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Past and Present

The concept of fractional-order
control (FOC) means controlled
systems and/or controllers are

described by fractional-order differen-
tial equations. Expanding derivatives
and integrals to fractional orders is by
no means new and actually has a firm
and long-standing theoretical founda-
tion. Interest in this subject was evi-
dent almost as soon as the ideas of
classical calculus were known. The ear-
liest more or less systematic studies
seem to have been made in the begin-
ning and middle of the 19th century by
Liouville, Holmgren, and Riemann,
although Eular, Lagrange, and others
made contribution even earlier [1]. Par-
allel to these theoretical beginnings
was the development of applying frac-
tional calculus to various problems [1].

As to fractional calculus’ application
in control engineering, FOC was intro-
duced by Tustin for the position control
of massive objects (see Figure 1) half a
century ago in 1958, where actuator sat-
uration requires sufficient phase margin
around and below the critical point [2].

The characteristic equation of the
above close-loop 1/sβ system with
variable gain factor A is

1 + A( jω)β = 0 (1)

where A = Jm/Kd in nominal case and
β = 2 − α. Equation (1) can be rewrit-
ten in the form

( jω)β = − 1
A

. (2)

The movement of −1/A can be
considered to be the locus of the criti-
cal point (see Figure 2) when the gain
variation occurs. For integer order
system, when β = 2, the system will
be oscillatory due to its zero phase
margin. Taking β = 1 leads to poor
robustness against saturation since
pure D controller will be used. By let-
ting β be fractional between one and
two, a better tradeoff between stabili-
ty and robustness will be obtained.
Namely, the fractional-order Dα con-
troller is naturally introduced whose
order α should be chosen properly
between zero and one. Therefore, nec-
essary phase margin can be easily
kept to any desired amount in wide
range of frequencies below and in the
neighborhood of the critical point.
This characteristic highlights the
hopeful aspect of applying FOC to
control engineering.

Some other pioneering works were
also carried out around 1960s by

Manabe [3]–[5]. However, the FOC
concept was not widely incorporated
into control engineering mainly due
to the unfamiliar idea of taking frac-
tional order, so few physical applica-
tions and limited computational
power available at that time [6].

In last few decades, researchers
pointed out that fractional-order differ-
ential equations could model various
materials more adequately than inte-
ger order ones and provide an excel-
lent tool for describing complex
dynamic features [1], [7]. Especially
for the modeling and identification of
flexible structures with increasing
application of lighter materials, frac-
tional- order differential equations
could provide a natural solution since
these structures are essentially distrib-
uted-parameter systems [8]. Obvious-
ly, the fractional-order models need
fractional-order controllers for more
effective control of the “real” systems.
This necessity motivated renewed
interest in various applications of FOC
[10]–[13]. And with the rapid develop-
ment of computer performances, real-
ization of FOC systems also became
possible and much easier than before.

Generally there are three main
advantages for introducing fractional-
order calculus to control engineering:
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FIGURE 1 — The position control loop with fractional order Dα controller.
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1) adequate modeling of control
plant’s dynamic features

2) effective and clear-cut robust con-
trol design

3) reasonable realization by approxi-
mation.
In following sections, detailed

descriptions of the above three advan-
tages will be given.

Mathematical Aspects

Mathematic Definitions
One of the most frequently encountered
definitions of fractional-order calculus is
called the Grünwald-Letnikov definition:

aDα
t = lim

h→0
nh = t−α

h−α
n∑

j=0

(−1) j
(

α

j

)

× f(t − jh) (3)

where 
(

α

j

)
are the binomial coeffi-

cients. Obviously, introducing the frac-
tional-order calculus leads to infinite
dimension, while the integral calculus
is finite dimension.

Another widely known definition is
called the Riemann-Liouville definition
with an integrodifferential expression.
The definition for the fractional-order
integral is

aD−α
t f(t) = 1

�(α)

∫ t

a
(t − ξ)α−1

× f(ξ)dξ (4)

while the definition of fractional-order
derivatives is

aDα
t f(t) = dγ

dtγ

[
aD−(γ−α)

t

]
(5)

where �(x) is the Gamma function, a
and t are limits, and α (α > 0 and
α ∈ R) is the order of the operation. γ is
an integer that satisfies γ − 1 < α ≤ γ .
The Grünwald-Letnikov  and Riemann-
Liouville definitions are both a unifica-
tion of integer order derivatives and
integrals [7].

