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a b s t r a c t

Nonlinear dynamic characteristics of rub-impact rotor system with fractional order damp-
ing are investigated. The model of rub-impact comprises a radial elastic force and a tangen-
tial Coulomb friction force. The fractional order damped rotor system with rubbing
malfunction is established. The four order Runge–Kutta method and ten order CFE-Euler
method are introduced to simulate the fractional order rub-impact rotor system equations.
The effects of the rotating speed ratio, derivative order of damping and mass eccentricity
on the system dynamics are investigated using rotor trajectory diagrams, bifurcation dia-
grams and Poincare map. Various complicated dynamic behaviors and types of routes to
chaos are found, including period doubling bifurcation, sudden transition and quasi-peri-
odic from periodic motion to chaos. The analysis results show that the fractional order
rub-impact rotor system exhibits rich dynamic behaviors, and that the significant effect
of fractional order will contribute to comprehensive understanding of nonlinear dynamics
of rub-impact rotor.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since fractional calculus has a profound impact on many engineering and scientific areas such as automatic control, signal
and image processing, bioengineering, electrochemistry, mechanics, viscoelasticity and rheology, the applications of frac-
tional calculus in engineering and physics have become a recent focus of research internationally [1,2]. Especially the
dynamics and vibration analysis of fractional order damped systems are of great interest to researchers [3–9]. The fractional
order operator’s characteristic of having an unlimited memory leads to a concise description of complicated system dynam-
ics. For example, the backlash and impact can be more adequately analyzed [10,11]. Ge et al. introduce the chaos control of
the fractional order rotational mechanical system [12]. Machado et al. also argue that while the dynamics of each individual
element has an integer-order nature, the global dynamics reveals the existence of both integer and fractional order nature
[13]. Therefore, it is essential to consider the fractional order damping in studying the dynamic characteristics.

Nonlinear dynamic analysis of rotor-bearing system is of great significance to exactly diagnose the malfunctions and
improve the dynamic characteristics of a rotor system effectively. Therefore a number of articles on this topic have been
published to analyze the nonlinear dynamics of rub-impact rotor.

Muszynska surveys the publications on rub phenomena up to then and discussed the major physical phenomena that
occur during rubbing [14]. Beatty proposes a mathematical model for rubbing forces which is still widely used and he
concluded some important points for diagnosing this fault [15]. Chu and Zhang analyze the bifurcation and chaotic motion
of a rub-impact rotor system, three different routes to chaos along with the increasing rotating speed are found [16]. Later,
. All rights reserved.

http://dx.doi.org/10.1016/j.cnsns.2010.07.005
mailto:caojy@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.cnsns.2010.07.005
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


1444 J. Cao et al. / Commun Nonlinear Sci Numer Simulat 16 (2011) 1443–1463
Chu observes very rich forms of periodic and chaotic vibrations through experimental verification. These results are of
importance to the fault diagnosis of the rub-impact problem [17]. Ehrich studies about the bifurcation of a bearing-rotor sys-
tem identifying a sub-harmonic vibration phenomenon in a rotor dynamic system [18]. Goldman and Muszynska analyze the
chaotic behavior of rub-impact rotor using numerical emulation and simple experimental verification, they conclude that the
rub can lead to higher order harmonic, sub-harmonic fractional frequency, or to chaotic vibrations [19]. Lin et al. analyze the
nonlinear behavior of rub-related vibration in rotating machinery. The effects of rotating speed, clearance, damping factor,
friction coefficient, and boundary stiffness are investigated [20]. Feng and Zhang discuss the vibration phenomena of a rotor
rubbing with a stator caused by an initial perturbation. They find that in the case of no friction between the rotor and the
stator, the full rubbing behaves as forward whirling and when the friction was present the full rubbing behaves as backward
whirling [21]. Choi argues the nonlinear model of rotor system when partial rub occur and finds the typical nonlinear phe-
nomena of partial rub through the estimated nonlinear model and experiments [22]. Chang-Jian et al. analyze nonlinear dy-
namic of rub-impact rotor supported by turbulent journal bearings with nonlinear suspension [23]. Qin et al. discuss the
nonlinear vibration responses of a rub-impact overhung rotor based on the transfer matrix method and observe the rich non-
linear dynamics induced by the variation of rotating speed, imbalance and external damping [24]. Shen et al. investigate the
vibration characteristics of a rub-impact rotor-bearing system excited by mass unbalance [25], while Patel and Darpe exam-
ine vibration response of the cracked rotor in presence of rotor stator rub [26].

