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Abstract — This paper proposes a fractional order low-pass filter 1
(Ts+1)α for

adjusting the trade-off between stability margin loss and the strength of vibration
suppression, in which orderα can not only be integer but also be any real number.
The necessity of this trade-off adjustment is common and natural in oscillatory sys-
tem’s control. For such kind of systems, classical PI control with fractional order
low-pass filter 1

(Ts+1)α could be a general solution. As a novel approach, by letting

the orderα of low-pass filter 1
(Ts+1)α be fractional, control system’s frequency re-

sponse can be adjusted easily. This superiority of Fractional Order Control (FOC)
leads to a clear-cut design that is desired in engineering applications. The trade-off
in oscillatory system control can be adjusted directly through FOC approach. In this
paper, torsional system’s speed control is used as a case study for an experimental
verification of FOC’s theoretical superiority. For implementation of fractional order
low-pass filter, broken-line approximation method is applied. Design process and ex-
perimental results demonstrate that a “simple& clear-cut design” can be achieved
by introducing FOC concept.

1 Introduction

The concept of Fractional Order Control (FOC) means controlled systems and/or con-
trollers are described by fractional order differential equations. Expanding derivatives
and integrals to fractional orders has a firm and long standing theoretical foundation.
Leibniz mentioned this concept in a letter to L’Hospital over three hundred years ago in
1695 and the earliest more or less systematic studies have been made in the beginning
and middle of the 19th century by Liouville, Holmgren and Riemann [9], [12]. As one
of its applications in control engineering, FOC was introduced by Tustin for the position
control of massive objects half a century ago, where actuator saturation requires sufficient
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phase margin around and below the critical point [14]. Some pioneering works were also
done in 60’s [6]. However the FOC concept was not widely incorporated into control
engineering mainly due to the conceptually difficult idea of taking fractional order, the
existence of so few physical applications and the limited computational power available
at that time [1].

In the last few decades, researchers pointed out that fractional order differential equa-
tions could model various materials more adequately than integer order ones and provide
an excellent tool for describing dynamic processes [15]. The fractional order models need
fractional order controllers for more effective control of the dynamic systems [13]. At the
same time, letting control order be fractional can give a straightforward way to adjust con-
trol system’s frequency response. This great flexibility makes it possible to design more
robust control system with less control parameters. The superiorities of FOC in modeling
and control design motivated renewed interest in various applications of FOC [5], [10],
[11]. With the rapid development of computer performances, modeling and realization of
the FOC systems also became possible and much easier than before.

Despite FOC’s promising aspects in control modeling and design, FOC research is still
at its primary stage. Parallel to the development of FOC theories, applying FOC to various
control problems is also crucially important and should be one of top priority issues. The
authors believe that designing FOC systems should be clear-cut and there is no reason
that we don’t make good use of extremely well developed classical Integer Order Control
(IOC) theories.

Based on these basic considerations, in this paper, the authors introduce a fractional
order version of low-pass filter 1

(Ts+1)α to achieve a clear-cut adjustment of the trade-off
between stability margin loss and the strength of vibration suppression in speed control
of torsional system. The necessity of this trade-off adjustment is common and natural
in oscillatory system’s control [2]. For such kind of systems, classical PI control with
fractional order low-pass filter 1

(Ts+1)α can be a general solution. This paper contributes
to the verification of the above hypothesis on an experimental basis.
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Figure 1: Experimental setup of the torsional system

2 The Testing Bench

The testing bench of torsional system is depicted in Figure 1, which is a typical oscillatory
system. Two flywheels are connected with a long torsional shaft; while driving force is
transmitted from driving servomotor to the shaft by gears with gear ratio 1:2. Some
system parameters are adjustable, such as gear inertia, load inertia, shaft elastic coefficient
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and gear backlash angle. The encoders and tacho-generators are used as position and
rotation speed sensors.