Laplace and Fourier Transforms
Fractional-order calculus is quite com-
plicated in time domain, as shown in
its two definitions. Fortunately one of
the features most important to control
engineers, its Laplace transform, is

very straightforward [7]. The final
expression of the Laplace transform of
the fractional-order derivative is

L
{

0Dα
t f(t)

} = sα F (s)

−
n−1∑
k=0

sk
0Dα−k−1

t f (0)

(6)

where n − 1 < α < n again. If all the
initial conditions are zero, the Laplace
transform of fractional-order derivative
is simply

L
{

0Dα
t f(t)

} = sα F (s). (7)

Therefore the Laplace transforms of
fractional ±α order calculus lead to
the use of fractional-order Laplace
operator s±α . The transfer functions of
models and controllers, which are
described by fractional-order differen-
tial equations, can be derived conve-
niently using fractional-order Laplace
operator s±α .

Similarly, the Fourier transform of
fractional-order derivative is

Fe
{

0Dα
t f(t)

} = ( jω)α F ( jω). (8)

The frequency response of FOC sys-
tem can be exactly obtained by substi-
tuting s±α with ( jω)±α in its transfer
function. This advantage implies fre-
quency-domain analysis of FOC system
is as convenient as integer order con-
trol (IOC) systems. The graphical tools
for IOC in frequency domain are still
available for FOC analysis and design.

Modeling and Identification
Recently, there has been a growing sig-
nificant demand for better mathematic

models to describe real objects. The
fractional-order model can provide a
new possibility to acquire more ade-
quate modeling of dynamic processes.
Fractional-order models have been
applied to describe reheating furnaces
[7], viscoelasticity [1], [7], [8], chemical
processes [14], and chaos systems [15].

Actually, using a fractional-order
model for describing distributed-
parameter systems is quite natural
since the Laplace transform of partial
differential equations will inevitably
introduce the fractional-order s opera-
tor. For a simple example, consider a
torsional model as shown in Figure 3,
which consists of a flexible shaft
attached to a rigid disk [16]. The rigid
body equation of the disk is given as

I1s2θ1 = T1 + T12. (9)

Take a small element of length dx
along the shaft axis and observe the
cylindrical surface, as shown in

FIGURE 3 — The flexible shaft attached to a rigid disk.
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Figure 4(a). This element will deform
through a small angle dθ .

Based on the theory of elasticity,
the corresponding shear stress at the
deformed point at radius r is

τ = Gγ = Gr
∂θ(t, x)

∂x
(10)

where G is shear modulus and γ is
the shear strain [17]. As shown in Fig-

ure 4(b), since this shear stress acts
tangentially, the overall torque at the
shaft cross section is

T =
∫

r × (τ × 2πrdr)

= G
∂θ(t, x)

∂x

∫
2πr3dr

= G J
∂θ(t, x)

∂x
. (11)

Apply Newton’s second law for rotato-
ry motion of the small element dx
shown in Figure 4(a), the equation of
motion is

ρ Jdx
∂ 2θ(t, x)

∂ t 2
= T + dT − T

= ∂T(t, x)

∂x
dx. (12)

For a uniform shaft segment of length l
with associated overall angular defor-
mation θ , the torsional stiffness k is

k = T
θ

= G J
∂θ(t, x)

∂x
· 1
θ

= G J
l

. (13)

Based on (11) and (12), the following
equation can be obtained:

I2
l

∂2θ(t, x)

∂ t 2
− kl

∂2θ(t, x)

∂x 2
= 0. (14)

For (14), the Laplace transform in t, a
second-order differential equation, is

I2
l

s2θ(x) − kl
d 2θ(x)

dx 2
= 0 (15)

where θ(s, x) is abbreviated as θ(x) for
simplicity. For the free end of the shaft,
there is no deformation and the shear
stress is zero. Therefore, the following
boundary conditions can be obtained:

θ(x)

∣∣∣∣
x =0

= θ1,
dθ(x)

dx

∣∣∣∣
x=l

= 0.

(16)

Torque T12 in Figure 3 can be obtained:

T12(s) = kl
dθ(x)

dx

∣∣∣∣
x=0

= −tanh(μls)θ1 (17)

where μ 2 = I2/kl . Finally, substitute
T12 in (9), the transfer function
between T1 and θ1 can be achieved:

T1

θ1
= I1s2 + kl · μs · tanh(μls). (18)

However, in a conventional modeling
method, the torsional system in
Figure 3 is usually modeled as a rigid
body system with inertia I = I1 + I2:

T1

θ1
= ( I1 + I2)s

2. (19)

As shown in the Bode plots of Figure 5,
the fractional-order transfer function
model in (18) displays the mechanical
resonance effect naturally. At low fre-
quency range, the two models give sim-
ilar frequency responses. At high
frequency range, the fractional model
can describe the distributed nature of
the torsional system; while in conven-
tional integer order model, this nature
is totally ignored. Fractional-order mod-
eling is a useful tool to give a more ade-
quate description of system’s “real”
dynamic features.

