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Shanghai Jiao Tong University 
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- 24 Schools/Departments 

- 12 Affiliated Hospitals 

- 16,802 Undergraduates 

- 24,495 Graduates (≈60%) 
- 5,059 Ph.D. students 

- 2,979 Faculties 
- 835 Professors 

- 3.3km2 (Minhang Campus) 

Minhang Campus 
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UM-SJTU Joint Institute (1) 
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University of Michigan-SJTU Joint Institute 
- Established in 2006 - 
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 Serve as a major base to facilitate the growing trend of 
global education and to reform Chinese higher education. 

 Curriculum integrated with that of UM, World-class 
faculty, International education environment. 

 80% of JI’s  graduates went to the graduate schools in the 
USA, among which average 40% were admitted to the Top-
10 engineering schools. 

 

 

UM-SJTU Joint Institute (2) 
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Dynamic Systems Control Lab (2010~Pre.) 
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electric vehicles, motion control and mechatronics. 
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– Sep. 2004: PhD, Dept. of E. E., Univ. of Tokyo, Japan  
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Chengbin Ma 
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Students and New Laboratory  
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Motion Control 
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 The closed-loop-based polynomial 
method could be a general approach for 
the control of transient responses. 

 Tradeoff relationship between damping 
and robustness can be explicitly 
represented by the interaction between 
gi’s  and t. 

 On-going project: Control of electro-
magnetic suspension 

 

OR OR 

[1] C. Ma, J. Cao, Y. Qiao: “Polynomial Method Based Design 
of Low Order Controllers for Two-Mass System", IEEE 
Transactions on Industrial Electronics, Vol. 60, No. 3, pp. 
969-978, March 2013.  
[2] Y. Qiao, J. Cao, C. Ma: “Transient Response Control of 
Two-Mass System via Polynomial Approach", ASME Journal 
of Dynamic Systems Measurement and Control, accepted 
on Apr. 17th, 2014. [2] 
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 Electric motor: 

– Fast and accurate torque control 

– Serve as driver, actuator, and sensor simultaneously 

Electric Vehicle Dynamics 
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• Traction Control 
• Vehicle Stability Control 
• Assistive Braking Control 
• Eco-driving Assistance 

[3] X. Wu, C. Ma, M. Xu, Q. Zhao, Z. Cai: 
"Single-Parameter Skidding Detection and 
Control Specified for Electric 
Vehicles",   Journal of the Franklin Institute 
(Elsevier), accepted on July 8th, 2014. 
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From “Motion” to “Energy” 
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Control of Motion 

Energy 
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■ Speed 
■ Precision 
■ Efficiency 
 
■ Synergy 
■ Flexibility 
■ Scalability 
■ Fault-tolerance 
■ Reliability 
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[4] C. Zhao, H. Yin, Y. Noguchi, C. Ma: "Quantitative Analysis on Energy Efficiency of A Batter y-
Ultracapacitor Hybrid System", The 23rd IEEE International Symposium on  Industrial Electronics, 
June 1-4, 2014, Istanbul, Turkey. 

[5] C. Zhao, H. Yin, Z. Yang, C. Ma: "A Quantitative Study of Efficiency for  Battery-ultracapacitor 
Hybrid Systems", the 40th Annual Conference of the IEEE Industrial Electronics Society, Oc. 29-
Nov. 2, 2014, Dallas, TX, USA. 
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 Energy sources with different dynamics 
− Wind, Solar, Regenerative Energy, etc. 

 Immature electricity mass storage technology 

− The energy density of petrol (12000Wh/kg) is hundreds of 
times as that of a mass market battery (20~200Wh/kg). 

− Combination of multiple energy storage 
devices/systems with various dynamics are naturally 
required (e.g. ultracapacitors, flywheels, compressed 
air tank, wireless power transfer). 

 

Diversity of Renewable Energy Systems 
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Battery-Ultracapacitor Test System 
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ESR-based Efficiency Analysis 
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 Equivalent-Series-Resistance circuit Model: 
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Optimal Current Distribution 
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 Even for a high energy efficiency, ultracapacitors should 
provide most of dynamic load current. 

e.g. K=128 and thus Cd*=0.008 
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 Battery-only System 

 
 

 Passive HESS 
 

 

 Battery Semi-active HESS 

Efficiencies of Three Systems 
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 Thresholds of the variance of the load current can be 
accurately derived:  
– Var 𝑖𝑙 𝑡ℎ1: 𝜂𝑏𝑠 > 𝜂𝑏𝑜 

– Var 𝑖𝑙 𝑡ℎ2: 𝜂𝑏𝑠 > 𝜂𝑝𝑠 

 Tornado diagrams for the two thresholds 

Thresholds and Sensitivity Analysis 
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 SOCbat = 50%, 𝐼𝑙,𝑎 = 2A 

 The two thresholds, 10.7 and 21.4, well match                  
the calculation results. 

