Modular Electric Vehicle and The Control Technology

Chengbin Ma (马澄斌), PhD Assistant Professor Univ. of Michigan-SJTU Joint Institute Shanghai Jiao Tong University Shanghai, China

At The 3rd China New Energy Vehicle Forum, Shenzhen, China Nov. 25-26th, 2013

- Introduction
- Modular EV
- EV Dynamics
- Hybrid Energy System
- Wireless Charging
- Conclusion

Dynamic Systems Control Lab

1. Motion/Motor Control

2. EV Dynamics Control

4. MHz Wireless Charging

Various Plans

High End versus Low End

。时风电动车

Price: 31,800RMB (\$5,129)

Range: 180Km

SHIFENG

Roewe E50 Price: 234,900RMB (\$37,887) Subsidy: 106,900RMB (\$17,242) Range: 180Km Max speed: 130Km/hr Battery: 18kWh

83,300 low-speed electric vehicles were sold in Shandong Province in 2012.

Max speed: 55Km/hr Battery: Lead-acid

Significant Success of e-Bike Industry

In 2011, over 26 million e-bikes were produced.A unique highly modularized industry

- Dynamic energy supply and consumption
 - Acceleration/Deceleration, Regenerative braking, etc.
- Immature electricity mass storage technology
 - The energy density of petrol (12000Wh/kg) is hundreds of times as that of a mass market battery (20~200Wh/kg).
 - Multiple energy storage devices with various dynamics are naturally required: Ultracapacitors, Flywheels, Compressed air tank, etc.

- The electrification could extend beyond delivering electrical energy and converting it into chemical energy through batteries.
- It can effectively extend the mileage, lighten the weight, diversify energy sources and reduce our reliance on scarce resources such as lithium.

Wireless Charging (2)

Example: 20KHz 30kW wireless charging systems:

Company	Efficiency	Air gap (mm)	Weight of Receiving coil and core (kg)	Size L*W*D (mm)
Conductix- Wampfler	86%	50	70Kg	1025*875*61
Showa Air Craft	92%	100	35Kg	847*847*33

- Current systems usually operate in kHz range because the state-of-art power electronic devices are available for both power generation and conditioning.
- This low frequency requires a large size coil and heavy ferrite materials, which is not favored by MH7 KHZ vehicles in terms of payload efficiency.

- Introduction
- Modular EV
- EV Dynamics
- Hybrid Energy System
- Wireless Charging
- Conclusion

Energy-Inefficient Modern Cars

- People use only a tiny portion of its potential for the most of time
- The modern cars are designed to be all things to all the people, which leads to the inefficiencies.

A cautious man carries an umbrella every day...

- seat five
- more than I00mph
- accelerate from 0-60 in about 10 seconds
- easily break 40mpg
- be able to work at more than 50C
- warm passengers/ engines at -30C.
- usually also have big trunks.

EV-A Consumer Electronics Product

- Consumer electronics products naturally tend to be personalized, portable and small.
- Long-term problem of battery and aging population are the fundamental background.
- There is a need and technological feasible to develop low-speed small EVs.

Nature of Electrical System

In-whee motor

- Electric/electronic devices are naturally easy to be modularized.
- The realization of modular EV would improve the market competition and thus significantly reduce the cost.
- The success of Chinese e-bike and low-cost EV industry has proved a unique strength of the modular electric vehicle and the new industrial structure.

Matured Low-Cost Components

Especially motor, inverter and lead-acid battery are becoming both technological and commercially matured.

