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Abstract—In this paper, a polynomial-based design of inertia
ratio controllers is discussed for the vibration suppression in
two-mass system. A tradeoff relationship is shown to exist
between damping and robustness performances in the control
problem. A desirable inertia ratio of 5/16 is derived at which
IP control provides a proper damping. Then two approaches for
the control of equivalent inertia ratio are discussed without/with
load velocity feedback. “Resonance ratio control” is capable of
providing a sufficient damping for large inertia ratios by using
only drive velocity feedback. However, a negative derivative gain
is necessary, which leads to a poor robustness. By using both
drive and load velocity feedback, the equivalent inertia ratio
can be exactly specified as 5/16. The proposed “inertia ratio
controller” design shows an obvious improvement in terms of
both damping and robustness performances. All the experimental
results validate the polynomial-based theoretical analysis and
controller design. The demonstrated generality and the explicit
expression of damping indicate the promising prospect of the
polynomial-based controller design for solving more complicated
control problems.

I. INTRODUCTION

The fundamental trend of the electrification of drive sys-
tems is now expanding from industry to new areas such as
alternative energy systems including electric vehicles and wind
turbine generators [1][2]. The rapid and accurate response
of electric motor greatly enhances drive system performance.
However, the higher control bandwidth makes it easy to ex-
cite mechanical resonance. This vibration suppression control
problem can be found in many electromechanical systems from
traditional systems such as steel rolling mills and elevators to
the above new applications. These electromechanical systems
are usually modeled as multi-mass systems, while the control
of two-mass systems can give a good starting point and general
results for dealing with more complicated systems.

In the typical benchmark two-mass control problem, only
the velocity of drive side is assumed measurable, whereas
driving torque, load torque and the velocity of load side
are not measurable [3][4]. The designed controller needs to
control the velocity of the load side within well-suppressed
vibrations by using only the velocity feedback of drive side.
Various approaches have been proposed for the two-mass
system control during the past decade such as the feedback of
imperfect derivative of torsional torque estimated by a distur-
bance observer [3], a two-degree-of-freedom control structure

using an observer-based state feedback compensator [5], µ-
synthesis based on a descriptor form representation [6], a
series anti-resonance finite-impulse response compensator [7],
independent design of velocity control and vibration suppres-
sion control [8] and pole-placement-based PI/PID controller
design [9]. A comparative study of different control structures
for a two-mass electrical drive system is discussed in [10].
Intelligent control has also been applied in the two-mass
control problem using fuzzy and neural network approaches
[4][11]-[13].

It is well-known that low-order PID controllers and their
modifications are predominant in electric drive industry. Con-
tinuous improvement on low-order controller design would
significantly contribute to real engineering applications. Be-
sides the well-established classical and modern control design,
there exists an alternative approach called algebraic design
using polynomial expressions, i.e., polynomial method. In the
approach, because controller is designed based on the closed-
loop characteristic polynomial, a general controller design and
discussion are possible. In addition, the structure of controller
is defined at the beginning. The controller parameters are then
determined by specifying so-called characteristic ratios and
generalized time constant. Therefore, the polynomial method
is suitable for being used as a general approach to design low-
order controllers.

More specifically, an essential issue for the controller
design of two-mass system is to achieve a balanced tradeoff
between damping and robustness performances, as explained in
following sections. A controller design method that is capable
of explicitly including the factor of damping would be highly
desirable for vibration suppression purpose. It was reported
that in polynomial method the assignment of characteristic ra-
tios has a strong co-relationship with the damping of a closed-
loop system. The transient response can also be addressed us-
ing characteristic ratios and generalized time constant [14][15].
Naslin empirically observed these relationships in 1960s [16].
Manabe proposed the Coefficient Diagram Method (CDM)
based on Naslin’s findings and the Lipatov-Sokolov stability
criterion [17]. In CDM, the nominal assignment of charac-
teristic ratios is proposed as [2.5, 2, 2, . . .] for smooth time
responses.

