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Abstract—This paper proposes and implements au-
tonomous control of a multiple-receiver wireless charging
system. The charging control problem is challenging due to
the decentralized nature of the system, possible changing
numbers and types of energy storage devices as loads of
the receivers, and complexity in wireless power distribu-
tion mechanism. The game theory-based control is devel-
oped that fully respects the unique characteristics of the
transmitter (i.e., charger) and receivers. The preferences
of the individual devices are first quantified using utility
functions. Then the charging control problem is formu-
lated as a generalized Stackelberg game considering the
leader-follower relationship between the transmitter and
receivers, and the limited total charging power. At each con-
trol instant, the generalized Nash equilibrium among the
receivers, i.e., charging power distribution here, is reached
by searching the Lagrange multiplier, while the total charg-
ing power from the transmitter is updated in a step-by-step
manner. Both simulation and experimental results show
that the proposed charging control autonomously manages
and updates the power distribution in the cases where the
receivers with different energy storage devices quit or join
the wireless charging.

Index Terms—Autonomous charging control, game the-
ory, generalized Stackelberg equilibrium, optimization,
wireless power transfer.

I. INTRODUCTION

Due to the complementary features of energy storage de-
vices (ESDs) such as different energy density and power
density, it is natural to combine multiple types of ESDs
(e.g., batteries, ultracapacitors, fuel cells, etc.) together that
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improves the overall performance, namely hybrid energy stor-
age systems [1]. Such energy systems are actually a new
type of networked systems, in which both information and
power exchange among connected devices. It is interesting
to note that similar to wireless communication, power can
also be wirelessly delivered. This new possibility could further
improve the flexibility of power distribution in networked en-
ergy systems, particularly reconfigurable ones. Now near-field
wireless power transfer (WPT) is popular such as through the
inductive resonance coupling, which works either at kilohertz
(kHz) or several megahertz (MHz) [2]. In terms of spatial
freedom, namely longer transfer distance and higher tolerance
to coil misalignment, increasing the operating frequency to
MHz is usually desirable because it enables transferring of
the same amount of power (i.e., efficient operation) but with
weaker coupling between the transmitting coil and receiving
coil. This advantage is especially important to build a flexible
WPT system that can simultaneously charge multiple receiving
devices such as wearable devices and cell phones. In real
applications, the receiving devices may have quite different
size, position, and orientation that in turn require a high degree
of spatial freedom of the WPT. In addition, a higher operating
frequency results in a more compact and lighter WPT system.
Meanwhile, a major limitation lies in the performance of
present power electronic devices at MHz. Thus the MHz WPT
is now widely considered to be suitable for mid-range and
low-power applications such as charging of various consumer
electronic devices [2].

Based on the above considerations, this paper discusses the
modeling and control of a multiple-receiver wireless charging
system working at 6.78 MHz, the lowest center frequency at
MHz in ISM (industrial, scientific, and medical) band [3].
The 6.78 MHz is now widely considered to be cost effective
for low-power applications. In the system, multiple types of
energy storage devices such as different batteries are wirelessly
and simultaneously charged sharing the same transmitter,
i.e., charger. For this less common multiple-receiver WPT
system, most of existing research so far is on its analysis and
modeling aspects such as circuit models, the coupling effect
among receiving coils and its compensation, and impedance
matching [4], [5]. It is known that multiple devices can be
wirelessly charged with different resonant frequencies, namely
multifrequency WPT [6], [7]. A drawback of the multifre-
quency WPT is that it cannot enable simultaneous charging
of the receiving devices. The narrow ISM bands also limit its



actual application. As to the knowledge of the authors, there is
a lack of work on control strategies and their implementation
that actively manage the power distribution inside a multiple-
receiver WPT system. This task is challenging due to the com-
plexity in the mechanism of the wirelessly transferred power
and decentralized nature of the system. In real applications
the numbers and types of the receiving devices may change
over time. This further adds difficulty in the power distribution
control. Synergy, flexibility, and scalability are required when
discussing a proper control strategy for the multiple-receiver
wireless charging system. In order to fully respect the unique
characteristics of the receivers and transmitter, game theory-
based control is proposed. Thanks to its decentralized nature,
the proposed approach helps to achieve autonomy in the power
distribution control, particularly when the charging system is
reconfigured.

Game theory is now well-known to be a powerful tool
to represent interactions among self-interested players and
predict their choices of strategies [8]. This aspect is especially
useful to autonomously update the strategy when a system
is reconfigured. Game theory-based control has been recently
applied in power electronic systems and power systems.
In [9], the control decision problem in small-scale and dc
power systems is represented as a game between players
that facilitates the definition of individual sources and loads.
[10] develops game-theoretic-based modeling for bus selec-

tion in multibus dc power systems, which is based on local
information of the player and thus eliminates the need of a
centralized controller. [11] applies a game-theoretic approach
in the path optimization of load players during a cold start in
a small-scale power system. [12] studies a game theory-based
load sharing strategy that maximizes the overall efficiency of
a system consisting of multiple power electronic converters
in parallel. In this paper, the mechanism for implementing
the power distribution control is first explained using the
circuit model of a general multiple-receiver WPT system.
Because the transmitter is a “leader” that determines the total
available charging power, the solution of the game theory-
based control is a generalized Stackelberg equilibrium [13],
[14]. At this equilibrium, the receivers negotiate and jointly
determine their shared portions of the total charging power
(i.e., generalized Nash equilibrium), and the transmitter tries
to minimize its output power in a step-by-step manner. For
reference purposes, a centralized optimization-based control is
also developed using the same utility functions and constraints.
It shows that unlike the optimization-based control, the game
theory-based one does not require specific local information
of the individual devices, just the corresponding decisions, as
particularly discussed in section V-B. This advantage enables
the autonomous power distribution when the receivers with dif-
ferent types of batteries quit or join the wireless charging (i.e.,
enhanced flexibility and scalability). Finally, the theoretical
discussions are validated through simulation and experiments
using an example three-receiver wireless charging system.