Based on the above analysis, we found that the rub-impact rotor system has very complicated spectrum characteristics
and can exhibit very rich form of periodic, quasi-periodic and chaotic vibrations. Moreover, the effects of rotating speed,
clearance, damping factor, friction coefficient, and mass unbalance are discussed. However, most of the previous researches
are based on integer-order damping and the nonlinear dynamics of a rub-impact rotor-bearing system with fractional order
damping has rarely been investigated. Therefore, the present work analyzes the dynamic behavior of rub-impact rotor with
fractional order damping. The analysis focuses on the effects of fractional order damping, rotating speed and mass eccentric-
ity. For simplicity, the Jeffcott rotor is taken into account in the dynamic analysis and the rubbing forces are supposed to
consist of a radial elastic force and a tangential Coulomb friction force. The ten order direct approximation using Euler rule
and Continued Fraction Expansion is introduced for numerical simulation of rub-impact rotor system with fractional order
damping. Dynamic trajectory, power spectrum, Poincare map, bifurcation diagram are applied to analyze the dynamic
response.

2. Fractional calculus and approximation schemes

The two definitions for fractional differentiation and integration are the Grunwald–Letnikov (GL) definition and the Rie-
mann–Liouville (RL) definition [27]. The GL definition is the best known one since it is most direct for the digital realization
of the fractional order operators. The GL fractional derivative of continuous function f(t) is given by:
aDa
t f ðtÞ ¼ lim

h!0
h�aX½t�a

h �

j¼0

ð�1Þ�j a
j

� �
f ðt � jhÞ ð1Þ
where [�] is a truncation, a
j

� �
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j
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j!Cða�jþ1Þ, while the
RL definition is given by:
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Fractional order calculus is quite complicated in time domain, as shown in the above two definitions. However, it is usu-

ally more easily to describe in Laplace domain. The Laplace transform of the fractional integral of f(t) is given by:
L 0Da
t f ðtÞ

� �
¼ saFðsÞ ð3Þ
where F(s) is the Laplace transform of f(t). The Laplace transform of the fractional derivative of f(t) is given as follows:
L 0Da
t f ðtÞ
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¼ saFðsÞ �
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sk
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h i
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where n � 1 < a < n again. If all the initial conditions are zeros, the Laplace transform of fractional derivative is simplified to
Eq. (3). It can be viewed From Eq. (3) that the numerical computation of the fractional order operators sa is important to solve
the fractional derivative equation.

In order to exactly realize the fractional order operators, all the past inputs need to be memorized, which is not impos-
sible in real applications. There are mainly two discretization methods for the approximation of the operators sa, direct dis-
cretization and indirect discretization [28]. Various direct discretization methods have been proposed, such as short memory
principle, sampling time scaling and the expansion of various operators such as Tustin, Al-Alaoui and Euler operators by
Power Series Expansion (PSE) or Continued Fraction Expansion (CFE) [29–31]. For the PSE method, the differential equations



J. Cao et al. / Commun Nonlinear Sci Numer Simulat 16 (2011) 1443–1463 1445
are in FIR filter structure; while the approximation equations for the CFE method are in IIR filter structure. The following
explanation is to adopt Euler operator for direct discretization of the fractional order operator, which can be given by:
sa ¼ 1� z�1

T

� �a

ð5Þ
Then perform CFE, the discretization result is as follows:
ZfDaxðtÞg ¼ CFE
1� z�1

T

� �a
( )

XðzÞ � 1
T

� �a Ppðz�1Þ
Qqðz�1ÞXðzÞ: ð6Þ
where CFE{u} denotes the Continued Fraction Expansion of u; p and q are the orders of the approximation; P and Q are poly-
nomials of degrees p and q. Usually p, q and n can be set to be equal, p = q = n. In the below numerical analysis, the order of
the approximation equation is chosen as 10.
3. Mathematical modeling

