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Distributed Electric Vehicles Charging Management
Considering Time Anxiety and Customer Behaviors

Amro Alsabbagh, Member, IEEE, Brian Wu, Chengbin Ma, Senior Member, IEEE

Abstract—This paper proposes a charging management of
electric vehicles (EVs) that considers time anxieties and different
behaviors of EV customers. The time anxiety concept is newly
presented to address some uncertain events that may happen
meanwhile charging of EVs, affect their charging patterns, and
prevent them from meeting their energy demands. The working
principle of the concept relies on prioritizing the charging before
the event occurrences, and thus changing the EV charging
patterns. Based on this concept, four different EV customer
behaviors are proposed and their influences are investigated. The
EV charging problem is formulated as a generalized Nash equi-
librium game, in which each EV minimizes its charging cost given
its charging requirements and the charging facility constraints.
The solution is developed on the basis of receding horizon
optimization and reached iteratively in a distributed manner.
Detailed simulation and comparison results are introduced to
verify the effectiveness of the proposed charging management
with the different time-anxiety-based EV customer behaviors.

Index Terms—Distributed charging management, electric ve-
hicle (EV), time anxiety, customer behavior, game theory.

NOMENCLATURE

N Number of EVs
T Time interval of EV charging
T Number of time steps in EV charging interval
t Specific time
pg,t Power of GS at time t
ppv,t Power of PVS at time t
pb,t Power of BESS at time t
pl,t Power of BLS at time t
pn,t Charging power of EVn at time t
pct Charging power capacity of EVCS at time t
Pmaxg Maximum power capacity of EVCS feeder
ηt Overload safety factor at time t
Pminn,t Lower bound of EVn charging power at time t
Pmaxn,t Upper bound of EVn charging power at time t
P rn Charger power rate of EVn
tan Arrival time of EVn to EVCS
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tdn Departure time of EVn from EVCS
T cn Charging duration of EVn
Ean Energy of EVn when it arrives at EVCS
Edn Energy of EVn when it departs from EVCS
Ern Charging energy demand of EVn
SoCn,t State of charge of EVn at time t
SoCan State of charge of EVn at the arrival time
SoCdn State of charge of EVn at the departure time
Cn Battery capacity of EVn
ηc Charging efficiency
∆t Time step
td′n Starting time of EVn driver anxiety
Exn Anxious energy of EVn driver
ρsn Electricity price sensitivity of EVn driver
ρt Electricity price
A′
n,t Influence of time anxiety of EVn driver

An,t Normalized influence of EVn driver time anxiety
Bn,t Basic influence of time anxiety of EVn driver
Aminn Lower bound of anxiety influence of EVn driver
Amaxn Upper bound of anxiety influence of EVn driver
∆Ain,t Impact difference resulted by the ith behavior
λn,t Lagrange multiplier of common constraint
µminn,t Lagrange multiplier of EVn lower bound power
µmaxn,t Lagrange multiplier of EVn upper bound power
Ln Lagrangian function of EVn charging problem
λt Uniform Lagrange multiplier of common constraint
P [.] Projection operator of an argument into a domain
Ex,thn Threshold of anxious energy of EVn driver

I. INTRODUCTION

DUE to the energy demand growth and environmental
concerns, renewable energy sources and electric vehicles

(EVs) have received a prominent interest. This has increased
the total charging load of EVs into the electric grid as EVs
need to be charged frequently [1]. It is known that this total
load should always respect the charging power capacity of
the facility, e.g., charging station, to avoid creating overload
cases that could affect its stability and efficiency [2]. Since the
charging requirements of EVs are different due to the various
demands of their customers, i.e., drivers, it is important to
develop a charging management, i.e., control, that considers all
the above issues properly in a dynamic charging environment.

The charging management of EVs was addressed in the
literature for several aspects including the reduction of EV
charging costs by controlling their charging schedules, i.e.,
power distribution, constrained to specific charging require-
ments. In this management, two control architectures can be
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mainly found, namely centralized and distributed approaches.
Ref. [3] centrally optimized the EV charging schedules with

consideration of utility demand curtailment request. Ref. [4]
presented a centralized scheme on the basis of learning particle
swarm optimization for optimal EV charging schedules and
economic benefits. Ref. [5] proposed a four-stage optimization
control approach into EV charging station for operational cost
reduction as well as supply and demanded power balance.
On the other hand, the distributed control has also drawn
a prominent concern because of its unique features. These
features include communication burden reduction and cus-
tomer privacy protection as it secures their private information.
Ref. [6] implemented a game-theory-based approach for trade-
off optimization between EV reserves provision and charg-
ing benefits. Ref. [7] proposed a fuzzy-logic-based approach
for maintaining a power balance among the components of
charging station. Ref. [8] applied a noncooperative game
theory for EV charging cost minimization. The above existing
control methods lacked detailed investigations on the power
distribution among individual EVs, particularly under limited
charging power capacity. Also, they did not represent the
influences of uncertain events that may lead to rescheduling
of charging power patterns. A further point is that the EV
charging management should incorporate EV driver behaviors.
These individual behaviors are usually very different, in terms
of charging quantities and events. Modeling these behaviors
in a systematic way is still ongoing research [9]–[15].

