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Nonlinear Dynamics of Duffing
System With Fractional Order
Damping
In this paper, nonlinear dynamics of Duffing system with fractional order damping is
investigated. The fourth-order Runge–Kutta method and tenth-order CFE-Euler method
are introduced to simulate the fractional order Duffing equations. The effect of taking
fractional order on system dynamics is investigated using phase diagram, bifurcation
diagram and Poincaré map. The bifurcation diagram is introduced to exam the effect of
excitation amplitude, frequency, and damping coefficient on the Duffing system with frac-
tional order damping. The analysis results show that the fractional order damped Duffing
system exhibits periodic motion, chaos, periodic motion, chaos, and periodic motion in
turn when the fractional order varies from 0.1 to 2.0. The period doubling bifurcation
route to chaos and inverse period doubling bifurcation out of chaos are clearly observed
in the bifurcation diagrams with various excitation amplitude, frequency, and damping
coefficient. �DOI: 10.1115/1.4002092�
Introduction
Fractional calculus is a branch of mathematical analysis that

tudies the possibility of taking real number or complex number
rders of the differential and integration operators. Since frac-
ional calculus has a profound impact on many engineering and
cientific areas such as automatic control, signal and image pro-
essing, bioengineering, electrochemistry, mechanics, viscoelas-
icity, and rheology, the applications of fractional calculus in en-
ineering and physics have attracted lots of interest internationally
1–3�. Especially, the fractional calculus based modeling of com-
licated dynamics is becoming a recent focus of research. The
ynamics of fractional order Chua, Lorenz, Rossler, Chen, Jerk,
nd Duffing were mainly investigated �4–10�. Obviously, the cha-
tic attractors for the fractional order systems should also have
arious fractional orders. The existing researches include the dis-
ussions on the effect of fractional order damping on the chaotic
ynamics of Duffing equation �11�, the bifurcation and chaotic
ynamics of the fractional order cellular neural networks �12,13�,
he fractionally damped Van der Pol equation with periodical ex-
itation �14,15�, etc. It has been shown that the chaotic motion
xists when the order of fractional damping is less than 1.

In recent years, the dynamics and vibration analysis of frac-
ional order damped systems are of great interest to researchers
16–21�. The fractional order operator’s characteristics of having
n unlimited memory leads to concise and more adequate descrip-
ions of complicated dynamics �22–24�. The Duffing equation,
hich is being used in many physical, mechanical, and even bio-

ogical engineering problems, has been modified to study the dy-
amics of fractional order systems �5,6,11�. However, the existing
esearches mainly focus on the effect of the fractional order damp-
ng. The effect of other parameters including the damping coeffi-
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cient, amplitude, and frequency of the external exciting force has
not been investigated. Because these parameters also play an im-
portant role in the dynamic characteristics of the fractional order
system, it is necessary to study the impact of the above parameters
on the fractional dynamics.

Bearing these ideas in mind, this paper discusses the nonlinear
analysis of fractionally damped Duffing system with the variation
in not only the fractional order but also the damping coefficient,
amplitude, and frequency of the external exciting force. An appro-
priate approximation of fractional order operator need to be intro-
duced for the analysis of fractional order system’s dynamics due
to its unlimited dimension. A linear approximation of fractional
order transfer function in frequency domain can be adopted to
study the chaotic characteristics �4,7�. However, it is found that
the approximated model obtained by frequency domain methods
exhibits chaos whereas the original system is not actually chaotic
�25�. In this paper, the direct approximation using Euler rule and
continued fraction expansion �CFE� is introduced for the numeri-
cal simulation of fractional Duffing system.

