protection and
the minimization of energy loss has been addressed by using
a multi-objective optimization approach [21]. Meanwhile, in
terms of extending battery cycle-life and improving the system
efficiency, it is ideal to let batteries satisfy the average load
demand (ALD) (i.e., a constant current), and thus UCs provide
all the dynamic load current [22]–[24]. Without considering
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physical limitations, the ALD-based control is the best for the
battery-ultracapacitor HESSs. However, in real applications,
besides the physical limitations, it is very difficult, if not
impossible, to exactly know the future load demand in advance
which indeed significantly limits the applicability of the ALD-
based control.

This paper proposes a control approach comparable to the
ideal ALD-based control in terms of its performance, but
without using exact pre-knowledge of the future load demand.
The battery and UC packs are first modeled as two independent
but related agents using the NetLogo environment. The agent
of the battery pack aims to extend its cycle-life, while the
agent of the UC pack works to improve the energy efficiency
of the HESS. The different preferences of two agents are
represented by their utility functions respectively. This utility
function-based control is carried out by solving a multi-
objective optimization problem once off-line and then updating
the solution in real time. This global optimal solution is then
obtained by using Karush-Kuhn-Tucker (KKT) conditions.
Finally, both the NetLogo-based simulation and experimental
results validate the theoretical analysis.

II. SYSTEM CONFIGURATION AND MODELING

Using a single DC-DC converter, two semi-active topologies
are possible for the target HESS, namely capacitor semi-
active and battery semi-active hybrids [25]. In the capacitor
semi-active hybrid, the DC-DC converter connects the UC
pack and the load, while in the battery semi-active hybrid
the DC-DC converter is placed between the battery pack
and the load as shown in Fig. 1. The capacitor semi-active
is advantageous in terms of the capability of fully utilizing
the UC pack. The variation/ripple of the DC link voltage is
also small due to the fact that batteries usually have a flat
voltage profile. However, the DC-DC converter used in this
topology needs to have a considerable rating and must be
designed according to the peak power. The advantage of the
battery semi-active hybrid is that it is capable of enforcing the
battery to work at the point close to the average power/current,
therefore allows potential improvement in battery performance
in terms of cycle-life and energy efficiency [24], [25]. In
addition, the voltage matching between the battery pack and
the load is not required any more. The DC-DC converter
rating is also much lower than that in the capacitor semi-active
topology [23], [25]. The main disadvantage of the battery
semi-active topology is the variation of the DC link voltage
during UC charging/discharging. This may lead to a very large
capacitance value and limit the usage of the UC energy. In the
following discussion, a battery semi-active HESS is used as
an example to apply the utility function-based control. In this
topology, the variation of the battery current can be directly
controlled for extending the battery cycle life. Meanwhile,
as a general approach, the proposed control method can be
modified and extended for its applications in the capacitor
semi-active HESS and other more complex hybrid energy
systems.