This paper systematically applies the polynomial method
in a challenging benchmark engineering problem, the vibration
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suppression in two-mass system. Using the frequency response
of the normalized two-mass model, it is explained that the
inertia ratio q directly relates to the difficulty of the controller
design. A larger value of q corresponds to a stronger tendency
of pole-zero cancellation. For the simple IP control, 5/16 is
shown to be a desirable inertia ratio at which a balanced
tradeoff between damping and robustness can be achieved.
Consequently, for a system with a larger q, virtually reducing
of q through a specific controller structure can be considered in
order to avoid the pole-zero cancellation. Two approaches are
then discussed for the control of the equivalent inertia ratio for
the two-mass system without and with load velocity feedback,
respectively.

II. EXPERIMENTAL TWO-MASS SYSTEM

The two-mass system can be emulated by using a labora-
tory torsion test bench. As shown in Fig. 1, the drive side and
load side of the torsion system are connected with a torsional
shaft. Drive torque is transmitted from drive servomotor to the
shaft by gears with a gear ratio of 1:2. The torsion system
can be modeled as a two-mass system, in which two masses
are connected with a non-stiff coupling shaft [see Fig. 2].
The transfer function between driving torque Tm and angular
velocity of drive side ωm can be written as

P (s) =
Ωm(s)

Tm(s)
=

s2 + ω2
a

Jms(s2 + ω2
r)
, (1)

in which

ωr =

√
Ks

(
1

Jm
+

1

Jl

)
and ωa =

√
Ks

Jl
, (2)

where Ks is the spring coefficient, while Jm and Jl are the
inertias of the drive and load sides, ωr and ωa are the resonance
frequency and anti-resonance frequency, respectively.

(a)
load flywheel 
(changeable) 

bearing 

Torsional shaft 
(changeable) 

driving flywheel 
(changeable)

driving servomotor 

load servomotor 

encoder  

tacho-generator  

(b)

Fig. 1. Experimental setup of the torsion test bench.

For a generalized discussion, Eq. (1) can be normalized by
replacing the Laplace operator s with s∗=s/ωa, i.e.,

P (s∗) =
q

Jm

1

ωa

s∗2 + 1

qs∗3 + s∗
, (3)

Tm Tlωm ωl

Drive

   Jm

Load

   Jl

Shaft

   Ks

(a)

1

Jls

ωmTm

Ks

s

1

Jms

Tl ωl

(b)

Fig. 2. The modeling of two-mass system. (a) Model. (b) Block diagram.

where q is the inertia ratio defined as the ratio of drive inertia
to total inertia

q =
Jm

Jm + Jl
. (4)

The normalized two-mass system model can be further sim-
plified as

Pn(s
∗) =

Ωm(s∗)

Tm(s∗)
=

s∗2 + 1

qs∗3 + s∗
, (5)

for which the normalized resonance frequency and anti-
resonance frequency are

ω∗
r =

1
√
q
, ω∗

a = 1, (6)

respectively. It is straightforward from the Laplace transform
of time-scaled functions that the real response is sped up by a
factor of ωa. Based on Eq. (6), the two resonance frequencies,
ω∗
r and ω∗

a become close when the inertia ratio q increases,
i.e., the tendency of pole-zero cancellation. It is well-known
that the pole-zero cancellation leads to poor robustness of a
closed-loop control system [18].

On the other hand, with the placement of a load velocity
sensor, the nonminimum-phase zeros in Eq. (5) can be elimi-
nated. Because the normalized transfer function between load
velocity ωl and drive torque Tm is

Ωl(s
∗)

Tm(s∗)
=

1

qs∗3 + s∗
, (7)

in which the tendency of pole-zero cancellation is avoided.

III. DESIRABLE INERTIA RATIO

A desirable inertia ratio of the two-mass system for the
polynomial-based controller design has been discussed [19].
Here, the desirable inertia ratio is re-examined and experimen-
tally verified using a simple IP structure. As shown in Fig. 3,
unlike the conventional PI controllers, a modified structure
called setpoint-on-I-only structure is adopted to smooth the
discontinuity of the reference command ωr by the integral
controller, which is widely used in servo drive industry [20].
The closed-loop transfer function for the IP control is

Gn(s
∗) =

K∗
i (s

∗2 + 1)

qs∗4 +K∗
ps

∗3 + (1 +K∗
i )s

∗2 +K∗
ps

∗ +K∗
i

.