2 Fractional Calculus and Discretization Schemes
The two definitions for fractional differentiation and integration

are the Grünwald–Letnikov �GL� definition and Riemann–
Liouville �RL� definition �26�. The GL definition is well-known
for the discretization of fractional order operators. The GL defini-
tion is given by

aDt
� = lim

h→0

nh=t−a

h−��
j=0

n

�− 1� j��

j
� f�t − jh� �1�

where the binomial coefficients are

��

0
� = 1, ��

j
� =

��� − 1�, . . . ,�� − j + 1�
j!

for j � 1 �2�

While the RL definition is given with an integrodifferential ex-

pression. The definition for fractional order integral is
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aDt
−�f�t� =

1

�����
a

t

�t − ���−1f���d��� �3�

hile the definition of fractional order derivatives is

aDt
�f�t� =

d�

dt� �aDt
−��−��f�t�� �4�

here

��x� =�
0

�

yx−1e−ydy �5�

s the Gamma function, a and t are the limits, and � ���0 and
�R� is the order of the operation. � is an integer that satisfies
−1��	�.
Fractional order calculus is quite complicated in time domain,

s shown in the above two definitions. However, its Laplace trans-
orm is very straightforward. The Laplace transform of the frac-
ional order integral of f�t� is given by

L	0Dt
−�f�t�
 = s−�F�s� �6�

here F�s� is the Laplace transform of f�t�. While the Laplace
ransform of the fractional order derivative is

L	0Dt
�f�t�
 = s�F�s� − �

k=0

n−1

skDt
�−k−1f�0� �7�

here n−1���n again. If all the initial conditions are zeros, the
aplace transform of fractional order derivative is simply

L	0Dt
�f�t�
 = s�F�s� �8�

In order to perfectly realize the fractional order operators, all
he past inputs need to be memorized, which is impossible in real
pplications. There are mainly two discretization approaches for
he approximation of the operators s�, direct discretization and
ndirect discretization �27�. Various direct discretization methods
ave been proposed, such as short memory principle, sampling
ime scaling, and expansion of various operators such as Tustin,
l-Alaoui, and Euler operators by power series expansion �PSE�
r CFE �28,29�. For the PSE method, the differential equations are
n FIR filter structure while the approximation equations for the
FE method are in IIR filter structure. It has been shown that the
FE method is more efficient than the PSE method since the low
rder approximation equations with IIR structure can have excel-
ent approximations, which can only be achieved by the FIR struc-
ure with high order equations �30�.

In this paper, the CFE expansion of Euler operator is intro-
uced, namely,

s� = �1 − z−1

T
��

�9�

fter CFE expansion, the discretization result is as the following
quation:

Z	D�x�t�
 = CFE��1 − z−1

T
���X�z� 
 � 1

T
�� Pp�z−1�

Qq�z−1�
X�z�

�10�

here Pp�z−1� and Qq�z−1� are the polynomials with the orders of
and q, respectively. Usually, p and q can be set to be equal, p
q. The experimental results show that the tenth-order approxi-
ation of Euler operator is usually sufficient for engineering ap-

lications �31�. Therefore, in the following numerical analysis, the

rders of p and q here are chosen as ten.
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3 Fractional Damped Duffing System
The Duffing equation, a well-known nonlinear second-order

differential equation, is used to describe many physical, engineer-
ing, and even biological problems �32�. The equation is given by

m
d2

dt2x�t� + c
d

dt
x�t� + kx�t� + 
x3�t� = A sin��t� �11�

where m, c, k, 
, A, and � are mass, damping coefficient, linear
stiffness, nonlinear stiffness, excitation amplitude, and excitation
frequency, respectively. In conventional Duffing equation, the
damping force is proportional to the first-order derivative of the
displacement x�t�. However, many successful applications in me-
chanical engineering have been reported by expanding of the in-
teger order damping to a fractional order one because fractional
order damping can describe the complicated frequency depen-
dency of damping materials �17–19�. The fractional order damp-
ing force is

Fd = cD�x�t� �12�

where � is the fractional order of the damping. Therefore, Eq. �11�
can be rewritten as

m
d2

dt2x�t� + cD�x�t� + kx�t� + 
x3�t� = A sin��t� �13�

With the following property of sequential fractional derivatives
�26�

D�x�t� = D�1D�2, . . . ,D�n−1D�nx�t�
�14�

� = �1 + �2 + , . . . ,�n−1 + �n

and zero initial value condition, Eq. �13� can be transformed into
state equations, which are given by

d�x

dt� = y

d1−�y

dt1−� = z �15�

dz

dt
=

1

m
�A sin��t� − 
x3 − kx − cy�

The first two fractional order derivative equations in Eq. �15� can
be simulated using the CFE expansion of Euler operator, as shown
in Eq. �10�. The third equation can be numerically computed by
the Runge–Kutta method. The experiments demonstrated that the
fourth-order was adequate.