Ref. [11] investigated in the behavioral subscription of
customers to a particular plan in the demand response manage-
ment program. The development of the customer behavior was
designed on the basis of logistic regression model and assumed
attributes. Ref. [12] proposed a robust optimization method
to address the customer behavior uncertainties in order to
minimize comfort violation in household load scheduling. This
method was simple in modelling and represented the behavior
as additional constraints in the scheduling problem. Ref. [13]
introduced a multi-objective optimization framework in EV
charging stations that considered profitability improvement
and customer satisfaction enhancement. The satisfaction of
EV customers could be tuned by the shape parameters of the
customer satisfaction model. Ref. [14] studied a competition-
based method to determine the electricity price in electric ve-
hicle charging stations. The EV customer behavior of selecting
the charging station was formulated on the basis of electricity
price, distance to charging station, and number of charging
poles in charging station. Ref. [15] considered a customer
behavior uncertainty in the household energy scheduling prob-
lem. The proposed model of customer satisfaction level was
included as a set of constraints in this problem to reflect the
comfort violation caused by customer behavior. In the afore-
mentioned approaches, the customer behavior was modeled
by a single mathematical formula, and then different customer
behaviors could be represented by tuning parameters in this
formula. In addition, some of these customer behavior models
used their own proposed formulations but lacking theoretical
justification. In order to provide more accurate descriptions, it
is of interest to differentiate between customer behaviors by
different unique mathematical formulas and include them into

the EV charging management problem.
Unlike the above literature, this paper introduces an EV

charging management which addresses the aforementioned
shortcomings. It formulates the EV charging problem on
the basis of game theory with a charging cost minimization
preference for each individual EV. It comprehensively studies
the EV charging power distribution, i.e., EV charging patterns.
Moreover, it proposes different EV customer behaviors and
time anxiety concept that prioritizes the charging power of EVs
before the occurrences of some uncertain events. Note that
here EV customer, driver, and EV are all used as alternatives.
The major work of this paper is summarized as follows:

1) A time anxiety concept of EV is newly proposed to
mitigate the influence of uncertain events that may happen
in the EV charging time durations and prevent EVs from
meeting their energy demands.

2) Four different behaviors of EV customers are proposed
and integrated into the EV charging management on the
basis of the time anxiety concept and standard theoretical
knowledge from social sciences and economics.

3) The dynamics of the time anxiety is systematically formu-
lated and mapped to the proposed anxious energy, which
is considered as the effect of the uncertain events on the
EV customer charging requirements. Several case studies
are presented to show the influences on the EV charging
patterns including limited charging power capacity.

The rest of this paper is organized as follows. Section
II models the system and the charging domain. Section III
formulates the EV charging problem with the time anxiety and
EV customer behaviors and develops the solution. Detailed
simulation and comparison analyses are discussed in section
IV. Finally, the conclusion is presented in section VI.

II. SYSTEM MODEL AND CHARGING DOMAIN

As this paper focuses on charging EVs, the studied system
is named as EV charging station (EVCS) which is considered
as a distribution power network, part of the electric grid.
This EVCS consists of several nodes (i.e., systems) which
are connected together by power and communication lines as
illustrated in Fig. 1. The first system is the grid system (GS)
which represents the electric grid supply point. The other sys-
tems are a photovoltaic system (PVS), a battery energy storage
system (BESS), and a base load system (BLS), in which each
system could represent a group of systems of the same kind.
The models of the PVS and the battery of BESS and EV
are derived as in [16]–[18], and the BLS is considered as a
building load demand, i.e., non-EV demand [19]. Moreover,
there are a number of EVs (N := {1, 2, . . . , N}) which need
to be charged and an EVCS operator whom addresses the
following organizing missions:

1) Controls the power flow among GS, PVS, BESS, and
BLS. Since the focus of this paper is on charging EVs,
this power flow is controlled in a similar way of [5].

2) Broadcasts the charging power capacity, which indicates
to the total available power for charging EVs, and checks
its violation.
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3) Helps in exchanging the public (i.e., shared) information
between the aforementioned systems.
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Fig. 1. Structure of the test system.

As shown in Fig. 1, pg,t, ppv,t, pb,t, and pl,t are the power
flows of GS, PVS, BESS, and BLS, respectively at time t.
Moreover,

∑
n∈N pn,t is the total charging power demand of

EVs given that pn,t is the charging power of EVn at time t.
After supporting the power demand of BLS, the total demand
of EVs has to respect the charging power capacity of EVCS
(i.e., charging domain) pct as written in (1). This represents
the common constraint that couples the charging schedules
of EVs. If Pmaxg is the maximum loading power capacity of
EVCS feeder, which is related to the EVCS infrastructure,
and ηt(≤ 1) is its overload safety factor [8], the charging
power capacity of EVCS can be defined by (2). Thus, if (1)
is violated, an overload case is occurred in the EVCS.∑

n∈N
pn,t ≤ pct , ∀t ∈ T , (1)

pct = ηt(P
max
g + ppv,t + pb,t − pl,t), ∀t ∈ T . (2)

Moreover, if the lower and upper bounds of the EVn charg-
ing power are Pminn,t and Pmaxn,t , respectively, then Pminn,t ≤
pn,t ≤ Pmaxn,t has to be held, namely the instantaneous power
constraint. As this paper addresses the charging problem of
EVs, Pminn,t = 0 here. While, the upper bound equals the EVn
charger power rate P rn within the charging time duration and
zero otherwise. This can be defined by (3) after considering tan
as the arrival time of EVn to EVCS, tdn as its departure time
from it, and T cn as its charging duration, i.e., t ∈ T ∩ [tan, t

d
n].

