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ABSTRACT 
In this paper, nonlinear dynamics of Duffing system with 

fractional order damping is investigated. The four order Runge-
Kutta method and ten order CFE-Euler methods are introduced 
to simulate the fractional order Duffing equations. The effect of 
taking fractional order on the system dynamics is investigated 
using phase diagrams, bifurcation diagrams and Poincare map. 
The bifurcation diagram is also used to exam the effects of 
excitation amplitude and frequency on Duffing system with 
fractional order damping. The analysis results show that the 
fractional order damped Duffing system exhibits period motion, 
chaos, period motion, chaos, period motion in turn when the 
fractional order changes from 0.1 to 2.0. A period doubling 
route to chaos is clearly observed. 

 

1. INTRODUCTION 
Fractional Calculus is a branch of applied mathematics that 

studies the possibility of taking arbitrary orders of the 
differential and integration operators. The applications of 
fractional caculus in engineering and physics have attracted lots 
of attention. Because fractional calculus  is having  profound 
impact on many engineering and scientific areas  such as 
signal and image processing, mechanics, mechatronics, physics, 
control theory, viscoelasticity and rheology, electrical 
engineering, electrochemistry and bioengineering[1-2]. 

Although some of the mathematical issues remain unsolved, 
fractional calculus based modeling of complicated dynamics is 
becoming a recent focus of interest. The dynamics of fractional 
order system equations for Chua, Lorenz, Rossler, Chen, Jerk 
and Duffing are mainly investigated [3-9]. It is obvious that the 
chaotic attractors existing in their fractional systems have 
different fractional orders. In Ref. 10，Long-Jye Sheu et al 
mainly researched the effect of fractional order damping on 
dynamic behaviors. In Ref. 11 and Ref. 12, bifurcation and 
chaotic dynamics of the fractional order cellular neural 
networks were studied. The fractional Van der Pol equation with 
periodically exciting was investigated in Ref. 13. It has been 
shown that the chaotic motions exist when the order of 
fractional damping is less than 1. 

In recent years, the dynamics and vibration analysis of 
fractional order damped systems are of great interest to 
researchers[14-19]. The fractional order operator’s characterstic 
of having an unlimited memory leads to a concise description of 
complicated system dynamics. For example, the backlash and 
impact can be more adequately analyized [20-21]. Zheng-Ming 
Ge et al introduced the chaos control of the fractional order 
rotational mechanical system[22]. Machado et al also explained 
that while the dynamics of each individual element has an 
integer-order nature, the global dynamics reveals the existence 
of both integer and fractional order nature [23]. Therefore, it is 
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essential to consider the fractional order damping in study the 
dynamic characteristics. 

The Duffing equation, which is being used in many 
physical, mechanical and even biological engineering problems, 
has been modified to study the dynamics of fractional order 
systems[4,5,10]. Although much work has been done on the 
chaotic dynamics of fractional order systems, the preceding 
researches mainly focused on the effect of the fractional order 
damping. There are rare papers investigating the effect of other 
parameters including the amplitude and frequency of the 
external exciting force. Because these parameters also play an 
important role in the dynamic characteristics of fractional order 
system, it is necessary to study the impact of the above 
parameters on the fractional dynamics. Therefore, this article 
discusses the nonlinear analysis of fractionally damped Duffing 
with the variation of not only the fractional order, but also the 
amplitude and frequency of the external exciting force. It is 
well-known that the fractional differintegral operators do not 
allow direct implementation in time-domain simulations. 
Appropriate approximations of fractional operator need to be 
developed for the analysis. There is significant interest in 
developing numerical methods for simulating fractional 
differantial equations. In Ref.3 to Ref.6, a linear approximation 
of fractional order transfer function in frequency domain is 
adopted to study the chaotic characteristics. In Ref. 10 and Ref. 
13, a predictor–corrector approach with numerical schemes for 
Volterra integral equation is proposed. The direct 
approximation using Euler rule and Continued Fractional 
Expansion will be implemented for numerial simulation of 
fractional Duffing system in this paper. The proposed 
approximation method is preferable for physical engineering 
applications. 