4 Results and Discussions
Dynamic trajectory can be used to check whether the system is

periodic or nonperiodic. However, it cannot provide enough infor-
mation to determine the onset of chaotic motion. Other analytical
methods are necessary such as bifurcation diagram, phase dia-
gram, Poincaré map, and Lyapunov exponent. The points on the
Poincaré map represent the return points for a time series with
constant interval T, where T is the driving period of the exciting
force. For quasi-periodic motion, the return points in the Poincaré
map form a closed curve. While for chaotic motion, the return
points in the Poincaré map form a geometrically fractal structure.
As to a periodic motion, the n discrete points in the Poincaré map
indicate that the period of motion is nT. The Poincaré map can
better identify the motion behavior of system with given param-
eters. At the same time, system dynamics with a range of param-
eter variation can be observed thoroughly using bifurcation dia-
grams �33�. The bifurcation diagram can provide valuable insights
into system’s nonlinear dynamic behavior. In this paper, the bifur-
cation diagrams are plotted under parameter variations with con-

stant interval. The dynamic behaviors of fractional order damping
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uffing are analyzed with various fractional order of damping,
xcitation frequency and amplitude and damping coefficient.

In this paper, the nonlinear dynamics of Duffing system with
ractional order damping is simulated using MATLAB/SIMULINK.
he fractional derivatives of Eq. �15� are approximated using the
FE expansion of Euler operator in which the order of the ap-
roximation is 10. First, fixed parameters m=1, 
=1, k=−1, c
0.9, �=1, and A=0.6 are adopted. And zero initial condition is

elected, i.e., x�0�=0, y�0�=0, and z�0�=0.
In order to test the approximation method for numerical simu-

ation, the case of �=1.0 is calculated. When �=1.0, the system is
ctually described by the conventional Duffing equation with in-
eger order damping. Its phase trajectory and Poincaré map are
hown using solid line and point in Fig. 1 as a baseline for com-
arison. Next, the above conventional Duffing system with the
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Fig. 1 Phase trajectory and Poincaré map at �=1.0
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same parameters is simulated again but using the proposed ap-
proximation method for the fractional order derivatives, as shown
in Eq. �10�. The new results are plotted using dashed-dotted line
and point, as show in Fig. 1. A good agreement can be observed
between solid and dashed-dotted lines and points in the figure.
The average square error from the baseline by using the approxi-
mation method is 0.00152625, which verifies its accuracy for
simulating the fractional order damped Duffing system.

4.1 Influence of Fractional Order Damping. The fractional
order varies from 0.08 to 2.0. Bifurcation can be easily detected
by examining the relationship between x and the fractional order
�. The bifurcation diagram with step size of ��=0.005 is shown
in Fig. 2. At each value of the fractional order �, the first 50 points
of the Poincaré map are discarded and the values of x for next 100
points are plotted in the bifurcation diagram. It can be observed
that the fractional order significantly affects dynamic characteris-
tics. When 0.08��	0.387, the response of Duffing system with
fractional order damping is a periodic motion. As shown in Fig.
3�a� for �=0.38, there is one isolated point in the Poincaré map
and the phase trajectory shows a regular period-1 motion. After
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Fig. 2 Bifurcation diagrams of x versus �
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ndergoing the periodic motion zone, the motion suddenly comes
nto the first chaotic region. Hence the chaotic state remains from
.388 to 0.733.