Pmaxn,t =

{
P rn t ∈ T cn ,
0 t ∈ T \T cn .

(3)

If SoCn,t is the state of charge (SoC) of EVn at time t,
SoCan is its SoC at the arrival time, and SoCdn is its SoC at the
departure time, then (4) has to be held during charging. Given
that Cn is the battery capacity (kWh) of EVn, ηc ∈ (0, 1] is
its charging efficiency, and ∆t is the time step, the dynamic
model of charging the EV on-board battery can be described
by the linear model in (5).

SoCan ≤ SoCn,t ≤ SoCdn, (4)

SoCn,t+1 = SoCn,t +
ηcpn,t∆t

Cn
. (5)

It has to be noted that each EVn has an energy request, i.e.,
demand, Ern. This energy can be written as in (6) given that
Ean is EVn energy when it arrives at EVCS and Edn is the
energy that needs to be met before its departure time.

Ern = Edn − Ean = Cn
(
SoCdn − SoCan

)
= T

∑
t∈T

pn,t. (6)

III. EV CHARGING PROBLEM

The charging problem of each EVn is defined to minimize
its charging cost with consideration of the aforementioned
charging domain. Since each EVn has its own charging time
duration, it has to be included in the charging problem.
Moreover, in realistic scenarios, EV drivers may have different
preferences (i.e., willing) to charge their EVs within these
charging time durations. For example, some EV drivers are
more anxious to charge their EVs at the early arrival periods
to EVCS than others as they are afraid of meeting uncertain s-
cenarios, i.e., events, that can happen in the later charging time
periods. Such these events are the overload cases that constrain
the EV charging power and the earlier departure times of EVs
than scheduled from EVCS. These events may cause EVs to
depart from EVCS without fulfilling their charging demands,
and thus create worries (anxieties) to EV drivers meanwhile
charging. Due to the human being nature, the degrees of these
anxieties could be different among EV drivers, and thus their
responses during charging will be different in order to relax
their anxieties. Hence to make the charging problem more
realistic, this anxiety and the resulted EV driver response
(i.e., behavior) have to be included in the charging problem
and to be addressed. This paper is dedicated to tackle this
issue by proposing a time anxiety of EV driver that reflects
the timely weighted concern to charge his/her EV within the
charging duration T cn . This anxiety leads the driver to secure
more charging power in advance before possibly meeting the
uncertain events. For clarity purposes, the influence of the
proposed time anxiety is illustrated in Fig. 2. Here, Fig. 2(a)
shows the original demanded charging power of EVn in the
charging duration without acknowledging the EVn driver’s
anxiety; while Fig. 2(b) illustrates the modification in the
demanded charging power when the EVn driver responds to
the anxiety. In the figure, it is assumed that the EVn driver has
anxiety about the occurrence of an event starting from td′n , and
[td′n , t

d
n] is the anxious time interval. Thus, the charging energy

during this interval is defined as an anxious energy Exn. Note
that ∆t is the time step, and t ranges here within the anxious
time interval.

Exn = ∆t
∑

t∈[td′n ,t
d
n]

pn,t. (7)

This energy represents the charging amount that the EV driver
is anxious to possibly miss due to the event occurrence. As a
result, EVn will try to shift part or all of the charging energy
demand (i.e., shifted energy) from the anxious time interval
to earlier time periods, as seen in Fig. 2(b). This will mitigate
or cancel the anxiety of EVn driver if the remaining anxious
energy, Exn, is close to or lower than its threshold.
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Fig. 2. Concept of the charging power of EVn. (a) Without time anxiety.
(b) With time anxiety.

A. Problem Formulation

As each EVn seeks to reserve its own preference, i.e.,
minimizes its charging cost ($), the charging problem is
formulated as a noncooperative game-theoretic problem. Given
that ρsn is the electricity price sensitivity ($/(kWh)2) of EVn,
∆t is the time step (h), pn,t is the charging power (kW )
of EVn, ρt is the electricity price ($/kWh), and An,t is the
influence of the time anxiety (dimensionless as seen in (11)-
(13)), the charging problem of each EVn is defined as follows,

min
pn,t

∑
t∈T

An,t

(
1

2
ρsn∆t2p2n,t + ρt∆tpn,t

)
, (8)

s.t.
∑
n∈N

pn,t ≤ pct , ∀t ∈ T , (9)

Pminn,t ≤ pn,t ≤ Pmaxn,t , ∀t ∈ T . (10)