(8)
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Fig. 3. Block diagram of IP velocity control of the normalized two-mass
system.

Then, the control parameters are determined by applying
the nominal characteristic ratio assignment [2.5, 2, 2, ...] in
polynomial method. Based on Eq. (8), the characteristic ratios
can be calculated as follow from the definition [14].

γ1 =
K∗2

p

K∗
i (1 +K∗

i )
γ2 =

(1 +K∗
i )

2

K∗2
p

γ3 =
K∗2

p

q(1 +K∗
i )

, (9)

Unlike γ1 and γ2, γ3 is also determined by the value of the
inertia ratio q. Since the low-index characteristic ratios have a
dominant influence, a straightforward strategy is to primarily
guarantee γ1 and γ2. Let γ1 = 2.5 and γ2 = 2 in Eq. (9), K∗

p
and K∗

i are determined as

K∗
p =

5

4
√
2
, K∗

i =
1

4
, (10)

and thus γ3 is smaller than two when

q >
5

16
= 0.3125. (11)

The real controller parameters Kp and Ki can be calculated
as follows by comparing Eq. (5) with Eq. (3)

Kp = K∗
p

Jmωa

q
, Ki = K∗

i

Jmω2
a

q
. (12)

The experimental results of the IP control is shown in
Fig. 4. Due to the existence of a 1:2 gear ratio between the
drive and load sides, ωl is half of ωm. A step disturbance
torque generated by the load servo motor is applied at 1 sec.
It can be seen that a sufficient damping is provided when
q ≤ 5/16 (see Fig. 4(a)(b)), while the step responses become
oscillatory at larger q’s (see Fig. 4(c)(d)). An inertia ratio q
equals to 5/16 could be considered desirable at which γ3 takes
its nominal value, two. When q is smaller than 5/16, the system
is overdamped (i.e., γ3 > 2). Larger q’s lead to insufficient
damping (i.e., γ3 < 2). For the cases with large q’s, a control
structure can be designed to virtually lower the real inertia
ratio, as discussed in the following sections.

IV. INERTIA RATIO CONTROLLER DESIGN

A. Without load velocity feedback

The structure of so-called “resonance ratio control” in
Fig. 5 can be used to control the equivalent inertia ratio of
the two-mass system [8]. By using the polynomial method, its
five controller parameters, K∗

p , K∗
i , K∗, K∗

d and T ∗
d can be

exactly determined. The low-pass filter 1/(T ∗
d s

∗+1) is mainly
introduced for the real implementation of the derivative term
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Fig. 4. IP control. (a) q = 0.3612. (b) q = 0.5254. (c) q = 0.6752. (d)
q = 0.7966.

K∗
ds

∗. By neglecting the low-pass filter, the transfer function
between T

′

m and ωm can be written as

Ωm(s∗)

T ′
m(s∗)

=
1

1−K∗ +K∗
d

s∗2 + 1[
(1−K∗)q+K∗

d

1−K∗+K∗
d

]
s∗3 + s∗

, (13)

where the equivalent inertia ratio q
′

is

q
′
=

(1−K∗)q +K∗
d

1−K∗ +K∗
d

. (14)

Fig. 5. Block diagram of “resonance ratio control”.

The closed-loop transfer function in Fig. 5 is

Gn(s) =
K∗

i (T
∗
d s

∗ + 1)(s∗2 + 1)

a5s∗5 + a4s∗4 + a3s∗3 + a2s∗2 + a1s∗ + a0
,

(15)
where

a5 = qT ∗
d ,

a4 = q +K∗
d − qK∗ +K∗

pT
∗
d ,

a3 = T ∗
d +K∗

p +K∗
i T

∗
d ,

a2 = 1−K∗ +K∗
d +K∗

i +K∗
pT

∗
d ,

a1 = K∗
p +K∗

i T
∗
d ,

a0 = K∗
i . (16)
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Applying the nominal characteristic ratio assignment [2.5, 2,
2, 2], the coefficients in Eq. (16) can be solved using

an =
τn

γn−1γ2
n−2...γ

n−1
1

a0. (17)