II. POWER DISTRIBUTION MECHANISM

The circuit model of a general n-receiver WPT system is
shown in Fig. 1, where L, C, and R with different subscripts
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Fig. 1. Equivalent circuit model of a general n-receiver wireless charging
system.

(t, r1, r2, r3, or rn) represent the coil inductance, compensa-
tion capacitance, and parasitic resistance of a corresponding
coil. Under resonance, the following relationships exist,

jωLk +
1

jωCk
= 0 for k = t, r1, r2, . . . , rn. (1)

Assuming that there are no overlaps among the receivers, the
cross coupling among the coils is usually neglectable [5], [15].
Thus the reflected impedance Zi, i.e., the loading effect of the
ith receiver on the transmitter, can be derived as [15],

Zi =
ω2M2

ti

Rri + ZLi
for i = 1, 2, . . . , n, (2)

where ω is the operating frequency, 6.78 MHz here; Mti is
the mutual inductance between the transmitting coil and the
ith receiving coil; ZLi is the equivalent load impedance seen
by the receiving coil.

Again, as shown in (1), under the resonance, Zpa, the load
impedance seen by the power amplifier (PA), is

Zpa = Rt +

n∑
i=1

Zi. (3)

The output power from the PA, ppa, is first transferred to the
ith receiving coil, and then to the load ZLi. Thus the power
received by ZLi is

pLi = ppa
Re{Zi}

Rt +
∑n

i=1 Re{Zi}
Re{ZLi}

Rri +Re{ZLi}
. (4)

Re{∗} means the real part of a complex number and Rri is
the parasitic resistance of the ith receiving coil. Since Rri

is usually much smaller than Re{ZLi} (e.g., 0.65 Ω versus
20–30 Ω in the following final experiments), then

pLi ≈ ppa
Re{Zi}

Rt +
∑n

i=1 Re{Zi}
, (5)

and

pL1 : pL2 : · · · : pLn = Re{Z1} : Re{Z2} : · · · : Re{Zn}.
(6)



Based on (6), the power distribution among the receivers is
determined by Zi’s, actually ZLi’s, the load impedances seen
by the receiving coils [refer to (2)].

In order to control ZLi’s (i.e., the power distribution), dc-
dc converters can be added between the rectifiers and final
loads (ESDs here) [2]. For a dc-dc converter such as a buck
converter used in this paper, its input resistance Rdcdc seen by
the rectifier is known to equal

Rdcdc =
RL

D2
, (7)

where D is the duty cycle of the single switch inside the
buck converter, and RL is the actual final load [see Fig 2.].
The controllable Rdcdc through the power-width-modulation
(PWM) control of the converter determines the value of a
ZLi and thus the power distribution among the receivers, as
shown in the above two equations, (6)(7). Physically the duty
cycles of the dc-dc converters can be determined through PI
(Proportional-Integral)-based control. In the present multiple-
receiver wireless charging system, the final loads connecting
with the dc-dc converters are battery cells. The game theory-
based control developed below works to determine a proper
reference distribution of the battery charging powers in an
autonomous manner, which is implemented through the PWM
control of the dc-dc converters in the following experiments.

Rdcdc

RL

Fig. 2. Buck converter.

Note that the relationship among the reflected impedances,
Zi’s in Fig. 1, is independent with a specific compensation
topology of the transmitting coil. In addition, the final purpose
of the above PWM-based control of the dc-dc converter
is to actively adjust the value of Zi that already includes
the influence of Mti, the mutual inductance [refer to (2)].
The above mechanism of charging power distribution and
adjustment is a general conclusion and thus implementable
for other different compensation topologies (e.g., parallel-
series (PS), series-parallel (SP), and parallel-parallel (PP)
topologies) including the LC parallel or LLC compensation in
the transmitting side. It also works in the cases where there are
changed mutual inductances due to variations in coil relative
positions (e.g., distances, alignments, and orientations).

III. DEFINITION OF UTILITY FUNCTION

A. Receivers

In a multiple-receiver wireless charging system, there are
one transmitter and n receivers. In order to achieve the au-
tonomous control of the power distribution, they are modeled
as independent players. Two different types of the players
exist in the system, leader and follower. The player of the
transmitter is a leader that determines the total available
charging power, ptotal, while the players of the receivers are

the followers that compete on the limited charging power,
namely

n∑
i=1

pi ≤ ptotal, (8)

where pi is the distributed charging power to the ESD, i.e.,
the final load, in the i-th receiver. Note that physically all
the pi’s here are greater than zero, and they have one-to-one
relationship with pLi’s in (6).