The simplest model of the testing bench with gear backlash is three-inertia model, as
depicted in Figure 2 and Figure 3, whereJm, Jg andJl are driving motor, gear (driving
flywheels) and load inertias,Ks shaft elastic coefficient,ωm andωl motor and load rota-
tion speeds,Tm input torque andTl disturbance torque. The gear backlash non-linearity
is described by the classical dead zone models in which the shaft is modeled as a pure
spring with zero damping [8]. Frictions between components are neglected due to their
small values. Parameters of the experimental torsional system are shown in Table. 1
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Figure 2: Torsional system’s three-inertia model
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Figure 3: Block diagram of the three-inertia model

with a backlash angleδ of ±0.6deg. Open-loop transfer function fromTm to ωm is in the
following form:

P3m(s) =
(s2 + ω2

h1)(s
2 + ω2

h2)

Jms(s2 + ω2
o1)(s

2 + ω2
o2)

(1)

whereωo1 andωo2 are resonance frequencies whileωh1 andωh2 are anti-resonance fre-
quencies.ωo1 andωh1 correspond to torsion vibration mode; whileωo2 andωh2 correspond
to gear backlash vibration mode (see Figure 4).

Jm Jg Jl Kg Ks

(Kgm2) (Kgm2) (Kgm2) (Nm/rad) (Nm/rad)
0.0007 0.0034 0.0029 3000 198.49

Table 1: Parameters of the three-inertia system
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Figure 4: Bode plots of the three-inertia model

3 Necessity of Trade-off adjustment

As mentioned by Ma and Hori (2004), a well designed set-point-I PI controller can give
a satisfactory performance for speed control in nominal case (see Figure 5 and Figure 6).
The PI controller is designed by Coefficient Diagram Method (CDM) withKi = 119.78
andKp = 1.6187 [3] [7].

ω r
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e Tm+ + 

 

 
Kp

Ki/s

ω

 

 

Figure 5: Set-point-I PI controller

For nominal three-inertia modelP3m(s), the close-loop transfer function of integer or-
der PI control system fromωr to ωm is

Gclose(s) =
CI(s)P3m(s)

1 + CI(s)P3m(s) + CP (s)P3m(s)
(2)

whereCI(s) is I controller andCP (s) is P controller in minor loop; thereforeGclose(s) is
stable if and only ifGl = CI(s)P3m(s)+CP (s)P3m(s) has positive gain margin and phase
margin. At the same time, for torsional system’s speed control, suppressing vibration
caused by the gear backlash must be concerned.

As depicted in Figure 7, the PI speed control system has enough stability margin; while
in order to recover some vibration performance, additional factors with negative slope
and phase-lag are needed. However introducing these factors will simultaneously lead to
phase margin loss. Namely, there exists a trade-off between stability margin loss and the
strength of vibration suppression in the testing torsional system’s speed control.
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Figure 6: Simulation results with nominal three-inertia model
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Figure 7: Bode plots ofGl(jω) with PI controller

4 Fractional order Filter

In order to achieve a proper controller, which is neither conservative nor aggressive, re-
designing the PI controller or applying other control methods can be options; while in this
paper, a fractional order low-pass filter 1

(Ts+1)α is introduced (see Figure 8). The trade-off
between stability margin loss and the strength of vibration suppression can be adjusted
easily by choosing proper fractional orderα only, as depicted in Figure 9.T will give
control system enough large band width for a fast time response. Here considering the
frequency range of torsion vibration mode,T is taken as 0.005(=1/200).
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Figure 8: PI controller with fractional order low-pass filter
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Figure 9: Bode plots ofGl(jω) with fractional order low-pass filters

5 Realization Method

Design control system by FOC approach is clear-cut. However, for realizing designed
fractional order controller, it is not so. Due to fractional order systems’ infinite dimen-
sion, proper approximation by finite difference equation is needed. Since FOC system’s
frequency response is actually exactly known. It is natural to approximate fractional order
controllers by frequency domain approaches.