Figure 2 shows the experimental setup of the battery-
ultracapacitor HESS discussed in this paper. This HESS em-
ploys the battery semi-active topology. The power supply and
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Fig. 1. The topology of the battery semi-active HESS.
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the electronic load are controlled to emulate charging and
discharging currents, respectively. The boost DC-DC converter
is designed and fabricated in house with an overall efficiency
being more than 90%. The Data Acquisition (DAQ) system
used is the CompactRIO platform from National Instruments
(NI).
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In order to represent the different characteristics of the
battery and UC packs and their interaction in the HESS, a
multi-agent based modeling and programming environment,
NetLogo, is used. A multi-agent system is defined as a comput-
erized system that is composed of multiple interacting agents
within an environment [26], [27]. In the multi-agent system,
each agent is independent with different goals or preferences.
The purpose is to find out a rule among agents which can lead
to a compromised solution that balances the different goals of
the agents. NetLogo is an open-source software that has been
world-widely used for modeling complex systems evolving
over time [28]. It is the basic simulation environment in this
paper under which all the simulation models and algorithm are
applied. Following the definition of the multi-agent system,
here in NetLogo, the battery and UC packs are modeled
as two independent but related agents, as shown in Fig. 3.
At each control instant, two agents first evaluate their own
utility functions according to the interactions between their
physical models and the load demand. The utility function
here quantifies the satisfaction level of an individual agent
for a certain load distribution between the two agents. Based
on their respective utility functions or preferences, they work
collaboratively and synergically to contribute their own load
currents following the determined rule that is implemented
by the proposed utility function-based control. Note that other
tools can also be used to perform the modeling and simulation
of the battery semi-active HESS such as Petri nets, neural
networks, and the conventional modeling using physical mod-
els [29], [30]. Here the multi-agent based modeling and its
environment NetLogo are chosen for reference implementation
and validation because they can be easily extended to describe
more complex hybrid energy systems, i.e., using more agents
to represent newly added devices. In NetLogo, hundreds of
agents can be easily created simultaneously and all agents
can operate independently [28]. This advantage of NetLogo
makes it possible to explore both the individual-level behavior
of multiple devices and the system-level patterns that emerge
from their interaction. Thus NetLogo is an efficient modeling
and simulation environment here to facilitate the agent-based
modeling and the utility function-based control, as discussed
in the introduction section.

The entire HESS model and the control loop are shown in
Fig. 4. The parameters of the HESS model are listed in Tab. I.
In the model of the battery pack, Voc is the open circuit voltage
and Rb is the internal resistance [31]. Two RC networks with
different time constants,

τs = Rt,sCt,s and τm = Rt,mCt,m (1)

are used to model battery transient voltage responses in
second and minute ranges, respectively [32]. Parameters of
the battery pack, Voc and Rb, are obtained by using a fast
averaging method, and represented by six-ordered polynomial
functions [33],

Voc = aocv,0 + aocv,1x+ aocv,2x
2 + ...+ aocv,6x

6, (2)
Rb = ar,0 + ar,1x+ ar,2x

2 + ...+ ar,6x
6, (3)

where x is the specific state-of-charge (SOC) of the battery
pack. In the model of the UC pack (the bottom block in Fig. 4),

TABLE I
PARAMETERS OF THE HESS MODEL

Li-ion Battery Pack Two cells (Series)
aocv,0 2.30 aocv,1 15.96
aocv,2 -99.35 aocv,3 295.20
aocv,4 -446.49 aocv,5 331.41
aocv,6 -95.56 ar,0 0.02
ar,1 -0.24 ar,2 1.69
ar,3 -5.66 ar,4 9.67
ar,5 -8.13 ar,6 2.67
Rt,s 5.60 mΩ Ct,s 12200 F
Rt,m 2.87 mΩ Ct,m 453000 F
UC Pack Eight cells (Series)
C 1760F Rc,s 2.50 mΩ
Rc,l 3 kΩ
DC-DC Converter Efficiency: > 90%
RL 100 mΩ L 200 µH
Rmos 5 mΩ RD1 12mΩ
VF 0.26V Cout 2mF

C is the capacitance, Rc,s is the internal resistance of the
UC pack, and Rc,l is used to model the leak current [34].
Parameters of the UC pack are obtained by using pulsed
current test [35]. A current-mode controlled boost converter
is employed in the HESS. The controller determines the ref-
erence current of the battery pack i∗b based on three feedback
signals, the current of the battery pack ib, load current il, and
the voltage of the UC pack vc. For the parameters of the DC-
DC converter in Tab. I, RL is the equivalent series resistance
of the inductor L; Rmos is the on-resistance of the MOSFET
switch Smos; RD1 and VF are the resistance and the voltage
drop of the diode D1, respectively; Cout is the capacitance of
the output capacitor.
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Fig. 4. The HESS model and control loop.