The preferences of the receivers, i,e., their utility functions
ui, and their weight coefficients wi can be defined as follows,

ui = ln(pi + 1) and wi =
P ∗
i

SOCi
. (9)

SOCi is the state of charge (SOC) of the ESD in the i-th
receiver and P ∗

i is the preferred charging power of the ESD
such as a recommended value from the data sheet of a specific
battery. Equation (9) is chosen as the utility function of the
receivers due to the following reasons:

1) The logarithmic functions have been widely used for
modeling the demand preference of users [16].

2) When the distributed charging power pi is zero, ui

equals zero. On the other hand, the improvement rate
in ui, i.e., 1

pi+1 , is the largest when pi = 0. This rate
decreases with an increasing pi, and eventually becomes
very small when pi is unnecessarily large.

3) The relative importance of the preference of a specific
receiver is represented by wi. It is proportional to
the desired battery charging power, P ∗

i , and inversely
proportional to the SOC of the battery.

For the protection of battery, here the range of the distributed
charging power is limited as follows,

0 ≤ pi ≤ P ∗
i . (10)

B. Transmitter
For the leader, the transmitter, its utility function, i.e.,

preference, is defined as

ut = ln
[
e− (e− 1)

ptotal
Pmax

]
, (11)

where e is the base of the mathematical constant and Pmax

is the maximum permissible charging power provided by the
transmitter. As same as in (9), a logarithmic function is chosen
to represent the preference of the transmitter, namely mini-
mizing its output power. Its utility function, ut, is maximized
when ptotal is simply zero, while ut becomes zero when ptotal
reaches the maximum permissible power, Pmax. Note that at
the same time, a constraint on ptotal must be first satisfied,

n∑
i=1

pi ≤ ptotal ≤ Pmax. (12)

Thus the transmitter may have to increase its output power
if needed, namely compromising its preference to meet the
constraint on required total charging power. Practically, ptotal
can be controlled by regulating the PA dc supply voltagpe,
vpa. Again pi’s, namely the charging power distribution, are
determined by performing the duty-cycle control of the dc-dc
converters in the receivers, i.e., adjusting the equivalent load
resistances seen by the rectifiers.



IV. OPTIMIZATION BASED CONTROL

For reference purposes, a classical centralized optimization
is first developed. It is assumed that all the necessary global
and local information from both transmitter and receivers
is available to a centralized controller, namely ptotal, n, pi
(i = 1, · · · , n), Pmax, P ∗

i , SOCi. Besides, changes in the
number and type of the receivers are supposed to be exactly
known. Thus the solution of each of those possible cases
can be preciously solved. Note that the above assumptions
make the centralized control less flexible when facing a
reconfigurable wireless charging system, in which the involved
receivers may dynamically quit or join the charging system.

Due to the leader-follower relationship, a two-stage opti-
mization is performed to solve the charging power distribution
among the receivers. At the first stage of the optimization, the
utility functions of the receivers are used as objective functions
(OBJs),

OBJ1 : fmin = −u1, · · · , OBJn : fmin = −un, (13)

subject to
n∑

i=1

pi ≤ ptotal. (14)

In order to achieve an analytical solution instead of a
numerical or heuristic one, the final objective function is
formulated as follows,

OBJ : fmin = −
n∑

i=1

wiui, (15)

where wi’s are the weights previously defined in (9). This
nonlinear optimization problem can be solved using the well-
known Karush-Kuhn-Tucker (KKT) conditions [17]. Equa-
tions (14) and (15) are first formed into the Lagrangian
function L,

L = −
n∑

i=1

wiln(pi + 1) + v

(
n∑

i=1

pi − ptotal

)
. (16)

Let
∂L

∂pi
= − wi

pi + 1
+ v = 0, for i = 1, . . . , n (17)

∂L

∂v
=

n∑
i=1

pi − ptotal = 0, (18)

then the candidate KKT point can be solved as,

pi =
wi(ptotal + n)−

∑n
i=1 wi∑n

i=1 wi
, for v =

wi

pi + 1
,(19)

pi = P ∗
i , for v = 0. (20)

Due to the convexity, the Hessian of the Lagrangian function
is always positive definite. Therefore, (19) or (20) is a global
optimal point. As discussed above in section II, the calculated
pi’s are physically achieved through the duty-cycle control of
the dc-dc converters in the receivers.

At the second stage of the optimization, again the utility
function of the transmitter is directly used as the objective
function,

OBJt :fmin = −ut, (21)

subject to the constraint on the total available charging power,
ptotal, in (12). For the second stage optimization, since (21)
is a monotonous function, the solution always exists on the
boundary box, i.e.,

∑n
i=1 pi and Pmax. Given the solution

from the first stage optimization, the
∑n

i=1 pi will be either∑n
i=1 P

∗
i or Pmax, namely

ptotal = min

(
n∑

i=1

P ∗
i , Pmax

)
. (22)

In the following final experiments, the control of ptotal is
implemented through PA dc supply voltage (vpa) regulation.