Figure 3�b� shows the phase trajectory and Poincaré map for
=0.48. There is a strange attractor representing chaotic motion

n the Poincaré map. And the phase trajectory shows an irregular
otion. In order to clearly identify the dynamic behavior from a

uantitative viewpoint, the largest Lyapunov exponent developed
y Wolf et al. �34� is introduced to explain the characteristics of
ystem behavior. The corresponding largest Lyapunov exponent
hen �=0.48 is 1.0596. In addition, the periodic motion windows

ppear in the first chaotic motion zone. For �=0.50. a period-4
otion can be identified from the four isolated points in the
oincaré map �see Fig. 3�c��. If the fractional order � further

ncreases, the system response returns to periodic motion. When
=0.7336, the motion is a period-32 and then becomes period-1
hen �=0.81 by an inverse period doubling bifurcation. Figure
�d� shows the phase trajectory and Poincaré map for �=0.75. It
an be seen that the periodic window is a period-2 motion.

When ��1.1, the system response gradually enters into the
econd chaotic zone by the route of period doubling bifurcation.
he second chaotic zone for � is from 1.28 to 1.58. As shown in
ig. 3�e� when �=1.38, again there is a strange attractor showing
haotic motion in Poincaré map and the corresponding largest
yapunov exponent is 1.0752. With further increase in � when
�1.58, the motion returns to the periodic motion region. Figure
�f� with �=1.78 clearly exhibits a period-3 motion.
From the above analysis, it can be concluded that when 0.08
��2.0 the fractional order damped Duffing system exhibits the

eriodic, chaotic, periodic, chaotic, and periodic motion in turn.
he motion turns into chaos through a route of sudden transition

rom the periodic to chaotic motion when 0.1���0.75 and then
eaves chaos by an inverse period doubling bifurcation. When �

1.1, it comes into chaos again through a route of period dou-
ling bifurcation and leaves chaos through a route of period re-
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ducing bifurcation. The system dynamics eventually becomes a
period-3 motion. In addition, the periodic motion windows appear
in the both chaotic motion zones.

4.2 Influences of Excitation Frequency and Amplitude.
The above analysis and conclusion focus on the effect of frac-
tional order � on system’s dynamic behavior. However, the exci-
tation frequency and amplitude always play an important role in
dynamic characteristics. In the analysis below, the fractional order
� is fixed to 0.5 while the excitation frequency � and amplitude A
are used as control parameters. The bifurcation diagram with vari-
ous � is shown in Fig. 4�a�, where �=0.5, A=0.6, c=0.9, and the
bifurcation diagram with different A is shown in Fig. 4�b� with
�=0.5, �=1.0, and c=0.9. The constant interval for the variations
of � and A in the below two bifurcation diagrams is set as 0.005.

In Fig. 4�a�, the excitation frequency varies from 0.1 to 2.0.
When 0.2���0.85, the fractional order damped Duffing sys-
tem’s response is a periodic motion. As shown in Fig. 5�a�, when
�=0.75, there is one isolated point in the Poincaré section and the
phase trajectory shows a regular period-1 motion. After the peri-
odic motion zone, the motion gradually enters the chaotic region
by the route of period doubling bifurcation. The chaotic state re-
mains from 0.94 to 1.32. When �=1.26, a strange attractor ap-
pears representing chaotic motion in the Poincaré map and the
phase trajectory shows an irregular motion �see Fig. 5�b��. In ad-
dition, the large periodic motion windows from �=1.05 to 1.24
appear in the chaotic motion zone. As shown in Fig. 5�c� for �
=1.12, a period-5 motion can be identified from the five isolated
points in the Poincaré map. When � is further increased, the sys-
tem response returns to period-1 motion through the route of in-
verse period doubling bifurcation.