The rub-impact model based on Jeffcott rotor system is derived by Chu and Zhang [16]. Supposing the center of the stator
to be the origin of the coordinates, Displacements of the disk center (x,y), the mass eccentricity of this disk eM, and the rub-
impact forces (Fx,Fy), the system equations of motion can be described as follows:
M d2x
dt2 þ c dx

dt þ kx ¼ MeMx2 cos xt þ Fx

M d2y
dt2 þ c dy

dt þ ky ¼ MeMx2 sin xt þ Fy �Mg

8<
: ð7Þ
where c is the damping coefficient of the shaft, k is the stiffness coefficient of the shaft, x is the rotating speed.
The damping model using fractional derivative has many successful applications in the mechanical engineering [32–34],

because it can exhibit the complicated frequency dependency of damping materials. The fractional order damping force
using fractional calculus is:
Fd ¼ cDaxðtÞ ð8Þ
where a is fractional and derivative order of damping. When the fractional order damping is taken into account in dynamic
analysis of rub-impact rotor, the system motion equation can be changed as:
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Fig. 1. Bifurcation diagrams of X and Y versus s for TS = 2pi/500 and a = 0.5.
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M d2x
dt2 þ cDaxþ kx ¼ MeMx2 cos xt þ Fx

M d2y
dt2 þ cDayþ ky ¼ MeMx2 sin xt þ Fy �Mg

8<
: ð9Þ
The rotor rub-impact force model used in this paper is proposed by Beatty [15], It is assumed that there is an initial clear-
ance of d between rotor and stator, the radial force from impact is elastic and the tangential friction force satisfies the Cou-
lomb type of frictional relationship. When the rubbing happens, the radial impact force FN and the tangential rub force FT can
thus be written as
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Fig. 2. Bifurcation diagrams of X and Y versus s for TS = 2pi/300 and a = 0.5
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Fig. 3. Bifurcation diagrams of X and Y versus s for TS = 2pi/500 and a = 1.0.



Fig. 4. Phase trajectory, Poincare map and power spectrum for s = 0.5.

Fig. 5. Phase trajectory, Poincare map and power spectrum for s = 1.3.
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FN ¼
0 ðr < dÞ
ðr � dÞkc ðr P dÞ

�
; FT ¼ fFN ð10Þ
where kc is radial stiffness of the stator. f is the friction coefficient between the stator and the rotor. r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radial

displacement of the rotor. In the x � y coordinate system, these two forces can be rewritten as:
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It is clearly indicated in this equation that when r < d, there will be no rub-impact interaction and the rub-impact forces are
zero while the rub-impacting will happen if r P d.

Taking the nonlinear rub-impact forces and fractional order damping into account, the system governing equation of rub-
impact rotor can be simplified by the non-dimensional parameter. The non-dimensional parameters are introduced as
follows:
X ¼ x
d
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d
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2
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d

where X and Y are the non-dimensional displacements of the disk center, T is the non-dimensional time, f is the damping
ratio referred to the critical damping of a linear system with the larger stiffness k, s is the rotational speed ratio, xn is the
natural frequency of the linear stiff system. The non-dimensional governing equations are as follows:
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Fig. 6. Phase trajectory, Poincare map and power spectrum for s = 1.68.



Fig. 7. Phase trajectory, Poincare map and power spectrum for s = 2.1.

Fig. 8. Phase trajectory, Poincare map and power spectrum for s = 2.45.
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Fig. 9. Phase trajectory, Poincare map and power spectrum for s = 2.53.

Fig. 10. Phase trajectory, Poincare map and power spectrum for s = 2.7.
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4. Results and discussions

The nonlinear dynamics of rub-impact rotor with fractional damping is digitally simulated in Matlab/Simulink. The frac-
tional derivative of Eq. (12) is approximated by IIR discrete model employing CFE and Euler rule, in which the order of
approximation model is equal to 10. The four order Runge–Kutta method is used to solve the system non-dimensional gov-
erning equations. One of the key parameters for numerical analysis is the time step (TS), the bifurcation diagrams for TS = 2p/
500 and TS = 2p/300 are showed in Figs. 1 and 2, respectively. Because lower time step can provide the exact results and
capture the transient dynamic behaviors, The time step used here is set to 2p/500. The stable response value can be obtained
through discarding the output of former 50 periods and remaining the output of last 100 periods. That is to say, the response
output in diagrams should be considered as stable state output. Therefore, a large number of computations are required, and
the number of data points plotted in dynamic orbit diagrams is 50,000. In the numerical analysis, the system parameters are
specified as: M = 30 kg, k = 5.6 � 105 N/m, kc = 6.5 � 106 N/m, c = 1100 Ns/m, d = 0.2 mm, eM = 0.1 mm, g = 9.8 N/kg. The ini-
tial state is set to X(0) = 0, Y(0) = 0.
4.1. Influence of speed