In Eq. (16), because
a5
q

+ a1 = a3, (18)

then
τ5

26 · 2.54 · q
K∗

i + τK∗
i =

τ3

2 · 2.52
K∗

i . (19)

Therefore, a positive τ is solely determined by q

τ = 10

√
q −

√
q2 − 0.25q. (20)

Then all the other controller parameters can be simultaneously
calculated as follows

K∗
i =

2500q

τ5
T ∗
d ,

K∗
p = (τ − T ∗

d )K
∗
i ,

K∗ = 1 +
τ4 − 50τ2 + 125

125(1− q)
K∗

i ,

K∗
d =

(
τ2

2.5
− 1

)
K∗

i +K∗ −K∗
pT

∗
d − 1. (21)

For the fifth-order characteristic equation Eq. (16) under
the nominal characteristic ratio assignment and with the deter-
mined τ in Eq. (20), its five poles are

−5.56± 6.40i

τ
,
−3.02± 1.76i

τ
,
−2.84

τ
, (22)

respectively. In order to have a smooth transient response, the
zero z1(= −1/T ∗

d ) added by the low-pass filter 1/(T ∗
d s + 1)

needs to be properly located (see Eq. (15)). Suppose z1 is α
times of the real part of the leftmost roots r1,2, i.e.,

T ∗
d =

τ

5.56α
. (23)

As shown in Fig. 6 at a large q(=0.75), the smooth step
response at α = 5 indicates an improved damping by the
“resonance ratio control” (see Fig. 6(d)). Similarly, the real
controller parameters can be calculated using Eqs. (12)(24).

K = K∗, Kd = K∗
d

Jm
q

, Td =
T ∗
d

ωa
. (24)

Due to the existence of the first-order low-pass filter, there
is no explicit representation of the equivalent inertia ratios for
the “resonance ratio control”. However, the quasi-equivalent
inertia ratios calculated using Eq. (14) are still found to close
to 5/16, as shown in Fig. 7(a). Meanwhile, the normalized
derivative gain K∗

d is always negative for large q’s, i.e., the
positive feedback of the D control signal and thus a poor
robustness (see Fig. 7(b)).

The experimental results are shown in Fig. 8. For the
“resonance ratio control” structure, it is necessary to have a
negative derivative gain (i.e., phase-lag) in order to provide
a sufficient damping when q is large. However, the required
robustness performance is largely ignored. In the benchmark
two-mass control problem, it is assumed that only the velocity
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Fig. 6. Step responses of the “resonance ratio control” under various zero
assignments (q=0.75). (a) α = 1.1. (b) α = 1.5. (c) α = 2.0. (d) α = 5.0.
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Fig. 7. Analysis of the “resonance ratio control” design. (a) quasi-equivalent
inertia ratio. (b) normalized derivative gain K∗

d .

of the drive side ωm is measurable. Using only the drive
velocity feedback, the tendency of pole-zero cancellation at
large q’s makes it difficult to have a balanced controller design
between damping and robustness performances.

B. With load velocity feedback

In real applications, there exist cases where the feedback of
both drive and load velocities, ωm and ωl is available. Then the
equivalent inertia ratio of the two-mass system can be exactly
specified using the control structure shown in Fig. 9. With
the velocity feedback of both the drive and load sides, the
twisting torque Tt generated due to the velocity difference of
the drive and load sides can be directly calculated. Therefore
the relationship between T

′

m and the two velocities, ωm and
ωl in Fig. 9 can be written as

(1 +K)T
′

m − KKs

s
(Ωm − Ωl)−

Ks

s
(Ωm − Ωl) = JmsΩm.

(25)
Eq. (25) can be simplified as

T
′

m − Ks

s
(Ωm − Ωl) = J

′

msΩm, (26)

where
J

′

m =
Jm

1 +K
. (27)
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Fig. 8. “Resonance ratio control” without load velocity feedback. (a) q =
0.3612. (b) q = 0.5254. (c) q = 0.6752. (d) q = 0.7966.

Fig. 9. Block diagram of the inertia ratio control using the feedback of both
drive and load velocities.