Since the EV charging problem is formulated on the basis
of game theory and given that the constraint (9) couples
all the charging power demands of EVs, this problem is
actually a generalized Nash equilibrium (GNE) problem [20].
As designed by the cost function (8), a larger electricity
price will lead to a lower charging power. Moreover, from
a mathematical perspective if the driver has a big anxiety to
charge his/her EV, i.e., needs to have a high charging power,
then An,t has to be small. Given the discussion early this
section, the anxiety at the early charging time duration is
expected to be higher than at the late duration to prioritize
the charging before the event occurrence. Then, the value of
An,t increases gradually over the charging time duration as
basically defined by (11) and shown in Fig. 3(a). As this
paper investigates in the EV driver behavior, it further proposes
four different behaviors on the basis of (11), namely non time
anxious driver (NTAD), less time anxious driver (LTAD), mid
time anxious driver (MTAD), and high time anxious driver
(HTAD) as defined by (12) and illustrated in Fig. 3(b)-(c).
The function formulation of each behavior type is selected on
the basis of insights from social sciences and economics [21].
It has to be noted that NTAD represents the careless behavior
of EV driver to the anxious energy, which is the common
model in the EV charging problem literature.

Bn,t = min

(
max(t− tan, 0)

tdn − tan
, 1

)
. (11)

A′
n,t =



Amaxn × 1 for NTAD,

Amaxn × ln[Bn,t(e− 1) + 1] for LTAD,

Amaxn ×Bn,t for MTAD,

Amaxn × eBn,t − 1

e− 1
for HTAD.

(12)

Note that Amaxn is the upper bound of the anxiety influence
which is assumed to be one for normalization purposes. In
general cases, the lower bound Aminn may have any value in
the range [0, Amaxn ], thus a transformation is applied on (12)
as defined by (13) and shown in Fig. 3(d).

An,t = (
Amaxn −Aminn

Amaxn

)×A′
n,t +Aminn . (13)

It is clear from Fig. 3 that the anxiety influence of LTAD
(i.e., ALTADn,t ) is bigger than that of MTAD (i.e., AMTAD

n,t )
in which is bigger than that of HTAD (i.e., AHTADn,t ), and all
are smaller than that of NTAD (i.e., ANTADn,t ). It is worthy
to note that the value of (Amaxn − Aminn ) is actually the EV
driver time anxiety, i.e., time anxiety depth. This explains the
relationship of the smaller (i.e., closer to zero) value of Aminn

is, the bigger time anxiety of EV driver is. Also, a smaller
Aminn leads obviously to a smaller An,t. Again, the bigger
anxiety leads to larger willing of EV driver to fulfill his/her
charging demand as early before approaching the departure
time, and thus to lower the amount of the anxious energy.
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Fig. 3. (a) Dynamics of the basic anxiety influence over time. (b) Anxiety
influence vs. its basic value under different behaviors of EV drivers. (c)
Anxiety influence vs. time. (d) Modified scale of anxiety influence vs. time.

Based on the aforementioned discussions, the time-anxiety-
based behavior of EV driver is determined by two factors.
The first is the time anxiety depth and the second is the curve
shape, i.e., behavior type. For clarity of the latter point along
with the indicative meanings of the selected behavior names,
their influences are illustrated in Fig. 4 given the same time
anxiety depth. Here, the fixed anxiety influence of NTAD, i.e.,
Amaxn , is chosen as a reference value as shown in Fig. 4(a).
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The difference between it and the anxiety influence which is
resulted by the proposed behavior is considered as the impact
difference. For example, ∆ALTADn,t = Amaxn − ALTADn,t is the
impact difference (i.e. modification) resulted by the LTAD
behavior. As seen in Fig. 4(b), the LTAD behavior scales
down the reference anxiety influence during the charging time
duration by different weighted values that reflect the anxiety
dynamics of EV driver within this duration. Meanwhile, and as
indicated by the name, the MTAD behavior scales down more
the reference anxiety influence as he/she has a bigger anxiety
for charging as depicted in Fig. 4(c). Comparing with LTAD
and MTAD and as seen in Fig. 4(d), HTAD has the largest
impact in lowering the reference anxiety influence. Thus, this
driver is most willing driver, i.e., competitor, among others to
charge his/her EV during the charging duration to reduce the
amount of his/her anxious energy, and accordingly (14) holds.

∆ANTADn,t ≤ ∆ALTADn,t ≤ ∆AMTAD
n,t ≤ ∆AHTADn,t . (14)

A
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Fig. 4. (a) Reference anxiety influence of NTAD. (b) Modified anxiety
influence of LTAD. (c) Modified anxiety influence of MTAD. (d) Modified
anxiety influence of HTAD.