V. GAME THEORY BASED CONTROL

In real applications, there could be unpredictable and chang-
ing number of the individual receivers. The types and the char-
acteristics of their included ESDs may also be quite different.
The flexibility of power delivery by WPT makes it conve-
nient to charge such reconfigurable energy storage systems.
However, this new possibility prefers a control strategy that
can autonomously perform the power distribution control in
a dynamic environment. Here, besides the optimization-based
centralized control, an alternative solution, the game theory-
based control, is developed below, in which the transmitter
and receivers are modeled and treated as independent players.
This aspect well matches the decentralized nature of the
present charging control problem. Similarly, the distributed
charging power (pi) and total available charging power (ptotal)
are experimentally achieved through the dc-dc converter duty
cycle control and PA dc supply voltage regulation, respectively.

A. Generalized Stackelberg Game
The preferences of the players, i.e., the transmitter and

receivers, have been discussed in section III. Using the same
utility functions, the charing control problem is treated here
as a so-called generalized Stackelberg game [14], [18]. In
this game, the followers (i.e., receivers) determine their re-
spective charging power under the limitation of the total
available charging power, ptotal, at the last control instant.
Then the leader (i.e., transmitter) updates ptotal according
to the decisions of the followers, pi’s, namely the feedback
information from the followers. The game continues, in which
the leader and followers make their decisions by turns, namely
a so-called two-stage game [19]. For the followers, they are
considered to be “selfish” and non-cooperative. They negotiate
on the distribution of charging power among themselves. The
leader is also “selfish” reducing its output power as much as
possible. Meanwhile, as a supplier of charging power, it is
required to satisfy the power requirements from the receivers.
Due to the constraint on the total available charging power in
(8), the final solution is a generalized Stackelberg equilibrium.
In this solution, the receivers reach the generalized Nash
equilibrium instead of the classical Nash equilibrium and the
transmitter minimizes its output power. The Nash equilibriums
are common solutions in game theory to solve non-cooperative
games [20]. Under the generalized Stackelberg equilibrium, no
device, either the transmitter or receivers, has incentive to alter
its present decision.



1) Generalized Nash equilibrium among receivers: Under
the constraint on the total available charging power, (8), each
follower’s (a receiver here) admissible strategy set depends
on the other followers’ decisions, i.e., the generalized Nash
equilibrium problem in a static noncooperative game [21] [22].
First the existence of the generalized Nash equilibrium (GNE)
is mathematically proved below using the KKT conditions. For
a specific receiver, its utility function, ui, and the constraint
in (8) can be combined to form the Lagrangian function Li,

Li(pi, λi) = ui + λiG(pi,p−i), (23)

where

G(pi,p−i) =

n∑
i=1

pi − ptotal, (24)

λi is the Lagrange multiplier, and p−i is the vector formed
by all the followers’ decision variables, i.e., the distributed
charging power here, except the one of the ith follower.

Since (9) is concave, the KKT conditions are the necessary
and sufficient conditions for the proof of the existence the
GNE. The KKT conditions of the ith follower’s optimization
problem are

∂Li

∂Pi
= − wi

pi + 1
+ λi = 0, (25)

G(pi,p−i) ≤ 0, (26)

and it is known that the KKT conditions are satisfied with [14],
[23]

λ1 := λ2 := ... := λn := λ. (27)

Note that if (27) holds, the GNE is the most socially stable
one [14]. When λ = 0, i.e., ptotal >

∑n
i=1 pi, it is straight-

forward that
pi = P ∗

i for λ = 0. (28)

Thus the charging power of each ESD is rightly at its preferred
value. Otherwise, combining (25) and (27) gives the solution
for non-zero λ, i.e., a balanced decision on competing the total
available power ptotal among the followers,

pi =
wi(ptotal + n)∑n

i=1 wi
− 1 for λ ̸= 0. (29)

Thus the existence of the GNE is proved. Again, since all the
ui’s in (9) are concave, the above solution of pi’s is unique.

Unlike in (29), in real implementation the GNE is reached
by searching λ when the receivers need to compete on the
limited total available charging power ptotal, as shown in the
flow chart, Fig. 3. A local leader is chosen from the receivers
to broadcast λ. Note that this local leader does not gain any
extra benefit. Thus it can be randomly selected such as the
receiver No. 1 in this paper [24]. For convenience purposes,
the initial values of pi (i = 1, . . . , n) and λ are P ∗

i and zero,
respectively. If ptotal is sufficient (i.e.,

∑
pi < ptotal), it is

natural that all ESDs in the receivers are simply charged by
their respective preferred charging powers, P ∗

i ’s. Note that,
for searching λ, the initial values of pi can also be other
proper values that help to improve the convergence speed.
This aspect is further discussed in the following experiments in

section VI-E. From (25), λ is always positive. Thus a positive
and small perturbation ∆λk is applied

∆λk = Kp

(
n∑

i=1

pi − ptotal

)
, (30)

in a step-by-step manner in order to locate the GNE. The
coefficient, Kp, determines the convergence speed of λ. After
each perturbation, the constraint, (8), is evaluated. If the
constraint is violated, the perturbation needs to be updated
and applied again in the following step. This procedure is
iteratively repeated until the constraint is met. Based on the
above mathematical proof, it is guaranteed that there is only
one single λ satisfying the constraint. Thus from (25), pi’s,
i.e., the GNE, can be calculated as

pi =
wi

λ
− 1. (31)

Different with the proof in (29), pi is determined by its own
weight coefficient wi and iteratively searched λ. Note that wi

contains the local information of the i-th receiver, namely P ∗
i

and SOCi [refer to (9)], and the value of λ is based on the
exchange of decisions of all the receivers, i.e., pi’s, as shown
in (30) and Fig. 3.