2. FRACTIONAL CACULUS AND DISCRETIZATION 
SCHEMES 

There are two definitions for fractional differentiation and 
integration, the Grunwald-Letnikov (GL) definition and the 
Riemann–Liouville (RL) definition [24]. The GL definition is 
the best known one since it is most direct for the digital 
realization of the fractional order operators. The GL fractional 
derivative of continuous function ( )f t  is given by:  
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for ( 1 )n α n− < <  

In Laplace domain it is usually more easily to describe the 
fractional integro-differential operation. The Laplace transform 
of the fractional integral of is given by: 

{ }0 ( ) ( )tL D f t s F sα α=               (3) 

where ( )F s  is the Laplace transform of ( )f t . The Laplace 
transform of the fractional derivative of ( )f t  is given as 
follows:  
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where 1n nα− < < again. If all the initial conditions are zeros, 
the Laplace transform of fractional derivative is simplified to 
Eqn.(3). 

In order to exactly realize the fractional order operators, all 
the past input need to be memorized, which is not practical. 
These are mainly two discretization methods to approximate the 
operator sα . They are direct discretization and indirect 
discretization[25]. Several direct discretization methods by 
finite differential equation have already been proposed, such as 
the Short memory principle, Tustin expansion, Al-Alaoui 
expansion [26]. In order to calculate the coefficients of the 
approximated differential equations, Power Series Expansion 
(PSE) and Continued Fraction Expansion (CFE) can be 
introduced. For the PSE method, the differential equations are 
in FIR filter structure; while as to the CFE method, the 
approximation equations are in IIR filter structure. It has been 
shown that the low order approximation equations with IIR 
structure can achieve excellent approximations, which can only 
be achieved by the FIR structure with high order [27]. Namely 
the CFE method is more efficient than the PSE method. The 
experimental results also show that the ten order approximation 
equation with Euler and Al-Alaoui are proper for engineering 
applications [28]. The following steps explain is the adoptation 
of Euler operator for direct discretization of the fractional order 
operator, which can be given by: 
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Then perform CFE, the discretization result is as follows: 
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where { }Z u denotes the z-transformation of u and { }CFE u  
denotes the Continued Fraction Expansion of u; p and q are the 
orders of the approximation; P and Q are the polynomials of 
degrees p and q. Usually p, q and n can be set to be equal, 
p q n= = . In the below numerical analysis, the order of the 

approximation equation is chosen as 10. 
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3. FRACTIONAL DAMPED DUFFING 
The Duffing equation, a well-known nonlinear differential 

equation, is used for decsribing many physical, engineering and 
even biological problems[29]. Originally the Duffing equaiton 
was introduced by German electrical engineer Duffing in 1918. 
The equation is given by: 

2
3

2 ( ) ( ) ( ) ( ) sin( )d dm x t c x t kx t x t A t
dtdt

λ ω+ + + =     (7) 

Where , , , ,m c k Aλ andω are the mass, damping coefficient, 
linear stiffness, nonlinear stiffness, excitation amplitude and 
excitation frequency, respectively. The different values of λ  
show the hard and soft characteristics of spring. When 1k = − , 
the conventional Duffing equation will be the famous Holmes 
type Duffing oscillator. It is can be seen that in Duffing equation 
the damping force is proportional to the one order derivatives of 
the displacement. The damping modeling using fractional 
derivative has many successful applications in the mechanical 
engineering[30-33], because it can describe the complicated 
frequency dependency of damping materials. The fractional 
order damping force is described by: 

( )dF cD x tα=                    (8) 
whereα is the fractionalorder of damping. The Eqn. (7) and 
Eqn. (8) can be integrated into  
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Based on the following property of sequential fractional 
derivatives[24]  
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and zero initial value condition, The Eqn. (9) can be 
transformed into the state equations, which is given by:  
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The first two fractional derivative equations in Eqn. (11) 
can be simulated using the approximation method shown in 
Eqn. (6). The third equation can be numerically computated by 
four order Runge–Kutta method. 