III. DEFINITION OF UTILITY FUNCTIONS

There are two major objectives for the control of the HESS
discussed in this paper. The first one is to minimize the
variation of the battery current in order to extend the cycle-
life of the battery pack. The second one is to minimize
the difference between the present UC energy level and its
initial level, taking the consideration that the UC pack is
only a temporary energy source. Those two objectives can
be represented by the utility functions of two agents working
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collaboratively in NetLogo, i.e., the respective preferences of
the battery and UC packs. Here one utility function quantifies
how much benefit one energy storage device could obtain
if it provides certain energy at a particular time [36]. The
preference of the battery pack is the extension of its cycle-life.
It relates to two factors, the amplitude and variation rate of the
battery current ib [21]. On the other hand, the preference of
the UC pack is to minimize the difference between its present
and initial energy levels. Quadratic functions are used here to
represent those utility functions, which achieve their maximum
values when the preferences are met [36]. The utility functions
of the battery and UC packs are discussed as follows.

A. Battery Pack

The utility function of the battery pack, ub, is equivalent to
the utility of the battery cycle-life in this paper:

ub = wb,aveub,ave + wb,difub,dif , (4)

where ub contains two parts, ub,ave and ub,dif . The aim of
ub,ave is to minimize the amplitude of the battery current
while the aim of ub,dif is to minimize the variation rate of the
current. wb,ave and wb,dif are weight coefficients for ub,ave

and ub,dif , respectively. Determination of wb,ave and wb,dif

is discussed in the following section. ub,ave and ub,dif are
defined as

ub,ave = 1− a(ib − ib,ave)
2, (5)

ub,dif = 1− b(ib − ib,l)
2, (6)

respectively. Here ib,ave is the average current of the battery
pack from the beginning to the current control instant. ib,l is
the current of the battery pack at the last control instant. The
coefficient a can be calculated using Eq. (7). The equation is
designed to normalize the value of ub,ave. When ib reaches its
maximum value Ib,max, ub,ave is equal to zero. Similarly, the
coefficient b normalizes the value of ub,dif to be zero when the
variation of ib comes to its maximum threshold, Max(|ib −
ib,l|), within a single sampling interval [refer to Eq. (8)]. This
threshold should be specified based on the performance and
design requirements of the target HESS.

a =
1

(ib,max − ib,ave)2
(7)

b =
1

[Max(|ib − ib,l|)]2
(8)

B. Ultracapacitor Pack

The utility function of the UC pack uc can be represented as
an utility of its stored energy uc,eng with a weight coefficient
wc,eng:

uc = wc,eng[1− c(ic − ic,fit)
2], (9)

where
c =

1

(Ic,max − ic,fit)2
. (10)

The larger the utility values, the closer the current of the UC
pack ic to a designed current value ic,fit, whose purpose is
to bring the UC energy level back to its initial level in the

most convenient manner (its formulation will be defined later
in this section). c is calculated in the same way as a and b in
Eqs. (7) and (8). Ic,max is the maximum permissible current
of the UC pack.

UCs usually work as ”energy buffers” in many HESSs, and
for an UC pack, its stored energy is

ec =
1

2
Cv2c , (11)

where C is the capacitance and vc is the voltage of the
UC pack. Considering the equal chance of charging and
discharging of an UC pack in a dynamic environment, the
UC pack’s initial voltage Vc,ini could be specified as

Vc,ini =

√
V 2
c,max + V 2

c,min

2
, (12)

i.e., a 50% initial SOC. Vc,max and Vc,min are the maximum
and minimum voltages of the UC pack, respectively. Thus to
control the voltage of the UC pack, its reference current ic,fit
is designed by scaling Ic,max based on the energy difference
between the present and initial levels:

ic,fit =

(
2

v2c − V 2
c,min

V 2
c,max − V 2

c,min

− 1

)
Ic,max. (13)

In this way, when ic is closer to ic,fit, the UC pack is properly
charged/discharged to reach its initial level of the stored
energy. Here a positive current means discharging, and vice
versa. In the utility function Eq. (9), the larger the difference
between the present and initial energy levels of the UC pack
is, the larger ic should be (within a range from −Ic,max to
Ic,max).