Searched on Taobao online shopping site

48V 500W BLDC Motor (100RMB, \$56.5)

48V 500W BLDC Controller (100RMB, \$16)

48-72V 350-2000W E-Drive Set (680-1,500RMB, \$109.68-241.94)

48-84V 2,000W Motor (1,270RMB, \$204.84)

48-72V 4,500W Controller (1,500RMB, \$241.94)

Metton: liquid molding resin

- Introduction
- Modular EV
- EV Dynamics
- Hybrid Energy System
- Wireless Charging
- Conclusion

- Fast and accurate torque control
- Simple and accurate dynamic model
- Fast and accurate current/torque feedback
- Capable to generate driving/braking forces
- Easy to implement distributed motor systems

Motors can be utilized not only for propulsion, but also as "actuators" and "sensors".

Dynamic Systems Control Laboratory, UM-SJTU Joint Institute

EV Dynamics Control

- EV Motion Control:
 - Traction Control
 - Assistive Braking Control
 - Vehicle Stability Control
 - Eco-driving Assistance

Video

Four WD EV Modeling

- Introduction
- Modular EV
- EV Dynamics
- Hybrid Energy System
- Wireless Charging
- Conclusion

Battery-Ultracapacitor Test System

Dynamic Modeling

The hybrid system works best with energytype batteries (large internal resistance).

Peak_Current	5A	10A	15A
Initial_Capacitor_Voltage	14.8V	14.8V	14.8V
Initial_Battery_SOC	0.5(@7.4V)	0.5(@7.4V)	0.5(@7.4V)
End_of_SOC	0 4532	0 4051	0 3559
Energy_Efficiency[%]	91.05	89.12	87.84

Battery-Only System

Peak_Current	5A	10A	15A
Initial_Battery_SOC	0.5(@14.8V)	0.5(@14.8V)	0.5(@14.8V)
End of SOC	0.4514	0.3946	0.3224
Energy_Efficiency[%]	89.13	82.67	74.01

Battery Resistance Amplification Coefficient K	1	2	3	Battery Resistance Amplification Coefficient K	1	2	3
Initial_Capacitor_Voltage	14.8V	14.8V	14.8V	Initial_Battery_SOC	0.5(@14.8V)	0.5(@14.8V)	0.5(@14.8V)
Initial_Battery_SOC	0.5(@7.4V)	0.5(@7.4V)	0.5(@7.4V)	End_of_SOC	0.4514	0.4480	0.4432
End_of_SOC	0.4532	0.4523	0.4518	Energy_Efficiency[%]	89.13	83.31	76.41
Energy_Efficiency[%]	91.05	89.45	88.52				

ESR-based Efficiency Analysis

Equivalent-Series-Resistance circuit Model:

Optimized Current Distribution

• It is theoretically guaranteed that ultracapacitors should provide the most of dynamic load current.

- Test at higher temperature (45 deg.) to accelerate the aging of batteries.
- Four scenarios (3 months):
 - 1. Battery-only without charging/discharge: calendar life
 - 2. Battery-only: establishment of a baseline
 - 3. Ultracapacitor-battery hybrid (No.1): batteries only provide average load current.
 - 4. Ultracapacitor-battery hybrid (No.2): limited number of ultracapacitors, thus batteries have to supply certain part of dynamic load current.

Control of Networked Energy Systems

Flexibility, Fault-tolerance, Scalability, Reliability
"Plug & Play" in a dynamic environment.

Utility-Function based Optimization

Similar results with average current control, which needs to know future power demand.

SIMULATION RESULT ANALYSIS

Strategies	Ibave (A)	I_{bvar} (A ²)	E_{cap} (J)
ACS	1.325	0.0255	12731.2
Our strategy	1.35	0.0486	12922.9

Future work (1)

Battery, supercapacitor hybrid energy system with an additional generator
Game theory based control strategy

Future work (2)

- Introduction
- Modular EV
- EV Dynamics
- Hybrid Energy System
- Wireless Charging
- Conclusion

Battery-Free EV

- With future ubiquitous wireless charging facilities, electric vehicles may only need to store a reasonable amount of electrical energy for a relatively short period of time.
- Ultracapacitors are suitable for storing and releasing large amounts of electrical energy quickly.
 - 1) Work electrostatically without reversible chemical reactions involved
 - 2) Theoretically unlimited cycle life (can be cycled millions of time)
 - 3) Fast and high efficient charge/discharge due to small internal resistance (97-98% efficiency is typical)
 - **4)** Precise voltage-based State Of Charge (SOC) measurement (energy stored in capacitors is proportional with the square of charge voltage)
 - 5) A typical operating temperature range of -40 to +70°C and small leakage current
 - 6) Environmentally friendly without using heavy mental for its structure material.