4. RESULTS AND DISCUSSIONS 
The dynamic trajectories can be used to distinguish whether 

the system is periodic or non-periodic. However, it cannot 
provide enough information to determine the onset for chaotic 
motion. Therefore, it is necessary to introduce other analytical 
methods, which are bifurcation diagram, phase diagram, 
Poincare map and Lyapunov exponents. The points on the 

Poincare map represent the return points of the time series at a 
constant interval T, where T is the driving period of the exciting 
force. For quasi-periodic motion, the return points in the 
Poincare map form a closed curve. For chaotic motion, the 
return points in the Poincare map form a particular structure or 
a geometrically structure. As to a periodic motion, the n discrete 
points on the Poincare map indicate that the period of motion is 
nT. It is clear that the Poincare map can better identify the 
motion behavior of system with given parameters[34]. 
However, it is necessary that the system dynamics with a range 
of parameter values need to be viewed thoroughly using 
bifurcation diagrams. Because the bifurcation diagrams can 
summarize the essential dynamics of system, therefore provide 
valuable insights into its nonlinear dynamic behavior. In this 
paper, the bifurcation diagrams are generated by parameter 
variation with a constant step, and the emphasis is on analysis 
the effects of fractional order of damping, excitation frequency 
and excitation amplitude. The above methods will be adopted to 
analyze various dynamic behaviors of fractional damping 
Duffing. 

The nonlinear dynamics of Duffing system with fractional 
damping is digitally simulated in Matlab/Simulink. The 
fractional derivatives of Eqn. (11) is approximated by the IIR 
discrete model using CFE and Euler rule, in which the order of 
approximation model is set to be 10. In this study, we firstly fix 
parameters 1m λ ω= = = , 1k = − 0.9c = and 0.6f = .The initial 
state is set to (0) 0, (0) 0, (0) 0x y z= = = . In order to test the 
numerical scheme, the case with 1.0α =  is calculated. 
When 1.0α = , the system is actually described by the classical 
Duffing equation. The phase portrait and Poncare map are 
shown in Fig.1. The classical Duffing system with the same 
parameters using Runge–Kutta method is simulated. The results 
are in good agreement with Fig. 1. And when 1.0α = , the 
average square error of each step output between the proposed 
numerical scheme and Runge–Kutta method is 0.00152625. 
Therefore, the proposed numerical scheme is verified to be 
accurate for simulating the fractional Duffing system. The stable 
response can be obtained by discarding the output of former 50 
excitation periods and retaining the output of last 100 excitation 
periods. Since the sample frequency in numerical computation 
is 100 times of the excitation frequency, the number of data 
points plotted in diagrams is 10000. 

The effect of the fractionalα order damping on the dynamic 
behavior of the system is mainly investigated. The fractional 
order ranges from 0.08 to 2. Bifurcation can be easily detected 
by examining the relationship between x and the fractional 
orderα . The bifurcation diagram with step size 0.005α∆ = is 
shown in Fig.2. At each value of the fractional orderα , the first 
50 points of the Poincare map are discarded and the values of x 
for next 100 points are plotted on the bifurcation diagram. From 
Fig. 2, it can be observed that the fractional order exhibits a 
significant effect on dynamic characteristics. When 
0.08 0.387α< ≤ , the response of Duffing system with 
fractional order damping is a period motion. Fig.3 shows the 
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significant effect on dynamic characteristics. When 
0.08 0.387α< ≤ , the response of Duffing system with 
fractional order damping is a period motion. Fig.3 shows the 
phase trajectory and Poincare map for 0.38α = . There is one 
isolated point in the Poincare section and the trajectory shows a 
regular period one. After undergoing the period motion zone, 
the motion suddenly comes into the first chaotic region. Hence 
the chaotic state remains from 0.388 to 0.733. 

Fig.4 shows the phase trajectory and Poincare map 
for 0.48α = . There is a strange attractor representing chaotic 
motion in the Poincare section. And the trajectory shows an 
irregular motion. In order to clearly identify the dynamic 
behavior from a quantitative view of point, the largest Lyapunov 
exponent is introduced to explain the characteristics of system 
behavior. The corresponding largest Lyapunov exponent 
at 0.48α = is 1.0596. However, the period motion windows 
appear in the first chaotic motion zone. Fig.5 shows the phase 
trajectory and Poincare map for 0.50α = . It is obvious that the 
period four motion can be identified from the four isolated 
points in the Poincare section. When the fractional order   
further increases, the system response returns to period motion. 
When 0.75α = , the motion is a period two and then becomes 
period one when 0.81α =  by an inverse period doubling 
bifurcation. Fig.6 shows the phase trajectory and Poincare map 
for 0.75α = . The periodic window is identified as period-2 
motion from Fig. 6. 