IV. OPTIMIZATION PROBLEM

A. Problem Formulation

The utility functions of the battery and UC packs can be
directly used as objective functions (OBJ) of the optimization
problem that should be optimized simultaneously,

OBJ1 :fmin = −ub, (14)
OBJ2 :fmin = −uc. (15)

In order to transform this multi-objective optimization problem
into a single-objective optimization problem (so that one
global optimal solution can be obtained), the weighted-sum
method is used. There are other alternative multi-objective
optimization approaches, such as compromise programming,
physical programming and evolutionary algorithms, in the
literature [37], [38]. Here the weight-sum method is chosen
because it can provide one analytical solution, instead of
numerical or heuristic ones, for the following real-time im-
plementation (in the implementation, only one global optimal
solution is necessary). The entire objective function can be
formulated as follows,

OBJ :fmin = −wb,aveub,ave−wb,difub,dif −wc,enguc, (16)

subject to

0 ≤ (b, wave, wb,dif , wc,eng) ≤ 1, (17)
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where wb,ave, wb,dif , and wc,eng are three weight coefficients
for the respective utility functions. The selection of those
coefficients is discussed in Section IV-C. Other constraints are
also necessary to make this optimization problem practically
feasible. One important constraint is to guarantee that the sum
of the currents from the battery and UC packs is equal to the
load current il, i.e.,

ic + ib(1−D)− il = 0 (18)

where D is the duty cycle of the boost DC-DC converter.
Two design variables of the optimization problem are

x1 = ib and x2 = ic. The optimization problem can then
be formulated as follows,

Minimize f(x1, x2) =− wb,ave[1− a(x1 − ib,ave)
2]

− wb,dif [1− b(x1 − ib,l)
2]

− wc,eng[1− c(x2 − ic,fit)
2]

(19)

subject to

x2 + x1(1−D)− il = 0, (20)
wb,ave + wb,dif + wc,eng = 1, (21)

0 ≤ (wb,ave, wb,dif , wc,eng) ≤ 1. (22)

B. Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions are used here
to solve the above nonlinear optimization problem theoreti-
cally [38], [39]. The objective function and the constraints
in Eqs. (19)-(22) can be put into the Lagrangian function L
which is depending on x1, x2, v.

L =− wb,ave[1− a(x1 − ib,ave)
2]− wb,dif [1− b(x1 − ib,l)

2]

− wc,eng[1− c(x2 − ic,fit)
2] + v[x1(1−D) + x2 − il],

(23)
Let

∂L

∂x1
= 2awb,ave(x1 − ib,ave) + 2bwb,dif (x1 − ib,l)

+(1−D)v = 0, (24)
∂L

∂x2
= 2wc,engc(x2 − ic,fit) + v = 0, (25)

∂L

∂v
= x1(1−D) + x2 − il = 0, (26)

the KKT candidate point is then solved as

x1 =
awb,aveib,ave+bwb,dif ib,l+cwc,eng(1−D)(il−ic,fit)

awb,ave+bwb,dif+c(1−D)2wc,eng
, (27)

x2 = il − (1−D)x1, (28)
v = 2cwc,eng[(1−D)x1 + ic,fit − il]. (29)

The Hessian of the Lagrangian function is

∇2L =


∂L2

∂2x1

∂L2

∂x1∂x2
∂L2

∂x1∂x2

∂L2

∂2x2

 (30)

=

[
2awave + 2bwdif 0

0 2cwe

]
, (31)

which is always positive definite. Thus the solution in Eqs. (27)
and (28) is a global minimum point that determines an optimal
distribution of the current between the battery and UC packs.
Notice that this single-objective optimization problem is only
solved once off-line before the control procedure, and the
solution only needs to be updated at every control instant.

In real applications, there are also physical box constraints
on the upper and lower bounds of the currents of the battery
and UC packs,

−x1 ≤ 0, (32)
x1 − Ib,max ≤ 0, (33)

−x2 − Ic,max ≤ 0, (34)
x2 − Ic,max ≤ 0. (35)

Notice that the optimization problem defined in Eqs. (19)-(22)
is still a convex problem defined on this bounded box and the
global minimum solution from Eqs. (27)(28) still holds if it
is within the physical box. However, if it is located out of the
above box, the local optimal solution is simply located on the
boundary of the box.