The rotational velocity is one of the key parameters affecting the dynamic behavior of rotor-bearing system. When
a = 0.5, the bifurcation diagram obtained by using the rotational speed ratio as the control parameter is shown in
Fig. 1. In case of a = 1.0, the bifurcation diagram is illustrated in Fig. 3. Because the rub-impact rotor system modeled
by integer-order damping is addressed adequately in the past, the following analysis is based on a = 0.5. The value of
s ranges from 0.1 to 4.5 and the step size is 0.003. The vertical axis of Fig. 1 is the non-dimensional X and Y. It is viewed
that the system vibration is periodic one motion at very low rotational velocity. Fig. 4 shows the Poincare map, phase
trajectory and power spectrum for s = 0.5. There is one isolated point in the Poincare map. As the rotating speed increase,
the system vibration comes into the periodic two motion region ranging from 1.21 to 1.47. The Poincare map, phase tra-
jectory and power spectrum at s = 1.3 is shown in Fig. 5. After undergoing the period motion zone, the rotor system en-
ters into the first chaotic region. Hence the chaotic state remains from1.53 to 1.90. Fig. 6 shows the rotor orbit, Poincare
map and power spectrum for s = 1.68. There is a strange attractor representing chaotic motion in the Poincare map and a
continuous frequency spectrum in the power spectrum. The corresponding largest Lyapunov exponent when s = 1.68 is
0.068. All of these results prove that the system motion is chaotic. At about 1.95, the magnitude skip appears in the sys-
Fig. 11. Phase trajectory, Poincare map and power spectrum for s = 3.05.
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tem vibration. And then the system comes into the quasi-periodic motion zone remaining from 1.95 to 2.285. Fig. 7
shows the rotor orbit, Poincare map and power spectrum for s = 2.1. Irregular rotor orbit and a closed circle in the pro-
jection of Poincare section are observed. In order to clearly identify system dynamic behavior from a quantitative view of
point, the largest Lyapunov exponent is introduced to support the characteristics of system behavior. The corresponding
largest Lyapunov exponent at s = 2.1 is 0.

When the speed continues to increase, the system motion comes into the second chaotic region through a route of period
doubling bifurcation and leaves chaos through a route of sudden transition from the chaotic to the periodic motion. Fig. 8
shows two points in the Poincare map and two peaks, at 1� and 0.5�, in the power spectrum. The periodic four motion
at s = 2.53 can be illustrated as Fig. 9. Only four points appear in the Poincare map, and there are 1�, 0.5�, 0.25� and
0.75� in the power spectrum. As the speed increases, the rotor response becomes quasi-periodic, with a closed circle in
the Poincare map in Fig. 10. After undergoing quasi-periodic zone, the half frequency motion gradually dominates the rotor
response, and the system becomes unstable and suddenly enters into the chaotic motion along with the rubbing. Chaotic
motion at s = 3.05 is shown in Fig. 11. The irregular orbit, the continuous spectrum with many frequencies, and a great num-
ber of discrete points with irregular form appear. Moreover, the corresponding largest Lyapunov exponent is 1.9673. As s
further increased, the system vibration response suddenly leaves the chaotic motion and comes into the periodic motion.
The periodic two motion exists in the region of 3.79 < s < 4.5. It can be identified from Fig. 1.
Fig. 12. Bifurcation diagrams of Y versus a: (a) s = 2.4, (b) s = 3.2, (c) s = 4.1.



Fig. 13. Phase trajectory, Poincare map and power spectrum for a = 0.45.

Fig. 14. Phase trajectory, Poincare map and power spectrum for a = 0.6.
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Fig. 15. Phase trajectory, Poincare map and power spectrum for a = 0.76.

Fig. 16. Phase trajectory, Poincare map and power spectrum for a = 1.15.
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Fig. 17. Phase trajectory, Poincare map and power spectrum for a = 0.45.

Fig. 18. Phase trajectory, Poincare map and power spectrum for a = 0.8.
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Fig. 19. Phase trajectory, Poincare map and power spectrum for a = 1.35.

