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 WPT provides an alternative solution without requiring dramatic 
improvements in battery technology. 

 It enables a totally new direction of management of electric power 
through automatizing charging of battery-powered systems.

 Spatial freedom can be further improved through a higher 
operating frequency, such as several megahertz.

Automation of Charging
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 More obvious nonlinearities of the devices and 
thus non-neglectable reactance

 Potentially higher switching loss and thus lower 
system Efficiency (dc-dc eff. 84%, Apr. 2015)

 More challenging Electromagnetic interference 
(EMI) problem (e.g. rec. input voltage THD: 42.2% to 9.92%, 

Sep. 2015)

 Robustness against varying operation condition, 
i.e., coupling and load (e.g. system efficiency variation: 

47.5%–85.0% to 73.3%–83.7%, Feb. 2016)

Major Challenges in MHz WPT
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- M. Liu, M. Fu, C. Ma: "Parameter Design for A 6.78-MHz Wireless Power Transfer 
System Based on Analytical Derivation of Class E Current-Driven Rectifier", IEEE 
Transactions on Power Electronics, Vol. 31, No. 6, pp. 4280-4291, June 2016.
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Conventional Design
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System Configuration

• Input reactance of the full-bridge rectifier is completely neglected;
• The compensation capacitors are designed to resonant with coupling coils;
• The Class E PA is optimized based on the input impedance of coupling coils.

Conventional Design

Problems

• Large switching loss on the full-bridge rectifier at MHz; 
• Difficult to analytical derive the input reactance of the rectifier ;
• Non-zero rectifier input reactance detunes the coupling coils from resonance;
• It also cause the PA to deviate from its ideal ZVS operation. 
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 Select a high-efficiency rectifying circuit;

 Derive an analytical expression of the input 
impedance of the rectifier;

 Design parameters based on the derived 
input impedance of the rectifier. 

High-efficiency Rectification at MHz
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 The analytically derived input impedance of 
the Class E rectifier and the relationship 
between Cr and D.

Rectifier Input Impedance
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 Rectifier: Cr that enables a  0.5 duty cycle, D;

 Receiving coil: Crx that makes the coupling 
coils truly resonant;

 PA: CS that follows the Raab’s equations and 
the load of PA.

System-Level Optimization
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Optimized Parameter Design
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Results (6.78MHz, k=0.1327, 84%)
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Efficiency and power

Impedance
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- M. Liu, M. Fu, C. Ma: "Low-Harmonic-Contents and High-Efficiency Class E Full-
Wave Current-Driven Rectifier for Megahertz Wireless Power Transfer Systems", IEEE 
Transactions on Power Electronics, Vol. 32, No. 2, pp. 1198-1209, February 2017.
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 EMI improvement through optimized 
design of circuits in a MHz WPT system;

 Reduction of THD of the input/output 
voltage of coupling coils;

 A high system efficiency at the same time.

Motivation
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Coupling Coils

Due to the series-series 

compensation, the input and output 

currents of the coupling coils are 

sinusoidal. Thus the THDs of their 

input/output voltages are criteria to 

verify the improvement on EMI.
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 A promising candidate because of its sinusoidal 
input voltage and current.

 A 0.49 duty cycle of the rectifying diodes  that 
avoids the overlapping and maximizes the power 
output capability of the rectifier.

Class-E Full-Wave Rectifier
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 The other parameters are designed following the 
procedures previously explained.

 The THDs are compared with those of the 
conventional full-bridge rectifier.

Results-THD with D=0.49
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Input Voltage

(Rectifier)

Output Current

(Receiving Coil)

Input Voltage

(Transmitting coil) 
Input Current

(Transmitting Coil) 

Input Voltage Waveform

(Rectifier)

Full-Wave
(76.49%↓)

Full-Bridge

(54.8%↓) (14.6%↓) (22.0%↓)
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Results-Power Losses
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Loss breakdown (10 W, 30  RL)

10 deg. reduction
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Results-(80%  Ave. Efficiency)
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Under different loads Under different coupling

Loss breakdown (10 W system input power, 30  RL)

Power losses from the 
rectifiers significantly 
influence the overall 
efficiencies (42.48%↓).
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- M. Liu, Y. Qiao, S. Liu, C. Ma: "Analysis and Design of A Robust Class E^2 DC-DC 
Converter for Megahertz Wireless Power Transfer", IEEE Transactions on Power 
Electronics, Vol. 32, No. 4, pp. 2835-2845, April 2017.
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 Most of existing designs target on a single fixed 
operating condition, i.e., fixed coil relative 
position and load.