Since J
′

m can be considered as the equivalent inertia of the
drive side, the equivalent inertia ratio q

′
can be defined as

q
′
=

J
′

m

J ′
m + Jl

=
q

1 + (1− q)K
. (28)

Namely, an arbitrary inertia ratio q
′

can be specified by
choosing the corresponding value of K.

As discussed in section III, 5/16 is a desirable inertia ratio
for the IP control that enables the nominal characteristic ratio
assignment [2.5, 2, 2]. By letting the equivalent inertia ratio
q
′

be equal to 5/16, K and the equivalent drive inertia J
′

m can
be determined as

K =
16q − 5

5(1− q)
and J

′

m =
5(1− q)

11q
Jm, (29)

respectively. Then, using IP control for the virtual two-mass
system, it is straightforward to calculate the real parameters of

the IP controller based on Eqs. (10)(12),

Kp = K∗
p

J
′

mωa

q′ =
20

11
√
2

√
JlKs,

Ki = K∗
i

J
′

mω2
a

q′ =
4

11
Ks. (30)

Considering the dependence of the above controller design
on the nominal value of the spring coefficient Ks, its robust-
ness against spring coefficient variation need be investigated.
Real spring coefficient is supposed to be α times of its nominal
value, i.e., Ks,real = αKs, then Eq. (25) can be modified as

T
′

m − (α+K)Ks

(1 +K)s
(Ωm − Ωl) =

Jm
1 +K

sΩm, (31)

namely the two-mass system has an equivalent spring coeffi-
cient K

′

s as equal as

K
′

s =
α+K

1 +K
Ks. (32)

As shown in Fig. 10, the variation range of K
′

s is limited for
a largely varying Ks,real, especially when the inertia ratio q
is large. In addition, the value of spring coefficient Ks only
affects the time-scale factor ωa defined in Eq. (2). The shape
of the step time response is irrelevant with Ks.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

inertia ratio q

(α
+

K
)/

(1
+

K
)

α = 0.2 to 2
at 0.2 intervel 

Fig. 10. The ratio of K
′
s to Ks versus inertia ratio q.

The inertia ratio control shows an obvious improvement
both in terms of damping and robustness performances even at
large inertia ratios (see Fig. 11). Furthermore, it has a strong
robustness against disturbance torque and spring coefficient
variation. As shown in Fig. 12, even the spring coefficient
varies 18.4904 times larger, the inertia ratio control still shows
a good performance with the controller parameters designed
for the original case. By using the feedback of both drive and
load velocities, the negative derivative gains in the “resonance
ratio control” can be avoided. Therefore the inertia ratio control
can maintain both a sufficient damping and a good robustness
for large inertia ratios.

V. CONCLUSION

In this paper, a polynomial-based design of the inertia ratio
controllers is discussed for the vibration suppression in two-
mass system. Due to the tendency of pole-zero cancellation at
large inertia ratios, it is difficult to achieve a balanced con-
troller design between damping and robustness performances
using only drive velocity feedback. First, the IP controller is
designed based on the nominal characteristic ratio assignment.
A desirable inertia ratio of 5/16 is derived at which the IP
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Fig. 11. Inertia ratio control with load velocity feedback. (a) q = 0.3612.
(b) q = 0.5254. (c) q = 0.6752. (d) q = 0.7966.
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Fig. 12. Inertia ratio control under the variation of spring coefficient (q =
0.7966). (a) Simulation. (b) Experiment.

control provides a proper damping. Two approaches for the
control of equivalent inertia ratio are then discussed. The
“resonance ratio control” is capable of providing a sufficient
damping for large inertia ratios by using only the drive velocity
feedback. However, a negative derivative gain, i.e. positive
derivative feedback loop, is necessary, which leads to a poor
robustness. On the other hand, with the availability of both the
drive and load velocity feedback, the equivalent inertia ratio
can be exactly specified as equal as its desirable value, 5/16.
Without introducing of positive derivative feedback loop, the
inertia ratio control structure with load feedback shows both a
sufficient damping and a strong robustness for the cases with
large inertia ratios.

All the experimental results validated the polynomial-based
controller design. The demonstrated generality and the explicit
expression of damping by using the polynomial method in-
dicate its promising prospect for solving more complicated
control problems.
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