C. Determination of Weight Coefficients

As shown in Eq. (27) and (28), the solution to the optimiza-
tion problem is symbolically represented by a function of the
weight coefficients. As long as the values of those coefficients
are determined, the optimal solution can be updated at each
control instant. The coefficients should be determined as the
values that can provide the best balance between the different
preferences of the battery and UC packs, i.e., the knee point
of the Pareto set discussed below [40].

Among those weight coefficients, wc,eng can be first calcu-
lated in an adaptive manner,

wc,eng = wc,min +
1− wc,min

V 2
c,ini − V 2

c,min

∣∣V 2
c,ini − v2c

∣∣ . (36)

This function is used to make sure that wc,eng goes to wc,min

when the energy stored in the UC pack equals to its initial
energy level, and it becomes one when the UC pack is fully
charged or discharged, i.e., wc,min is the lowest value of
wc,eng.

wc,min, wb,ave, and wb,dif can be determined based on a
targeted test cycle such as JC08 driving cycle (the Japanese
urban test cycle representing congested city driving condi-
tions) [41], [42]. JC08 here serves as an example of a realistic
power profile. Note that the approach discussed below itself is
a general one which is not limited to any specific application.
For any other targeted test cycles, the weight coefficients
can be determined following the same procedure. Figure 5
shows the velocity and power profiles of JC08, in which the
maximum speed is 81.6 km/h and the average speed is 24.4
km/h. The power profile of the JC08 driving cycle is scaled
down to match the power capability of the experimental HESS
described in Section II.

As shown in the objective function Eq. (19), wb,ave em-
phasizes the long-term variation of the battery current, wb,dif

represents the influence of a short-term one, and wc,eng (or
wc,min) controls the convergence speed of the current of the
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Fig. 5. Velocity and power profiles for the JC08 driving cycle. (a) Velocity
profile. (b) Power profile.

battery pack to the average load current. Various combinations
of wc,min, wb,ave and wb,dif are applied to calculate the
variation of the average battery current sampled in: 1) large
(10 minutes) and 2) short (0.35 second) time intervals, and 3)
the average energy stored in the UC pack, respectively. 0.35
second is the sampling interval of the host PC in the experi-
mental HESS. The tradeoff relationship among three weights
can be represented by the so-called Pareto set [see Fig. 6] [38].
In the figure, x axis is the normalized average energy stored
in the UC pack; y and z axes are the normalized short and
long-term variations of the battery current, respectively. In the
normalization, “0” corresponds to the minimum of a variable,
and “1” is the maximum. The knee point with the combination
of

wc,min = 0.6,
wb,ave

wb,dif
=

1

4
, (37)

gives the most satisfactory solution. This knee point is closest
to (0,0,0), on which the x axis is the normalized initial energy
of the UC pack, the y and z axes are the normalized lowest
short-term and long-term current variations. Any deviation
from the knee point favors one or two of the three criteria, but
sacrifices the other more. The three weights, wb,ave, wb,dif ,
and wc,eng, can be finally determined using the relationships
descried in Eqs. (22), (36) and (37).

The influences of wb,ave, wb,dif , and wc,eng are illustrated
in Fig. 7, where the JC08 driving cycle runs eight times. In
accordance with their definitions, wb,ave minimizes the differ-
ence between ib and ib,ave, i.e., suppressing the amplitude of
ib; wb,dif affects the distribution of the dynamic load current
(the smaller wb,dif is, the more dynamic current the battery
pack provides); and wc,eng controls the convergence speed of
ib to an average value, which is 1

1−D times of the average
load current in the test cycle. Again D is the duty cycle of
the DC-DC converter.