Examples: Ideal pulsed load profile 

19 
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Examples: JC08 driving cycle 
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Results under JC08 load 𝑬𝒍𝒐𝒔𝒔,𝒃[J] 𝑬𝒍𝒐𝒔𝒔,𝒅[J] 𝑬𝒍𝒐𝒔𝒔,𝒖[J] 𝜼[%] 

Battery-only system 844.95 N/A N/A 93.1 

Passive HESS 188.39 N/A 115.01 97.2 

Battery semi-active HESS 165.03 347.02 120.87 94.8 

 𝜂𝑏𝑠 < 𝜂𝑝𝑠 

• Var 𝑖𝑙 (=2.29) > Var 𝑖𝑙 𝑡ℎ1(=1.11) 

• Var 𝑖𝑙 (=2.29) < Var 𝑖𝑙 𝑡ℎ2(=15.53) 

 The efficiency of the battery-
ultracapacitor HESS is significantly 
influenced by the efficiency of DC-DC 
converter in addition to the added 
space and weight. 
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Battery Ageing Test 
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Experiment Setup 
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 Two control parameters for the No. 2 cell:  

– number of ultracapacitor cells 

– cut-off frequency for the current distribution 

Optimized Sizing under JC08 Cycle 
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 Initial tendency can be observed, but more cycles 
are needed to further show the variation. 

800-Cycle Capacity Test (4A discharge) 
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• No. 1: Dynamic 
discharging 

• No. 2: Modified constant 
current discharging 

• No. 3: Constant current 
discharging 

• No. 4: Calendar life 
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[6] H. Yin, C. Zhao, M. Li, C. Ma: "Utility Function-Based Real-Time Control of A Battery-
Ultracapacitor Hybrid Energy System", IEEE Transactions on Industrial Informatics, accepted on 
Nov. 13th, 2014.  

[7] H. Yin, C. Zhao, M. Li, C. Ma: "Control of A Generator-Battery-Ultracapacitor Hybrid Energy 
System Using Game Theory", the 40th Annual Conference of the IEEE Industrial Electronics 
Society, Oc. 29-Nov. 2, 2014, Dallas, TX, USA. 

 

Outline 
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Networked Energy Systems 
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 Flexibility, Fault-tolerance, Scalability, Reliability 

 “Plug & Play” in a dynamic environment. 
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 NetLogo simulation environment: world-widely used for 
modeling complex systems developing over time.  

 The battery-ultracapacitor HESS is used as a simple example. 

 

Agent-based Modeling 

27 
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Utility Function-based Optimization 
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Battery Bank 
(Cycle life) 

Ultracapacitor Bank 
(HESS Performance) 

1. The Pareto set is used 
to determine the 
weights. 

2. The global optimal 
solution is found by 
using Karush–Kuhn–
Tucker (KKT) conditions. 

3. Fast enough for 
realtime 
implementation 
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Results under JC08 Cycle 
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 Comparable performance with the average load demand (ALD) 
–base control, but need no exact pre-knowledge of the test cycle. 

Responses in eight test cycles. (a) Currents of the battery pack. (b) Energy 
stored in the ultracapacitor pack. 
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Experimental HESS 
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NOTE: The experimental results match the simulation 
results closely. This proves the correctness of the 
realtime implementation of the proposed control. 
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Non-Cooperative Current Control Game 

 Three energy devices act as agents to play a game 
• Battery “intends” to prolong its cycle life; 
• Engine-generator “prefers” a low fuel consumption. 
• Ultracapacitor “works” to improve the system performance; 

 Ultracapacitor is an assistive energy storage device. 
 Two degree-of-freedoms: battery and generator 

31 
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Preliminary Simulation Result 

 Balanced Solution among three agents 
• Nash Equilibrium 
• Battery current 

 Smooth and stable 
• Ultracapacitor current 

 Dynamic (Energy buffer) 
• Generator current 

 Almost constant 
 Fixed engine working point 

 Comparable performance with ALD-
based control, but again does not need 
pre-knowledge of the test cycle. 

32 
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Battery-Free Mobile Energy System 
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 With future ubiquitous wireless charging facilities, mobile systems 
such as electric vehicles may only need to store a reasonable amount of 
electrical energy for a relatively short period of time.  
 

 Ultracapacitors are suitable for storing and releasing large amounts of 
electrical energy quickly.  