Fig. 20. Phase trajectory, Poincare map and power spectrum for a = 0.6.
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Fig. 21. Phase trajectory, Poincare map and power spectrum for a = 1.3.
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Fig. 22. Bifurcation diagrams of X and Y versus f for s = 2.3, a = 0.5, b = 0.3.
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Fig. 23. Phase trajectory, Poincare map and power spectrum for f = 0.04, s = 2.3.
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Fig. 24. Phase trajectory, Poincare map and power spectrum for f = 0.09, s = 2.3.
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4.2. Influence of fractional order of damping

The change of dynamic characteristics of rotating machinery is well achieved through damping adjustment. So it is essen-
tial to study the effect of the fractional order of damping in order to comprehensively understand the dynamic behavior of
fractional rotor system. In the following numerical analysis, the derivative order of damping is used as control parameters of
bifurcation diagrams. The range of a is from 0.4 to 1.4, and the step size is 0.007. Fig. 12 shows the vibration response of rub-
impact rotor is varying along with the change of a. It can be seen from Fig. 12 that the fractional order exhibits great effect on
the dynamic characteristics.

In Fig. 12a, it is obvious that at s = 2.4, the rotor response enters into the chaotic zone through the period doubling bifur-
cation. When a < 0.49, the motion is synchronous with periodic one, as demonstrated in Fig. 13. As the fractional order in-
creases, the rotor response becomes synchronous with periodic two for 0.49 < a < 0.72. Fig. 14 shows that there are two
points in the Poincare map and two peaks, at 0.5� and 1�, in the power spectrum. From 0.73 to 0.78, the system response
becomes periodic four motion as Fig. 15. After undergoing the period doubling bifurcation, the rotor motion comes into the
chaotic zone. The motion remains chaotic for a > 0.89, as shown in Fig. 16.

In Fig. 12b, it can be observed that at s = 3.2, the rotor response leaves the chaotic zone through the route of sudden tran-
sition from the chaotic to the periodic two motion, and comes into the second chaotic through the route of period doubling
bifurcation. When 0.4 < a < 0.56, the motion is chaotic, as demonstrated in Fig. 17. There are irregular rotor orbit and the
corresponding largest Lyapunov exponent for this case is 0.625. The amplitude of 0.48� is larger than that of 1� in the power
spectrum. It can be viewed that the aggravated half frequency motion increases the vibration response and induces the rub-
bing. As the fractional order increases, the rotor response suddenly becomes synchronous with periodic two for
0.56 < a < 0.97. Fig. 18 shows two points in the Poincare map and two peaks, at 0.5� and 1�, in the power spectrum. After
undergoing the period doubling bifurcation, the rotor motion comes into the second chaotic zone. The motion remains cha-
otic for 1.1 < a < 1.4, as shown in Fig. 19. There are continuous frequencies in the power spectrum, and two sections of many
separated points in Poincare map. The corresponding largest Lyapunov exponent for a = 1.35 is 0.7249.

In Fig. 12c, it can be viewed that at s = 4.1, the rotor response comes into the chaotic region through the route of period
doubling bifurcation. When 0.4 < a < 1.06, the motion is periodic two with synchronous frequency 1� and sub-synchronous
frequency 0.5�, as demonstrated in Fig. 20. As the fractional order increases, the rotor response gradually becomes chaotic
after undergoing the period doubling bifurcation. The motion maintains chaos from 1.17 to 1.4. Fig. 21 shows the rotor orbit,
Poincare map and power spectrum for a = 1.3. The corresponding largest Lyapunov exponent for this case is 1.381. In addi-
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Fig. 25. Phase trajectory, Poincare map and power spectrum for f = 0.04, s = 2.8.
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tion, the irregular rotor orbit, continuous frequency spectrum and a large amount of points in the Poincare map are viewed.
All of these results in this case show that the rotor motion is chaotic.

Therefore, we can conclude by the foregoing analysis that the fractional rub-impact rotor system exhibits rich dynamic
characteristics. The fractional order of damping has great effect on the dynamic behavior of rotor system. So it can be taken
into account in the design and control of rotor-bearing system. Similarly, the value of damping factor is also one of the
important parameters affecting the dynamic characteristics of rotor systems. In order to investigate the influence of the va-
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Fig. 26. Bifurcation diagrams of X and Y versus s for f = 0.06, a = 0.5, b = 0.3.