B. Problem Solution

As known, the charging environment is dynamic in which
some uncertain events could happen meanwhile charging.
Thus, addressing the charging problem over T time steps
rather than a single one is valuable to determine the amount
of anxious energy and to take the actions of changing the
EV charging patterns in advance. Hence the solution of the
EV charging problem in this paper is formulated on the basis
of receding horizon optimization [22]. In this framework, the
optimization process is calculated over the T time steps, how-
ever, only the first optimal action is applied at the current time
step. In the next time step the optimization process will be im-
plemented again with one-time-step shifted horizon and with
newly updated and available information. The optimization
process is formulated on the basis of Karush–Kuhn–Tucker

(KKT) conditions of optimality. Thus, given that λn,t, µminn,t ,
and µmaxn,t are the Lagrange multipliers, the Lagrangian func-
tion of the EV charging problem, i.e., (8), (9), and (10), for
each EVn can be introduced by (15). If a bold style of a
symbol is introduced to refer to its values over T time steps,
i.e., T × 1 vector, the gradient condition of KKT necessary
optimality conditions can be then given by (16).

Ln =
∑
t∈T

An,t

(
1

2
ρsn∆t2p2n,t + ρt∆tpn,t

)

−
∑
t∈T

λn,t

(∑
n∈N

pn,t − pct

)

+
∑
t∈T

µminn,t

(
Pminn,t − pn,t

)
+
∑
t∈T

µmaxn,t

(
pn,t − Pmaxn,t

)
,

(15)

∂Ln
∂pn

=An
(
ρsn∆t2pn + ρ∆t

)
− λn + µminn + µmaxn

=0. (16)

It has to be noted that the KKT necessary conditions of
this problem are sufficient as the problem is convex due to
convexity of the cost function and the linear constraints. Thus,
since the charging problem is GNE problem, the existence and
uniqueness of its Nash equilibrium (NE) can be then proofed.
As the most socially stable equilibrium is of interest here, the
Lagrange multipliers of the common constraint (9) of all EVs
have to share the same value, i.e., λ [23]. This NE can be
expressed by (17) in which pn is between Pminn and Pmaxn .
Hence the λ-based solution can be uniquely presented by (18)
given that P [.] is a projection operator of the argument into
the EVn feasible charging domain, i.e., respecting its local
constraint (10).

An
(
ρsn∆t2pn + ρ∆t

) .
= λ, (17)

pn = P

[
λ
An
− ρ∆t

ρsn∆t2

]
. (18)

To reach this solution, all the information in (18) including
λ and An have to be known. If a centralized control method
is the case here, all these information have to be revealed to its
global controller to allow it assigning the charging power of
each EV. However, since securing the privacy is of concern
here, this centralized method turns out to be invalid. This
issue becomes more critical in practice after including the EV
driver behavior which is a unique private information. As a
result, a distributed charging management is proposed here in
which the charging decisions of EVs are made by themselves
through their local controllers. Each local controller needs to
reach the solution of (18) on the basis of its local information,
i.e., An, ρsn, and λn, as well as the global shared ones of ρ
and other neighboring EVs’λ’s (i.e., Nn). As mentioned early
section II, each EVn in the EVCS is considered as a node
in which all the nodes including that of EVCS operator are
connected by communication links and the resulting network
can be illustrated in Fig. 5. The shared (i.e., public) infor-
mation between the nodes are shown here and the organizing
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missions of EVCS operator are the three ones discussed in
section II. Moreover, each EVn executes algorithm 1, which
is the proposed distributed charging management with the
time anxiety concept (DCMTA). For clarity in the description,
this algorithm is divided into four tasks with meaningful
names that indicate to their functions, namely initialization,
optimization, modification, and communication tasks.
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Fig. 5. The interactive communications within the network of connected
nodes.

In the first task of the algorithm, initialization is performed
by assigning both Amaxn and Aminn to one for normalization
and modification purposes. Afterwards, the optimization task
is applied in which the EVn finds its optimal charging pattern,
i.e., schedule, individually over the the horizon time. This is
achieved by solving the charging problem of EVn respecting
its own local current constraint only [as in line 3], and the
findings are pn and λn. The current constraint here refers
to the upper limit of charging power Pmaxn which may be
updated [as in line 19]. Note that at this point of the first
round execution of this task, the EVn has not addressed its
anxious energy nor overload cases if they occurred in EVCS,
however, they will be tackled in the following two tasks.

In the modification task, the anxious energy of EV driver
Exn is calculated on the basis of the results of the previous
task, i.e., pn. Then, Exn is checked if it exceeds its threshold
Ex,thn , which is a predefined value and is determined by the
EV driver. Note that the more the EV driver wants to be
robust against an uncertain event, the lower the Ex,thn is. If
the current anxious energy is larger than the threshold, it
means that the EV driver is not satisfied with the current
pn because this pn is not suitable to meet his/her charging
demand Ern given the potential occurrence of an uncertain
event. Therefore, the EV driver modifies his/her time anxiety
influence, as it has a direct influence on pn and thus on Exn,
by increasing its depth, i.e., reduces the lower limit Aminn by
a fixed amount ε1. This modification is implemented in an
iterative way until the EV driver succeeds in making his/her
anxious energy below its threshold. In other words, the EV
driver becomes satisfied with the current pn as it is considered
to be robust to meet his/her Ern given the potential occurrence
of an uncertain event. Each iteration involves the process of
re-optimization of the charging pattern, re-calculation of the
current anxious energy, and re-reduction of the lower limit if
the anxious energy. Once this task is completed, the resulting

charging pattern of EVn is considered to be optimal with an
acceptable remaining anxious energy.