1) Work electrostatically without reversible chemical reactions involved 

2) Theoretically unlimited cycle life (can be cycled millions of time) 

3) FAST and HIGH EFFICIENT charge/discharge due to small internal resistance (97-98% 

efficiency is typical) 

4) PRECISE State Of Charge (SOC) measurement (energy stored in capacitors is proportional 
with the square of charge voltage) 

5) A typical operating temperature range of -40 to +70◦C and small leakage current 

6) Environmentally friendly without using heavy mental for its structure material. 
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Initial Efforts Starting from 2010 
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 13.56MHz Wireless Power Transfer System (< 40 watts, 70%) 
– Optimal load tracking for high efficiency 
– Implementation using cascaded boost-buck converter 
– Optimal power distribution in multi-receiver systems 

A System-level Optimization/Control 
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Optimal Load in WPT systems (1) 
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PA Rectifier
DC/DC 

converter
Load

RL

PLPf

Lm

 Maximize PL/Pf. 

 Each Lm corresponds an optimal 
load , Rin, seen by rectifier. 

 Use boost-buck DC/DC converter to 
provide an optimal equivalent load. 

Optimal loads 
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 A 3-D view 

Optimal Load in WPT systems (2) 
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• k is determined by a 
specific relative coil 
position. 

• Rin can be  adjusted by 
adding a tuning circuit 
between rectifier and 
the final load. 

(Coil position) 
(Load) 

(Eff.) 

PA Rectifier
DC/DC 

converter
Load

RL

PLPf

Lm
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 The cascaded connection provides a general 
solution to match Rin to any specific value from 0 
Ω to +∞. 

 

Cascaded Boost-buck Converter 
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Cascade boost-buck converter. 
(a) Circuit board. (b) Efficiency. 
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13.56MHz Charging of Ultracapacitors 
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 Wireless  charging efficiency improvement 
with a fixed coil relative position. 

[8] M. Fu, C. Ma, X. Zhu: “A Cascaded Boost-Buck Converter for Load Matching in 13.56MHz Wireless 
Power Transfer", IEEE Transactions on Industrial Informatics, IEEE Transactions on Industrial Informatics, 
Vol. 10, No. 3, pp. 1972-1980, Aug. 2014. 

43.4%↑ 18%↑ 
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Experiment Setup 
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The experimental WPT system. (a) Overall system. (b) Relative position of coils.  
(c) Power sensor. (d) I/V sampling board. (e) Cascaded DC/DC converter. 
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Hill-climbing Tracking of Optimal Load 
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Fig. 1  Tracking of optimal load resistances  
           with a varying Rl. 

Fig. 2  Tracking of optimal load resistances  
           with a varying k. 

A varying load resistance A varying coil position 

[9] M. Fu, H. Yin, X, Zhu, C. Ma: “Analysis and Tracking of Optimal Load in Wireless Power Transfer 
Systems”, IEEE Transactions on Power Electronics (Accepted on July 29th, 2014) 
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Optimum Load for Multiple Receivers 

43 

2 3 1 2 3: : : :inopt opt optZ Z Z R R R

Optimal power distribution using game theory (actually a 
wireless networked energy system)? 

[10] T. Zhang, M. Fu, X. Zhu, C. Ma: “Optimal Load Analysis 
for a Two-Receiver Wireless Power Transfer System”, IEEE 
Wireless Power Transfer Conference, May 8-9, 2014, Jeju 
Island, Korea. 
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 For zero cross coupling, the maximum efficiency occurs 
when the loads are all pure resistive. 

 Assume the maximum efficiencies for the cases of zero 
cross coupling and non-zero cross coupling are identical. 

Compensation of Cross Coupling 

44 

[11] M. Fu, T. Zhang, X, Zhu, P. C. K. Luk, C. Ma: “Compensation of Cross Coupling 
in Multiple-Receiver Wireless Power Transfer Systems”, (under review) 
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 A five-receiver system and four cases: 
1. Zero cross coupling and pure resistive loads 

2. Non-zero cross coupling and pure resistive loads 

3. Non-zero cross coupling and derived optimal load reactances 

4. Non-zero cross coupling and optimal load reactances found by 
the exhaustive searching 

Numerical Validation 

45 



Dynamic Systems Control Laboratory, UM-SJTU Joint Institute 

Experimental Results 
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 A fundamental transition is occurring from 
control of “motion” to control of “energy”. 

 System-level analysis, optimization, and 
implementation of control are important. 

 Major interests now: 
– Modeling and control of networked energy systems 

(battery, ultracapacitor, solar panel, wind turbine, 
EV, home, etc) 

– Closed-loop control of WPT systems including PA 
(new sensor, tunable component, control) 

– Optimized autonomous power distribution among 
multiple receivers 

Conclusion 

48 
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WPT for (Supercapacitor?) Tram 
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