Fig. 27. Bifurcation diagrams of Y versus b.
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lue of damping factor, the bifurcation diagram for 0.03 6 f 6 0.12 with step size Mf = 0.0005 is illustrated in Fig. 22. The other
parameters for this case are a = 0.5, s = 2.3, b = 0.3. It can be seen from Fig. 22 that as the damping factor increases from 0.03
to 0.12, the rotor system response leaves chaos by the route of inverse period doubling bifurcation and gradually enters into
the periodic one motion. Fig. 23 shows the rotor orbit, Poincare map and power spectrum for f = 0.04, s = 2.3, b = 0.3. There
are irregular rotor orbit and the corresponding largest Lyapunov exponent for this case is 0.486. The amplitude of 0.5� is
larger than that of 1� in the power spectrum. It can be viewed that the aggravated half frequency motion increases the vibra-
tion response and induces the rubbing. As the damping ratio increases, the rotor response gradually becomes synchronous
with periodic two for 0.08 < f < 0.105, as demonstrated in Fig. 24. There are two points in the Poincare map and two peaks, at
0.5� and 1�, in the power spectrum. After undergoing the period doubling bifurcation, the rotor motion comes into the peri-
odic one motion. Fig. 25 shows the rotor orbit, Poincare map and power spectrum for f = 0.04, s = 2.8, b = 0.3. There are five
points in the Poincare map and five peaks in the power spectrum. When f = 0.06, the bifurcation diagram using the speed
ratio as the control parameter is shown in Fig. 26. The speed ratio ranges from 0.1 to 4.5 with Ms = 0.02, the other parameters
for this case are f = 0.06, a = 0.5, b = 0.3. The much rich dynamic behaviors could be observed through the same methods in
Section 4.1.

It is proved by the above analysis that the damping factor is also one of the important parameters affecting dynamic char-
acteristics of rotor system.

4.3. Influence of eccentricity

The exciting forces induced by the mass imbalance are major source of rotor vibrations in field, so it is necessary to ana-
lyze the effect of eccentricity on the motion characteristics of the rub-impact rotor system with fractional order damping.
Fig. 27 shows bifurcation diagrams for system using b as the control parameter. The range of b is from 0.2 to 1.2, and the
step is 0.01. The speed ratio is equal to 3.2 or 4.1. The derivative order of damping is set to 0.5 or 0.8. The other parameters
in the numerical simulation for this case are constant.

In Fig. 27, it can be observed that as the mass eccentricity increases, all the system responses at various conditions come
into the chaotic state. The main reason is that the increased unbalanced force and vibration amplitude eventually lead to the
occurrence of rotor–stator rubbing. The motion becomes chaotic, and this chaos is retained for higher mass eccentricity.
Fig. 28 shows the rotor orbit, Poincare map and power spectrum for s = 3.2, a = 0.5, b = 0.8. There are irregular rotor orbit,
continuous frequency spectrum and a large amount of dispersed points in the Poincare map. The corresponding largest
Fig. 28. Phase trajectory, Poincare map and power spectrum for s = 3.2, a = 0.5, b = 0.8.



Fig. 29. Phase trajectory, Poincare map and power spectrum for s = 3.2, a = 0.8, b = 0.4.
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Lyapunov exponent for this case is 1.015. They can prove the motion is chaotic. While the small mass eccentricity exists, the
rotor response is described by Fig. 29. The parameters for this case are s = 3.2, a = 0.8, b = 0.4. Only two points in the Poincare
map and two peaks in the power spectrum are examined. Therefore the system response is periodic two motion.
5. Conclusion

The nonlinear dynamics of the fractionally damped rub-impact rotor system are investigated in this paper. The damping
model for rub-impact rotor system is described using fractional calculus. A radial elastic force and a tangential Coulomb fric-
tion force are assembled to model the rotor–stator rubbing. The four order Runge–Kutta method and ten order CFE-Euler
approximation method are used to simulate the fractional order rotor equations.

The phase diagram, Poincare diagram, bifurcation diagram and the largest Lyapunov exponent are introduced to evaluate
the effect of the fractional order, rotating speed and mass eccentricity on dynamic behaviors. The analysis results show that
the fractional order damped rotor system exhibits periodic motion, chaos and quasi-periodic motion. A period doubling
route to chaos and inverse period doubling route from chaos to periodic motion, sudden transition and quasi-periodic from
periodic motion to chaos have appeared clearly.

The numerical results mainly investigate the nonlinear dynamics of rub-impact rotor system with fractional order damp-
ing and confirm the significant effect of fractional order on system dynamics. Therefore, more attention should be paid to the
fractional order of damping for the design, analysis and control of system dynamics. The next work requires more efforts to
prove that the consideration of fractional order damping can improve the results as they are closer to the experimental
observations. Furthermore, the experimental validation is essential before any concrete conclusions are drawn for using
the fractional order damping for further vibration control.
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