From the above example, it can be
seen that distributed-parameter sys-
tems are naturally described by a set
of partial differential equations. How-
ever, these equations will lead to
transfer functions that are quotients of
transcendental functions.

Using a fractional-order transfer func-
tion model, a quotient of polynomials in

FIGURE 4 — Deformation of the torsional
shaft: (a) small element of the torsional shaft
and (b) shear stress in a small annular cross
section.
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FIGURE 5— Bode plots of the torsional system’s fractional-order model and conventional integer
order model.
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sα , it is also possible to fit better a set
of experimental data. For example, the
frequency-domain identification of a
flexible structure by a fractional-order
model can take into account not only
material damping, but also other vari-
eties of physical phenomena such as
viscoelasticity and anomalous relax-
ation. This fact indicts fractional-order
models can be an appropriate and
hopeful tool to model the dynamic fea-
tures of flexible structure more accu-
rately which is becoming more and
more important due to lighter materi-
als and faster motions [7], [8].

For fractional-order models like
(20), frequency-domain identification
methods to determine the coeffi-
cients αk, βk(k = 0, 1, 2, . . . ) and
ak, bk(k = 0, 1, 2, . . . ) are as routine
as conventional integer order models.

G(s) = Y(s)
U(s)

= bmsβm + · · · + b1sβ1 + b0sβ0

ansαn + · · · + a1sα1 + a0sα0
.

(20)

Various identification methods for
determination of the coefficients were
developed [7]–[9], based on minimiza-
tion of the difference between the
measured frequency response F (ω)

and the frequency response of the
model G( jω). For example, the quad-
ratic criterion for the optimization can
be in following form:

Q =
M∑

m=0

W 2(ωm)|F (ωm) − G( jωm)|2

(21)

where W(ωm) is a weighting function
and M is the number of measured values
of frequencies ω = (ω0, ω1, . . . , ωM ).

Compared to the general fractional-
order model as in (20), a special model
can be introduced, in which only inte-
ger orders of the fractional-order oper-
ator sα are used:

G(s) =
∑m

i=0 ai(sα)i

(sα)n + ∑n−1
j=0 bj(sα) j

,

n ≥ m. (22)

It is interesting to note that the selec-
tion of α can actually be seen as

selecting the phenomena that can be
modeled. For example, when modeling
a flexible structure, using α = 2 can
not model damping. In α = 1 case, the
damping can be modeled. By further
taking α = 0.5, other phenomena such
as viscoelasticity and anomalous
relaxation will be described. The other
advantage of this model is that exist-
ing optimization methods can still be
used since only integer order sα is
introduced.

Realization Methods
Though it is not difficult to under-
stand the theoretical advantages of
FOC, especially in frequency domain,
realization issue kept being some-
what problematic and perhaps was
one of the most doubtful points for
the application of FOC. Fractional-
order systems have an infinite dimen-
sion; while the conventional integer
order systems are finite dimension.
To realize fractional-order controllers
perfectly, all the past inputs should
be memorized. It is impossible in real
applications. Proper approximation
by finite differential or difference
equation must be introduced.

A frequency-band, fractional-order
controller can be realized by broken line
approximation in frequency domain. But
further discretization is required for this
method [18]–[20]. As to direct discretiza-
tion, various methods have been pro-
posed such as sampling time scaling
[21], short memory principle [7], Tustin
Taylor expansion [22], Lagrange function
interpolation method [10], while all the
approximation methods need truncation
of the expansion series. A detailed com-
parison of the above direct discretiza-
tion methods can be found in [23].

Frequency-Band Approximation
Since a fractional-order system’s fre-
quency responses can be exactly
known, approximating fractional-order
controllers by frequency-domain
approaches is natural. At the same
time, it is neither practicable nor desir-
able to try to make the order be frac-
tional in whole frequency range. The
frequency-band, fractional-order con-
trollers are required and practical in
most control applications. The broken-
line approximation method can be
introduced to realize frequency-band,
fractional-order I α controller. Let

FIGURE 6— An example of broken-line approximation (N = 3).
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( s
ωh

+ 1
s

ωb
+ 1

)α

≈
N−1∏
i=0

s
ω ′

i
+ 1

s
ωi

+ 1
. (23)

Based on Figure 6, ωi and ω ′
i can be

calculated as

ωi =
(

ωh

ωb

) i+ 1
2 − α

2
N

ωb,

ω ′
i =

(
ωh

ωb

) i+ 1
2 + α

2
N

ωb. (24)

Figure 7 shows the Bode plots of ideal
frequency-band case (α = 0.4, ωb =
200 Hz, ωh = 10, 000 Hz) and its
first-, second-, and third-order approx-
imations by broken-line approxima-

tion method. Even taking N = 2 can
give a satisfactory accuracy in fre-
quency domain.