Finally, for the current example application in electric
vehicles (EVs), additional constraints such as the allowable
range of DC link voltage have to be considered. Because of the
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Fig. 6. The Pareto set.

battery semi-active topology used, the DC link voltage is equal
to the UC voltage. Considering this constraint, a larger wc,eng ,
the weight coefficient to favor the storage energy in UC pack
and thus the UC voltage, can be used. As shown in Fig. 8(a),
a large wc,eng such as 0.9 enables a faster convergence of
the UC voltage, i.e., the DC link voltage . Thus the low UC
voltage in the first two cycles can be improved. However,
due to the limitation of the semi-active topology, a tradeoff
relationship exists among the weight coefficients. The variation
of the battery current also becomes greater with the larger
wc,eng [see Fig. 8(b)]. In real applications, a lower boundary of
wc,eng should be determined according to specific limitations
on the allowable range of DC link voltage. Besides, for the
sake of simplicity of this work the initial value of the average
battery current, ib,ave, is set to be zero. The variation of the
DC link voltage can also be improved by having a properly
selected initial ib,ave, as discussed in the last paragraph of
Section V. It can be seen that an adaptive mechanism can be
included to automatically tune the weight coefficients such as
the rule-based approaches [18]. This effort is considered as a
part of the future work.

D. Real time implementation

The solution in Eqs. (27) and (28) is a global optimal solu-
tion to the optimization problem with only two variables and
three parameters. Those parameters are ib,l (the last current of
the battery pack), vc (the voltage of the UC pack), and il (the
current load demand). Obviously, there is no need to solve
the optimization problem at each control instant. This optimal
solution only needs to be updated using the newest parameter
values at each instant. Also, since the problem is solved by
KKT conditions theoretically, the computational effort of this
optimization problem can be even neglected. The above utility
function-based control is obviously fast enough to be directly
implemented in real time. At the same time, delays exist
in any practical control system (during sensing, conversions
between analog and digital signals, computation, actuating,
etc.). They may affect the convergence speed of the battery
current ib, and such the dynamic response of the UC stored
energy ec. Because in the HESS, the battery pack is a primary
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Fig. 7. Influences of the weight coefficients. (a) wb,ave. (b) wb,dif . (c)
wc,eng .

energy source. The control here emphasizes the convergence
of the battery current, namely the long-term behavior of
the battery pack. In this regard, the control performance is
insensitive to the certain delays. In the following simulation
and experiments, a relatively large sampling interval, 0.35
second, is applied according to control hardware performance.
The results validate the real-time implementation of the utility
function-based control.
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Fig. 8. Influences of the constraint on the allowable range of DC link voltage.
(a) Voltages of the UC pack. (b) Currents of the battery pack.

V. SIMULATION RESULTS

The JC08 driving cycle has been repeated eight times in
order to decrease the SOC of the battery pack from 80%
to 40%, which will last 160 minutes. Although a specific
test cycle is used here as an example, its properties such
as the average current are unknown for the controller, i.e.,
the exact pre-knowledge of the driving cycle is not required.
The proposed control method itself is applicable for any other
random driving cycles.

As defined in Eqs. (38)-(40), the average battery current
Ib,ave, the root mean square (RMS) of the battery current
variation Ib,var, and the average energy stored in the UC pack
Ec,ave, are used as the evaluation criteria:

Ib,ave =

∑
ib

N
, (38)

Ib,var =

√∑
(ib − ib,l)2

N
, (39)

Ec,ave =

∑
1
2Cv2c
N

, (40)

where N is the total number of the control instants. While it
is known to be difficult to quantitatively evaluate the cycle-life
of batteries, Ib,var could serve here as a criterion to indicate
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the improvement on the cycle-life [16], [17], [21], because the
smaller Ib,var, the smaller the change in the battery current,
and thus the longer the battery cycle life.