START

 Let pi = Pi*, λ0=0, k=0

∑pi < ptotal ?

λk+1  = λk +  

 Calculate pi using (31)

∑pi = ptotal?

k=k+1

END

YES

YES

NO

NO

λ=λ0=0

λ=λk+1

 ∆λk

Fig. 3. Flowchart for the procedure of searching the Lagrange multiplier.

2) Total power optimization: In the present game, due to
the constraint in (8), the receivers need to seek GNE instead of
the classical Nash equilibrium. Thus the game is a generalized
Stackelberg equilibrium problem, and its solution is the so-
called generalized Stackelberg equilibrium (GSE) [14], [25].
From (11)(12), the utility function and the constraint of the



transmitter, the optimal ptotal from the transmitter can be
simply solved as

ptotal = min

(
n∑

i=1

pi +∆P, Pmax

)
, (32)

namely, maximized efficiency (i.e., minimized Ptotal) for a
specific combination of receivers. Again, ptotal is determined
by its local information, Pmax, and the decisions of all the
receivers. Note

∑n
i=1 pi varies with the different number of

the receivers, n, and the types and SOCs of the included ESDs.
Due to the nature of this Stackelberg leader-follower game, the
change of n is supposed to be unpredictable. And for the trans-
mitter, the leader, the characteristics of the individual ESDs in
the receivers are also unknown. Thus a small positive ∆P is
added in (32), which provides the transmitter a capability to
update the newest ptotal in a step-by-step manner. Besides,
considering various losses in a real WPT system, practically
∆P also serves as a safe margin to provide sufficient charging
power through having a slightly larger PA dc supply voltage,
vpa. Note that ∆P is a user defined parameter, which is 0.2
W in the following simulation and experiments. As shown in
Fig. 4, the GSE is reached at every control instant using the
algorithm discussed above [refer to the flowchart in Fig. 3 and
(32)]. Here T is the control period.

pi’s

t
T

ptotal pi’s ptotal

Fig. 4. Time sequence for solving GSE.

TABLE I
COMPARISON ON SHARED INFORMATION.

Control Global information Local information
Optimization-based ptotal, pi, n Pmax, P ∗

i , SOCi

Game theory-based ptotal, pi, λ (none)

B. Autonomy in Charging Power Distribution
As discussed above, the game theory-based approach is

partly based on the KKT conditions. It is expected that the
results using the game theory-based control would converge to
those under the optimization-based one. An obvious difference
between the two approaches is the requirement on the shared
information, as summarized in Table I. When applying the
optimization-based control, in order to determine the charging
power distribution, the centralized controller needs to collect
all the global (ptotal, pi, n) and local information (Pmax, P ∗

i ,
SOCi). This requirement also leads to reformulation of the
control problem particularly there are receivers dynamically
join or quit the charging (i.e., a changing n). On the contrary,
in the game theory-based control, only ptotal, pi, and λ are
shared among the local controllers in the transmitter and
receivers (see Fig. 3). Note that λ is broadcasted only among
receivers. All the local information, Pmax in the transmitter,
and P ∗

i and SOCi in the receivers, is well preserved within
an individual device. The exchange of local formation is not

required in the game theory-based control. This advantage
can potentially improve the flexibility and scalability of the
charging power distribution in a dynamic environment such
as with dynamically changing number of individual receivers.

For instance, when there is a new receiver joining the
wireless charge, the conventional optimization-based control
needs to recollect all the global and local information including
the newest number of receivers, the preferred charging power
(P ∗

i ) and the ESD’s SOC of the newly added receiver. The
centralized controller then updates the objective function and
constraints again, and calculates the supplied power and its
distribution among the receivers. As a decentralized solution,
in the game theory-based control, the new receiver only needs
to share its decision, i.e., a specific pi, under the same λ
among all the receivers. Its internal characteristics, i.e., the
local information P ∗

i and SOCi, are not required by the
other local controllers. Because the decision making in a
specific device only depends on its local information, the game
theory-based control enables autonomous power distribution,
i.e., the solution represented by the GSE, when the multiple-
receiver wireless charging system is reconfigured. This aspect
is verified and further explained below through simulation and
experiments.

VI. SIMULATION AND EXPERIMENTAL RESULTS
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Fig. 5. Experimental multiple-receiver wireless charging system.

A. Experimental System
Fig. 5 shows a multiple-receiver wireless charging system

built up for the following experiments, in which a single
transmitting coil (TX) is placed below n (n ≤3) receiving coils
(RXs) with a vertical distance of 20 mm. Both TX (100×200
mm) and RXs (60×100 mm) are four-turn coils. The trace
width and trace spacing of the coils are 2.5 mm and 0.8
mm, respectively. TX and RXs are aligned to have a mutual
inductance coefficient of 0.15. The positions of RXs are
fixed and above TX. The measured cross coupling coefficient
between RXs is about 0.005, which is neglectable comparing
with the mutual inductance coefficient between TX and RXs.
The charging power is transferred from the transmitting coil
to the receiving coils through inductive resonance coupling
working at 6.78 MHz. Again, the improved spatial freedom via
a higher operating frequency makes the MHz WPT particulary
suitable for charging multiple consumer electronics devices
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Fig. 6. Schematic diagram of the experimental multiple-receiver wireless charging system.

such as wearable devices and cell phones. At the same time, as
discussed above, the proposed autonomous power control itself
is a general approach that can be applied to other multiple-
receiver WPT systems with different operating frequencies,
power levels, and configurations.