Direct Discretization
The most commonly used discretiza-
tion method of a fractional-order con-
troller is called the short memory
principle method. This discretization
method is based on the observation
that for the Grünwald-Letnikov defini-
tion, the values of the binomial coeffi-
cients near “starting point’’ t = 0 are
small enough to be neglected or “for-
gotten’’ for large t. Therefore the prin-
ciple takes into account the behavior
of x(t) only in “recent past,” i.e., in

the interval [t − L, t], where L is the
length of “memory”

0Dα
t x(t ) ≈t−L Dα

t x(t ), (t > L). (25)

Based on approximation of the time
increment h through the sampling time
T , the discrete equivalent of the frac-
tional-order α derivative is given by

Z {Dα[x(t)]} ≈
⎛
⎝ 1

Tα

m∑
j=0

cjz
− j

⎞
⎠ X (z)

(26)

where m = [L/T] and the coefficients
cj are

c0 = 1,

cj = (−1) j
(

α

j

)

= j − α − 1
j

· cj−1, j ≥ 1.

(27)

It must be pointed out that the neces-
sary memory length, namely how good
the approximation is needed, should be
decided by the demand of specific con-
trol problem [23]. Larger memory gives
better performance but also leads to a
longer computation time. However, this
tradeoff is not restricted in FOC, actually
a common problem in digital control.

An Example in Motion Control
Here a factional order PIDk controller
is applied to torsional system’s back-
lash vibration suppression control
[24]. In PIDk controller D’s order can

FIGURE 7— Bode plots of ideal case, the first-, second-, and third-order approximations.
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be any real number, not necessarily be
an integer. The experimental setup of
torsional system is shown in Figure 8
where gear backlash exists. Tuning
fractional-order k can adjust control
systems frequency response directly;
therefore a straightforward design can
be achieved for robust control against
backlash nonlinearity.

The simplest model of the torsional
system with gear backlash is the three-
inertia model shown in Figure 9, where
Jm, Jg , and Jl are driving motor, gear
(driving flywheel) and load’s inertias,
Ks shaft elastic coefficient, ωm and ωl

motor and load rotation speeds, Tm

input torque, and Tl disturbance
torque. An interesting and more thor-
ough analysis of backlash nonlinearity
based on the describing function
method can be found in [25], in which
the fractional-order dynamics of the
backlash is illustrated.

Since the gear elastic coefficient Kg

is much larger than the shaft elastic
coefficient Ks (Kg >> Ks), for speed
control design the two-inertia model is
commonly used in which driving
motor inertia Jm and gear inertia Jg

are simplified to a single inertia
Jmg(= Jm + Jg) (see Figure 10).

The PID controller is designed
based on the simplified two-inertia
model. Simulation results with the sim-
plified two-inertia model show this
integer order PID control system has a
superior performance for suppressing
torsion vibration (see Figure 11).

For three-inertia plant P3m(s), the
close-loop transfer function of integer
order PID control system from ωr to
ωm is

Gclose(s) =
C I(s)P3m(s)

1 + C I(s)P3m(s) + C PD(s)P3m(s)

(28)

where C I(s) is I controller and C PD(s)
is  the paral lel  of  P and D con-
trollers in minor loop; therefore
Gclose(s) is  stable if and only if
Gl(s) = CI(s)P3m(s)+ C PD(s)P3m(s)
has positive gain margin and phase
margin. But as shown in Figure 12 the
gain margin of Gl(s) is negative. With

FIGURE 9— Block diagram of the three-inertia model.
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the existence of gear backlash the
designed integer order PID control
system will easily be unstable and lead
to backlash vibration.