Results of the two control methods, the proposed utility
function-based control and the ALD-based control, are sum-
marized in Tab. II. It can be seen that Ib,ave in the two methods
are quite close, while the difference in Ib,var is relatively
large because unlike the ALD-based control, the average load
current of the test cycle is unknown in the utility function-
based method. Figure 9(a) compares the current responses of
the battery pack in the two methods. In the subfigure, 1.54 A
is the average current in the ALD-based control. The energy
stored in the UC pack ec is shown in Fig. 9(b). Both ib
and ec converge to the average battery current in the ALD-
based control and the initial energy stored in the UC pack,
respectively. The results show that the utility function-based
method provides a comparable control performance to the
ALD-based control. However, this method does not need exact
pre-knowledge of the test driving cycle. The voltages of the
UC pack are shown in Fig. 9(c). The zero initial value of
ib,ave here causes the large variation of the UC voltage in the
beginning, as discussed later.

TABLE II
COMPARISON OF SIMULATION RESULTS

Control Ib,ave Ib,var Ec,ave

ALD-based 1.54 A 1.46 10−4A 12021.26 J
Utility fun.-based 1.55 A 3.52 10−4A 11270.79 J

Figure 10 shows the current of the DC-DC converter, id,
the current of the UC pack, ic, and the load current, il. It
shows that the current of the battery pack (through the DC-
DC converter) covers the average load current, the UC pack
covers the dynamic current, and the sum of them is the load
current.

The initial value of ib,ave (the average current of the battery
pack so far) plays an important role in this work. In the
simulation, the initial ib,ave is set to be zero which causes
a large current variation in the battery pack during the first 40
minutes, as shown in Fig. 11(a). After that, ib,ave converges
to the average current of the test cycle up to the present
control instant and thus the variation in the last 40 minutes
becomes much smaller [see Fig.11(b)]. The initial value of
ib,ave also influences the variation of the UC voltage, i.e., the
DC link voltage in the battery semi-active HESS. As shown in
Fig. 12(a), the UC voltage can drop to as low as about 12.5 V
in the first two test cycles. While with the update of ib.ave, the
variation range of the UC voltage is significantly decreased to
around 14 to 15.4 V [see Fig. 12(b)]. This result shows that
the variation of the DC link voltage can also be improved with
a proper initial value of ib,ave instead of zero.

In addition, as shown in Fig. 13, the current of the battery
pack converges more quickly as the window size becomes
larger. This phenomenon can be understood as that if the
window size is larger, ib,ave will change more smoothly.
Therefore the window size in this simulation is selected as
from the time zero to the present control instant, i.e., ib,ave is
calculated using all the sampled currents of the battery pack
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Fig. 9. Responses in eight test cycles. (a) Currents of the battery pack. (b)
Energy stored in the UC pack. (c) Voltages of the UC pack.

so far.

VI. EXPERIMENTAL VERIFICATION

Figure 14 and Tab. III show the block-diagram and specifi-
cations of the experimental HESS system [see Fig. 2]. Again
the power supply and the electronic load are controlled by
the PC running NI Labview. They are combined together to
emulate the JC08 test cycle, i.e., the charging and discharging
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Fig. 11. Influence of the initial ib,ave. (a) First two test cycles. (b) Last two
test cycles.

currents, ich and idis. The NI CompactRIO system collects
data including the voltage of the battery pack vb, the voltage
of the UC pack vc, the current of the battery pack ib, the
output current of the DC-DC converter idcdc, and load current
il. Two 0.01Ω high-accuracy sampling resistors, Rs1 and Rs3

are used to measure ib and il. Idcdc is measured using a
0.1Ω sampling resistor Rs2 (two 0.2Ω high-accuracy resistors
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Fig. 12. Influence of the initial ib,ave on the voltage of the UC pack. (a)
First two test cycles. (b) Last two test cycles.

connected in parallel). The boost DC-DC converter is also
controlled by the NI compactRIO system. The optimal solution
in Eqs. (27)(28) is updated in the host PC at every control
instant with a sampling interval of 0.35 second. The reference
command of ib, i∗b , is sent to the NI compactRIO controller
from the host PC. In the LabVIEW program, each energy
storage device (i.e., the battery and UC packs here) has its
own independent while loop. As mentioned in Section III,
those two while loops are run based on their respective
utility functions or preferences. The while loop of the battery
pack works to minimize the variation of the battery current
for extending the cycle life of the battery pack; while the
objective of the while loop for the UC pack is to minimize
the difference between the present UC energy level and its
initial level (because the UC pack is only a temporary energy
source.)