Dynamic Systems Control Laboratory, UM-SJTU Joint Institute

Initial Results

Gap (cm)

10.1

5.6

14.8

19.3

24.1

28

Ongoing Investigations

- 13.56MHz Wireless Power Transfer System
 - Cascaded Boost-buck converter for high efficiency
 - Multi-coil Simulation

13.56MHz Charging of Supercapacitors

Wireless charging efficiency improvement by the real time control of the DC-DC converter.

Batteries charging improvement using the cascaded boost-buck DC-DC converter.

Ultracapacitors charging improvement using the cascaded boost-buck DC-DC converter.

MPPT Control for Wireless Charging

- Zin,opt is usually fixed (50 ohm).
- ZL,opt is determined by Lm under resonance for ideal coils.
- ZL,opt is achieved by well controlling Rin.
- MPPT method: Minimizing Pr/Pf by controlling Rin to keep track with maximum power point.

Tracking of Optimum Duty Cycle

Optimum Load for Multiple Receiver WPT System

Efficiency has one maximum value

$Zopt2 := \frac{\sqrt{R1 \ R2 \ R3 \ (R1 \ R2 \ R3 - R2 \ jwM2^2 - R3 \ jwM1^2)}}{R1 \ R3}$ 24. 42721532	(23)
$Z_{opt3} := \frac{\sqrt{R1 \ R2 \ R3 \ (R1 \ R2 \ R3 - R2 \ jwM2^2 - R3 \ jwM1^2)}}{R1 \ R2}$	
12. 21360766	(24)
$_{\pi}$, R1 R2 R3 + R1 R2 Zopt3 + R1 R3 Zopt2 + R1 Zopt2 Zopt3 - R2 jwM2 ² - R3 jwM1 ² - Zopt2 jwM2 ² - Zopt3 jwM1 ²	
Zinopt := R2 R3 + R2 Zopt3 + R3 Zopt2 + Zopt2 Zopt3	
18. 32041148	(25)
Effiopt :=	
$R2^2$ Zopt3 jwM2 ² + 2 R2 Zopt2 Zopt3 jwM2 ² + $R3^2$ Zopt2 jwM1 ² + 2 R3 Zopt2 Zopt3 jwM1 ² + Zopt2 ² Zopt3 jwM2 ² + Zopt2 Zopt3	3 ² jwM1 ²
$(R2 R3 + R2 Zopt3 + R3 Zopt2 + Zopt2 Zopt3)$ $(R1 R2 R3 + R1 R2 Zopt3 + R1 R3 Zopt2 + R1 Zopt2 Zopt3 - R2 imM2^2 - R3 imM1^2 - Zopt2)$	$iwM2^2 - Zopt3 iwM1^2$
0. 7185795406	(26)

- Introduction
- Modular EV
- EV Dynamics
- Hybrid Energy System
- Wireless Charging
- Conclusion

Conclusion

- Innovations in technology, market mechanism and industrial structure are needed to breakthrough the traditional mindset that was optimized hundred of years for internal combustion engine cars.
- Especially, the unique advantages brought by the vehicle electrification should be fully utilized.
- EV dynamics, on-board hybrid energy system and wireless charging are the promising research and development areas.

Thank You

Presented by Chengbin Ma Email: <u>chbma@sjtu.edu.cn</u> Web: <u>http://umji.sjtu.edu.cn/faculty/chengbin-ma/</u>