As shown in Fig. 5 and the schematic diagram in Fig. 6,
in the transmitter the Class E power amplifier (PA) inverts dc
power into 6.78 MHz ac power and drives the transmitting coil,
while the received ac power is converted back to dc power
through the rectifier, a full-bridge one [26]. The connected
dc-dc converter is the charging management circuit. In the
following experiments, the average efficiencies of the rectifiers
and dc-dc converters are 91% and 89%, respectively. For
convenience, the electronic loads are programmed to emulate
the dynamic behaviors of the ESDs, different types of lithium-
ion batteries here, based on the well-known equivalent circuit
models of batteries [27]. Note that the equivalent loads seen by
the rectifiers, Rdcdc1–Rdcdc3 in Fig. 6, are actively controlled
by the buck converters. Thus the power distribution mechanism
discussed in section II is still valid when the final loads are
battery cells.

In order to implement the decentralized autonomous charg-
ing control, the controllers for transmitter and receivers should
be physically independent ones. Considering this requirement,
three National Instruments (NI) myRIOs are used as the con-
trollers for the receivers, while the transmitter is controlled by
a personal computer (PC). These four controllers communicate
with each other through a Wi-Fi network, namely a unique
charging system in which both power and information are
wirelessly connected. Note that the frequency ranges of a
Wi-Fi signal are in GHz bands. Thus there is no interfer-
ence between the Wi-Fi communication system and wireless
charging system. The PC provides the PA reference dc supply
voltage signal, v∗pa, to the dc power supply through universal
serial bus (USB) connection, and thus determines the total
charging power available to the receivers, i.e., ptotal, following
the experimentally-calibrated relationship between vpa and
ptotal (details are omitted to conserve space). The PC also
controls the electronic loads to run the dynamic battery models
via RS232 serial communication ports. For each receiver,
the NI myRIO samples the voltage and current of its load,
i.e., an ESD here, and calculates the duty cycle, D, of the
dc-dc converter that eventually decides the charging power
distribution among the receivers.

The initial PA input dc voltage, vpa, is 25 V, and it varies

TABLE II
PARAMETERS OF EXPERIMENTAL SYSTEM.

[Transmitter]
PA MOSFET Ct Lt Rt vpa
SUD15N15 104 pF 5.40 µH 1.50 Ω 15–30 V
[Receivers]
Rec. Diode Cri Lri Rri

STPSC406 292 pF 1.89 µH 0.65 Ω
[Batteries]

Cell Capacity Voltage Resistance Mass
Lishen 12.5 Ah 3.2 V 8 mΩ 370 g
Sanyo 2.5 Ah 3.7 V 100 mΩ 48 g

between 15–30 V. The key parameters of the transmitter,
receivers, and battery cells are further summarized in Table II
[refer to Fig. 1]. Two types of lithium-ion battery cells are em-
ulated by the electronic loads, 12.5-Ah Lishen LP2770102AC
LiFePO4 cell and 2.5-Ah Sanyo 18650 LiCoO2 cell, using
their respective dynamic models [27]. These two cells are
selected to represent the cases in which the charged ESDs have
very different characteristics and requirement on the desired
charging power and current. The Lishen cell is a battery for
traction purposes, whose C

3 is five times larger than that of
the Sanyo cell (i.e., 12.5 Ah and 2.5 Ah.). The initial SOCs,
SOCini, of the cells in No. 1–3 receivers are assumed to be
30%, 50%, and 70%, respectively, in all the following three
cases. Case A emulates quitting of the wireless charging, in
which all the three ESDs are with same type, Sanyo cells,
while in Cases B and C different types of ESDs (Lishen or
Sanyo cells) quit and join the charging. The cases are designed
to emulate random cases and thus verify the performances
of the game theory- and optimization-based controls when
managing the charging power distribution in a reconfigured
multiple-receiver wireless charging system.

In the below three cases, the GSE and optimization-based
solution are both updated in every two seconds, i.e., T= 2
s [refer to Fig. 4]. This relatively long control period is due
to the slow response time of the dc power supply in the
present experimental setup. Kp and ∆P are taken as 0.01
and 0.2 W, respectively, via trial-and-error tuning. Note that
these two parameters should be specified based on the required
convergence speed and accuracy in a target application.

B. Case 1: Quitting Charging-Same ESDs
In this case, the ESDs in the three receivers are all Sanyo

2.5-Ah cells. As shown in Fig. 7, the No. 3 and 2 receivers



quit the wireless charging at 30 and 60 s, respectively. This
case is designed to verify the control when the maximum
charging power from the transmitter is sufficient to supply
the desired charging power of all the ESDs in the receivers,
i.e., a C

3 (≈0.83 A) charging current for each cell here.
Before quitting, each receiver is charged at its desired power
P ∗
i (i = 1, 2, 3) that corresponds to the C

3 current. Thus λ is
simply zero and the GNE settled at pi = P ∗

i [refer to (28)].
The total charging power, ptotal, from the transmitter is also
minimized accordingly. The oscillations in the experimental
power responses show the transients of the decentralized
charging control in the real implementation. Due to the pre-
assumed unpredictable quitting of a specific receiver, the
excessive power is first distributed to the other receivers, which
explains the overshoots in the responses, while the nonlinear
behavior of the PA causes the undershoots when updating vpa,
the PA input dc voltage, for a lower total charging power.