As shown in Fig. 15, the experimental results match the
simulation results closely. This proves the correctness of the
real-time implementation of the proposed control. The current
of the battery pack successfully converges to the average
current. The small variations between the simulation and
experimental results are mainly caused by the extra energy
losses in real circuits such as from the DC-DC converter,
current sampling resistors, and wires. This leads to different
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Fig. 13. Influence of the window size. (a) 10 minutes. (b) 30 minutes. (c) 50
minutes. (d) All data so far.

R
s3 

R
s2 

R
s1 

UC 

Pack 

 

Electronic 

Load 

Power 

Supply 

DC-DC 

Converter 

Lithium ion 

Battery Pack 

Data Acquisition

 System

Controller

Host PC 
v

b

D

i
b

v
c 

i
dcdc 

i
l i

b

*

DC bus 

i
ch 

i
dis 

Fig. 14. Blockdiagram of the experimental battery-ultracapacitor HESS.

TABLE III
SPECIFICATIONS FOR MAJOR COMPONENTS

Li-ion Battery Pack Two cells (Series), 12.5Ah/cell,
(Lishen LP2770102AC) 3.2V/cell (Nominal Vol.)

UC Pack Eight cells (8 Series 1 Parallel)
(Nippon Chemi-Con DLE series) 1760F/cell, 2.5V/cell (Max Vol.)

Power Supply Max Power: 800W
(Takasago ZX-800L) (0–80V, 0–80A)

Electronic Load Max Power: 600W (1 PLZ-50F,
(Kikusui PLZ-50F/150U) 4 PLZ150Us with 1.5–150V

0–30A each)

DC-DC Converter Switch Frequency: 100kHz
(Design/fabricate in house) Efficiency: > 90%

Size:100m×170mm

High-accuracy Sampling Resistor Two RH250M4 0.01Ω (±0.02%)
(PCN Corporation RH series) Two RH25E4 0.2Ω (±0.1%)

dynamic responses of the battery current and the UC stored
energy. In order to meet the final load demand, the HESS
needs to provide more energy in experiments. Thus a larger

battery current and a lower UC stored energy are observed
after the convergence. Since here the worst case is assumed,
i.e., a zero initial ib,ave (the average battery current so far),
the experimental results well demonstrate the convergence
performance of the control.

For reference purposes, the currents of the DC-DC converter
(output current id), the UC pack (ic) and the load (il) are also
shown in Fig. 16. As same as the fundamental consideration
in the ALD-based control, the battery pack provides a nearly
constant current through the DC-DC converter that satisfies
the average load demand, while the UC pack supplies most of
dynamic load current. The sum of the two currents is the load
current. However, the exact pre-knowledge of the test cycle is
not required in the utility function-based control.

VII. CONCLUSION

This paper proposes a utility function-based control of a
battery semi-active HESS. The battery and UC packs are
first modeled as two agents using the NetLogo environment.
The utility functions are designed to represent the different
preferences of the two packs. Then the utility function-based
control is carried out by forming a multi-objective optimization
problem which is solved by the KKT conditions once before
the control procedure. The global solution of this control
is updated at any control instant. The weight coefficients
in the optimization problem are then chosen based on the
location of the knee point in the Pareto set. The procedure
is explained using JC08 driving cycle as an example test
cycle. Both the simulation and experimental results show the
utility function-based control has a comparable performance
to the ideal ALD-based control, but the exact pre-knowledge
of the test cycle is not required for the proposed approach. The
utility function-based control is efficient and fast enough to be
directly implemented in real time. As a part of the future work,
an adaptive tuning of the weight coefficients will be discussed
that enables the proposed approach to automatically fit any
targeted test cycle. The approach will also be extended to
solve the control problem for more complicated hybrid energy
systems such as a system with the battery, UC packs, and a
micro-turbine generator in the future.
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