To be robust against backlash non-
linearity, several methods have been
proposed, but their design processes
are very complicated. As an example,
for PID control introducing a low-pass
filter Kds/(Tds + 1) and redesigning
the whole control system with three-
inertia model can be a solution [26].
Due to the necessity of solving high
order equations, the design is not
easy to carry out. On the contrary,
fractional-order PIDk controller can
achieve a straightforward design of
robust control system against gear
backlash non-linearity. By changing
the D k controller’s fractional-order
k the frequency response of Gl(s)FIGURE 12— Bode plot of Gl(s) in PID control.
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can be directly adjusted (see Figure
13). As shown in Figure 14, letting k
be fractional order can improve
PIDk control system’s gain margin
continuously. When k < 0.84 the PIDk

control system will be stable; there-
fore with proper selected fractional-
order k the backlash vibration can be
suppressed.

At the same time, for better back-
lash vibration suppression perform-
ance higher Dk controller’s order is
more preferable. As shown in open-
loop gain plots of 0.85, 0.8, 0.7 and 0.5
order PIDk control systems (see
Figure 15), higher the D controller’s
order is taken lower the gain near gear
backlash vibration mode is. Based on
the tradeoff between robustness and
vibration suppression performance,
fractional-order 0.7 is chosen as D k

controller’s best order. Here the short
memory principle method is used to
realize the discrete D k controller.

As to the experimental results, first,
integer order PID speed control experi-
ment is carried out. As shown in Figure
16 the PID control system can achieve
satisfactory response when the back-
lash angle is adjusted to zero degree
(δ = 0), while severe vibration occurs
due to the existence of backlash non-
linearity (see δ = 0.6 case). This exper-
imental result is consistent with the
above analysis.

Figure 17 shows the experimental
results of fractional-order PIDk control
with 0.7 and 0.5 order Dk controllers.
Severe backlash vibration in the inte-
ger order PID control case is effective-
ly suppressed. The control system’s
stability and robustness against gear
backlash nonlinearity can be greatly
improved by the FOC approach. PID0.7

control system has a good robustness
against backlash nonlinearity, while
the error in the experimental response
curves is for encoders’ coarse quanti-
zation. The intermittent tiny vibra-
tions in lower order 0.5 case are due
to its relatively high gain near gear
backlash vibration mode in open-loop
frequency response.

It is interesting to find the vibration
suppression performance of fractional-
order PIDk control system shows some-
what “interpolation’’ characteristic. As

shown in Figure 18, PID1 control has
the most severe backlash vibration,
while PID0.85 is on the verge of instabili-
ty. PID0.95 and PID0.9 have intermediate
time responses. This experimental
result is natural since these orders are
continuous. The “interpolation’’ charac-
teristic is one of the main points to
understand the superiority of FOC as

providing more flexibility for designing
robust control systems.

Conclusions
FOC opened a new dimension for con-
trol theory. The highly developed con-
trol theory based on integer order
differential equations shows quite dif-
ferent characteristics when it is

FIGURE 14— Gain margin versus fractional order k.
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expanded into a fractional-order field.
At the same time, FOC is actually a
nice generalization of IOC theory. This
generalization gives huge space for
researchers to see conventional IOC
theory in a fresh light and find new and
interesting things.

From a practice viewpoint, the ideal
fractional-order controllers can only be
realized by proper approximation with
finite differential or difference equa-
tions. Namely, “design by FOC and real-
ize by IOC” are inevitable. The
practical advantages for FOC is to pro-

vide more flexibility and insight in con-
trol design and thus give a clear-cut
approach for designing robust control
system. The authors do believe some
well-designed IOC system might in fact
be a unconscious approximation of
FOC system.

And the dynamic features of “real”
systems can be described more ade-
quately by fractional-order models.
Especially for light materials and flex-
ible structures, not only damping,
but also other variety of physical
phenomena such as viscoelasticity

and anomalous relaxation should be
taken into account. This demand nat-
urally needs fractional-order models
and hence fractional-order con-
trollers, which are hopeful tools for
modeling and controlling complex
dynamic features.

Finally, the authors would like to
end this introduction of FOC with the
following expressive quotation:

“… all systems need a fractional
time derivative in the equations that
describe them … systems have memo-
ry of all earlier events. It is necessary

FIGURE 16— Time responses of the integer order PID control: (a) δ = 0◦ and (b) δ = 0.6◦ .
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FIGURE 17— Time responses of PIDk control: (a) k = 0.7 and (b) k = 0.5.
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to include this record of earlier events
to predict the future …

The conclusion is obvious and
unavoidable, Dead matter has memory.
Expressed differently, we may say that
nature works with fractional time
derivatives.”—S. Westerlund, “Dead
matter has memory!,” Physics Scripta,
vol. 43, pp. 174–179, 1991.

With fractional-order calculus and
control, we may be able to extend a lot
of new things.
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