The basic trend of the experimental results (exp.) well
matches that of the simulation results (sim.) for both game
theory-based and optimization-based control. This verifies the
theoretical correctness of the proposed charging control and
its implementation. Note that for a theoretical verification,
in simulation the PI-based duty-cycle control of the dc-dc
converter is not included. pi’s and ptotal are directly given
after the calculation. In this case, since there is no need for
searching λ, the simulated or theoretical performances of the
game theory- (GT) and optimization-based (Opt) controls are
identical.
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Fig. 7. Power distribution and total charging power in case 1.

C. Case 2: Quitting Charging-Different ESDs

Here the ESDs in No. 1 and 2 receivers are still the 2.5-
Ah Sanyo cells, while the cell in No. 3 is the Lishen 12.5-
Ah one, a cell requiring much larger charging current and
preferred charging power P ∗

3 (again, corresponding to its own
C
3 current). Note that cases 2 and 3 are designed to verify
the proposed control when the receivers require very different
charging power. Again the No. 3 and No. 2 receivers quit
at 30 and 60 s, respectively. As shown in Fig. 8, different

with the results in case 1, the three receivers can not achieve
their respective preferred charging power anymore due to
the limited total charging power from the transmitter. The
devices, the three receivers and transmitter, have to jointly
determine a balanced power distribution, i.e., a GSE, in a
step-by-step manner. As same as the expectation, the results
through the game theory-based control converge to those
under the optimization-based one taking 11 iterations. With
both global and local information available, the optimization-
based control directly gives the optimal solution. However,
as discussed above, its centralized nature sacrifices control
flexibility in a dynamic environment, particularly when the
number of the receivers varies. Thus the advantage of applying
the game theory-based control is not to outpace the classical
optimization-based control in the final control performance,
but to enable autonomy in charging power distribution [refer
to section V-B]. Note that after the No. 3 receiver quits the
charging after 30 s, the results become same with those in Case
1 because the power capability of the transmitter is sufficient
to charge the left two receivers with their preferred charging
power, namely P ∗

1 and P ∗
2 .
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Fig. 8. Power distribution and total charging power in case 2.

D. Case 3: Joining Charging-Different ESDs

In this case, initially there is only one receiver, the No. 1
receiver, whose ESD is the Sanyo 2.5-Ah cell. At 30 s, the
No. 2 receiver joins the charging with an ESD of a Sanyo
2.5-Ah cell too. Next at 60 s, No. 3 receiver also joins the
charging, but its ESD is the Lishen 12.5-Ah cell, the one with
a much higher capacity. Again, under the game theory-based
control, the first two receivers eventually settle at a GNE in
which the receivers are charged with their preferred charging
power, P ∗

1 and P ∗
2 , respectively. After the joining of the No. 3

receiver, which requires a much larger charging power, a new
GNE is reached in which the charging powers of the No. 1
and 2 receivers deviate from their original preferred ones. The
new GNE settles at the one as same as the first GNE reached
in Case 2.
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Fig. 9. Power distribution and total charging power in case 3.

TABLE III
CHARGING POWER DISTRIBUTION IN CASE 3.

Receiver SOCini,i P ∗
i 30 s 60 s 90 s

No. 1-Sanyo 30% 3.08 W 3.11 W 3.09 W 3.10 W
No. 2-Sanyo 50% 3.08 W – 3.20 W 1.91 W
No. 3-Lishen 70% 13.33 W – – 7.75 W

E. Additional Discussions

The average dc-dc system efficiencies (i.e., from the dc
power supplier to electronic loads), ηavg , for the game theory-
based control in the three cases are 52.7%, 52.0%, and 52.4%,
respectively. The average efficiencies for the optimization-
based control are 54.1%, 53.9% and 54.2%, respectively.
Again, the game theory-based control yields comparable effi-
ciencies to the centralized optimization-based control, but with
obviously enhanced flexibility and scalability. The efficiencies
could be further enhanced through the efforts on the hard-
ware aspect such as improved design of rectifiers and dc-dc
converters. Meanwhile, due to the nature of the present multi-
objective optimization and control problem, there is always
tradeoff between desired charging power distribution and the
overall system efficiency.

The charging power distribution well reflects the defined
utility functions, i.e., the preferences, in section III and the
tradeoff relationship among the receivers and transmitter. As
shown in Table III taking case 3 as an example, at 30 s
the No. 1 cell is charged by 3.11 W, namely its preferred
charging power, P ∗

1 =3.08 W; when the No. 2 cell joins the
wireless charging, it is charged by the preferred charging
power too because the total available charging power from
the transmitter is sufficient; while when the No. 3 cell, which
requires much larger charging power, joins the charging after
60 s, the charging power is autonomously redistributed thanks
to the mechanism proposed in section II and game theory-
based control. Due to the low SOC, the No. 1 cell is still
charged by its preferred charging power, while the No. 2 and
3 cells are charged with 62.01% and 58.14% of their respective
preferred charging power due to the differences in the capacity
and SOC of the two battery cells.