Then, the communication task is processed in which the
EVn node communicates with others to handle the overload
cases in EVCS if they occurred. To do so, the common
constraint (9) is first checked over the time horizon [refer to
line 10]. The algorithm terminates with the optimal solution
if the constraint is not violated, i.e., no overload cases are
occurred. On the other hand, if the current total power demand
of EVs is bigger than the charging power capacity at any
time step, the total demand will be pulled down to meet the
capacity by a compromised procedure among EVs through
restraining their current power demands. As explained before,
this solution can be reached by requiring all λn,t’s of EVs to
share the same global decision-making value λt, an element
of λ. The procedure to do that is achieved by an interaction-
based method which utilizes the consensus network concep-
t [23], [24]. First, the surplus power demand of EVs above
the power capacity, which is needed to be cut, is calculated
and assigned to ∆pt [refer to line 15]. Then, an update on the
λn,t of EVn is applied by exploiting the sum of the weighted
discrepancies between it and its neighbors, i.e., λj,t’s, as well
as the weighted surplus power ∆pt [as in line 17]. Note
that the two weight parameters βn and αn as well as ε1,
ε2, and ε3 are all user defined values. Once the converged
value λt is reached, the upper limit of the charging power
of EVn is updated in a similar way to (18) [refer to line
19]. After tackling the overload cases in all time steps of
the time horizon, EVn has to re-optimize its charging pattern
with the updated local current constraint. The iteration process
through the optimization, modification, and communication
tasks remains until both the anxious energy and overload cases
are completely addressed, then algorithm 1 terminates at line
11.

IV. SIMULATION ANALYSIS

The performance of the proposed algorithm with the time
anxiety concept and the different EV driver behaviors is
evaluated by two aspects. The first aims to investigate in the
charging patterns of EVs, i.e., EV charging power distribution.
Thus, a small scale of EVs with different case studies are in-
troduced to clearly show the charging dynamics in an example
time interval of the day. The second aspect, on the other hand,
is presented to proof the influences of the proposed issues in
conserving the profit of EVCS operator and the satisfactions
of EVs in a large scale penetration of EVs throughout one
day. The simulation configuration, which is adopted in both
aspects, is set up as follows.

The capacity of the on-board battery of EVs and their
charger power rates are randomly selected in the ranges 7.6–85
(kWh) and 3.3–10 (kW ), respectively [19], [25]. The SoCs
of these EVs at the arrival and departure times are randomly
generated following a normal distribution in the ranges 0.2–
0.6 (%) and 0.7–0.9 (%), respectively [26], [27]. As known,
EVs can arrive to EVCS at any time and particularly during
the potential peak arrival times [8]. Meanwhile, the charging
time durations of EVs in EVCS are determined on the basis
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Algorithm 1 Distributed Charging Management with Time
Anxiety (DCMTA)
I. Initialization Task
1: Amaxn = 1
2: Aminn = 1

II. Optimization Task
3: Solve (8) subject to (10)

III. Modification Task
4: Calculate Exn by (7)
5: if Exn ≥ Ex,thn then
6: Aminn ← Aminn − ε1
7: Calculate An by (13)
8: Go back phase II
9: end if

IV. Communication Task
10: if (

∣∣∑
n∈N pn − pc

∣∣ ≤ ε2) then
11: Terminate
12: end if
13: for ∀t ∈ T do
14: while

∑
n∈N pn,t > pct + ε2 do

15: ∆pt =
∑
n∈N pn,t − pct

16: while max(|λn,t − λj,t|) > ε3 do ∀j ∈ Nn
17: λn,t ← λn,t +

∑
j∈Nn

αn(λj,t − λn,t) + βn∆pt
18: end while

19: Pmaxn,t = P

 λn,t

An,t
− ρt∆t

ρsn∆t2


20: end while
21: end for
22: Go back phase II

of some issues including the predicted next travel schedules
and charging demands, i.e., requirements. Hence the departure
times of EVs from EVCS are randomly set with realistic
consideration of these issues. The electricity price sensitivity
is assumed to be 0.001 ($/(kWh)2) to make a suitable
response to the low electricity prices, and the data profiles of
temperature and solar irradiance for solar power generation,
BLS load, and electricity price are adopted as in [28]–[30],
respectively.

A. Small Scale of EV Penetration

Following the above explanation and simulation configura-
tion, three EVs are selected here and their specifications are
reported in Table I. As seen, each EV driver is assumed to
have a different behavior (BEHR.) from others. The anxious
time interval of each EVn is considered to be the last hour of
the charging duration, i.e., td′n = tdn − 1 (h). As shown, these
EVs are scheduled to be charged during the time interval 8:00–
14:00 in which the electricity price is illustrated in Fig. 6(a).
In this section, three case studies are introduced that focus on
different points and their results are illustrated in Fig. 6(b)-(d).