when 1.1α >  , the system response gradually enters into the 
second chaotic zone by the route of period doubling bifurcation. 
The second chaotic zone is from 1.28 to 1.58. Fig.7 shows the 
phase trajectory and Poincare map for 1.38α = . Again there is a 
strange attractor showing chaotic motion in Poincare section 
and the corresponding largest Lyapunov exponent at 1.38α =  
is 1.0752. Finally, the motion again comes into the period 
motion region along with the further increased fractional order 
from 1.58α > . Fig. 8 shows the phase trajectory and Poincare 
map at 1.78α = , which also exhibits clearly a period-3 motion. 

It can be concluded from the above analysis, 
when 0.08 2.0α< < , the fractional order damped Duffing 
system exhibits the periodic, chaotic, periodic, chaotic, periodic 
motion in turn. At the same time, the motion turns into chaos 
through a route of sudden transition from the periodic to chaotic 
motion when 0.1 0.75α< < , and then leaves chaos by an 
inverse period doubling bifurcation. When 1.1α > , it comes 
into chaos again through a route of period doubling bifurcation 
and leaves chaos through a route of period reducing bifurcation. 
Finally, the system dynamics becomes a period-3 motion. In 
addition, the periodic motion window appears in the both 
chaotic motion zone. 

The above analysis and conclusion mainly focus on the effect 
of fractional orderα on system’s dynamic behavior. However, 
the excitation frequency and amplitude always play a significant 
role on dynamic characteristics. In the following analysis, the 
fractional order α is set to be constant and the excitation 
frequencyω and amplitude A  are used as control parameters. 
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Figure 3. Phase trajectory and Poincare map at α =0.38. 
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Figure 1. Phase trajectory and Poincare map at α  =1.0. 
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The bifurcation diagram with various control parameterω  is 
shown in Fig.9 where 0.5, 0.6, 0.9A cα = = = .While the 
bifurcation diagram with different control parameter A is shown 
in Fig. 10 where 0.5, 1.0, 0.9cα ω= = = . Clearly the fractional 
order damped system exhibits the complex nonlinear dynamic 
behavior under the external excitation. 

5. CONCLUSION 
The nonlinear dynamics of the fractionally damped Duffing 

system are investigated in this paper. The four order Runge-
Kutta method and ten order CFE-Euler approximation methods 
are combined to simulate the fractional order Duffing equations. 
The numerical simulation results when 1.0α =  show the CFE-
Euler approximation methods is proper for approximating the 
fractional order equations.  

The phase diagram, Poincare diagram, bifurcation diagram 
and the largest Lyapunov exponents are introduced to 
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Figure 8. Phase trajectory and Poincare map at α =1.78. 
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Figure 7. Phase trajectory and Poincare map at α =1.38. 
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Figure 6. Phase trajectory and Poincare map at α =0.75. 
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Figure 5. Phase trajectory and Poincare map at α =0.5.
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Figure 4. Phase trajectory and Poincare map at α =0.48. 
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evaluate the effect of the fractional order of damping on 
dynamic behaviors. The analysis shows that the fractional order 
damped Duffing system exhibits period motion, chaos, period 
motion, chaos, period motion in turn when the fractional order 
changes from 0.1 to 2.0.  A period doubling route to chaos and 
inverse period doubling route from chaos to periodic motion 
can be clearly observed. The bifurcation diagram is also 
introduced to investigate the effect of excitation amplitude and 
frequency on the Duffing system with fractional order damping.  

The numerical results verify the significant effect of 
fractional order on system dynamics. Therefore more attention 
should be paid to the fractional order of damping for the design, 
analysis and control of system dynamics. More specifically, the 
dynamic analysis of rotor bearing system is important for 
exactly diagnosing the malfunctions and improving the dynamic 
characteristics. The further research would introduce the 
concept of the fractional order damping to analyze the nonlinear 
behavior of rotating machinery and thus enhance the dynamic 
analysis accuracy and the maintenance efficiency. 
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