In this paper, a broken-line approximation method is introduced to approximate1
(Ts+1)α

in frequency range[ωb, ωh], whereT = 1
ωb

. ωh is taken as104 to give an enough frequency
range for a good approximation. Let




s
ωh

+ 1
s
ωb

+ 1




α

≈
N−1∏

i=0

s

ω
′
i

+ 1

s
ωi

+ 1
(3)

Based on Figure 10, two recursive factorsζ andη are introduced to calculateωi andω
′
i:
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Figure 10: An example of broken-line approximation (N = 3)

ζ =
ω
′
i

ωi

, η =
ωi+1

ω
′
i

(4)
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Since
ω0 = η

1
2 ωb, ω

′
N−1 = η−

1
2 ωh (5)

Therefore

ζη =
(

ωh

ωb

) 1
N

(6)

with
ωi = (ζη)iω0, ω

′
i = ζ(ζη)iω0 (7)

The frequency-band fractional order controller has−20αdB/dec gain slope, while the in-

teger order factors1
/

( s

ω
′
i

+ 1) have−20dB/dec slope. For the same magnitude change

∆:

−20α =
∆

logζ + logη
, −20 =

∆

logζ
(8)

Thus
(ζη)α = ζ (9)

Thereforeζ andη can be expressed respectively by

ζ =
(

ωh

ωb

) α
N

, η =
(

ωh

ωb

) 1−α
N

(10)

Finally

ωi =
(

ωh

ωb

) i+1
2−

α
2

N

ωb, ω
′
i =

(
ωh

ωb

) i+1
2+ α

2
N

ωb (11)

Figure 11 shows the Bode plots of ideal frequency-band case(α = 0.4, ωb = 200Hz, ωh =
1000Hz) and its 1st-order, 2nd-order and 3rd-order approximations by broken-line ap-
proximation method. Even takingN = 2 can give a satisfactory accuracy in frequency
domain. For digital implementation, the bilinear transformation method is used in this
paper.
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6 Experimental Results

As depicted in Figure 12, the experimental torsional system is controlled by a PC with
1.6GHz Pentium IV CPU and 512M memory. Control programs are written in RTLinux
C threads which can be executed with strict timing requirement of control sampling time.
A 12-bit AD/DA multi-functional board is used whose conversion time per channel is
10µsec.

Experiments are carried out with sampling timeT=0.001sec and 2nd-order broken-
line approximation(N = 2). Two encoders (8000pulse/rev) are used as rotation speed
sensors with coarse quantization±0.785rad/sec.
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Figure 12: Digital control system of the experimental setup

Since the driving servomotor’s input torque commandTm has a limitation of maximum
±3.84Nm, Ki is reduced to 18.032 by trial-and-error to avoid large over-shoot caused
by the saturation. Firstly, integer order PI speed control experiment is carried out. As
depicted in Figure 13 the PI control system can achieve satisfactory response when the
backlash angle is adjusted to zero degree (δ = 0); while persistent vibration occurs when
gear backlash non-linearity exists (seeδ = 0.6 case).
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Figure 13: Experimental results of the integer order PI control

Figure 14 depicts the experimental results with differentα order filters. Vibration oc-
curred in PI-only control is effectively suppressed by introducing fractional order low-
pass filter 1

(Ts+1)α . In those results, takingα as 0.2 gives best time response with improved



FRACTIONAL ORDER LOW-PASS FILTER

vibration suppression performance. For other higherα order cases, even the vibration is
suppressed, their time responses are not such satisfied due to more phase margin loss.
This observation gives that, by FOC approach, it is more clear-cut to adjust the trade-off
between stability margin loss and strength of vibration suppression.
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Figure 14: Experimental results with fractional order1
(Ts+1)α filter

In order to verify whether the fractional order filter can give a continuous tuning of the
trade-off, the time responses ofα = 0.01 andα = 0.99 cases are also experimented. As
depicted in Figure 15, the results show a good continuity. Attention should be paid toward
the reasons for vibrations in two cases. Poor vibration suppression performance causes
vibration in α = 0.01 case; while nearly zero phase margin inα = 0.99 case leads to
the severe vibration with lower frequency and larger amplitude. Namely, the reason for
the second case is due to its poor relative stability. A proper fractional orderα can give a
better trade-off between these two extreme cases. Figure 16 depicts experimental results
with the 1st-order and 3rd-order approximation of broken-line method (α = 0.2). Even
taking 1st-order approximation can give a relatively good performance.