The first case study discusses the influence of the anxious
energy threshold (Anx. Eng. THLD) on the EV anxiety depth
and charging cost. In this regard, EV3 is selected as an example
with five scenarios. Each scenario (S) has a specific demand

TABLE I
SPECIFICATIONS OF THE EXAMPLE THREE EVS

SPEC Cn P r
n tan tdn SoCa

n SoCd
n BEHR.(kWh) (kW ) (h) (h) (%) (%)

EV1 17 3.3 8:30 13:10 0.21 0.90 HTAD
EV2 18 3.3 8:35 13:20 0.23 0.89 LTAD
EV3 19 3.3 8:40 14:00 0.32 0.85 MTAD

of the anxious energy threshold as listed in Table II. Since the
anxious energy threshold of S1 is large enough 3.3 (kWh), it
indicates for a loose charging demand of the driver and thus
he/she has no anxiety depth here, i.e., 0.00 (%). Consequently,
the charging pattern of EV3 results only from the electricity
price and the charging requirements. In other words, EV3 is
charged with its upper limit of charging power, P r3 , 3.3 (kW )
at electricity price 0.150 ($/kWh) and fulfilled its charging
demand at price 0.160 ($/kWh) with no further need to be
charged at 0.180 ($/kWh).

For other scenarios, i.e., S2-S5, their charging patterns fol-
low similar trend to that one of S1. However, as designed in the
modification task of algorithm 1, the smaller anxious energy
threshold leads to a smaller value of Aminn , and thus a bigger
anxiety depth. In other words, the EV driver will reasonably
be more anxious to reduce his/her current anxious energy to
meet the demanded anxious energy threshold. Consequently,
EV3 tries to shift, i.e., reschedule, more charging energy from
the anxious time interval to earlier times if possible as depicted
in Fig. 6(b). If the shifted energy is moved to a time interval
with higher electricity price rate, an increase in the charging
cost will be occurred. Thus, the charging cost of S2 is the
same of S1 while the charging cost of S5 is the highest among
others as the amount of its shifted energy is the highest from
the electricity price 0.160 ($/kWh) to 0.180 ($/kWh). Note
that if a charging cost increase is happened, it is still small and
EV3 sacrifices it in order to meet its charging energy demand
rather than mismatching it due to some unpredicted events
when it leaves the EVCS.

TABLE II
ANXIETY DEPTHS AND CHARGING COSTS OF EV3 UNDER DIFFERENT

ANXIOUS ENERGY THRESHOLDS.

Scenario S1 S2 S3 S4 S5

Anx. Eng. THLD (kWh) 3.300 2.640 1.650 0.660 0.000
Anxiety Depth (%) 0.00 0.02 0.14 0.20 0.25
Charging cost ($) 1.599 1.599 1.616 1.634 1.649

In the second case study, the effect of the EV driver behavior
is discussed. The EV2 is selected here as an example and its
driver behavior is changed among the NTAD, LTAD, MTAD,
and HTAD for investigation purposes. The anxiety depth of
EV2 driver is assumed to be 0.26 (%) and the results are
shown in Table III and Fig. 6. As seen, different behaviors
lead to different anxious energies and charging costs. As
illustrated in the anxiety influence map of Fig. 6(c), the impact
difference of HTAD is the highest, then orderly those ones
of MTAD, LTAD, and NTAD, which match the discussion
in section III-A. This issue results in making the anxious
energy of HTAD to be the lowest, then that ones of MTAD,
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LTAD, and NTAD, respectively. Note that the anxious energy
of NTAD is the biggest among others because the driver
is careless about this quantity. It is observed that the more
anxious driver tries to shift more energy from the anxious
time interval to earlier intervals to reduce his/her anxious
energy. Under the example electricity profile, these earlier
time intervals have electricity price 0.180 ($/kWh) comparing
with 0.160 ($/kWh) of the original intervals. Thus, a small
increase in the charging cost is occurred by the more anxious
driver, in which it is accepted by him/her in order to secure
his/her charging demand to be reached if some unpredicted
circumstances are occurred near or in the anxious time interval.

TABLE III
ANXIOUS ENERGIES AND CHARGING COSTS OF EV2 UNDER DIFFERENT

DRIVER BEHAVIORS.

EV Driver Behavior NTAD LTAD MTAD HTAD
Anxious Energy (kWh) 3.300 1.650 0.715 0.330
Charging cost ($) 1.940 1.977 1.992 1.999

The third case study investigates in the charging patterns
of EVs under different charging requirements, behaviors, and
charging power capacities of EVCS. Here, besides of the
EV specifications in Table I, their demanded anxious energy
thresholds are listed in Table IV. The charging capacity of
EVCS is considered here, as an example, to be 12 (kWh)
except during the time interval 9:00-9:30, in which it is set
as 5.5 (kWh). As seen from the results in Fig. 6(d), all EVs
try to fulfil their charging requirements including the anxious
energy thresholds at the lowest charging costs. The dynamics
of the anxiety influences including the anxiety depths reflect
the way of how these EVs are responding to meet their
charging requirements under the charging conditions of EVCS,
i.e., electricity price and charging capacity.