It can be seen from Fig. 4�b� that when the excitation amplitude
A increases from 0.1 to 2, the system response comes into the
chaotic zone by the route of period doubling bifurcation, and
leaves the chaotic zone by the route of inverse period doubling
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ifurcation. When 0.1�A�0.403, the fractional order damped
uffing system’s response is a period-1 motion as illustrated in
ig. 6�a�. There is one isolated point in the Poincaré map and the
hase trajectory shows a regular period-1. When the excitation
mplitude A increases from 0.403, the system response gradually
nters the chaotic zone through the period doubling bifurcation. It
s clear that when A=0.42, the motion is a period-2 and then
ecomes a period-4 for A=0.43. Figure 6�b� shows the phase tra-
ectory and Poincaré map for A=0.65 as an example of further
ncrease in A. A strange attractor can be observed, which is rep-
esenting chaotic motion in the Poincaré section and the trajectory
hows an irregular motion. From Fig. 4�b�, it can be seen that
eriodic motion windows appear in the chaotic region. When A
0.75, the system response gradually returns to periodic motion

one through the inverse period doubling bifurcation.

4.3 Influence of Damping Coefficient. The damping coeffi-
ient is one of the important factors for adjusting the system dy-
amics in many engineering applications. For example, the vibra-
ion of rotating machinery is always suppressed through the
hange in damping. It is necessary to analyze the effect of damp-
ng coefficient on the dynamic of fractional order damped Duffing
ystem. The damping coefficient c is used as control parameter for
he bifurcation diagram in Fig. 7. The other parameters for this
ase are �=0.5, A=0.6, �=1.0, and the step size of the control
arameter c is 0.005. It can be seen from Fig. 7 that as the damp-
ng coefficient increases from 0.1 to 2.0, the system motion sud-
enly enters into the chaos from the period-1 and then leaves
haos by the route of inverse period doubling bifurcation. Figure
�a� shows the phase trajectory and Poincaré map for c=0.17.
here is a strange attractor representing chaotic motion in the
oincaré map and the trajectory shows an irregular motion. The

nverse period doubling bifurcation is clear in Fig. 7 and, finally,
he system return to the periodic motion. Figure 8�b� shows the
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Fig. 6 Phase trajectory and Poincaré map with various A

0 0.5 1 1.5 2
−2

−1

0

1

2

c

x(
nT

)

Fig. 7 Bifurcation diagrams of x versus c

ournal of Computational and Nonlinear Dynamics

ded 10 Nov 2010 to 202.120.43.250. Redistribution subject to ASM
phase trajectory and Poincaré map for c=1.13. There are only two
points in the Poincaré map. Therefore, the system response is
period-2 motion.

5 Conclusions
The nonlinear dynamics of the fractional order damped Duffing

system is investigated in this paper. The fourth-order Runge–Kutta
method and tenth-order CFE-Euler approximation method are
adopted to simulate the fractional order damped Duffing equa-
tions. The numerical simulation results with �=1.0 show the
CFE-Euler approximation method is proper for approximating the
fractional order equations.

The phase diagram, the Poincaré diagram, the bifurcation dia-
gram, and the largest Lyapunov exponent are introduced to evalu-
ate the effect of the fractional order damping on dynamic behav-
iors. The analysis shows that the fractional order damped Duffing
system exhibits periodic motion, chaos, periodic motion, chaos,
and periodic motion in turn when the fractional order changes
from 0.1 to 2.0. A period doubling route to chaos and inverse
period doubling route from chaos to periodic motion can be
clearly observed. The bifurcation diagram is introduced to inves-
tigate the effects of excitation amplitude, frequency, and damping
coefficient on the Duffing system with fractional order damping. It
is observed that the fractional order damped system exhibits the
complicated nonlinear dynamic behavior under external excita-
tion.

The numerical results verify the significant effect of fractional
order damping on system dynamics. Therefore more attention
should be paid to the damping with fractional order for the design,
analysis and control of system dynamics. Specifically, the dy-
namic analysis of rotor bearing system is important for the exact
diagnosis of malfunctions and improving the dynamic character-
istics. The further research would introduce the concept of frac-
tional order damping to analyze the nonlinear behavior of rotating
machinery and, thus, enhance the dynamic analysis accuracy and
maintenance efficiency.
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