 However, in real applications changes in the coil 
relative position and final dc load are common.

 A design methodology, active or passive, is 
required to optimize the performance over the 
possible ranges of the coil relative position and 
load.

Motivation-Enhanced Robustness
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Optimal Load for High Efficiency
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Improved Charging Efficiency
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 Wireless  charging efficiency improvement 
with a fixed coil relative position.

- M. Fu, C. Ma, X. Zhu: “A Cascaded Boost-Buck Converter for Load Matching in 13.56MHz Wireless Power 
Transfer", IEEE Transactions on Industrial Informatics, IEEE Transactions on Industrial Informatics, Vol. 10, 
No. 3, pp. 1972-1980, Aug. 2014.

43.4%↑18%↑



Dynamic Systems Control Laboratory, UM-SJTU Joint Institute

Experiment Setup
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The experimental WPT system. (a) Overall system. (b) Relative position of coils. 
(c) Power sensor. (d) I/V sampling board. (e) Cascaded DC/DC converter.
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Hill-climbing Tracking of Optimal Load
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Fig. 1  Tracking of optimal load resistances 
with a varying Rl.

Fig. 2  Tracking of optimal load resistances 
with a varying k.

A varying load resistance A varying coil position

- M. Fu, H. Yin, X, Zhu, C. Ma: “Analysis and Tracking of Optimal Load in Wireless Power Transfer Systems”, 
IEEE Transactions on Power Electronics, Vol. 30, No. 7, pp. 3952-3963, July 2015.
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 Again, the system efficiency of the MHz 
Class E2 WPT system is analytically derived.

System Efficiency-Class E2 WPT System
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 Original Class E PA matching network has 
poor robustness.

Original PA Matching Network
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Robustness Index

Note: A smaller α corresponds to improved robustness.
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Modified MN and Design Problem
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Circuit Improvement Robust Optimization

Definitions of Parameters

Optimization Problem
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Results
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Load=15 Ohm Load=30 Ohm Load=45 Ohm

d=15 cm d=30 cm d=45 cm
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 Further reduction of harmonic contents in 
the input voltage of coupling coils;

 A stable performance under variations in 
coupling  and final load;

 A robust multiple-receiver system driven by 
a constant-current-mode PA;

 Circuit design methodology to achieve 1) 
low EMI, 2) high efficiency, and 3) high 
output power.

Motivation
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 MN is included to transform and thus 
provide desired impedances as the PA load.

Matching Network 
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 A common region for both high efficiency 
and high output power.

Target Region of PA load
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 The high THD of the input voltage of the coupling 
coils is mostly caused by the 2nd-oder harmonic.

THD Analysis
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Input Current Input Voltage 

Output Current Output  Voltage 
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Matching Network Design
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RX1

RX2

RX3

A smaller ratio of R0 
(2) to R0 

(1) results 

in a lower second-order harmonic.  

Harmonics Suppression Design Procedure

Define the feasible ranges of CL and CR:

Define a target region as a constraint:

Add the 2nd-order harmonic suppression as another  

constraint: 

where λ is an index. A smaller λ leads to a smaller 2nd-

order harmonic.

The candidate combinations of the two capacitors can 

be obtained by simply sweeping CL and CR within their 

feasible ranges if the calculated R0
(1), X0

(1) , R0
(2) meet 

the two constraints under the varying k.
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 The efficiency and output power of both the PA and 
system are significantly improved over a wide range of k; 

 The second-order harmonic and THD of the input voltage 
of coupling coils are obviously reduced, 81.9%.

Results
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k=0.2
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Other Ongoing Activities

Compensation and autonomous power 
distribution in multi-receiver WPT systems 

High Efficiency CCM Class E PA 

Charging profile based optimization of 
MHz wireless battery charger

Multi-receiver MHz WPT-based cell equalization

1) Minimization of energy 
loss during entire charging 
cycle;

2) A LC matching network 
to improve the loading 
conditions;

3) Proposed design achieves 
a 24.5% reduction of the 
average power loss.

1) Saved weight and space, ease of 
implementation, and improved 
safety;

2) The operating principle of the 
WPT-based equalization is 
investigated;

3) A high overall system efficiency 
(above 71%) when equalizing six 
li-ion battery cells under loosely 
coupling (k=0.065).
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 Increasing operating frequency to MHz enables 
spatial freedom, the most important advantage 
of using WPT.

 High efficiency, low noise, and high robust MHz 
WPT systems are possible through both 
component-level and particularly system-level
design and optimization.

 Advancement from “one to one” to “one-to-
multiple” WPT provides ample opportunities 
both in research and applications.

Conclusion
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