Since EV1 driver is HTAD and has a small, i.e, tough
in demand, anxious energy threshold 0.825 (kWh), it has a
large impact difference and a wide energy depth 0.26 (%).
Thus, EV1 competes more than others to make its charging
power the highest during the limited charging capacity 9:00-
9:30. Although EV2 has a bigger, i.e., looser to be met,
anxious energy threshold than EV1, its driver is LTAD and
it has a stricter charging demand to be met, i.e., big energy
demand and short charging duration. Thus, its anxiety depth is
also wide 0.28 (%) and its charging power during 9:00-9:30
is between EV1 and EV3. Finally, EV3 has loose charging
requirements, i.e., small energy demand and long charging
duration, as well as a moderate anxious energy threshold
1.100 (kWh). Thus, it competes less during 9:00-9:30, and
its charging power is the lowest here.

The charging cost of EV3 is the lowest due to its charging
requirement and the less charging amount during the inter-
val of high electricity price 0.180 ($/kWh). Although the
charging cost of EV1 is similar to EV2 as they have similar
charging requirements, it is a bit lower as it has more chance
to be charged during the interval of low electricity price 0.150
($/kWh). Note that the SoCs of EVs start from their arrival
values and end up with the departure values which are listed

in Table I and their increase dynamics are proportional to their
charging power amounts.

TABLE IV
CHARGING RESPONSES OF EVS UNDER A SPECIFIC CHARGING CAPACITY.

Target EV EV1 EV2 EV3

Anx. Eng. THLD (kWh) 0.825 1.650 1.100
Anxiety Depth (%) 0.26 0.28 0.18
Charging cost ($) 1.968 1.975 1.635
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Fig. 6. (a) Electricity price profile. (b) Charging power of EV2 under different
anxious energy thresholds. (c) Charging power and anxiety influence of EV2

under different driver behaviors. (d) Charging capacity, charging requirement,
and EVs’ responses of power, anxiety influence, and SoC.
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B. Large Scale of EV Penetration

The influences of uncertain events at different penetration
numbers of EVs are discussed and evaluated. Such these events
are the overloads and earlier (i.e., actual) departure times of
EVs than scheduled ones which may occur near or in the
anxious time intervals of EVs. The second type of events
is selected here as an example in the discussion and the
difference between the actual and scheduled departure times
is symbolized ∆td which is assumed to vary in the range
[0, 1(h)]. The chosen literature method for comparison defines
the EV departure time as an accurate information and does not
consider a potential discrepancy that may happen on it nor its
consequences [8]. In other words, this method considers the
behavior of all EV drivers to be NTAD, and thus it is named
as non-anxiety method (NA-M) while the proposed method
is called time-anxiety method (TA-M). Moreover, two criteria
are considered here for evaluation. The first is the profit of
EVCS by selling charging energy to EVs. The second criterion
is the satisfaction of EV driver on the charging cost and
energy demand, i.e., the increase in the charging cost and the
charging energy mismatch between the demanded and actual
received ones [13]. A 100-run Monte Carlo simulation with
different EV specifications and charging requirements at each
run is adopted to give an average evaluation between the two
methods.

As seen in section IV-A, EVs in TA-M are more able to
fully meet their energy demands in shorter charging durations
since their EV charging decisions are more robust against the
departure time uncertainties. This actually has two influences.
First, since the actual charging durations of EVs in TA-M are
shorter than in NA-M, its service rate of EVs in one day is
higher than in NA-M. The second influence is that the amount
of sold energy by EVCS to EVs is higher in TA-M since its
charging energy mismatches of EVs are lower than in NA-
M. Thus, TA-M guarantees higher profit to EVCS than NA-M
as seen in Fig. 7(a). Moreover and as seen in Fig. 7(b), TA-
M conserves higher satisfactions for EVs than NA-M since
EVs here are more able to meet their energy demands with
no/small increase in the charging cost, as discussed in the first
case study of section IV-A.
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Fig. 7. Influences of departure time uncertainty and No. of EV penetration
on (a) EVCS profit. (b) EV satisfaction.

V. CONCLUSION

The behavior of EV customer plays an important role in
making the charging decisions in the EV charging problem.
Thus, an improved model to this behavior is significant to
have more realistic and effective charging decisions. To this
end, this paper proposed a time anxiety concept to mitigate
the influences of some uncertain events that could happen
meanwhile charging. Based on this concept, it formulated
different EV customer behaviors and included them into
the EV charging problem. This problem was designed as
a nooncooperative game and the solution was developed in
a distributed way. Detailed case studies were introduced to
show the influences on small and large scales. Moreover, the
proposed algorithm was benchmarked against another one to
further proof its performance and efficacy in securing the profit
of charging facility and the satisfactions of EV customers.
Consequently, the proposed charging management is worthy
to be integrated in EVCS when there is a large number of
EVs with different charging behaviors that usually change
dynamically. Thus, the EVCS operator will be released from
difficulties in collecting all the individual EV information
and in applying the solution centrally in a specified interval.
Furthermore, this charging management could be integrated
to increase the satisfactions of the target EV customers in
terms of privacy protection. This issue is important when these
customers have high concerns about securing their information
and behaviors.
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