7 Conclusions

In this paper, a classical PI controller with fractional order low-pass filter1
(Ts+1)α is pro-

posed to give a straightforward trade-off adjustment between the control system’s stability
margin loss and the strength of vibration suppression. In oscillatory system control, this
kind of trade-off is a common problem. As shown in the above theoretical analysis and
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Figure 15: Continuity of Experimental results with different fractional orderα
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Figure 16: Experimental results with different approximation orders

experimental results, by introducing FOC concept, we can design control system in a
clear-cut way since control system’s frequency response can be adjusted easily to desired
shape with few control parameters. Namely, the tuning knob can be reduced significantly
compared to high-order transfer functions obtained by classical IOC approaches.

At the same time, it can be seen using fractional order controller is a general method
to trade off inconsistent control demands, which is not limited to the specific problem.
“Simple& clear-cut design” can be achieved by expending controller’s order to fractional.

On the contrary to FOC control design, the implementation of fractional order con-
trollers is not such direct. Some proper approximations are needed. However, as verified
in experimental results, the implementation issue actually should not be problematic.
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FOC is not an abstract concept, but a natural and powerful expansion of the well-
developed IOC. Knowledge and design tools developed in IOC can still be made good
use of in FOC research, as demonstrated in this paper. For example, upgrading tradi-
tional PID controller by introducing fractional order factors, such as fractional order Iα,
Dβ controllers or fractional order filters, could give a more effective control of complex
dynamics. It is interesting to find that in the experiments the 1st-order approximation can
also have a relative good performance (see Figure 16). This filter is actually a simple one
order controller:

0.45731
(s + 2091)

(s + 956.4)
(12)

The authors do believe some well-designed IOC system might in fact be a unconscious
approximation of FOC system. If this hypothesis can be established, FOC’s superiorities
in control field would be further verified.

References
[1] Axtell, M. and M. E. Bise (1990). Fractional calculus applications in control systems. In:Proceedings

of the IEEE 1990 National Aerospace and Electronics Conference. New York, USA. pp. 563–566.

[2] Chen, Y., B. M. Vinagre and I. Podlunbny (2003). On fractional order disturbance observer. In:Pro-
ceedings of ASME Design Engineering Technical Conferences& Computers and Information In En-
gineering Conference. Chicago, Illinois, USA.

[3] Hori Y. (1995). Control of 2-inertia system only by a PID controller.IEEJ Transactions112-
D(5), 499–500.

[4] Ma, C. and Y. Hori (2004). Backlash vibration suppression control of torsional system by novel
fractional order PIDk controller.IEEJ Transactions on Industry Applications124(3), 312–317.

[5] Machado, J. A. Tenreiro (1997). Theory analysis and design of fractional-order digital control sys-
tems.Journal of Systems Analysis Modeling Simulation27, 107–122.

[6] Manabe, S. (1960). The non-integer integral and its application to control systems.Journal of Institute
of Electrical Engineers of Japan80(860), 589–597.

[7] Manabe, S. (1998). Controller design of two-mass resonant system by Coefficient Diagram Method.
IEEJ Transactions118-D(1), 58–66.

[8] Nordin, M. and Per-Olof Gutman (2002). Controlling mechanical systems with backlash – a survey.
Automatica38, 1633–1649.

[9] Oldham, K. B. and J. Spanier (1974).The Fractional Calculus. Academic Press. New York and
London.

[10] Oustaloup, A., J. Sabatier and X. Moreau (1998). From fractal robustness to the crone approach.The
European Series in Applied and Industrial Mathematics. 5, 177–192

[11] Petras, I. and B. M. Vinagre (2001). Practical application of digital fractional-order controller to
temperature control. In:Acta Montanistica Slovaca. Kosice.

[12] Podlubny, I. (1999a). Fractional differential equations. In:Mathematics in Science and Engineering.
Vol. 198. Academic Press. New York and Tokyo.

[13] Podlubny, I. (1999b). Fractional-order systems and PIλDµ controller.IEEE Transactions on Auto-
matic Control44(1), 208–214

[14] Tustin, A., et al. (1956). The design of systems for automatic control of the position of massive
objects.The Institute of Electrical Engineers105-C(1), 1–57.
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