The required iterations when searching λ, the Lagrange
multiplier, are investigated taking different initial values of
pi, not necessarily P ∗

i . As an example, in the below Fig. 10,
a wide range (0–10 times of P ∗

1 ) of the initial value of p1
can be taken that does not significantly increase the required
number of iterations to reach the GNE among the receivers.
It is natural that the iterations, which is reversely proportional
to the convergence speed, decrease when the initial value of
p1 is close to P ∗

1 , 3.08 W here.
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Fig. 10. An example of the average required iterations over the entire
duration (0–90 seconds) when searching λ in case 3 (P ∗

1 =3.08 W).

The flexibility and scalability of the game theory-based
control is quantitatively studied assuming the number of
receivers varies between 1 and 50. A 10000-case Monte
Carlo analysis is performed for each number of receivers.
The parameters (SOCi: 0.3–0.7; P ∗

i : 3–8 W) are uniformly
distributed within their respective ranges. As shown in Fig. 11,
the minimum, maximum, and average numbers of required
iterations versus the number of receivers follow logarithmic
trend lines instead of exponential ones. This result further
verifies the enhanced flexibility and scalability through the
game theory-based control when dealing with the cases with a
changing number of receivers. It also shows the computational
efficiency of the control particularly with a large number of
receivers.
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Fig. 11. A 10000-case Monte Carlo analysis under different numbers of
receivers (1–50).

Fig. 12 and Table IV further show the performance com-
parison of four possible control methods in experiments,
spontaneous control (i.e., passive control), SOC-based control,
optimization-based control, and game theory-based control.
In the spontaneous control, the dc-dc converters simply op-
erate with a fixed duty cycle that maximizes each reflected
impedance Zi [refer to (2) and (7)]. Thus the power received
by a single receiver could be possibly maximized. However,
as shown in (6), in a multiple-receiver WPT system the power
distribution is actually determined by the ratio among Zi’s.
Meanwhile, in the SOC-based control, the charging power is
distributed reversely proportional to the SOCs of the ESDs in
the receivers. In the both above controls, vpa is maximized
to be able to provide sufficient charging power. As shown in
Fig. 12, the power distribution under the passive spontaneous
control is uncontrollable; the SOC-based control also shows
poor performance especially within the last 30 seconds (60–
90 seconds) when the transmitter can not provide the total



required charging power from all the three receivers. This is
because the Lishen 12.5-Ah cell in the No. 3 receiver has
a higher initial SOC (70%), but it requires a much larger
charging power due to its higher capacity than those of the
other two Sanyo 2.5-Ah cells. In Table IV, two criteria,
the average dc-dc system efficiency ηavg and average ratio
of pi to P ∗

i , in case 3 are applied for comparison purposes.
It is obvious the game theory-based control shows much
better performance than those of the spontaneous control and
SOC-based control. Again, the game theory-based control has
comparable performance to that of the ideal optimization-
based control, but with obviously improved flexibility and
scalability, as shown and discussed in the above sections.

The proposed game theory-based control requires a local
controller for each receiver and a relatively complicated algo-
rithm. At the same time, it enables autonomy in the charing
power distribution. This unique advantage makes the game
theory-based control particularly suitable to deal with the
control of complicated energy systems such as the multiple-
receiver wireless charing system in which the receivers join
and quite charging unpredictably. Besides, the computational
efficiency of the distributed approaches such as the game
theory-based control also helps to lower the computational cost
especially when the number of the devices is large.
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Fig. 12. Power distribution and total charging power in case 3 under the
game theory-based control, optimization-based control, spontaneous
control, and SOC-based control.

TABLE IV
CONTROL PERFORMANCE COMPARISON IN CASE 3.

Spec. Spontaneous SOC-based Optimization- Game theory-
control control based control based control

ηave (%) 15.9% 34.4% 54.2% 52.4%
Ave( p1

P∗
1
) 0.32 0.97 0.97 0.88

Ave( p2
P∗
2
) 0.39 0.95 0.74 0.57

Ave( p3
P∗
3
) 0.13 0.16 0.52 0.42

VII. CONCLUSIONS

This paper proposes and experimentally implements a game
theory-based autonomous power control of a less common
multiple-receiver wireless charging system. Due to the flex-
ibility provided by the WPT, different numbers and types

of the ESDs can be simultaneously charged as the loads
of the receivers. However, the complex characteristics and
the decentralized nature of the system make the charging
control challenging. The possibly reconfigured system con-
figuration further complicates the discussion on the control
and its implementation. In order to achieve autonomy in the
power control, the decentralized game theory-based control is
proposed and developed that fully respects the performance
and requirements of each individual device. The solution
of the charging control is a generalized Stackelberg equi-
librium, in which only the global information is required.
The charging power distribution is determined and updated
through the negotiation among the present receivers, namely a
generalized Nash equilibrium. Thus the charging control is
flexible to handle the cases where the numbers and types
of charged ESDs change over time, as verified both in the
simulation and the final experiments. The future work may
include extending the approach to more complex wireless or
conventional networked energy systems and further exploring
the improvements in flexibility, scalability, and reliability of
the energy management.
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